fs: improve scalability of pseudo filesystems
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / dcache.c
blob9e6e6db76869b7770a8c8110698b40eae27a2d0d
1 /*
2 * fs/dcache.c
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
9 /*
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include "internal.h"
41 * Usage:
42 * dcache->d_inode->i_lock protects:
43 * - i_dentry, d_alias, d_inode of aliases
44 * dcache_hash_bucket lock protects:
45 * - the dcache hash table
46 * s_anon bl list spinlock protects:
47 * - the s_anon list (see __d_drop)
48 * dcache_lru_lock protects:
49 * - the dcache lru lists and counters
50 * d_lock protects:
51 * - d_flags
52 * - d_name
53 * - d_lru
54 * - d_count
55 * - d_unhashed()
56 * - d_parent and d_subdirs
57 * - childrens' d_child and d_parent
58 * - d_alias, d_inode
60 * Ordering:
61 * dentry->d_inode->i_lock
62 * dentry->d_lock
63 * dcache_lru_lock
64 * dcache_hash_bucket lock
65 * s_anon lock
67 * If there is an ancestor relationship:
68 * dentry->d_parent->...->d_parent->d_lock
69 * ...
70 * dentry->d_parent->d_lock
71 * dentry->d_lock
73 * If no ancestor relationship:
74 * if (dentry1 < dentry2)
75 * dentry1->d_lock
76 * dentry2->d_lock
78 int sysctl_vfs_cache_pressure __read_mostly = 100;
79 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
81 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
82 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
84 EXPORT_SYMBOL(rename_lock);
86 static struct kmem_cache *dentry_cache __read_mostly;
89 * This is the single most critical data structure when it comes
90 * to the dcache: the hashtable for lookups. Somebody should try
91 * to make this good - I've just made it work.
93 * This hash-function tries to avoid losing too many bits of hash
94 * information, yet avoid using a prime hash-size or similar.
96 #define D_HASHBITS d_hash_shift
97 #define D_HASHMASK d_hash_mask
99 static unsigned int d_hash_mask __read_mostly;
100 static unsigned int d_hash_shift __read_mostly;
102 struct dcache_hash_bucket {
103 struct hlist_bl_head head;
105 static struct dcache_hash_bucket *dentry_hashtable __read_mostly;
107 static inline struct dcache_hash_bucket *d_hash(struct dentry *parent,
108 unsigned long hash)
110 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
111 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
112 return dentry_hashtable + (hash & D_HASHMASK);
115 static inline void spin_lock_bucket(struct dcache_hash_bucket *b)
117 bit_spin_lock(0, (unsigned long *)&b->head.first);
120 static inline void spin_unlock_bucket(struct dcache_hash_bucket *b)
122 __bit_spin_unlock(0, (unsigned long *)&b->head.first);
125 /* Statistics gathering. */
126 struct dentry_stat_t dentry_stat = {
127 .age_limit = 45,
130 static DEFINE_PER_CPU(unsigned int, nr_dentry);
132 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
133 static int get_nr_dentry(void)
135 int i;
136 int sum = 0;
137 for_each_possible_cpu(i)
138 sum += per_cpu(nr_dentry, i);
139 return sum < 0 ? 0 : sum;
142 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
143 size_t *lenp, loff_t *ppos)
145 dentry_stat.nr_dentry = get_nr_dentry();
146 return proc_dointvec(table, write, buffer, lenp, ppos);
148 #endif
150 static void __d_free(struct rcu_head *head)
152 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
154 WARN_ON(!list_empty(&dentry->d_alias));
155 if (dname_external(dentry))
156 kfree(dentry->d_name.name);
157 kmem_cache_free(dentry_cache, dentry);
161 * no locks, please.
163 static void d_free(struct dentry *dentry)
165 BUG_ON(dentry->d_count);
166 this_cpu_dec(nr_dentry);
167 if (dentry->d_op && dentry->d_op->d_release)
168 dentry->d_op->d_release(dentry);
170 /* if dentry was never inserted into hash, immediate free is OK */
171 if (hlist_bl_unhashed(&dentry->d_hash))
172 __d_free(&dentry->d_u.d_rcu);
173 else
174 call_rcu(&dentry->d_u.d_rcu, __d_free);
178 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
179 * After this call, in-progress rcu-walk path lookup will fail. This
180 * should be called after unhashing, and after changing d_inode (if
181 * the dentry has not already been unhashed).
183 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
185 assert_spin_locked(&dentry->d_lock);
186 /* Go through a barrier */
187 write_seqcount_barrier(&dentry->d_seq);
191 * Release the dentry's inode, using the filesystem
192 * d_iput() operation if defined. Dentry has no refcount
193 * and is unhashed.
195 static void dentry_iput(struct dentry * dentry)
196 __releases(dentry->d_lock)
197 __releases(dentry->d_inode->i_lock)
199 struct inode *inode = dentry->d_inode;
200 if (inode) {
201 dentry->d_inode = NULL;
202 list_del_init(&dentry->d_alias);
203 spin_unlock(&dentry->d_lock);
204 spin_unlock(&inode->i_lock);
205 if (!inode->i_nlink)
206 fsnotify_inoderemove(inode);
207 if (dentry->d_op && dentry->d_op->d_iput)
208 dentry->d_op->d_iput(dentry, inode);
209 else
210 iput(inode);
211 } else {
212 spin_unlock(&dentry->d_lock);
217 * Release the dentry's inode, using the filesystem
218 * d_iput() operation if defined. dentry remains in-use.
220 static void dentry_unlink_inode(struct dentry * dentry)
221 __releases(dentry->d_lock)
222 __releases(dentry->d_inode->i_lock)
224 struct inode *inode = dentry->d_inode;
225 dentry->d_inode = NULL;
226 list_del_init(&dentry->d_alias);
227 dentry_rcuwalk_barrier(dentry);
228 spin_unlock(&dentry->d_lock);
229 spin_unlock(&inode->i_lock);
230 if (!inode->i_nlink)
231 fsnotify_inoderemove(inode);
232 if (dentry->d_op && dentry->d_op->d_iput)
233 dentry->d_op->d_iput(dentry, inode);
234 else
235 iput(inode);
239 * dentry_lru_(add|del|move_tail) must be called with d_lock held.
241 static void dentry_lru_add(struct dentry *dentry)
243 if (list_empty(&dentry->d_lru)) {
244 spin_lock(&dcache_lru_lock);
245 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
246 dentry->d_sb->s_nr_dentry_unused++;
247 dentry_stat.nr_unused++;
248 spin_unlock(&dcache_lru_lock);
252 static void __dentry_lru_del(struct dentry *dentry)
254 list_del_init(&dentry->d_lru);
255 dentry->d_sb->s_nr_dentry_unused--;
256 dentry_stat.nr_unused--;
259 static void dentry_lru_del(struct dentry *dentry)
261 if (!list_empty(&dentry->d_lru)) {
262 spin_lock(&dcache_lru_lock);
263 __dentry_lru_del(dentry);
264 spin_unlock(&dcache_lru_lock);
268 static void dentry_lru_move_tail(struct dentry *dentry)
270 spin_lock(&dcache_lru_lock);
271 if (list_empty(&dentry->d_lru)) {
272 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
273 dentry->d_sb->s_nr_dentry_unused++;
274 dentry_stat.nr_unused++;
275 } else {
276 list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
278 spin_unlock(&dcache_lru_lock);
282 * d_kill - kill dentry and return parent
283 * @dentry: dentry to kill
285 * The dentry must already be unhashed and removed from the LRU.
287 * If this is the root of the dentry tree, return NULL.
289 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
290 * d_kill.
292 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
293 __releases(dentry->d_lock)
294 __releases(parent->d_lock)
295 __releases(dentry->d_inode->i_lock)
297 dentry->d_parent = NULL;
298 list_del(&dentry->d_u.d_child);
299 if (parent)
300 spin_unlock(&parent->d_lock);
301 dentry_iput(dentry);
303 * dentry_iput drops the locks, at which point nobody (except
304 * transient RCU lookups) can reach this dentry.
306 d_free(dentry);
307 return parent;
311 * d_drop - drop a dentry
312 * @dentry: dentry to drop
314 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
315 * be found through a VFS lookup any more. Note that this is different from
316 * deleting the dentry - d_delete will try to mark the dentry negative if
317 * possible, giving a successful _negative_ lookup, while d_drop will
318 * just make the cache lookup fail.
320 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
321 * reason (NFS timeouts or autofs deletes).
323 * __d_drop requires dentry->d_lock.
325 void __d_drop(struct dentry *dentry)
327 if (!(dentry->d_flags & DCACHE_UNHASHED)) {
328 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) {
329 bit_spin_lock(0,
330 (unsigned long *)&dentry->d_sb->s_anon.first);
331 dentry->d_flags |= DCACHE_UNHASHED;
332 hlist_bl_del_init(&dentry->d_hash);
333 __bit_spin_unlock(0,
334 (unsigned long *)&dentry->d_sb->s_anon.first);
335 } else {
336 struct dcache_hash_bucket *b;
337 b = d_hash(dentry->d_parent, dentry->d_name.hash);
338 spin_lock_bucket(b);
340 * We may not actually need to put DCACHE_UNHASHED
341 * manipulations under the hash lock, but follow
342 * the principle of least surprise.
344 dentry->d_flags |= DCACHE_UNHASHED;
345 hlist_bl_del_rcu(&dentry->d_hash);
346 spin_unlock_bucket(b);
347 dentry_rcuwalk_barrier(dentry);
351 EXPORT_SYMBOL(__d_drop);
353 void d_drop(struct dentry *dentry)
355 spin_lock(&dentry->d_lock);
356 __d_drop(dentry);
357 spin_unlock(&dentry->d_lock);
359 EXPORT_SYMBOL(d_drop);
362 * Finish off a dentry we've decided to kill.
363 * dentry->d_lock must be held, returns with it unlocked.
364 * If ref is non-zero, then decrement the refcount too.
365 * Returns dentry requiring refcount drop, or NULL if we're done.
367 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
368 __releases(dentry->d_lock)
370 struct inode *inode;
371 struct dentry *parent;
373 inode = dentry->d_inode;
374 if (inode && !spin_trylock(&inode->i_lock)) {
375 relock:
376 spin_unlock(&dentry->d_lock);
377 cpu_relax();
378 return dentry; /* try again with same dentry */
380 if (IS_ROOT(dentry))
381 parent = NULL;
382 else
383 parent = dentry->d_parent;
384 if (parent && !spin_trylock(&parent->d_lock)) {
385 if (inode)
386 spin_unlock(&inode->i_lock);
387 goto relock;
390 if (ref)
391 dentry->d_count--;
392 /* if dentry was on the d_lru list delete it from there */
393 dentry_lru_del(dentry);
394 /* if it was on the hash then remove it */
395 __d_drop(dentry);
396 return d_kill(dentry, parent);
400 * This is dput
402 * This is complicated by the fact that we do not want to put
403 * dentries that are no longer on any hash chain on the unused
404 * list: we'd much rather just get rid of them immediately.
