MIPS: Octeon: Use I/O clock rate for calculations.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / raid5.c
blob31140d1259dcdd84e373c3affeee5e529de3af8b
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 * BITMAP UNPLUGGING:
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "raid5.h"
56 #include "raid0.h"
57 #include "bitmap.h"
60 * Stripe cache
63 #define NR_STRIPES 256
64 #define STRIPE_SIZE PAGE_SIZE
65 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
66 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
67 #define IO_THRESHOLD 1
68 #define BYPASS_THRESHOLD 1
69 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
70 #define HASH_MASK (NR_HASH - 1)
72 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
74 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
75 * order without overlap. There may be several bio's per stripe+device, and
76 * a bio could span several devices.
77 * When walking this list for a particular stripe+device, we must never proceed
78 * beyond a bio that extends past this device, as the next bio might no longer
79 * be valid.
80 * This macro is used to determine the 'next' bio in the list, given the sector
81 * of the current stripe+device
83 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
85 * The following can be used to debug the driver
87 #define RAID5_PARANOIA 1
88 #if RAID5_PARANOIA && defined(CONFIG_SMP)
89 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
90 #else
91 # define CHECK_DEVLOCK()
92 #endif
94 #ifdef DEBUG
95 #define inline
96 #define __inline__
97 #endif
99 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
102 * We maintain a biased count of active stripes in the bottom 16 bits of
103 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
105 static inline int raid5_bi_phys_segments(struct bio *bio)
107 return bio->bi_phys_segments & 0xffff;
110 static inline int raid5_bi_hw_segments(struct bio *bio)
112 return (bio->bi_phys_segments >> 16) & 0xffff;
115 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
117 --bio->bi_phys_segments;
118 return raid5_bi_phys_segments(bio);
121 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
123 unsigned short val = raid5_bi_hw_segments(bio);
125 --val;
126 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
127 return val;
130 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
132 bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
135 /* Find first data disk in a raid6 stripe */
136 static inline int raid6_d0(struct stripe_head *sh)
138 if (sh->ddf_layout)
139 /* ddf always start from first device */
140 return 0;
141 /* md starts just after Q block */
142 if (sh->qd_idx == sh->disks - 1)
143 return 0;
144 else
145 return sh->qd_idx + 1;
147 static inline int raid6_next_disk(int disk, int raid_disks)
149 disk++;
150 return (disk < raid_disks) ? disk : 0;
153 /* When walking through the disks in a raid5, starting at raid6_d0,
154 * We need to map each disk to a 'slot', where the data disks are slot
155 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
156 * is raid_disks-1. This help does that mapping.
158 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
159 int *count, int syndrome_disks)
161 int slot = *count;
163 if (sh->ddf_layout)
164 (*count)++;
165 if (idx == sh->pd_idx)
166 return syndrome_disks;
167 if (idx == sh->qd_idx)
168 return syndrome_disks + 1;
169 if (!sh->ddf_layout)
170 (*count)++;
171 return slot;
174 static void return_io(struct bio *return_bi)
176 struct bio *bi = return_bi;
177 while (bi) {
179 return_bi = bi->bi_next;
180 bi->bi_next = NULL;
181 bi->bi_size = 0;
182 bio_endio(bi, 0);
183 bi = return_bi;
187 static void print_raid5_conf (raid5_conf_t *conf);
189 static int stripe_operations_active(struct stripe_head *sh)
191 return sh->check_state || sh->reconstruct_state ||
192 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
193 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
196 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
198 if (atomic_dec_and_test(&sh->count)) {
199 BUG_ON(!list_empty(&sh->lru));
200 BUG_ON(atomic_read(&conf->active_stripes)==0);
201 if (test_bit(STRIPE_HANDLE, &sh->state)) {
202 if (test_bit(STRIPE_DELAYED, &sh->state)) {
203 list_add_tail(&sh->lru, &conf->delayed_list);
204 plugger_set_plug(&conf->plug);
205 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
206 sh->bm_seq - conf->seq_write > 0) {
207 list_add_tail(&sh->lru, &conf->bitmap_list);
208 plugger_set_plug(&conf->plug);
