2 * High-level sync()-related operations
5 #include <linux/kernel.h>
6 #include <linux/file.h>
8 #include <linux/module.h>
9 #include <linux/sched.h>
10 #include <linux/writeback.h>
11 #include <linux/syscalls.h>
12 #include <linux/linkage.h>
13 #include <linux/pagemap.h>
14 #include <linux/quotaops.h>
15 #include <linux/buffer_head.h>
18 #define VALID_FLAGS (SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE| \
19 SYNC_FILE_RANGE_WAIT_AFTER)
22 * Do the filesystem syncing work. For simple filesystems
23 * writeback_inodes_sb(sb) just dirties buffers with inodes so we have to
24 * submit IO for these buffers via __sync_blockdev(). This also speeds up the
25 * wait == 1 case since in that case write_inode() functions do
26 * sync_dirty_buffer() and thus effectively write one block at a time.
28 static int __sync_filesystem(struct super_block
*sb
, int wait
)
30 /* Avoid doing twice syncing and cache pruning for quota sync */
32 writeout_quota_sb(sb
, -1);
33 writeback_inodes_sb(sb
);
35 sync_quota_sb(sb
, -1);
38 if (sb
->s_op
->sync_fs
)
39 sb
->s_op
->sync_fs(sb
, wait
);
40 return __sync_blockdev(sb
->s_bdev
, wait
);
44 * Write out and wait upon all dirty data associated with this
45 * superblock. Filesystem data as well as the underlying block
46 * device. Takes the superblock lock.
48 int sync_filesystem(struct super_block
*sb
)
53 * We need to be protected against the filesystem going from
54 * r/o to r/w or vice versa.
56 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
59 * No point in syncing out anything if the filesystem is read-only.
61 if (sb
->s_flags
& MS_RDONLY
)
64 ret
= __sync_filesystem(sb
, 0);
67 return __sync_filesystem(sb
, 1);
69 EXPORT_SYMBOL_GPL(sync_filesystem
);
72 * Sync all the data for all the filesystems (called by sys_sync() and
75 * This operation is careful to avoid the livelock which could easily happen
76 * if two or more filesystems are being continuously dirtied. s_need_sync
77 * is used only here. We set it against all filesystems and then clear it as
78 * we sync them. So redirtied filesystems are skipped.
80 * But if process A is currently running sync_filesystems and then process B
81 * calls sync_filesystems as well, process B will set all the s_need_sync
82 * flags again, which will cause process A to resync everything. Fix that with
85 static void sync_filesystems(int wait
)
87 struct super_block
*sb
;
88 static DEFINE_MUTEX(mutex
);
90 mutex_lock(&mutex
); /* Could be down_interruptible */
92 list_for_each_entry(sb
, &super_blocks
, s_list
)
96 list_for_each_entry(sb
, &super_blocks
, s_list
) {
101 spin_unlock(&sb_lock
);
103 down_read(&sb
->s_umount
);
104 if (!(sb
->s_flags
& MS_RDONLY
) && sb
->s_root
)
105 __sync_filesystem(sb
, wait
);
106 up_read(&sb
->s_umount
);
108 /* restart only when sb is no longer on the list */
110 if (__put_super_and_need_restart(sb
))
113 spin_unlock(&sb_lock
);
114 mutex_unlock(&mutex
);
118 * sync everything. Start out by waking pdflush, because that writes back
119 * all queues in parallel.
121 SYSCALL_DEFINE0(sync
)
123 wakeup_flusher_threads(0);
126 if (unlikely(laptop_mode
))
127 laptop_sync_completion();
131 static void do_sync_work(struct work_struct
*work
)
134 * Sync twice to reduce the possibility we skipped some inodes / pages
135 * because they were temporarily locked
139 printk("Emergency Sync complete\n");
143 void emergency_sync(void)
145 struct work_struct
*work
;
147 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
149 INIT_WORK(work
, do_sync_work
);
155 * Generic function to fsync a file.