406 * However, that implies that we have to traverse the dentry
407 * tree upwards to the parents which might _also_ now be
408 * scheduled for deletion (it may have been only waiting for
409 * its last child to go away).
411 * This tail recursion is done by hand as we don't want to depend
412 * on the compiler to always get this right (gcc generally doesn't).
413 * Real recursion would eat up our stack space.
417 * dput - release a dentry
418 * @dentry: dentry to release
420 * Release a dentry. This will drop the usage count and if appropriate
421 * call the dentry unlink method as well as removing it from the queues and
422 * releasing its resources. If the parent dentries were scheduled for release
423 * they too may now get deleted.
425 void dput(struct dentry *dentry)
427 if (!dentry)
428 return;
430 repeat:
431 if (dentry->d_count == 1)
432 might_sleep();
433 spin_lock(&dentry->d_lock);
434 BUG_ON(!dentry->d_count);
435 if (dentry->d_count > 1) {
436 dentry->d_count--;
437 spin_unlock(&dentry->d_lock);
438 return;
441 if (dentry->d_flags & DCACHE_OP_DELETE) {
442 if (dentry->d_op->d_delete(dentry))
443 goto kill_it;
446 /* Unreachable? Get rid of it */
447 if (d_unhashed(dentry))
448 goto kill_it;
450 /* Otherwise leave it cached and ensure it's on the LRU */
451 dentry->d_flags |= DCACHE_REFERENCED;
452 dentry_lru_add(dentry);
454 dentry->d_count--;
455 spin_unlock(&dentry->d_lock);
456 return;
458 kill_it:
459 dentry = dentry_kill(dentry, 1);
460 if (dentry)
461 goto repeat;
463 EXPORT_SYMBOL(dput);
466 * d_invalidate - invalidate a dentry
467 * @dentry: dentry to invalidate
469 * Try to invalidate the dentry if it turns out to be
470 * possible. If there are other dentries that can be
471 * reached through this one we can't delete it and we
472 * return -EBUSY. On success we return 0.
474 * no dcache lock.
477 int d_invalidate(struct dentry * dentry)
480 * If it's already been dropped, return OK.
482 spin_lock(&dentry->d_lock);
483 if (d_unhashed(dentry)) {
484 spin_unlock(&dentry->d_lock);
485 return 0;
488 * Check whether to do a partial shrink_dcache
489 * to get rid of unused child entries.
491 if (!list_empty(&dentry->d_subdirs)) {
492 spin_unlock(&dentry->d_lock);
493 shrink_dcache_parent(dentry);
494 spin_lock(&dentry->d_lock);
498 * Somebody else still using it?
500 * If it's a directory, we can't drop it
501 * for fear of somebody re-populating it
502 * with children (even though dropping it
503 * would make it unreachable from the root,
504 * we might still populate it if it was a
505 * working directory or similar).
507 if (dentry->d_count > 1) {
508 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
509 spin_unlock(&dentry->d_lock);
510 return -EBUSY;
514 __d_drop(dentry);
515 spin_unlock(&dentry->d_lock);
516 return 0;
518 EXPORT_SYMBOL(d_invalidate);
520 /* This must be called with d_lock held */
521 static inline void __dget_dlock(struct dentry *dentry)
523 dentry->d_count++;
526 static inline void __dget(struct dentry *dentry)
528 spin_lock(&dentry->d_lock);
529 __dget_dlock(dentry);
530 spin_unlock(&dentry->d_lock);
533 struct dentry *dget_parent(struct dentry *dentry)
535 struct dentry *ret;
537 repeat:
539 * Don't need rcu_dereference because we re-check it was correct under
540 * the lock.
542 rcu_read_lock();
543 ret = dentry->d_parent;
544 if (!ret) {
545 rcu_read_unlock();
546 goto out;
548 spin_lock(&ret->d_lock);
549 if (unlikely(ret != dentry->d_parent)) {
550 spin_unlock(&ret->d_lock);
551 rcu_read_unlock();
552 goto repeat;
554 rcu_read_unlock();
555 BUG_ON(!ret->d_count);
556 ret->d_count++;
557 spin_unlock(&ret->d_lock);
558 out:
559 return ret;
561 EXPORT_SYMBOL(dget_parent);
564 * d_find_alias - grab a hashed alias of inode
565 * @inode: inode in question
566 * @want_discon: flag, used by d_splice_alias, to request
567 * that only a DISCONNECTED alias be returned.
569 * If inode has a hashed alias, or is a directory and has any alias,
570 * acquire the reference to alias and return it. Otherwise return NULL.
571 * Notice that if inode is a directory there can be only one alias and
572 * it can be unhashed only if it has no children, or if it is the root
573 * of a filesystem.
575 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
576 * any other hashed alias over that one unless @want_discon is set,
577 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
579 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
581 struct dentry *alias, *discon_alias;
583 again:
584 discon_alias = NULL;
585 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
586 spin_lock(&alias->d_lock);
587 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
588 if (IS_ROOT(alias) &&
589 (alias->d_flags & DCACHE_DISCONNECTED)) {
590 discon_alias = alias;
591 } else if (!want_discon) {
592 __dget_dlock(alias);
593 spin_unlock(&alias->d_lock);
594 return alias;
597 spin_unlock(&alias->d_lock);
599 if (discon_alias) {
600 alias = discon_alias;
601 spin_lock(&alias->d_lock);
602 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
603 if (IS_ROOT(alias) &&
604 (alias->d_flags & DCACHE_DISCONNECTED)) {
605 __dget_dlock(alias);
606 spin_unlock(&alias->d_lock);
607 return alias;
610 spin_unlock(&alias->d_lock);
611 goto again;
613 return NULL;
616 struct dentry *d_find_alias(struct inode *inode)
618 struct dentry *de = NULL;
620 if (!list_empty(&inode->i_dentry)) {
621 spin_lock(&inode->i_lock);
622 de = __d_find_alias(inode, 0);
623 spin_unlock(&inode->i_lock);
625 return de;
627 EXPORT_SYMBOL(d_find_alias);
630 * Try to kill dentries associated with this inode.
631 * WARNING: you must own a reference to inode.
633 void d_prune_aliases(struct inode *inode)
635 struct dentry *dentry;
636 restart:
637 spin_lock(&inode->i_lock);
638 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
639 spin_lock(&dentry->d_lock);
640 if (!dentry->d_count) {
641 __dget_dlock(dentry);
642 __d_drop(dentry);
643 spin_unlock(&dentry->d_lock);
644 spin_unlock(&inode->i_lock);
645 dput(dentry);
646 goto restart;
648 spin_unlock(&dentry->d_lock);
650 spin_unlock(&inode->i_lock);
652 EXPORT_SYMBOL(d_prune_aliases);
655 * Try to throw away a dentry - free the inode, dput the parent.
656 * Requires dentry->d_lock is held, and dentry->d_count == 0.
657 * Releases dentry->d_lock.
659 * This may fail if locks cannot be acquired no problem, just try again.
661 static void try_prune_one_dentry(struct dentry *dentry)
662 __releases(dentry->d_lock)
664 struct dentry *parent;
666 parent = dentry_kill(dentry, 0);
668 * If dentry_kill returns NULL, we have nothing more to do.
669 * if it returns the same dentry, trylocks failed. In either
670 * case, just loop again.
672 * Otherwise, we need to prune ancestors too. This is necessary
673 * to prevent quadratic behavior of shrink_dcache_parent(), but
674 * is also expected to be beneficial in reducing dentry cache
675 * fragmentation.
677 if (!parent)
678 return;
679 if (parent == dentry)
680 return;
682 /* Prune ancestors. */
683 dentry = parent;
684 while (dentry) {
685 spin_lock(&dentry->d_lock);
686 if (dentry->d_count > 1) {
687 dentry->d_count--;
688 spin_unlock(&dentry->d_lock);
689 return;
691 dentry = dentry_kill(dentry, 1);
695 static void shrink_dentry_list(struct list_head *list)
697 struct dentry *dentry;
699 rcu_read_lock();
700 for (;;) {
701 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
702 if (&dentry->d_lru == list)
703 break; /* empty */
704 spin_lock(&dentry->d_lock);
705 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
706 spin_unlock(&dentry->d_lock);
707 continue;
711 * We found an inuse dentry which was not removed from
712 * the LRU because of laziness during lookup. Do not free
713 * it - just keep it off the LRU list.
715 if (dentry->d_count) {
716 dentry_lru_del(dentry);
717 spin_unlock(&dentry->d_lock);
718 continue;
721 rcu_read_unlock();
723 try_prune_one_dentry(dentry);
725 rcu_read_lock();
727 rcu_read_unlock();
731 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
732 * @sb: superblock to shrink dentry LRU.
733 * @count: number of entries to prune
734 * @flags: flags to control the dentry processing
736 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
738 static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
740 /* called from prune_dcache() and shrink_dcache_parent() */
741 struct dentry *dentry;
742 LIST_HEAD(referenced);
743 LIST_HEAD(tmp);
744 int cnt = *count;
746 relock:
747 spin_lock(&dcache_lru_lock);
748 while (!list_empty(&sb->s_dentry_lru)) {
749 dentry = list_entry(sb->s_dentry_lru.prev,
750 struct dentry, d_lru);
751 BUG_ON(dentry->d_sb != sb);
753 if (!spin_trylock(&dentry->d_lock)) {
754 spin_unlock(&dcache_lru_lock);
755 cpu_relax();
756 goto relock;
760 * If we are honouring the DCACHE_REFERENCED flag and the
761 * dentry has this flag set, don't free it. Clear the flag
762 * and put it back on the LRU.
764 if (flags & DCACHE_REFERENCED &&
765 dentry->d_flags & DCACHE_REFERENCED) {
766 dentry->d_flags &= ~DCACHE_REFERENCED;
767 list_move(&dentry->d_lru, &referenced);
768 spin_unlock(&dentry->d_lock);
769 } else {
770 list_move_tail(&dentry->d_lru, &tmp);
771 spin_unlock(&dentry->d_lock);
772 if (!--cnt)
773 break;
775 cond_resched_lock(&dcache_lru_lock);
777 if (!list_empty(&referenced))
778 list_splice(&referenced, &sb->s_dentry_lru);
779 spin_unlock(&dcache_lru_lock);
781 shrink_dentry_list(&tmp);
783 *count = cnt;
787 * prune_dcache - shrink the dcache
788 * @count: number of entries to try to free
790 * Shrink the dcache. This is done when we need more memory, or simply when we
791 * need to unmount something (at which point we need to unuse all dentries).
793 * This function may fail to free any resources if all the dentries are in use.