209 } else {
210 clear_bit(STRIPE_BIT_DELAY, &sh->state);
211 list_add_tail(&sh->lru, &conf->handle_list);
213 md_wakeup_thread(conf->mddev->thread);
214 } else {
215 BUG_ON(stripe_operations_active(sh));
216 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
217 atomic_dec(&conf->preread_active_stripes);
218 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
219 md_wakeup_thread(conf->mddev->thread);
221 atomic_dec(&conf->active_stripes);
222 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
223 list_add_tail(&sh->lru, &conf->inactive_list);
224 wake_up(&conf->wait_for_stripe);
225 if (conf->retry_read_aligned)
226 md_wakeup_thread(conf->mddev->thread);
232 static void release_stripe(struct stripe_head *sh)
234 raid5_conf_t *conf = sh->raid_conf;
235 unsigned long flags;
237 spin_lock_irqsave(&conf->device_lock, flags);
238 __release_stripe(conf, sh);
239 spin_unlock_irqrestore(&conf->device_lock, flags);
242 static inline void remove_hash(struct stripe_head *sh)
244 pr_debug("remove_hash(), stripe %llu\n",
245 (unsigned long long)sh->sector);
247 hlist_del_init(&sh->hash);
250 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
252 struct hlist_head *hp = stripe_hash(conf, sh->sector);
254 pr_debug("insert_hash(), stripe %llu\n",
255 (unsigned long long)sh->sector);
257 CHECK_DEVLOCK();
258 hlist_add_head(&sh->hash, hp);
262 /* find an idle stripe, make sure it is unhashed, and return it. */
263 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
265 struct stripe_head *sh = NULL;
266 struct list_head *first;
268 CHECK_DEVLOCK();
269 if (list_empty(&conf->inactive_list))
270 goto out;
271 first = conf->inactive_list.next;
272 sh = list_entry(first, struct stripe_head, lru);
273 list_del_init(first);
274 remove_hash(sh);
275 atomic_inc(&conf->active_stripes);
276 out:
277 return sh;
280 static void shrink_buffers(struct stripe_head *sh)
282 struct page *p;
283 int i;
284 int num = sh->raid_conf->pool_size;
286 for (i = 0; i < num ; i++) {
287 p = sh->dev[i].page;
288 if (!p)
289 continue;
290 sh->dev[i].page = NULL;
291 put_page(p);
295 static int grow_buffers(struct stripe_head *sh)
297 int i;
298 int num = sh->raid_conf->pool_size;
300 for (i = 0; i < num; i++) {
301 struct page *page;
303 if (!(page = alloc_page(GFP_KERNEL))) {
304 return 1;
306 sh->dev[i].page = page;
308 return 0;
311 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
312 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
313 struct stripe_head *sh);
315 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
317 raid5_conf_t *conf = sh->raid_conf;
318 int i;
320 BUG_ON(atomic_read(&sh->count) != 0);
321 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
322 BUG_ON(stripe_operations_active(sh));
324 CHECK_DEVLOCK();
325 pr_debug("init_stripe called, stripe %llu\n",
326 (unsigned long long)sh->sector);
328 remove_hash(sh);
330 sh->generation = conf->generation - previous;
331 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
332 sh->sector = sector;
333 stripe_set_idx(sector, conf, previous, sh);
334 sh->state = 0;
337 for (i = sh->disks; i--; ) {
338 struct r5dev *dev = &sh->dev[i];
340 if (dev->toread || dev->read || dev->towrite || dev->written ||
341 test_bit(R5_LOCKED, &dev->flags)) {
342 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
343 (unsigned long long)sh->sector, i, dev->toread,
344 dev->read, dev->towrite, dev->written,
345 test_bit(R5_LOCKED, &dev->flags));
346 BUG();
348 dev->flags = 0;
349 raid5_build_block(sh, i, previous);
351 insert_hash(conf, sh);
354 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
355 short generation)
357 struct stripe_head *sh;
358 struct hlist_node *hn;
360 CHECK_DEVLOCK();
361 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
362 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
363 if (sh->sector == sector && sh->generation == generation)
364 return sh;
365 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
366 return NULL;
370 * Need to check if array has failed when deciding whether to:
371 * - start an array
372 * - remove non-faulty devices
373 * - add a spare
374 * - allow a reshape
375 * This determination is simple when no reshape is happening.
376 * However if there is a reshape, we need to carefully check
377 * both the before and after sections.
378 * This is because some failed devices may only affect one
379 * of the two sections, and some non-in_sync devices may
380 * be insync in the section most affected by failed devices.