157 * filp may be NULL if called via the msync of a vma.
159 int file_fsync(struct file
*filp
, struct dentry
*dentry
, int datasync
)
161 struct inode
* inode
= dentry
->d_inode
;
162 struct super_block
* sb
;
165 /* sync the inode to buffers */
166 ret
= write_inode_now(inode
, 0);
168 /* sync the superblock to buffers */
170 if (sb
->s_dirt
&& sb
->s_op
->write_super
)
171 sb
->s_op
->write_super(sb
);
173 /* .. finally sync the buffers to disk */
174 err
= sync_blockdev(sb
->s_bdev
);
181 * vfs_fsync - perform a fsync or fdatasync on a file
182 * @file: file to sync
183 * @dentry: dentry of @file
184 * @data: only perform a fdatasync operation
186 * Write back data and metadata for @file to disk. If @datasync is
187 * set only metadata needed to access modified file data is written.
189 * In case this function is called from nfsd @file may be %NULL and
190 * only @dentry is set. This can only happen when the filesystem
191 * implements the export_operations API.
193 int vfs_fsync(struct file
*file
, struct dentry
*dentry
, int datasync
)
195 const struct file_operations
*fop
;
196 struct address_space
*mapping
;
200 * Get mapping and operations from the file in case we have
201 * as file, or get the default values for them in case we
202 * don't have a struct file available. Damn nfsd..
205 mapping
= file
->f_mapping
;
208 mapping
= dentry
->d_inode
->i_mapping
;
209 fop
= dentry
->d_inode
->i_fop
;
212 if (!fop
|| !fop
->fsync
) {
217 ret
= filemap_fdatawrite(mapping
);
220 * We need to protect against concurrent writers, which could cause
221 * livelocks in fsync_buffers_list().
223 mutex_lock(&mapping
->host
->i_mutex
);
224 err
= fop
->fsync(file
, dentry
, datasync
);
227 mutex_unlock(&mapping
->host
->i_mutex
);
228 err
= filemap_fdatawait(mapping
);
234 EXPORT_SYMBOL(vfs_fsync
);
236 static int do_fsync(unsigned int fd
, int datasync
)
243 ret
= vfs_fsync(file
, file
->f_path
.dentry
, datasync
);
249 SYSCALL_DEFINE1(fsync
, unsigned int, fd
)
251 return do_fsync(fd
, 0);
254 SYSCALL_DEFINE1(fdatasync
, unsigned int, fd
)
256 return do_fsync(fd
, 1);
260 * sys_sync_file_range() permits finely controlled syncing over a segment of
261 * a file in the range offset .. (offset+nbytes-1) inclusive. If nbytes is
262 * zero then sys_sync_file_range() will operate from offset out to EOF.
266 * SYNC_FILE_RANGE_WAIT_BEFORE: wait upon writeout of all pages in the range
267 * before performing the write.
269 * SYNC_FILE_RANGE_WRITE: initiate writeout of all those dirty pages in the
270 * range which are not presently under writeback. Note that this may block for
271 * significant periods due to exhaustion of disk request structures.
273 * SYNC_FILE_RANGE_WAIT_AFTER: wait upon writeout of all pages in the range
274 * after performing the write.
276 * Useful combinations of the flag bits are:
278 * SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE: ensures that all pages
279 * in the range which were dirty on entry to sys_sync_file_range() are placed
280 * under writeout. This is a start-write-for-data-integrity operation.
282 * SYNC_FILE_RANGE_WRITE: start writeout of all dirty pages in the range which
283 * are not presently under writeout. This is an asynchronous flush-to-disk
284 * operation. Not suitable for data integrity operations.
286 * SYNC_FILE_RANGE_WAIT_BEFORE (or SYNC_FILE_RANGE_WAIT_AFTER): wait for
287 * completion of writeout of all pages in the range. This will be used after an
288 * earlier SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE operation to wait
289 * for that operation to complete and to return the result.