795 static void prune_dcache(int count)
797 struct super_block *sb, *p = NULL;
798 int w_count;
799 int unused = dentry_stat.nr_unused;
800 int prune_ratio;
801 int pruned;
803 if (unused == 0 || count == 0)
804 return;
805 if (count >= unused)
806 prune_ratio = 1;
807 else
808 prune_ratio = unused / count;
809 spin_lock(&sb_lock);
810 list_for_each_entry(sb, &super_blocks, s_list) {
811 if (list_empty(&sb->s_instances))
812 continue;
813 if (sb->s_nr_dentry_unused == 0)
814 continue;
815 sb->s_count++;
816 /* Now, we reclaim unused dentrins with fairness.
817 * We reclaim them same percentage from each superblock.
818 * We calculate number of dentries to scan on this sb
819 * as follows, but the implementation is arranged to avoid
820 * overflows:
821 * number of dentries to scan on this sb =
822 * count * (number of dentries on this sb /
823 * number of dentries in the machine)
825 spin_unlock(&sb_lock);
826 if (prune_ratio != 1)
827 w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
828 else
829 w_count = sb->s_nr_dentry_unused;
830 pruned = w_count;
832 * We need to be sure this filesystem isn't being unmounted,
833 * otherwise we could race with generic_shutdown_super(), and
834 * end up holding a reference to an inode while the filesystem
835 * is unmounted. So we try to get s_umount, and make sure
836 * s_root isn't NULL.
838 if (down_read_trylock(&sb->s_umount)) {
839 if ((sb->s_root != NULL) &&
840 (!list_empty(&sb->s_dentry_lru))) {
841 __shrink_dcache_sb(sb, &w_count,
842 DCACHE_REFERENCED);
843 pruned -= w_count;
845 up_read(&sb->s_umount);
847 spin_lock(&sb_lock);
848 if (p)
849 __put_super(p);
850 count -= pruned;
851 p = sb;
852 /* more work left to do? */
853 if (count <= 0)
854 break;
856 if (p)
857 __put_super(p);
858 spin_unlock(&sb_lock);
862 * shrink_dcache_sb - shrink dcache for a superblock
863 * @sb: superblock
865 * Shrink the dcache for the specified super block. This is used to free
866 * the dcache before unmounting a file system.
868 void shrink_dcache_sb(struct super_block *sb)
870 LIST_HEAD(tmp);
872 spin_lock(&dcache_lru_lock);
873 while (!list_empty(&sb->s_dentry_lru)) {
874 list_splice_init(&sb->s_dentry_lru, &tmp);
875 spin_unlock(&dcache_lru_lock);
876 shrink_dentry_list(&tmp);
877 spin_lock(&dcache_lru_lock);
879 spin_unlock(&dcache_lru_lock);
881 EXPORT_SYMBOL(shrink_dcache_sb);
884 * destroy a single subtree of dentries for unmount
885 * - see the comments on shrink_dcache_for_umount() for a description of the
886 * locking
888 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
890 struct dentry *parent;
891 unsigned detached = 0;
893 BUG_ON(!IS_ROOT(dentry));
895 /* detach this root from the system */
896 spin_lock(&dentry->d_lock);
897 dentry_lru_del(dentry);
898 __d_drop(dentry);
899 spin_unlock(&dentry->d_lock);
901 for (;;) {
902 /* descend to the first leaf in the current subtree */
903 while (!list_empty(&dentry->d_subdirs)) {
904 struct dentry *loop;
906 /* this is a branch with children - detach all of them
907 * from the system in one go */
908 spin_lock(&dentry->d_lock);
909 list_for_each_entry(loop, &dentry->d_subdirs,
910 d_u.d_child) {
911 spin_lock_nested(&loop->d_lock,
912 DENTRY_D_LOCK_NESTED);
913 dentry_lru_del(loop);
914 __d_drop(loop);
915 spin_unlock(&loop->d_lock);
917 spin_unlock(&dentry->d_lock);
919 /* move to the first child */
920 dentry = list_entry(dentry->d_subdirs.next,
921 struct dentry, d_u.d_child);
924 /* consume the dentries from this leaf up through its parents
925 * until we find one with children or run out altogether */
926 do {
927 struct inode *inode;
929 if (dentry->d_count != 0) {
930 printk(KERN_ERR
931 "BUG: Dentry %p{i=%lx,n=%s}"
932 " still in use (%d)"
933 " [unmount of %s %s]\n",
934 dentry,
935 dentry->d_inode ?
936 dentry->d_inode->i_ino : 0UL,
937 dentry->d_name.name,
938 dentry->d_count,
939 dentry->d_sb->s_type->name,
940 dentry->d_sb->s_id);
941 BUG();
944 if (IS_ROOT(dentry)) {
945 parent = NULL;
946 list_del(&dentry->d_u.d_child);
947 } else {
948 parent = dentry->d_parent;
949 spin_lock(&parent->d_lock);
950 parent->d_count--;
951 list_del(&dentry->d_u.d_child);
952 spin_unlock(&parent->d_lock);
955 detached++;
957 inode = dentry->d_inode;
958 if (inode) {
959 dentry->d_inode = NULL;
960 list_del_init(&dentry->d_alias);
961 if (dentry->d_op && dentry->d_op->d_iput)
962 dentry->d_op->d_iput(dentry, inode);
963 else
964 iput(inode);
967 d_free(dentry);
969 /* finished when we fall off the top of the tree,
970 * otherwise we ascend to the parent and move to the
971 * next sibling if there is one */
972 if (!parent)
973 return;
974 dentry = parent;
975 } while (list_empty(&dentry->d_subdirs));
977 dentry = list_entry(dentry->d_subdirs.next,
978 struct dentry, d_u.d_child);
983 * destroy the dentries attached to a superblock on unmounting
984 * - we don't need to use dentry->d_lock because:
985 * - the superblock is detached from all mountings and open files, so the
986 * dentry trees will not be rearranged by the VFS
987 * - s_umount is write-locked, so the memory pressure shrinker will ignore
988 * any dentries belonging to this superblock that it comes across
989 * - the filesystem itself is no longer permitted to rearrange the dentries
990 * in this superblock
992 void shrink_dcache_for_umount(struct super_block *sb)
994 struct dentry *dentry;
996 if (down_read_trylock(&sb->s_umount))
997 BUG();
999 dentry = sb->s_root;
1000 sb->s_root = NULL;
1001 spin_lock(&dentry->d_lock);
1002 dentry->d_count--;
1003 spin_unlock(&dentry->d_lock);
1004 shrink_dcache_for_umount_subtree(dentry);
1006 while (!hlist_bl_empty(&sb->s_anon)) {
1007 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
1008 shrink_dcache_for_umount_subtree(dentry);
1013 * Search for at least 1 mount point in the dentry's subdirs.
1014 * We descend to the next level whenever the d_subdirs
1015 * list is non-empty and continue searching.
1019 * have_submounts - check for mounts over a dentry
1020 * @parent: dentry to check.
1022 * Return true if the parent or its subdirectories contain
1023 * a mount point
1025 int have_submounts(struct dentry *parent)
1027 struct dentry *this_parent;
1028 struct list_head *next;
1029 unsigned seq;
1030 int locked = 0;
1032 seq = read_seqbegin(&rename_lock);
1033 again:
1034 this_parent = parent;
1036 if (d_mountpoint(parent))
1037 goto positive;
1038 spin_lock(&this_parent->d_lock);
1039 repeat:
1040 next = this_parent->d_subdirs.next;
1041 resume:
1042 while (next != &this_parent->d_subdirs) {
1043 struct list_head *tmp = next;
1044 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1045 next = tmp->next;
1047 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1048 /* Have we found a mount point ? */
1049 if (d_mountpoint(dentry)) {
1050 spin_unlock(&dentry->d_lock);
1051 spin_unlock(&this_parent->d_lock);
1052 goto positive;
1054 if (!list_empty(&dentry->d_subdirs)) {
1055 spin_unlock(&this_parent->d_lock);
1056 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1057 this_parent = dentry;
1058 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1059 goto repeat;
1061 spin_unlock(&dentry->d_lock);
1064 * All done at this level ... ascend and resume the search.
1066 if (this_parent != parent) {
1067 struct dentry *tmp;
1068 struct dentry *child;
1070 tmp = this_parent->d_parent;
1071 rcu_read_lock();
1072 spin_unlock(&this_parent->d_lock);
1073 child = this_parent;
1074 this_parent = tmp;
1075 spin_lock(&this_parent->d_lock);
1076 /* might go back up the wrong parent if we have had a rename
1077 * or deletion */
1078 if (this_parent != child->d_parent ||
1079 (!locked && read_seqretry(&rename_lock, seq))) {
1080 spin_unlock(&this_parent->d_lock);
1081 rcu_read_unlock();
1082 goto rename_retry;
1084 rcu_read_unlock();
1085 next = child->d_u.d_child.next;
1086 goto resume;
1088 spin_unlock(&this_parent->d_lock);
1089 if (!locked && read_seqretry(&rename_lock, seq))
1090 goto rename_retry;
1091 if (locked)
1092 write_sequnlock(&rename_lock);
1093 return 0; /* No mount points found in tree */
1094 positive:
1095 if (!locked && read_seqretry(&rename_lock, seq))
1096 goto rename_retry;
1097 if (locked)
1098 write_sequnlock(&rename_lock);
1099 return 1;
1101 rename_retry:
1102 locked = 1;
1103 write_seqlock(&rename_lock);
1104 goto again;
1106 EXPORT_SYMBOL(have_submounts);
1109 * Search the dentry child list for the specified parent,
1110 * and move any unused dentries to the end of the unused
1111 * list for prune_dcache(). We descend to the next level
1112 * whenever the d_subdirs list is non-empty and continue
1113 * searching.
1115 * It returns zero iff there are no unused children,
1116 * otherwise it returns the number of children moved to
1117 * the end of the unused list. This may not be the total
1118 * number of unused children, because select_parent can
1119 * drop the lock and return early due to latency
1120 * constraints.
1122 static int select_parent(struct dentry * parent)
1124 struct dentry *this_parent;
1125 struct list_head *next;
1126 unsigned seq;
1127 int found = 0;
1128 int locked = 0;
1130 seq = read_seqbegin(&rename_lock);
1131 again:
1132 this_parent = parent;
1133 spin_lock(&this_parent->d_lock);
1134 repeat:
1135 next = this_parent->d_subdirs.next;
1136 resume:
1137 while (next != &this_parent->d_subdirs) {
1138 struct list_head *tmp = next;
1139 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1140 next = tmp->next;
1142 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1145 * move only zero ref count dentries to the end
1146 * of the unused list for prune_dcache
1148 if (!dentry->d_count) {
1149 dentry_lru_move_tail(dentry);
1150 found++;
1151 } else {
1152 dentry_lru_del(dentry);
1156 * We can return to the caller if we have found some (this
1157 * ensures forward progress). We'll be coming back to find
1158 * the rest.
1160 if (found && need_resched()) {
1161 spin_unlock(&dentry->d_lock);
1162 goto out;
1166 * Descend a level if the d_subdirs list is non-empty.