382 static int has_failed(raid5_conf_t *conf)
384 int degraded;
385 int i;
386 if (conf->mddev->reshape_position == MaxSector)
387 return conf->mddev->degraded > conf->max_degraded;
389 rcu_read_lock();
390 degraded = 0;
391 for (i = 0; i < conf->previous_raid_disks; i++) {
392 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
393 if (!rdev || test_bit(Faulty, &rdev->flags))
394 degraded++;
395 else if (test_bit(In_sync, &rdev->flags))
397 else
398 /* not in-sync or faulty.
399 * If the reshape increases the number of devices,
400 * this is being recovered by the reshape, so
401 * this 'previous' section is not in_sync.
402 * If the number of devices is being reduced however,
403 * the device can only be part of the array if
404 * we are reverting a reshape, so this section will
405 * be in-sync.
407 if (conf->raid_disks >= conf->previous_raid_disks)
408 degraded++;
410 rcu_read_unlock();
411 if (degraded > conf->max_degraded)
412 return 1;
413 rcu_read_lock();
414 degraded = 0;
415 for (i = 0; i < conf->raid_disks; i++) {
416 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
417 if (!rdev || test_bit(Faulty, &rdev->flags))
418 degraded++;
419 else if (test_bit(In_sync, &rdev->flags))
421 else
422 /* not in-sync or faulty.
423 * If reshape increases the number of devices, this
424 * section has already been recovered, else it
425 * almost certainly hasn't.
427 if (conf->raid_disks <= conf->previous_raid_disks)
428 degraded++;
430 rcu_read_unlock();
431 if (degraded > conf->max_degraded)
432 return 1;
433 return 0;
436 static void unplug_slaves(mddev_t *mddev);
438 static struct stripe_head *
439 get_active_stripe(raid5_conf_t *conf, sector_t sector,
440 int previous, int noblock, int noquiesce)
442 struct stripe_head *sh;
444 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
446 spin_lock_irq(&conf->device_lock);
448 do {
449 wait_event_lock_irq(conf->wait_for_stripe,
450 conf->quiesce == 0 || noquiesce,
451 conf->device_lock, /* nothing */);
452 sh = __find_stripe(conf, sector, conf->generation - previous);
453 if (!sh) {
454 if (!conf->inactive_blocked)
455 sh = get_free_stripe(conf);
456 if (noblock && sh == NULL)
457 break;
458 if (!sh) {
459 conf->inactive_blocked = 1;
460 wait_event_lock_irq(conf->wait_for_stripe,
461 !list_empty(&conf->inactive_list) &&
462 (atomic_read(&conf->active_stripes)
463 < (conf->max_nr_stripes *3/4)
464 || !conf->inactive_blocked),
465 conf->device_lock,
466 md_raid5_unplug_device(conf)
468 conf->inactive_blocked = 0;
469 } else
470 init_stripe(sh, sector, previous);
471 } else {
472 if (atomic_read(&sh->count)) {
473 BUG_ON(!list_empty(&sh->lru)
474 && !test_bit(STRIPE_EXPANDING, &sh->state));
475 } else {
476 if (!test_bit(STRIPE_HANDLE, &sh->state))
477 atomic_inc(&conf->active_stripes);
478 if (list_empty(&sh->lru) &&
479 !test_bit(STRIPE_EXPANDING, &sh->state))
480 BUG();
481 list_del_init(&sh->lru);
484 } while (sh == NULL);
486 if (sh)
487 atomic_inc(&sh->count);
489 spin_unlock_irq(&conf->device_lock);
490 return sh;
493 static void
494 raid5_end_read_request(struct bio *bi, int error);
495 static void
496 raid5_end_write_request(struct bio *bi, int error);
498 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
500 raid5_conf_t *conf = sh->raid_conf;
501 int i, disks = sh->disks;
503 might_sleep();
505 for (i = disks; i--; ) {
506 int rw;
507 struct bio *bi;
508 mdk_rdev_t *rdev;
509 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
510 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
511 rw = WRITE_FUA;
512 else
513 rw = WRITE;
514 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
515 rw = READ;
516 else
517 continue;
519 bi = &sh->dev[i].req;