291 * SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE|SYNC_FILE_RANGE_WAIT_AFTER:
292 * a traditional sync() operation. This is a write-for-data-integrity operation
293 * which will ensure that all pages in the range which were dirty on entry to
294 * sys_sync_file_range() are committed to disk.
297 * SYNC_FILE_RANGE_WAIT_BEFORE and SYNC_FILE_RANGE_WAIT_AFTER will detect any
298 * I/O errors or ENOSPC conditions and will return those to the caller, after
299 * clearing the EIO and ENOSPC flags in the address_space.
301 * It should be noted that none of these operations write out the file's
302 * metadata. So unless the application is strictly performing overwrites of
303 * already-instantiated disk blocks, there are no guarantees here that the data
304 * will be available after a crash.
306 SYSCALL_DEFINE(sync_file_range
)(int fd
, loff_t offset
, loff_t nbytes
,
311 loff_t endbyte
; /* inclusive */
316 if (flags
& ~VALID_FLAGS
)
319 endbyte
= offset
+ nbytes
;
323 if ((s64
)endbyte
< 0)
325 if (endbyte
< offset
)
328 if (sizeof(pgoff_t
) == 4) {
329 if (offset
>= (0x100000000ULL
<< PAGE_CACHE_SHIFT
)) {
331 * The range starts outside a 32 bit machine's
332 * pagecache addressing capabilities. Let it "succeed"
337 if (endbyte
>= (0x100000000ULL
<< PAGE_CACHE_SHIFT
)) {
348 endbyte
--; /* inclusive */
351 file
= fget_light(fd
, &fput_needed
);
355 i_mode
= file
->f_path
.dentry
->d_inode
->i_mode
;
357 if (!S_ISREG(i_mode
) && !S_ISBLK(i_mode
) && !S_ISDIR(i_mode
) &&
361 ret
= do_sync_mapping_range(file
->f_mapping
, offset
, endbyte
, flags
);
363 fput_light(file
, fput_needed
);
367 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
368 asmlinkage
long SyS_sync_file_range(long fd
, loff_t offset
, loff_t nbytes
,
371 return SYSC_sync_file_range((int) fd
, offset
, nbytes
,
372 (unsigned int) flags
);
374 SYSCALL_ALIAS(sys_sync_file_range
, SyS_sync_file_range
);
377 /* It would be nice if people remember that not all the world's an i386
378 when they introduce new system calls */
379 SYSCALL_DEFINE(sync_file_range2
)(int fd
, unsigned int flags
,
380 loff_t offset
, loff_t nbytes
)
382 return sys_sync_file_range(fd
, offset
, nbytes
, flags
);
384 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
385 asmlinkage
long SyS_sync_file_range2(long fd
, long flags
,
386 loff_t offset
, loff_t nbytes
)
388 return SYSC_sync_file_range2((int) fd
, (unsigned int) flags
,
391 SYSCALL_ALIAS(sys_sync_file_range2
, SyS_sync_file_range2
);
395 * `endbyte' is inclusive
397 int do_sync_mapping_range(struct address_space
*mapping
, loff_t offset
,
398 loff_t endbyte
, unsigned int flags
)
408 if (flags
& SYNC_FILE_RANGE_WAIT_BEFORE
) {
409 ret
= wait_on_page_writeback_range(mapping
,
410 offset
>> PAGE_CACHE_SHIFT
,
411 endbyte
>> PAGE_CACHE_SHIFT
);
416 if (flags
& SYNC_FILE_RANGE_WRITE
) {
417 ret
= __filemap_fdatawrite_range(mapping
, offset
, endbyte
,
423 if (flags
& SYNC_FILE_RANGE_WAIT_AFTER
) {
424 ret
= wait_on_page_writeback_range(mapping
,
425 offset
>> PAGE_CACHE_SHIFT
,
426 endbyte
>> PAGE_CACHE_SHIFT
);
431 EXPORT_SYMBOL_GPL(do_sync_mapping_range
);