1168 if (!list_empty(&dentry->d_subdirs)) {
1169 spin_unlock(&this_parent->d_lock);
1170 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1171 this_parent = dentry;
1172 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1173 goto repeat;
1176 spin_unlock(&dentry->d_lock);
1179 * All done at this level ... ascend and resume the search.
1181 if (this_parent != parent) {
1182 struct dentry *tmp;
1183 struct dentry *child;
1185 tmp = this_parent->d_parent;
1186 rcu_read_lock();
1187 spin_unlock(&this_parent->d_lock);
1188 child = this_parent;
1189 this_parent = tmp;
1190 spin_lock(&this_parent->d_lock);
1191 /* might go back up the wrong parent if we have had a rename
1192 * or deletion */
1193 if (this_parent != child->d_parent ||
1194 (!locked && read_seqretry(&rename_lock, seq))) {
1195 spin_unlock(&this_parent->d_lock);
1196 rcu_read_unlock();
1197 goto rename_retry;
1199 rcu_read_unlock();
1200 next = child->d_u.d_child.next;
1201 goto resume;
1203 out:
1204 spin_unlock(&this_parent->d_lock);
1205 if (!locked && read_seqretry(&rename_lock, seq))
1206 goto rename_retry;
1207 if (locked)
1208 write_sequnlock(&rename_lock);
1209 return found;
1211 rename_retry:
1212 if (found)
1213 return found;
1214 locked = 1;
1215 write_seqlock(&rename_lock);
1216 goto again;
1220 * shrink_dcache_parent - prune dcache
1221 * @parent: parent of entries to prune
1223 * Prune the dcache to remove unused children of the parent dentry.
1226 void shrink_dcache_parent(struct dentry * parent)
1228 struct super_block *sb = parent->d_sb;
1229 int found;
1231 while ((found = select_parent(parent)) != 0)
1232 __shrink_dcache_sb(sb, &found, 0);
1234 EXPORT_SYMBOL(shrink_dcache_parent);
1237 * Scan `nr' dentries and return the number which remain.
1239 * We need to avoid reentering the filesystem if the caller is performing a
1240 * GFP_NOFS allocation attempt. One example deadlock is:
1242 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
1243 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
1244 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
1246 * In this case we return -1 to tell the caller that we baled.
1248 static int shrink_dcache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
1250 if (nr) {
1251 if (!(gfp_mask & __GFP_FS))
1252 return -1;
1253 prune_dcache(nr);
1256 return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
1259 static struct shrinker dcache_shrinker = {
1260 .shrink = shrink_dcache_memory,
1261 .seeks = DEFAULT_SEEKS,
1265 * d_alloc - allocate a dcache entry
1266 * @parent: parent of entry to allocate
1267 * @name: qstr of the name
1269 * Allocates a dentry. It returns %NULL if there is insufficient memory
1270 * available. On a success the dentry is returned. The name passed in is
1271 * copied and the copy passed in may be reused after this call.
1274 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1276 struct dentry *dentry;
1277 char *dname;
1279 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1280 if (!dentry)
1281 return NULL;
1283 if (name->len > DNAME_INLINE_LEN-1) {
1284 dname = kmalloc(name->len + 1, GFP_KERNEL);
1285 if (!dname) {
1286 kmem_cache_free(dentry_cache, dentry);
1287 return NULL;
1289 } else {
1290 dname = dentry->d_iname;
1292 dentry->d_name.name = dname;
1294 dentry->d_name.len = name->len;
1295 dentry->d_name.hash = name->hash;
1296 memcpy(dname, name->name, name->len);
1297 dname[name->len] = 0;
1299 dentry->d_count = 1;
1300 dentry->d_flags = DCACHE_UNHASHED;
1301 spin_lock_init(&dentry->d_lock);
1302 seqcount_init(&dentry->d_seq);
1303 dentry->d_inode = NULL;
1304 dentry->d_parent = NULL;
1305 dentry->d_sb = NULL;
1306 dentry->d_op = NULL;
1307 dentry->d_fsdata = NULL;
1308 INIT_HLIST_BL_NODE(&dentry->d_hash);
1309 INIT_LIST_HEAD(&dentry->d_lru);
1310 INIT_LIST_HEAD(&dentry->d_subdirs);
1311 INIT_LIST_HEAD(&dentry->d_alias);
1312 INIT_LIST_HEAD(&dentry->d_u.d_child);
1314 if (parent) {
1315 spin_lock(&parent->d_lock);
1317 * don't need child lock because it is not subject
1318 * to concurrency here
1320 __dget_dlock(parent);
1321 dentry->d_parent = parent;
1322 dentry->d_sb = parent->d_sb;
1323 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1324 spin_unlock(&parent->d_lock);
1327 this_cpu_inc(nr_dentry);
1329 return dentry;
1331 EXPORT_SYMBOL(d_alloc);
1333 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1335 struct dentry *dentry = d_alloc(NULL, name);
1336 if (dentry) {
1337 dentry->d_sb = sb;
1338 dentry->d_parent = dentry;
1339 dentry->d_flags |= DCACHE_DISCONNECTED;
1341 return dentry;
1343 EXPORT_SYMBOL(d_alloc_pseudo);
1345 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1347 struct qstr q;
1349 q.name = name;
1350 q.len = strlen(name);
1351 q.hash = full_name_hash(q.name, q.len);
1352 return d_alloc(parent, &q);
1354 EXPORT_SYMBOL(d_alloc_name);
1356 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1358 BUG_ON(dentry->d_op);
1359 BUG_ON(dentry->d_flags & (DCACHE_OP_HASH |
1360 DCACHE_OP_COMPARE |
1361 DCACHE_OP_REVALIDATE |
1362 DCACHE_OP_DELETE ));
1363 dentry->d_op = op;
1364 if (!op)
1365 return;
1366 if (op->d_hash)
1367 dentry->d_flags |= DCACHE_OP_HASH;
1368 if (op->d_compare)
1369 dentry->d_flags |= DCACHE_OP_COMPARE;
1370 if (op->d_revalidate)
1371 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1372 if (op->d_delete)
1373 dentry->d_flags |= DCACHE_OP_DELETE;
1376 EXPORT_SYMBOL(d_set_d_op);
1378 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1380 spin_lock(&dentry->d_lock);
1381 if (inode)
1382 list_add(&dentry->d_alias, &inode->i_dentry);
1383 dentry->d_inode = inode;
1384 dentry_rcuwalk_barrier(dentry);
1385 spin_unlock(&dentry->d_lock);
1386 fsnotify_d_instantiate(dentry, inode);
1390 * d_instantiate - fill in inode information for a dentry
1391 * @entry: dentry to complete
1392 * @inode: inode to attach to this dentry
1394 * Fill in inode information in the entry.
1396 * This turns negative dentries into productive full members
1397 * of society.
1399 * NOTE! This assumes that the inode count has been incremented
1400 * (or otherwise set) by the caller to indicate that it is now
1401 * in use by the dcache.
1404 void d_instantiate(struct dentry *entry, struct inode * inode)
1406 BUG_ON(!list_empty(&entry->d_alias));
1407 if (inode)
1408 spin_lock(&inode->i_lock);
1409 __d_instantiate(entry, inode);
1410 if (inode)
1411 spin_unlock(&inode->i_lock);
1412 security_d_instantiate(entry, inode);
1414 EXPORT_SYMBOL(d_instantiate);
1417 * d_instantiate_unique - instantiate a non-aliased dentry
1418 * @entry: dentry to instantiate
1419 * @inode: inode to attach to this dentry
1421 * Fill in inode information in the entry. On success, it returns NULL.
1422 * If an unhashed alias of "entry" already exists, then we return the
1423 * aliased dentry instead and drop one reference to inode.
1425 * Note that in order to avoid conflicts with rename() etc, the caller
1426 * had better be holding the parent directory semaphore.
1428 * This also assumes that the inode count has been incremented
1429 * (or otherwise set) by the caller to indicate that it is now
1430 * in use by the dcache.
1432 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1433 struct inode *inode)
1435 struct dentry *alias;
1436 int len = entry->d_name.len;
1437 const char *name = entry->d_name.name;
1438 unsigned int hash = entry->d_name.hash;
1440 if (!inode) {
1441 __d_instantiate(entry, NULL);
1442 return NULL;
1445 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1446 struct qstr *qstr = &alias->d_name;
1449 * Don't need alias->d_lock here, because aliases with
1450 * d_parent == entry->d_parent are not subject to name or
1451 * parent changes, because the parent inode i_mutex is held.
1453 if (qstr->hash != hash)
1454 continue;
1455 if (alias->d_parent != entry->d_parent)
1456 continue;
1457 if (qstr->len != len)
1458 continue;
1459 if (memcmp(qstr->name, name, len))
1460 continue;
1461 __dget(alias);
1462 return alias;
1465 __d_instantiate(entry, inode);
1466 return NULL;
1469 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1471 struct dentry *result;
1473 BUG_ON(!list_empty(&entry->d_alias));
1475 if (inode)
1476 spin_lock(&inode->i_lock);
1477 result = __d_instantiate_unique(entry, inode);
1478 if (inode)
1479 spin_unlock(&inode->i_lock);
1481 if (!result) {
1482 security_d_instantiate(entry, inode);
1483 return NULL;
1486 BUG_ON(!d_unhashed(result));
1487 iput(inode);
1488 return result;
1491 EXPORT_SYMBOL(d_instantiate_unique);
1494 * d_alloc_root - allocate root dentry
1495 * @root_inode: inode to allocate the root for
1497 * Allocate a root ("/") dentry for the inode given. The inode is
1498 * instantiated and returned. %NULL is returned if there is insufficient
1499 * memory or the inode passed is %NULL.
1502 struct dentry * d_alloc_root(struct inode * root_inode)
1504 struct dentry *res = NULL;
1506 if (root_inode) {
1507 static const struct qstr name = { .name = "/", .len = 1 };
1509 res = d_alloc(NULL, &name);
1510 if (res) {
1511 res->d_sb = root_inode->i_sb;
1512 res->d_parent = res;
1513 d_instantiate(res, root_inode);
1516 return res;
1518 EXPORT_SYMBOL(d_alloc_root);
1521 * d_obtain_alias - find or allocate a dentry for a given inode
1522 * @inode: inode to allocate the dentry for
1524 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1525 * similar open by handle operations. The returned dentry may be anonymous,
1526 * or may have a full name (if the inode was already in the cache).
1528 * When called on a directory inode, we must ensure that the inode only ever
1529 * has one dentry. If a dentry is found, that is returned instead of
1530 * allocating a new one.
1532 * On successful return, the reference to the inode has been transferred
1533 * to the dentry. In case of an error the reference on the inode is released.