521 bi->bi_rw = rw;
522 if (rw == WRITE)
523 bi->bi_end_io = raid5_end_write_request;
524 else
525 bi->bi_end_io = raid5_end_read_request;
527 rcu_read_lock();
528 rdev = rcu_dereference(conf->disks[i].rdev);
529 if (rdev && test_bit(Faulty, &rdev->flags))
530 rdev = NULL;
531 if (rdev)
532 atomic_inc(&rdev->nr_pending);
533 rcu_read_unlock();
535 if (rdev) {
536 if (s->syncing || s->expanding || s->expanded)
537 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
539 set_bit(STRIPE_IO_STARTED, &sh->state);
541 bi->bi_bdev = rdev->bdev;
542 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
543 __func__, (unsigned long long)sh->sector,
544 bi->bi_rw, i);
545 atomic_inc(&sh->count);
546 bi->bi_sector = sh->sector + rdev->data_offset;
547 bi->bi_flags = 1 << BIO_UPTODATE;
548 bi->bi_vcnt = 1;
549 bi->bi_max_vecs = 1;
550 bi->bi_idx = 0;
551 bi->bi_io_vec = &sh->dev[i].vec;
552 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
553 bi->bi_io_vec[0].bv_offset = 0;
554 bi->bi_size = STRIPE_SIZE;
555 bi->bi_next = NULL;
556 if (rw == WRITE &&
557 test_bit(R5_ReWrite, &sh->dev[i].flags))
558 atomic_add(STRIPE_SECTORS,
559 &rdev->corrected_errors);
560 generic_make_request(bi);
561 } else {
562 if (rw == WRITE)
563 set_bit(STRIPE_DEGRADED, &sh->state);
564 pr_debug("skip op %ld on disc %d for sector %llu\n",
565 bi->bi_rw, i, (unsigned long long)sh->sector);
566 clear_bit(R5_LOCKED, &sh->dev[i].flags);
567 set_bit(STRIPE_HANDLE, &sh->state);
572 static struct dma_async_tx_descriptor *
573 async_copy_data(int frombio, struct bio *bio, struct page *page,
574 sector_t sector, struct dma_async_tx_descriptor *tx)
576 struct bio_vec *bvl;
577 struct page *bio_page;
578 int i;
579 int page_offset;
580 struct async_submit_ctl submit;
581 enum async_tx_flags flags = 0;
583 if (bio->bi_sector >= sector)
584 page_offset = (signed)(bio->bi_sector - sector) * 512;
585 else
586 page_offset = (signed)(sector - bio->bi_sector) * -512;
588 if (frombio)
589 flags |= ASYNC_TX_FENCE;
590 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
592 bio_for_each_segment(bvl, bio, i) {
593 int len = bio_iovec_idx(bio, i)->bv_len;
594 int clen;
595 int b_offset = 0;
597 if (page_offset < 0) {
598 b_offset = -page_offset;
599 page_offset += b_offset;
600 len -= b_offset;
603 if (len > 0 && page_offset + len > STRIPE_SIZE)
604 clen = STRIPE_SIZE - page_offset;
605 else
606 clen = len;
608 if (clen > 0) {
609 b_offset += bio_iovec_idx(bio, i)->bv_offset;
610 bio_page = bio_iovec_idx(bio, i)->bv_page;
611 if (frombio)
612 tx = async_memcpy(page, bio_page, page_offset,
613 b_offset, clen, &submit);
614 else
615 tx = async_memcpy(bio_page, page, b_offset,
616 page_offset, clen, &submit);
618 /* chain the operations */
619 submit.depend_tx = tx;
621 if (clen < len) /* hit end of page */
622 break;
623 page_offset += len;
626 return tx;
629 static void ops_complete_biofill(void *stripe_head_ref)
631 struct stripe_head *sh = stripe_head_ref;
632 struct bio *return_bi = NULL;
633 raid5_conf_t *conf = sh->raid_conf;
634 int i;
636 pr_debug("%s: stripe %llu\n", __func__,
637 (unsigned long long)sh->sector);
639 /* clear completed biofills */
640 spin_lock_irq(&conf->device_lock);
641 for (i = sh->disks; i--; ) {
642 struct r5dev *dev = &sh->dev[i];
644 /* acknowledge completion of a biofill operation */
645 /* and check if we need to reply to a read request,
646 * new R5_Wantfill requests are held off until
647 * !STRIPE_BIOFILL_RUN
649 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
650 struct bio *rbi, *rbi2;
652 BUG_ON(!dev->read);
653 rbi = dev->read;
654 dev->read = NULL;
655 while (rbi && rbi->bi_sector <
656 dev->sector + STRIPE_SECTORS) {
657 rbi2 = r5_next_bio(rbi, dev->sector);
658 if (!raid5_dec_bi_phys_segments(rbi)) {
659 rbi->bi_next = return_bi;
660 return_bi = rbi;
662 rbi = rbi2;
666 spin_unlock_irq(&conf->device_lock);
667 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
669 return_io(return_bi);
671 set_bit(STRIPE_HANDLE, &sh->state);
672 release_stripe(sh);
675 static void ops_run_biofill(struct stripe_head *sh)
677 struct dma_async_tx_descriptor *tx = NULL;
678 raid5_conf_t *conf = sh->raid_conf;
679 struct async_submit_ctl submit;
680 int i;
682 pr_debug("%s: stripe %llu\n", __func__,
683 (unsigned long long)sh->sector);
685 for (i = sh->disks; i--; ) {
686 struct r5dev *dev = &sh->dev[i];
687 if (test_bit(R5_Wantfill, &dev->flags)) {
688 struct bio *rbi;
689 spin_lock_irq(&conf->device_lock);
690 dev->read = rbi = dev->toread;
691 dev->toread = NULL;
692 spin_unlock_irq(&conf->device_lock);
693 while (rbi && rbi->bi_sector <
694 dev->sector + STRIPE_SECTORS) {
695 tx = async_copy_data(0, rbi, dev->page,
696 dev->sector, tx);
697 rbi = r5_next_bio(rbi, dev->sector);
702 atomic_inc(&sh->count);
703 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
704 async_trigger_callback(&submit);
707 static void mark_target_uptodate(struct stripe_head *sh, int target)
709 struct r5dev *tgt;
711 if (target < 0)
712 return;
714 tgt = &sh->dev[target];
715 set_bit(R5_UPTODATE, &tgt->flags);
716 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
717 clear_bit(R5_Wantcompute, &tgt->flags);
720 static void ops_complete_compute(void *stripe_head_ref)
722 struct stripe_head *sh = stripe_head_ref;
724 pr_debug("%s: stripe %llu\n", __func__,
725 (unsigned long long)sh->sector);
727 /* mark the computed target(s) as uptodate */
728 mark_target_uptodate(sh, sh->ops.target);
729 mark_target_uptodate(sh, sh->ops.target2);
731 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
732 if (sh->check_state == check_state_compute_run)
733 sh->check_state = check_state_compute_result;
734 set_bit(STRIPE_HANDLE, &sh->state);
735 release_stripe(sh);
738 /* return a pointer to the address conversion region of the scribble buffer */
739 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
740 struct raid5_percpu *percpu)
742 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
745 static struct dma_async_tx_descriptor *
746 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
748 int disks = sh->disks;
749 struct page **xor_srcs = percpu->scribble;
750 int target = sh->ops.target;
751 struct r5dev *tgt = &sh->dev[target];
752 struct page *xor_dest = tgt->page;
753 int count = 0;
754 struct dma_async_tx_descriptor *tx;
755 struct async_submit_ctl submit;
756 int i;
758 pr_debug("%s: stripe %llu block: %d\n",
759 __func__, (unsigned long long)sh->sector, target);
760 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
762 for (i = disks; i--; )
763 if (i != target)
764 xor_srcs[count++] = sh->dev[i].page;
766 atomic_inc(&sh->count);
768 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
769 ops_complete_compute, sh, to_addr_conv(sh, percpu));
770 if (unlikely(count == 1))
771 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
772 else
773 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
775 return tx;
778 /* set_syndrome_sources - populate source buffers for gen_syndrome
779 * @srcs - (struct page *) array of size sh->disks
780 * @sh - stripe_head to parse
782 * Populates srcs in proper layout order for the stripe and returns the
783 * 'count' of sources to be used in a call to async_gen_syndrome. The P
784 * destination buffer is recorded in srcs[count] and the Q destination
785 * is recorded in srcs[count+1]].