1534 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1535 * be passed in and will be the error will be propagate to the return value,
1536 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1538 struct dentry *d_obtain_alias(struct inode *inode)
1540 static const struct qstr anonstring = { .name = "" };
1541 struct dentry *tmp;
1542 struct dentry *res;
1544 if (!inode)
1545 return ERR_PTR(-ESTALE);
1546 if (IS_ERR(inode))
1547 return ERR_CAST(inode);
1549 res = d_find_alias(inode);
1550 if (res)
1551 goto out_iput;
1553 tmp = d_alloc(NULL, &anonstring);
1554 if (!tmp) {
1555 res = ERR_PTR(-ENOMEM);
1556 goto out_iput;
1558 tmp->d_parent = tmp; /* make sure dput doesn't croak */
1561 spin_lock(&inode->i_lock);
1562 res = __d_find_alias(inode, 0);
1563 if (res) {
1564 spin_unlock(&inode->i_lock);
1565 dput(tmp);
1566 goto out_iput;
1569 /* attach a disconnected dentry */
1570 spin_lock(&tmp->d_lock);
1571 tmp->d_sb = inode->i_sb;
1572 tmp->d_inode = inode;
1573 tmp->d_flags |= DCACHE_DISCONNECTED;
1574 list_add(&tmp->d_alias, &inode->i_dentry);
1575 bit_spin_lock(0, (unsigned long *)&tmp->d_sb->s_anon.first);
1576 tmp->d_flags &= ~DCACHE_UNHASHED;
1577 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1578 __bit_spin_unlock(0, (unsigned long *)&tmp->d_sb->s_anon.first);
1579 spin_unlock(&tmp->d_lock);
1580 spin_unlock(&inode->i_lock);
1582 return tmp;
1584 out_iput:
1585 iput(inode);
1586 return res;
1588 EXPORT_SYMBOL(d_obtain_alias);
1591 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1592 * @inode: the inode which may have a disconnected dentry
1593 * @dentry: a negative dentry which we want to point to the inode.
1595 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1596 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1597 * and return it, else simply d_add the inode to the dentry and return NULL.
1599 * This is needed in the lookup routine of any filesystem that is exportable
1600 * (via knfsd) so that we can build dcache paths to directories effectively.
1602 * If a dentry was found and moved, then it is returned. Otherwise NULL
1603 * is returned. This matches the expected return value of ->lookup.
1606 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1608 struct dentry *new = NULL;
1610 if (inode && S_ISDIR(inode->i_mode)) {
1611 spin_lock(&inode->i_lock);
1612 new = __d_find_alias(inode, 1);
1613 if (new) {
1614 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1615 spin_unlock(&inode->i_lock);
1616 security_d_instantiate(new, inode);
1617 d_move(new, dentry);
1618 iput(inode);
1619 } else {
1620 /* already taking inode->i_lock, so d_add() by hand */
1621 __d_instantiate(dentry, inode);
1622 spin_unlock(&inode->i_lock);
1623 security_d_instantiate(dentry, inode);
1624 d_rehash(dentry);
1626 } else
1627 d_add(dentry, inode);
1628 return new;
1630 EXPORT_SYMBOL(d_splice_alias);
1633 * d_add_ci - lookup or allocate new dentry with case-exact name
1634 * @inode: the inode case-insensitive lookup has found
1635 * @dentry: the negative dentry that was passed to the parent's lookup func
1636 * @name: the case-exact name to be associated with the returned dentry
1638 * This is to avoid filling the dcache with case-insensitive names to the
1639 * same inode, only the actual correct case is stored in the dcache for
1640 * case-insensitive filesystems.
1642 * For a case-insensitive lookup match and if the the case-exact dentry
1643 * already exists in in the dcache, use it and return it.
1645 * If no entry exists with the exact case name, allocate new dentry with
1646 * the exact case, and return the spliced entry.
1648 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1649 struct qstr *name)
1651 int error;
1652 struct dentry *found;
1653 struct dentry *new;
1656 * First check if a dentry matching the name already exists,
1657 * if not go ahead and create it now.
1659 found = d_hash_and_lookup(dentry->d_parent, name);
1660 if (!found) {
1661 new = d_alloc(dentry->d_parent, name);
1662 if (!new) {
1663 error = -ENOMEM;
1664 goto err_out;
1667 found = d_splice_alias(inode, new);
1668 if (found) {
1669 dput(new);
1670 return found;
1672 return new;
1676 * If a matching dentry exists, and it's not negative use it.
1678 * Decrement the reference count to balance the iget() done
1679 * earlier on.
1681 if (found->d_inode) {
1682 if (unlikely(found->d_inode != inode)) {
1683 /* This can't happen because bad inodes are unhashed. */
1684 BUG_ON(!is_bad_inode(inode));
1685 BUG_ON(!is_bad_inode(found->d_inode));
1687 iput(inode);
1688 return found;
1692 * Negative dentry: instantiate it unless the inode is a directory and
1693 * already has a dentry.
1695 spin_lock(&inode->i_lock);
1696 if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) {
1697 __d_instantiate(found, inode);
1698 spin_unlock(&inode->i_lock);
1699 security_d_instantiate(found, inode);
1700 return found;
1704 * In case a directory already has a (disconnected) entry grab a
1705 * reference to it, move it in place and use it.
1707 new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
1708 __dget(new);
1709 spin_unlock(&inode->i_lock);
1710 security_d_instantiate(found, inode);
1711 d_move(new, found);
1712 iput(inode);
1713 dput(found);
1714 return new;
1716 err_out:
1717 iput(inode);
1718 return ERR_PTR(error);
1720 EXPORT_SYMBOL(d_add_ci);
1723 * __d_lookup_rcu - search for a dentry (racy, store-free)
1724 * @parent: parent dentry
1725 * @name: qstr of name we wish to find
1726 * @seq: returns d_seq value at the point where the dentry was found
1727 * @inode: returns dentry->d_inode when the inode was found valid.
1728 * Returns: dentry, or NULL
1730 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1731 * resolution (store-free path walking) design described in
1732 * Documentation/filesystems/path-lookup.txt.
1734 * This is not to be used outside core vfs.
1736 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1737 * held, and rcu_read_lock held. The returned dentry must not be stored into
1738 * without taking d_lock and checking d_seq sequence count against @seq
1739 * returned here.
1741 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1742 * function.
1744 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1745 * the returned dentry, so long as its parent's seqlock is checked after the
1746 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1747 * is formed, giving integrity down the path walk.
1749 struct dentry *__d_lookup_rcu(struct dentry *parent, struct qstr *name,
1750 unsigned *seq, struct inode **inode)
1752 unsigned int len = name->len;
1753 unsigned int hash = name->hash;
1754 const unsigned char *str = name->name;
1755 struct dcache_hash_bucket *b = d_hash(parent, hash);
1756 struct hlist_bl_node *node;
1757 struct dentry *dentry;
1760 * Note: There is significant duplication with __d_lookup_rcu which is
1761 * required to prevent single threaded performance regressions
1762 * especially on architectures where smp_rmb (in seqcounts) are costly.
1763 * Keep the two functions in sync.
1767 * The hash list is protected using RCU.
1769 * Carefully use d_seq when comparing a candidate dentry, to avoid
1770 * races with d_move().
1772 * It is possible that concurrent renames can mess up our list
1773 * walk here and result in missing our dentry, resulting in the
1774 * false-negative result. d_lookup() protects against concurrent
1775 * renames using rename_lock seqlock.
1777 * See Documentation/vfs/dcache-locking.txt for more details.
1779 hlist_bl_for_each_entry_rcu(dentry, node, &b->head, d_hash) {
1780 struct inode *i;
1781 const char *tname;
1782 int tlen;
1784 if (dentry->d_name.hash != hash)
1785 continue;
1787 seqretry:
1788 *seq = read_seqcount_begin(&dentry->d_seq);
1789 if (dentry->d_parent != parent)
1790 continue;
1791 if (d_unhashed(dentry))
1792 continue;
1793 tlen = dentry->d_name.len;
1794 tname = dentry->d_name.name;
1795 i = dentry->d_inode;
1797 * This seqcount check is required to ensure name and
1798 * len are loaded atomically, so as not to walk off the
1799 * edge of memory when walking. If we could load this
1800 * atomically some other way, we could drop this check.
1802 if (read_seqcount_retry(&dentry->d_seq, *seq))
1803 goto seqretry;
1804 if (parent->d_flags & DCACHE_OP_COMPARE) {
1805 if (parent->d_op->d_compare(parent, *inode,
1806 dentry, i,
1807 tlen, tname, name))
1808 continue;
1809 } else {
1810 if (tlen != len)
1811 continue;
1812 if (memcmp(tname, str, tlen))
1813 continue;
1816 * No extra seqcount check is required after the name
1817 * compare. The caller must perform a seqcount check in
1818 * order to do anything useful with the returned dentry
1819 * anyway.
1821 *inode = i;
1822 return dentry;
1824 return NULL;
1828 * d_lookup - search for a dentry
1829 * @parent: parent dentry
1830 * @name: qstr of name we wish to find
1831 * Returns: dentry, or NULL
1833 * d_lookup searches the children of the parent dentry for the name in
1834 * question. If the dentry is found its reference count is incremented and the
1835 * dentry is returned. The caller must use dput to free the entry when it has
1836 * finished using it. %NULL is returned if the dentry does not exist.
1838 struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1840 struct dentry *dentry;
1841 unsigned seq;
1843 do {
1844 seq = read_seqbegin(&rename_lock);
1845 dentry = __d_lookup(parent, name);
1846 if (dentry)
1847 break;
1848 } while (read_seqretry(&rename_lock, seq));
1849 return dentry;
1851 EXPORT_SYMBOL(d_lookup);
1854 * __d_lookup - search for a dentry (racy)
1855 * @parent: parent dentry
1856 * @name: qstr of name we wish to find
1857 * Returns: dentry, or NULL
1859 * __d_lookup is like d_lookup, however it may (rarely) return a
1860 * false-negative result due to unrelated rename activity.
1862 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1863 * however it must be used carefully, eg. with a following d_lookup in
1864 * the case of failure.
1866 * __d_lookup callers must be commented.
1868 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1870 unsigned int len = name->len;
1871 unsigned int hash = name->hash;
1872 const unsigned char *str = name->name;
1873 struct dcache_hash_bucket *b = d_hash(parent, hash);
1874 struct hlist_bl_node *node;
1875 struct dentry *found = NULL;
1876 struct dentry *dentry;
1879 * Note: There is significant duplication with __d_lookup_rcu which is
1880 * required to prevent single threaded performance regressions
1881 * especially on architectures where smp_rmb (in seqcounts) are costly.
1882 * Keep the two functions in sync.
1886 * The hash list is protected using RCU.
1888 * Take d_lock when comparing a candidate dentry, to avoid races
1889 * with d_move().
1891 * It is possible that concurrent renames can mess up our list
1892 * walk here and result in missing our dentry, resulting in the
1893 * false-negative result. d_lookup() protects against concurrent
1894 * renames using rename_lock seqlock.
1896 * See Documentation/vfs/dcache-locking.txt for more details.