787 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
789 int disks = sh->disks;
790 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
791 int d0_idx = raid6_d0(sh);
792 int count;
793 int i;
795 for (i = 0; i < disks; i++)
796 srcs[i] = NULL;
798 count = 0;
799 i = d0_idx;
800 do {
801 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
803 srcs[slot] = sh->dev[i].page;
804 i = raid6_next_disk(i, disks);
805 } while (i != d0_idx);
807 return syndrome_disks;
810 static struct dma_async_tx_descriptor *
811 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
813 int disks = sh->disks;
814 struct page **blocks = percpu->scribble;
815 int target;
816 int qd_idx = sh->qd_idx;
817 struct dma_async_tx_descriptor *tx;
818 struct async_submit_ctl submit;
819 struct r5dev *tgt;
820 struct page *dest;
821 int i;
822 int count;
824 if (sh->ops.target < 0)
825 target = sh->ops.target2;
826 else if (sh->ops.target2 < 0)
827 target = sh->ops.target;
828 else
829 /* we should only have one valid target */
830 BUG();
831 BUG_ON(target < 0);
832 pr_debug("%s: stripe %llu block: %d\n",
833 __func__, (unsigned long long)sh->sector, target);
835 tgt = &sh->dev[target];
836 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
837 dest = tgt->page;
839 atomic_inc(&sh->count);
841 if (target == qd_idx) {
842 count = set_syndrome_sources(blocks, sh);
843 blocks[count] = NULL; /* regenerating p is not necessary */
844 BUG_ON(blocks[count+1] != dest); /* q should already be set */
845 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
846 ops_complete_compute, sh,
847 to_addr_conv(sh, percpu));
848 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
849 } else {
850 /* Compute any data- or p-drive using XOR */
851 count = 0;
852 for (i = disks; i-- ; ) {
853 if (i == target || i == qd_idx)
854 continue;
855 blocks[count++] = sh->dev[i].page;
858 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
859 NULL, ops_complete_compute, sh,
860 to_addr_conv(sh, percpu));
861 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
864 return tx;
867 static struct dma_async_tx_descriptor *
868 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
870 int i, count, disks = sh->disks;
871 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
872 int d0_idx = raid6_d0(sh);
873 int faila = -1, failb = -1;
874 int target = sh->ops.target;
875 int target2 = sh->ops.target2;
876 struct r5dev *tgt = &sh->dev[target];
877 struct r5dev *tgt2 = &sh->dev[target2];
878 struct dma_async_tx_descriptor *tx;
879 struct page **blocks = percpu->scribble;
880 struct async_submit_ctl submit;
882 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
883 __func__, (unsigned long long)sh->sector, target, target2);
884 BUG_ON(target < 0 || target2 < 0);
885 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
886 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
888 /* we need to open-code set_syndrome_sources to handle the
889 * slot number conversion for 'faila' and 'failb'
891 for (i = 0; i < disks ; i++)
892 blocks[i] = NULL;
893 count = 0;
894 i = d0_idx;
895 do {
896 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
898 blocks[slot] = sh->dev[i].page;
900 if (i == target)
901 faila = slot;
902 if (i == target2)
903 failb = slot;
904 i = raid6_next_disk(i, disks);
905 } while (i != d0_idx);
907 BUG_ON(faila == failb);
908 if (failb < faila)
909 swap(faila, failb);
910 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
911 __func__, (unsigned long long)sh->sector, faila, failb);
913 atomic_inc(&sh->count);
915 if (failb == syndrome_disks+1) {
916 /* Q disk is one of the missing disks */
917 if (faila == syndrome_disks) {
918 /* Missing P+Q, just recompute */
919 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
920 ops_complete_compute, sh,
921 to_addr_conv(sh, percpu));
922 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
923 STRIPE_SIZE, &submit);
924 } else {
925 struct page *dest;
926 int data_target;
927 int qd_idx = sh->qd_idx;
929 /* Missing D+Q: recompute D from P, then recompute Q */
930 if (target == qd_idx)
931 data_target = target2;
932 else
933 data_target = target;
935 count = 0;
936 for (i = disks; i-- ; ) {
937 if (i == data_target || i == qd_idx)
938 continue;
939 blocks[count++] = sh->dev[i].page;
941 dest = sh->dev[data_target].page;
942 init_async_submit(&submit,
943 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
944 NULL, NULL, NULL,
945 to_addr_conv(sh, percpu));
946 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
947 &submit);
949 count = set_syndrome_sources(blocks, sh);
950 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
951 ops_complete_compute, sh,
952 to_addr_conv(sh, percpu));
953 return async_gen_syndrome(blocks, 0, count+2,
954 STRIPE_SIZE, &submit);
956 } else {
957 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
958 ops_complete_compute, sh,
959 to_addr_conv(sh, percpu));
960 if (failb == syndrome_disks) {
961 /* We're missing D+P. */
962 return async_raid6_datap_recov(syndrome_disks+2,
963 STRIPE_SIZE, faila,
964 blocks, &submit);
965 } else {
966 /* We're missing D+D. */
967 return async_raid6_2data_recov(syndrome_disks+2,
968 STRIPE_SIZE, faila, failb,
969 blocks, &submit);
975 static void ops_complete_prexor(void *stripe_head_ref)
977 struct stripe_head *sh = stripe_head_ref;
979 pr_debug("%s: stripe %llu\n", __func__,
980 (unsigned long long)sh->sector);
983 static struct dma_async_tx_descriptor *
984 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
985 struct dma_async_tx_descriptor *tx)
987 int disks = sh->disks;
988 struct page **xor_srcs = percpu->scribble;
989 int count = 0, pd_idx = sh->pd_idx, i;
990 struct async_submit_ctl submit;
992 /* existing parity data subtracted */
993 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
995 pr_debug("%s: stripe %llu\n", __func__,
996 (unsigned long long)sh->sector);
998 for (i = disks; i--; ) {
999 struct r5dev *dev = &sh->dev[i];
1000 /* Only process blocks that are known to be uptodate */
1001 if (test_bit(R5_Wantdrain, &dev->flags))
1002 xor_srcs[count++] = dev->page;
1005 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1006 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1007 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1009 return tx;
1012 static struct dma_async_tx_descriptor *
1013 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1015 int disks = sh->disks;
1016 int i;
1018 pr_debug("%s: stripe %llu\n", __func__,
1019 (unsigned long long)sh->sector);
1021 for (i = disks; i--; ) {
1022 struct r5dev *dev = &sh->dev[i];
1023 struct bio *chosen;
1025 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1026 struct bio *wbi;
1028 spin_lock(&sh->lock);
1029 chosen = dev->towrite;
1030 dev->towrite = NULL;
1031 BUG_ON(dev->written);
1032 wbi = dev->written = chosen;
1033 spin_unlock(&sh->lock);
1035 while (wbi && wbi->bi_sector <
1036 dev->sector + STRIPE_SECTORS) {
1037 if (wbi->bi_rw & REQ_FUA)
1038 set_bit(R5_WantFUA, &dev->flags);
1039 tx = async_copy_data(1, wbi, dev->page,
1040 dev->sector, tx);
1041 wbi = r5_next_bio(wbi, dev->sector);
1046 return tx;
1049 static void ops_complete_reconstruct(void *stripe_head_ref)
1051 struct stripe_head *sh = stripe_head_ref;
1052 int disks = sh->disks;
1053 int pd_idx = sh->pd_idx;
1054 int qd_idx = sh->qd_idx;
1055 int i;
1056 bool fua = false;
1058 pr_debug("%s: stripe %llu\n", __func__,
1059 (unsigned long long)sh->sector);
1061 for (i = disks; i--; )
1062 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1064 for (i = disks; i--; ) {
1065 struct r5dev *dev = &sh->dev[i];
1067 if (dev->written || i == pd_idx || i == qd_idx) {
1068 set_bit(R5_UPTODATE, &dev->flags);
1069 if (fua)
1070 set_bit(R5_WantFUA, &dev->flags);
1074 if (sh->reconstruct_state == reconstruct_state_drain_run)
1075 sh->reconstruct_state = reconstruct_state_drain_result;
1076 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1077 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1078 else {
1079 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1080 sh->reconstruct_state = reconstruct_state_result;
1083 set_bit(STRIPE_HANDLE, &sh->state);
1084 release_stripe(sh);
1087 static void
1088 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1089 struct dma_async_tx_descriptor *tx)
1091 int disks = sh->disks;
1092 struct page **xor_srcs = percpu->scribble;
1093 struct async_submit_ctl submit;
1094 int count = 0, pd_idx = sh->pd_idx, i;
1095 struct page *xor_dest;
1096 int prexor = 0;
1097 unsigned long flags;
1099 pr_debug("%s: stripe %llu\n", __func__,
1100 (unsigned long long)sh->sector);
1102 /* check if prexor is active which means only process blocks
1103 * that are part of a read-modify-write (written)
1105 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1106 prexor = 1;
1107 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1108 for (i = disks; i--; ) {
1109 struct r5dev *dev = &sh->dev[i];
1110 if (dev->written)
1111 xor_srcs[count++] = dev->page;
1113 } else {
1114 xor_dest = sh->dev[pd_idx].page;
1115 for (i = disks; i--; ) {
1116 struct r5dev *dev = &sh->dev[i];
1117 if (i != pd_idx)
1118 xor_srcs[count++] = dev->page;
1122 /* 1/ if we prexor'd then the dest is reused as a source
1123 * 2/ if we did not prexor then we are redoing the parity