1898 rcu_read_lock();
1900 hlist_bl_for_each_entry_rcu(dentry, node, &b->head, d_hash) {
1901 const char *tname;
1902 int tlen;
1904 if (dentry->d_name.hash != hash)
1905 continue;
1907 spin_lock(&dentry->d_lock);
1908 if (dentry->d_parent != parent)
1909 goto next;
1910 if (d_unhashed(dentry))
1911 goto next;
1914 * It is safe to compare names since d_move() cannot
1915 * change the qstr (protected by d_lock).
1917 tlen = dentry->d_name.len;
1918 tname = dentry->d_name.name;
1919 if (parent->d_flags & DCACHE_OP_COMPARE) {
1920 if (parent->d_op->d_compare(parent, parent->d_inode,
1921 dentry, dentry->d_inode,
1922 tlen, tname, name))
1923 goto next;
1924 } else {
1925 if (tlen != len)
1926 goto next;
1927 if (memcmp(tname, str, tlen))
1928 goto next;
1931 dentry->d_count++;
1932 found = dentry;
1933 spin_unlock(&dentry->d_lock);
1934 break;
1935 next:
1936 spin_unlock(&dentry->d_lock);
1938 rcu_read_unlock();
1940 return found;
1944 * d_hash_and_lookup - hash the qstr then search for a dentry
1945 * @dir: Directory to search in
1946 * @name: qstr of name we wish to find
1948 * On hash failure or on lookup failure NULL is returned.
1950 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1952 struct dentry *dentry = NULL;
1955 * Check for a fs-specific hash function. Note that we must
1956 * calculate the standard hash first, as the d_op->d_hash()
1957 * routine may choose to leave the hash value unchanged.
1959 name->hash = full_name_hash(name->name, name->len);
1960 if (dir->d_flags & DCACHE_OP_HASH) {
1961 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
1962 goto out;
1964 dentry = d_lookup(dir, name);
1965 out:
1966 return dentry;
1970 * d_validate - verify dentry provided from insecure source (deprecated)
1971 * @dentry: The dentry alleged to be valid child of @dparent
1972 * @dparent: The parent dentry (known to be valid)
1974 * An insecure source has sent us a dentry, here we verify it and dget() it.
1975 * This is used by ncpfs in its readdir implementation.
1976 * Zero is returned in the dentry is invalid.
1978 * This function is slow for big directories, and deprecated, do not use it.
1980 int d_validate(struct dentry *dentry, struct dentry *dparent)
1982 struct dentry *child;
1984 spin_lock(&dparent->d_lock);
1985 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
1986 if (dentry == child) {
1987 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1988 __dget_dlock(dentry);
1989 spin_unlock(&dentry->d_lock);
1990 spin_unlock(&dparent->d_lock);
1991 return 1;
1994 spin_unlock(&dparent->d_lock);
1996 return 0;
1998 EXPORT_SYMBOL(d_validate);
2001 * When a file is deleted, we have two options:
2002 * - turn this dentry into a negative dentry
2003 * - unhash this dentry and free it.
2005 * Usually, we want to just turn this into
2006 * a negative dentry, but if anybody else is
2007 * currently using the dentry or the inode
2008 * we can't do that and we fall back on removing
2009 * it from the hash queues and waiting for
2010 * it to be deleted later when it has no users
2014 * d_delete - delete a dentry
2015 * @dentry: The dentry to delete
2017 * Turn the dentry into a negative dentry if possible, otherwise
2018 * remove it from the hash queues so it can be deleted later
2021 void d_delete(struct dentry * dentry)
2023 struct inode *inode;
2024 int isdir = 0;
2026 * Are we the only user?
2028 again:
2029 spin_lock(&dentry->d_lock);
2030 inode = dentry->d_inode;
2031 isdir = S_ISDIR(inode->i_mode);
2032 if (dentry->d_count == 1) {
2033 if (inode && !spin_trylock(&inode->i_lock)) {
2034 spin_unlock(&dentry->d_lock);
2035 cpu_relax();
2036 goto again;
2038 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2039 dentry_unlink_inode(dentry);
2040 fsnotify_nameremove(dentry, isdir);
2041 return;
2044 if (!d_unhashed(dentry))
2045 __d_drop(dentry);
2047 spin_unlock(&dentry->d_lock);
2049 fsnotify_nameremove(dentry, isdir);
2051 EXPORT_SYMBOL(d_delete);
2053 static void __d_rehash(struct dentry * entry, struct dcache_hash_bucket *b)
2055 BUG_ON(!d_unhashed(entry));
2056 spin_lock_bucket(b);
2057 entry->d_flags &= ~DCACHE_UNHASHED;
2058 hlist_bl_add_head_rcu(&entry->d_hash, &b->head);
2059 spin_unlock_bucket(b);
2062 static void _d_rehash(struct dentry * entry)
2064 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2068 * d_rehash - add an entry back to the hash
2069 * @entry: dentry to add to the hash
2071 * Adds a dentry to the hash according to its name.
2074 void d_rehash(struct dentry * entry)
2076 spin_lock(&entry->d_lock);
2077 _d_rehash(entry);
2078 spin_unlock(&entry->d_lock);
2080 EXPORT_SYMBOL(d_rehash);
2083 * dentry_update_name_case - update case insensitive dentry with a new name
2084 * @dentry: dentry to be updated
2085 * @name: new name
2087 * Update a case insensitive dentry with new case of name.
2089 * dentry must have been returned by d_lookup with name @name. Old and new
2090 * name lengths must match (ie. no d_compare which allows mismatched name
2091 * lengths).
2093 * Parent inode i_mutex must be held over d_lookup and into this call (to
2094 * keep renames and concurrent inserts, and readdir(2) away).
2096 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2098 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
2099 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2101 spin_lock(&dentry->d_lock);
2102 write_seqcount_begin(&dentry->d_seq);
2103 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2104 write_seqcount_end(&dentry->d_seq);
2105 spin_unlock(&dentry->d_lock);
2107 EXPORT_SYMBOL(dentry_update_name_case);
2109 static void switch_names(struct dentry *dentry, struct dentry *target)
2111 if (dname_external(target)) {
2112 if (dname_external(dentry)) {
2114 * Both external: swap the pointers
2116 swap(target->d_name.name, dentry->d_name.name);
2117 } else {
2119 * dentry:internal, target:external. Steal target's
2120 * storage and make target internal.
2122 memcpy(target->d_iname, dentry->d_name.name,
2123 dentry->d_name.len + 1);
2124 dentry->d_name.name = target->d_name.name;
2125 target->d_name.name = target->d_iname;
2127 } else {
2128 if (dname_external(dentry)) {
2130 * dentry:external, target:internal. Give dentry's
2131 * storage to target and make dentry internal
2133 memcpy(dentry->d_iname, target->d_name.name,
2134 target->d_name.len + 1);
2135 target->d_name.name = dentry->d_name.name;
2136 dentry->d_name.name = dentry->d_iname;
2137 } else {
2139 * Both are internal. Just copy target to dentry
2141 memcpy(dentry->d_iname, target->d_name.name,
2142 target->d_name.len + 1);
2143 dentry->d_name.len = target->d_name.len;
2144 return;
2147 swap(dentry->d_name.len, target->d_name.len);
2150 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2153 * XXXX: do we really need to take target->d_lock?
2155 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2156 spin_lock(&target->d_parent->d_lock);
2157 else {
2158 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2159 spin_lock(&dentry->d_parent->d_lock);
2160 spin_lock_nested(&target->d_parent->d_lock,
2161 DENTRY_D_LOCK_NESTED);
2162 } else {
2163 spin_lock(&target->d_parent->d_lock);
2164 spin_lock_nested(&dentry->d_parent->d_lock,
2165 DENTRY_D_LOCK_NESTED);
2168 if (target < dentry) {
2169 spin_lock_nested(&target->d_lock, 2);
2170 spin_lock_nested(&dentry->d_lock, 3);
2171 } else {
2172 spin_lock_nested(&dentry->d_lock, 2);
2173 spin_lock_nested(&target->d_lock, 3);
2177 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2178 struct dentry *target)
2180 if (target->d_parent != dentry->d_parent)
2181 spin_unlock(&dentry->d_parent->d_lock);
2182 if (target->d_parent != target)
2183 spin_unlock(&target->d_parent->d_lock);
2187 * When switching names, the actual string doesn't strictly have to
2188 * be preserved in the target - because we're dropping the target
2189 * anyway. As such, we can just do a simple memcpy() to copy over
2190 * the new name before we switch.
2192 * Note that we have to be a lot more careful about getting the hash
2193 * switched - we have to switch the hash value properly even if it
2194 * then no longer matches the actual (corrupted) string of the target.
2195 * The hash value has to match the hash queue that the dentry is on..
2198 * d_move - move a dentry
2199 * @dentry: entry to move
2200 * @target: new dentry
2202 * Update the dcache to reflect the move of a file name. Negative
2203 * dcache entries should not be moved in this way.
2205 void d_move(struct dentry * dentry, struct dentry * target)
2207 if (!dentry->d_inode)
2208 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2210 BUG_ON(d_ancestor(dentry, target));
2211 BUG_ON(d_ancestor(target, dentry));
2213 write_seqlock(&rename_lock);
2215 dentry_lock_for_move(dentry, target);
2217 write_seqcount_begin(&dentry->d_seq);
2218 write_seqcount_begin(&target->d_seq);
2220 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2223 * Move the dentry to the target hash queue. Don't bother checking
2224 * for the same hash queue because of how unlikely it is.
2226 __d_drop(dentry);
2227 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2229 /* Unhash the target: dput() will then get rid of it */
2230 __d_drop(target);
2232 list_del(&dentry->d_u.d_child);
2233 list_del(&target->d_u.d_child);
2235 /* Switch the names.. */
2236 switch_names(dentry, target);
2237 swap(dentry->d_name.hash, target->d_name.hash);
2239 /* ... and switch the parents */
2240 if (IS_ROOT(dentry)) {
2241 dentry->d_parent = target->d_parent;
2242 target->d_parent = target;
2243 INIT_LIST_HEAD(&target->d_u.d_child);
2244 } else {
2245 swap(dentry->d_parent, target->d_parent);
2247 /* And add them back to the (new) parent lists */
2248 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2251 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2253 write_seqcount_end(&target->d_seq);
2254 write_seqcount_end(&dentry->d_seq);
2256 dentry_unlock_parents_for_move(dentry, target);
2257 spin_unlock(&target->d_lock);
2258 fsnotify_d_move(dentry);
2259 spin_unlock(&dentry->d_lock);
2260 write_sequnlock(&rename_lock);
2262 EXPORT_SYMBOL(d_move);
2265 * d_ancestor - search for an ancestor
2266 * @p1: ancestor dentry
2267 * @p2: child dentry
2269 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2270 * an ancestor of p2, else NULL.
2272 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2274 struct dentry *p;
2276 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2277 if (p->d_parent == p1)
2278 return p;
2280 return NULL;
2284 * This helper attempts to cope with remotely renamed directories
2286 * It assumes that the caller is already holding
2287 * dentry->d_parent->d_inode->i_mutex and the inode->i_lock
2289 * Note: If ever the locking in lock_rename() changes, then please
2290 * remember to update this too...
2292 static struct dentry *__d_unalias(struct inode *inode,
2293 struct dentry *dentry, struct dentry *alias)
2295 struct mutex *m1 = NULL, *m2 = NULL;
2296 struct dentry *ret;
2298 /* If alias and dentry share a parent, then no extra locks required */
2299 if (alias->d_parent == dentry->d_parent)
2300 goto out_unalias;
2302 /* Check for loops */
2303 ret = ERR_PTR(-ELOOP);
2304 if (d_ancestor(alias, dentry))
2305 goto out_err;
2307 /* See lock_rename() */
2308 ret = ERR_PTR(-EBUSY);
2309 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2310 goto out_err;
2311 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2312 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2313 goto out_err;
2314 m2 = &alias->d_parent->d_inode->i_mutex;
2315 out_unalias:
2316 d_move(alias, dentry);
2317 ret = alias;
2318 out_err:
2319 spin_unlock(&inode->i_lock);
2320 if (m2)
2321 mutex_unlock(m2);
2322 if (m1)
2323 mutex_unlock(m1);
2324 return ret;
2328 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2329 * named dentry in place of the dentry to be replaced.
2330 * returns with anon->d_lock held!
2332 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2334 struct dentry *dparent, *aparent;
2336 dentry_lock_for_move(anon, dentry);
2338 write_seqcount_begin(&dentry->d_seq);
2339 write_seqcount_begin(&anon->d_seq);
2341 dparent = dentry->d_parent;
2342 aparent = anon->d_parent;
2344 switch_names(dentry, anon);
2345 swap(dentry->d_name.hash, anon->d_name.hash);
2347 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2348 list_del(&dentry->d_u.d_child);
2349 if (!IS_ROOT(dentry))
2350 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2351 else
2352 INIT_LIST_HEAD(&dentry->d_u.d_child);
2354 anon->d_parent = (dparent == dentry) ? anon : dparent;
2355 list_del(&anon->d_u.d_child);
2356 if (!IS_ROOT(anon))
2357 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2358 else
2359 INIT_LIST_HEAD(&anon->d_u.d_child);
2361 write_seqcount_end(&dentry->d_seq);
2362 write_seqcount_end(&anon->d_seq);
2364 dentry_unlock_parents_for_move(anon, dentry);
2365 spin_unlock(&dentry->d_lock);
2367 /* anon->d_lock still locked, returns locked */
2368 anon->d_flags &= ~DCACHE_DISCONNECTED;
2372 * d_materialise_unique - introduce an inode into the tree
2373 * @dentry: candidate dentry
2374 * @inode: inode to bind to the dentry, to which aliases may be attached
2376 * Introduces an dentry into the tree, substituting an extant disconnected
2377 * root directory alias in its place if there is one
2379 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2381 struct dentry *actual;
2383 BUG_ON(!d_unhashed(dentry));
2385 if (!inode) {
2386 actual = dentry;
2387 __d_instantiate(dentry, NULL);
2388 d_rehash(actual);
2389 goto out_nolock;
2392 spin_lock(&inode->i_lock);
2394 if (S_ISDIR(inode->i_mode)) {
2395 struct dentry *alias;
2397 /* Does an aliased dentry already exist? */
2398 alias = __d_find_alias(inode, 0);
2399 if (alias) {
2400 actual = alias;
2401 /* Is this an anonymous mountpoint that we could splice
2402 * into our tree? */
2403 if (IS_ROOT(alias)) {
2404 __d_materialise_dentry(dentry, alias);
2405 __d_drop(alias);
2406 goto found;
2408 /* Nope, but we must(!) avoid directory aliasing */
2409 actual = __d_unalias(inode, dentry, alias);
2410 if (IS_ERR(actual))
2411 dput(alias);
2412 goto out_nolock;
2416 /* Add a unique reference */
2417 actual = __d_instantiate_unique(dentry, inode);
2418 if (!actual)
2419 actual = dentry;
2420 else
2421 BUG_ON(!d_unhashed(actual));
2423 spin_lock(&actual->d_lock);
2424 found:
2425 _d_rehash(actual);
2426 spin_unlock(&actual->d_lock);
2427 spin_unlock(&inode->i_lock);
2428 out_nolock:
2429 if (actual == dentry) {
2430 security_d_instantiate(dentry, inode);
2431 return NULL;
2434 iput(inode);
2435 return actual;
2437 EXPORT_SYMBOL_GPL(d_materialise_unique);
2439 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2441 *buflen -= namelen;
2442 if (*buflen < 0)
2443 return -ENAMETOOLONG;
2444 *buffer -= namelen;
2445 memcpy(*buffer, str, namelen);
2446 return 0;
2449 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2451 return prepend(buffer, buflen, name->name, name->len);
2455 * Prepend path string to a buffer
2457 * @path: the dentry/vfsmount to report
2458 * @root: root vfsmnt/dentry (may be modified by this function)
2459 * @buffer: pointer to the end of the buffer
2460 * @buflen: pointer to buffer length
2462 * Caller holds the rename_lock.
2464 * If path is not reachable from the supplied root, then the value of
2465 * root is changed (without modifying refcounts).
2467 static int prepend_path(const struct path *path, struct path *root,
2468 char **buffer, int *buflen)
2470 struct dentry *dentry = path->dentry;
2471 struct vfsmount *vfsmnt = path->mnt;
2472 bool slash = false;
2473 int error = 0;
2475 br_read_lock(vfsmount_lock);
2476 while (dentry != root->dentry || vfsmnt != root->mnt) {
2477 struct dentry * parent;
2479 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2480 /* Global root? */
2481 if (vfsmnt->mnt_parent == vfsmnt) {
2482 goto global_root;
2484 dentry = vfsmnt->mnt_mountpoint;
2485 vfsmnt = vfsmnt->mnt_parent;
2486 continue;
2488 parent = dentry->d_parent;
2489 prefetch(parent);
2490 spin_lock(&dentry->d_lock);
2491 error = prepend_name(buffer, buflen, &dentry->d_name);
2492 spin_unlock(&dentry->d_lock);
2493 if (!error)
2494 error = prepend(buffer, buflen, "/", 1);
2495 if (error)
2496 break;
2498 slash = true;
2499 dentry = parent;
2502 out:
2503 if (!error && !slash)
2504 error = prepend(buffer, buflen, "/", 1);
2506 br_read_unlock(vfsmount_lock);
2507 return error;
2509 global_root:
2511 * Filesystems needing to implement special "root names"
2512 * should do so with ->d_dname()
2514 if (IS_ROOT(dentry) &&
2515 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2516 WARN(1, "Root dentry has weird name <%.*s>\n",
2517 (int) dentry->d_name.len, dentry->d_name.name);
2519 root->mnt = vfsmnt;
2520 root->dentry = dentry;
2521 goto out;
2525 * __d_path - return the path of a dentry
2526 * @path: the dentry/vfsmount to report
2527 * @root: root vfsmnt/dentry (may be modified by this function)
2528 * @buf: buffer to return value in
2529 * @buflen: buffer length
2531 * Convert a dentry into an ASCII path name.
2533 * Returns a pointer into the buffer or an error code if the
2534 * path was too long.
2536 * "buflen" should be positive.
2538 * If path is not reachable from the supplied root, then the value of
2539 * root is changed (without modifying refcounts).
2541 char *__d_path(const struct path *path, struct path *root,
2542 char *buf, int buflen)
2544 char *res = buf + buflen;
2545 int error;
2547 prepend(&res, &buflen, "\0", 1);
2548 write_seqlock(&rename_lock);
2549 error = prepend_path(path, root, &res, &buflen);
2550 write_sequnlock(&rename_lock);
2552 if (error)
2553 return ERR_PTR(error);
2554 return res;
2558 * same as __d_path but appends "(deleted)" for unlinked files.
2560 static int path_with_deleted(const struct path *path, struct path *root,
2561 char **buf, int *buflen)
2563 prepend(buf, buflen, "\0", 1);
2564 if (d_unlinked(path->dentry)) {
2565 int error = prepend(buf, buflen, " (deleted)", 10);
2566 if (error)
2567 return error;
2570 return prepend_path(path, root, buf, buflen);
2573 static int prepend_unreachable(char **buffer, int *buflen)
2575 return prepend(buffer, buflen, "(unreachable)", 13);
2579 * d_path - return the path of a dentry
2580 * @path: path to report
2581 * @buf: buffer to return value in
2582 * @buflen: buffer length
2584 * Convert a dentry into an ASCII path name. If the entry has been deleted
2585 * the string " (deleted)" is appended. Note that this is ambiguous.
2587 * Returns a pointer into the buffer or an error code if the path was
2588 * too long. Note: Callers should use the returned pointer, not the passed
2589 * in buffer, to use the name! The implementation often starts at an offset
2590 * into the buffer, and may leave 0 bytes at the start.
2592 * "buflen" should be positive.
2594 char *d_path(const struct path *path, char *buf, int buflen)
2596 char *res = buf + buflen;
2597 struct path root;
2598 struct path tmp;
2599 int error;
2602 * We have various synthetic filesystems that never get mounted. On
2603 * these filesystems dentries are never used for lookup purposes, and
2604 * thus don't need to be hashed. They also don't need a name until a
2605 * user wants to identify the object in /proc/pid/fd/. The little hack
2606 * below allows us to generate a name for these objects on demand:
2608 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2609 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2611 get_fs_root(current->fs, &root);
2612 write_seqlock(&rename_lock);
2613 tmp = root;
2614 error = path_with_deleted(path, &tmp, &res, &buflen);
2615 if (error)
2616 res = ERR_PTR(error);
2617 write_sequnlock(&rename_lock);
2618 path_put(&root);
2619 return res;
2621 EXPORT_SYMBOL(d_path);
2624 * d_path_with_unreachable - return the path of a dentry
2625 * @path: path to report
2626 * @buf: buffer to return value in
2627 * @buflen: buffer length
2629 * The difference from d_path() is that this prepends "(unreachable)"
2630 * to paths which are unreachable from the current process' root.
2632 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2634 char *res = buf + buflen;
2635 struct path root;
2636 struct path tmp;
2637 int error;
2639 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2640 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2642 get_fs_root(current->fs, &root);
2643 write_seqlock(&rename_lock);
2644 tmp = root;
2645 error = path_with_deleted(path, &tmp, &res, &buflen);
2646 if (!error && !path_equal(&tmp, &root))
2647 error = prepend_unreachable(&res, &buflen);
2648 write_sequnlock(&rename_lock);
2649 path_put(&root);
2650 if (error)
2651 res = ERR_PTR(error);
2653 return res;
2657 * Helper function for dentry_operations.d_dname() members
2659 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2660 const char *fmt, ...)
2662 va_list args;
2663 char temp[64];
2664 int sz;
2666 va_start(args, fmt);
2667 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2668 va_end(args);
2670 if (sz > sizeof(temp) || sz > buflen)
2671 return ERR_PTR(-ENAMETOOLONG);
2673 buffer += buflen - sz;
2674 return memcpy(buffer, temp, sz);
2678 * Write full pathname from the root of the filesystem into the buffer.
2680 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2682 char *end = buf + buflen;
2683 char *retval;
2685 prepend(&end, &buflen, "\0", 1);
2686 if (buflen < 1)
2687 goto Elong;
2688 /* Get '/' right */
2689 retval = end-1;
2690 *retval = '/';
2692 while (!IS_ROOT(dentry)) {
2693 struct dentry *parent = dentry->d_parent;
2694 int error;
2696 prefetch(parent);
2697 spin_lock(&dentry->d_lock);
2698 error = prepend_name(&end, &buflen, &dentry->d_name);
2699 spin_unlock(&dentry->d_lock);
2700 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2701 goto Elong;
2703 retval = end;
2704 dentry = parent;
2706 return retval;
2707 Elong:
2708 return ERR_PTR(-ENAMETOOLONG);
2711 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2713 char *retval;
2715 write_seqlock(&rename_lock);
2716 retval = __dentry_path(dentry, buf, buflen);
2717 write_sequnlock(&rename_lock);
2719 return retval;
2721 EXPORT_SYMBOL(dentry_path_raw);
2723 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2725 char *p = NULL;
2726 char *retval;
2728 write_seqlock(&rename_lock);
2729 if (d_unlinked(dentry)) {
2730 p = buf + buflen;
2731 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2732 goto Elong;
2733 buflen++;
2735 retval = __dentry_path(dentry, buf, buflen);
2736 write_sequnlock(&rename_lock);
2737 if (!IS_ERR(retval) && p)
2738 *p = '/'; /* restore '/' overriden with '\0' */
2739 return retval;
2740 Elong:
2741 return ERR_PTR(-ENAMETOOLONG);
2745 * NOTE! The user-level library version returns a
2746 * character pointer. The kernel system call just
2747 * returns the length of the buffer filled (which
2748 * includes the ending '\0' character), or a negative
2749 * error value. So libc would do something like
2751 * char *getcwd(char * buf, size_t size)
2753 * int retval;
2755 * retval = sys_getcwd(buf, size);
2756 * if (retval >= 0)
2757 * return buf;
2758 * errno = -retval;
2759 * return NULL;
2762 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2764 int error;
2765 struct path pwd, root;
2766 char *page = (char *) __get_free_page(GFP_USER);
2768 if (!page)
2769 return -ENOMEM;
2771 get_fs_root_and_pwd(current->fs, &root, &pwd);
2773 error = -ENOENT;
2774 write_seqlock(&rename_lock);
2775 if (!d_unlinked(pwd.dentry)) {
2776 unsigned long len;
2777 struct path tmp = root;
2778 char *cwd = page + PAGE_SIZE;
2779 int buflen = PAGE_SIZE;
2781 prepend(&cwd, &buflen, "\0", 1);
2782 error = prepend_path(&pwd, &tmp, &cwd, &buflen);
2783 write_sequnlock(&rename_lock);
2785 if (error)
2786 goto out;
2788 /* Unreachable from current root */
2789 if (!path_equal(&tmp, &root)) {
2790 error = prepend_unreachable(&cwd, &buflen);
2791 if (error)
2792 goto out;
2795 error = -ERANGE;
2796 len = PAGE_SIZE + page - cwd;
2797 if (len <= size) {
2798 error = len;
2799 if (copy_to_user(buf, cwd, len))
2800 error = -EFAULT;
2802 } else {
2803 write_sequnlock(&rename_lock);
2806 out:
2807 path_put(&pwd);
2808 path_put(&root);
2809 free_page((unsigned long) page);
2810 return error;
2814 * Test whether new_dentry is a subdirectory of old_dentry.
2816 * Trivially implemented using the dcache structure
2820 * is_subdir - is new dentry a subdirectory of old_dentry
2821 * @new_dentry: new dentry
2822 * @old_dentry: old dentry
2824 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2825 * Returns 0 otherwise.
2826 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2829 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2831 int result;
2832 unsigned seq;
2834 if (new_dentry == old_dentry)
2835 return 1;
2837 do {
2838 /* for restarting inner loop in case of seq retry */
2839 seq = read_seqbegin(&rename_lock);
2841 * Need rcu_readlock to protect against the d_parent trashing
2842 * due to d_move
2844 rcu_read_lock();
2845 if (d_ancestor(old_dentry, new_dentry))
2846 result = 1;
2847 else
2848 result = 0;
2849 rcu_read_unlock();
2850 } while (read_seqretry(&rename_lock, seq));
2852 return result;
2855 int path_is_under(struct path *path1, struct path *path2)
2857 struct vfsmount *mnt = path1->mnt;
2858 struct dentry *dentry = path1->dentry;
2859 int res;
2861 br_read_lock(vfsmount_lock);
2862 if (mnt != path2->mnt) {
2863 for (;;) {
2864 if (mnt->mnt_parent == mnt) {
2865 br_read_unlock(vfsmount_lock);
2866 return 0;
2868 if (mnt->mnt_parent == path2->mnt)
2869 break;
2870 mnt = mnt->mnt_parent;
2872 dentry = mnt->mnt_mountpoint;
2874 res = is_subdir(dentry, path2->dentry);
2875 br_read_unlock(vfsmount_lock);
2876 return res;
2878 EXPORT_SYMBOL(path_is_under);
2880 void d_genocide(struct dentry *root)
2882 struct dentry *this_parent;
2883 struct list_head *next;
2884 unsigned seq;
2885 int locked = 0;
2887 seq = read_seqbegin(&rename_lock);
2888 again:
2889 this_parent = root;
2890 spin_lock(&this_parent->d_lock);
2891 repeat:
2892 next = this_parent->d_subdirs.next;
2893 resume:
2894 while (next != &this_parent->d_subdirs) {
2895 struct list_head *tmp = next;
2896 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2897 next = tmp->next;
2899 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2900 if (d_unhashed(dentry) || !dentry->d_inode) {
2901 spin_unlock(&dentry->d_lock);
2902 continue;
2904 if (!list_empty(&dentry->d_subdirs)) {
2905 spin_unlock(&this_parent->d_lock);
2906 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2907 this_parent = dentry;
2908 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2909 goto repeat;
2911 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2912 dentry->d_flags |= DCACHE_GENOCIDE;
2913 dentry->d_count--;
2915 spin_unlock(&dentry->d_lock);
2917 if (this_parent != root) {
2918 struct dentry *tmp;
2919 struct dentry *child;
2921 tmp = this_parent->d_parent;
2922 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2923 this_parent->d_flags |= DCACHE_GENOCIDE;
2924 this_parent->d_count--;
2926 rcu_read_lock();
2927 spin_unlock(&this_parent->d_lock);
2928 child = this_parent;
2929 this_parent = tmp;
2930 spin_lock(&this_parent->d_lock);
2931 /* might go back up the wrong parent if we have had a rename
2932 * or deletion */
2933 if (this_parent != child->d_parent ||
2934 (!locked && read_seqretry(&rename_lock, seq))) {
2935 spin_unlock(&this_parent->d_lock);
2936 rcu_read_unlock();
2937 goto rename_retry;
2939 rcu_read_unlock();
2940 next = child->d_u.d_child.next;
2941 goto resume;
2943 spin_unlock(&this_parent->d_lock);
2944 if (!locked && read_seqretry(&rename_lock, seq))
2945 goto rename_retry;
2946 if (locked)
2947 write_sequnlock(&rename_lock);
2948 return;
2950 rename_retry:
2951 locked = 1;
2952 write_seqlock(&rename_lock);
2953 goto again;
2957 * find_inode_number - check for dentry with name
2958 * @dir: directory to check
2959 * @name: Name to find.
2961 * Check whether a dentry already exists for the given name,
2962 * and return the inode number if it has an inode. Otherwise
2963 * 0 is returned.
2965 * This routine is used to post-process directory listings for
2966 * filesystems using synthetic inode numbers, and is necessary
2967 * to keep getcwd() working.
2970 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2972 struct dentry * dentry;
2973 ino_t ino = 0;
2975 dentry = d_hash_and_lookup(dir, name);
2976 if (dentry) {
2977 if (dentry->d_inode)
2978 ino = dentry->d_inode->i_ino;
2979 dput(dentry);
2981 return ino;
2983 EXPORT_SYMBOL(find_inode_number);
2985 static __initdata unsigned long dhash_entries;
2986 static int __init set_dhash_entries(char *str)
2988 if (!str)
2989 return 0;
2990 dhash_entries = simple_strtoul(str, &str, 0);
2991 return 1;
2993 __setup("dhash_entries=", set_dhash_entries);
2995 static void __init dcache_init_early(void)
2997 int loop;
2999 /* If hashes are distributed across NUMA nodes, defer
3000 * hash allocation until vmalloc space is available.
3002 if (hashdist)
3003 return;
3005 dentry_hashtable =
3006 alloc_large_system_hash("Dentry cache",
3007 sizeof(struct dcache_hash_bucket),
3008 dhash_entries,
3010 HASH_EARLY,
3011 &d_hash_shift,
3012 &d_hash_mask,
3015 for (loop = 0; loop < (1 << d_hash_shift); loop++)
3016 INIT_HLIST_BL_HEAD(&dentry_hashtable[loop].head);
3019 static void __init dcache_init(void)
3021 int loop;
3024 * A constructor could be added for stable state like the lists,
3025 * but it is probably not worth it because of the cache nature
3026 * of the dcache.
3028 dentry_cache = KMEM_CACHE(dentry,
3029 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3031 register_shrinker(&dcache_shrinker);
3033 /* Hash may have been set up in dcache_init_early */
3034 if (!hashdist)
3035 return;
3037 dentry_hashtable =
3038 alloc_large_system_hash("Dentry cache",
3039 sizeof(struct dcache_hash_bucket),
3040 dhash_entries,
3043 &d_hash_shift,
3044 &d_hash_mask,
3047 for (loop = 0; loop < (1 << d_hash_shift); loop++)
3048 INIT_HLIST_BL_HEAD(&dentry_hashtable[loop].head);
3051 /* SLAB cache for __getname() consumers */
3052 struct kmem_cache *names_cachep __read_mostly;
3053 EXPORT_SYMBOL(names_cachep);
3055 EXPORT_SYMBOL(d_genocide);
3057 void __init vfs_caches_init_early(void)
3059 dcache_init_early();
3060 inode_init_early();
3063 void __init vfs_caches_init(unsigned long mempages)
3065 unsigned long reserve;
3067 /* Base hash sizes on available memory, with a reserve equal to
3068 150% of current kernel size */
3070 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3071 mempages -= reserve;
3073 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3074 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3076 dcache_init();
3077 inode_init();
3078 files_init(mempages);
3079 mnt_init();
3080 bdev_cache_init();
3081 chrdev_init();