1124 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1125 * for the synchronous xor case
1127 flags = ASYNC_TX_ACK |
1128 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1130 atomic_inc(&sh->count);
1132 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1133 to_addr_conv(sh, percpu));
1134 if (unlikely(count == 1))
1135 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1136 else
1137 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1140 static void
1141 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1142 struct dma_async_tx_descriptor *tx)
1144 struct async_submit_ctl submit;
1145 struct page **blocks = percpu->scribble;
1146 int count;
1148 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1150 count = set_syndrome_sources(blocks, sh);
1152 atomic_inc(&sh->count);
1154 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1155 sh, to_addr_conv(sh, percpu));
1156 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1159 static void ops_complete_check(void *stripe_head_ref)
1161 struct stripe_head *sh = stripe_head_ref;
1163 pr_debug("%s: stripe %llu\n", __func__,
1164 (unsigned long long)sh->sector);
1166 sh->check_state = check_state_check_result;
1167 set_bit(STRIPE_HANDLE, &sh->state);
1168 release_stripe(sh);
1171 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1173 int disks = sh->disks;
1174 int pd_idx = sh->pd_idx;
1175 int qd_idx = sh->qd_idx;
1176 struct page *xor_dest;
1177 struct page **xor_srcs = percpu->scribble;
1178 struct dma_async_tx_descriptor *tx;
1179 struct async_submit_ctl submit;
1180 int count;
1181 int i;
1183 pr_debug("%s: stripe %llu\n", __func__,
1184 (unsigned long long)sh->sector);
1186 count = 0;
1187 xor_dest = sh->dev[pd_idx].page;
1188 xor_srcs[count++] = xor_dest;
1189 for (i = disks; i--; ) {
1190 if (i == pd_idx || i == qd_idx)
1191 continue;
1192 xor_srcs[count++] = sh->dev[i].page;
1195 init_async_submit(&submit, 0, NULL, NULL, NULL,
1196 to_addr_conv(sh, percpu));
1197 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1198 &sh->ops.zero_sum_result, &submit);
1200 atomic_inc(&sh->count);
1201 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1202 tx = async_trigger_callback(&submit);
1205 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1207 struct page **srcs = percpu->scribble;
1208 struct async_submit_ctl submit;
1209 int count;
1211 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1212 (unsigned long long)sh->sector, checkp);
1214 count = set_syndrome_sources(srcs, sh);
1215 if (!checkp)
1216 srcs[count] = NULL;
1218 atomic_inc(&sh->count);
1219 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1220 sh, to_addr_conv(sh, percpu));
1221 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1222 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1225 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1227 int overlap_clear = 0, i, disks = sh->disks;
1228 struct dma_async_tx_descriptor *tx = NULL;
1229 raid5_conf_t *conf = sh->raid_conf;
1230 int level = conf->level;
1231 struct raid5_percpu *percpu;
1232 unsigned long cpu;
1234 cpu = get_cpu();
1235 percpu = per_cpu_ptr(conf->percpu, cpu);
1236 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1237 ops_run_biofill(sh);
1238 overlap_clear++;
1241 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1242 if (level < 6)
1243 tx = ops_run_compute5(sh, percpu);
1244 else {
1245 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1246 tx = ops_run_compute6_1(sh, percpu);
1247 else
1248 tx = ops_run_compute6_2(sh, percpu);
1250 /* terminate the chain if reconstruct is not set to be run */
1251 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1252 async_tx_ack(tx);
1255 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1256 tx = ops_run_prexor(sh, percpu, tx);
1258 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1259 tx = ops_run_biodrain(sh, tx);
1260 overlap_clear++;
1263 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1264 if (level < 6)
1265 ops_run_reconstruct5(sh, percpu, tx);
1266 else
1267 ops_run_reconstruct6(sh, percpu, tx);
1270 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1271 if (sh->check_state == check_state_run)
1272 ops_run_check_p(sh, percpu);
1273 else if (sh->check_state == check_state_run_q)
1274 ops_run_check_pq(sh, percpu, 0);
1275 else if (sh->check_state == check_state_run_pq)
1276 ops_run_check_pq(sh, percpu, 1);
1277 else
1278 BUG();
1281 if (overlap_clear)
1282 for (i = disks; i--; ) {
1283 struct r5dev *dev = &sh->dev[i];
1284 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1285 wake_up(&sh->raid_conf->wait_for_overlap);
1287 put_cpu();
1290 #ifdef CONFIG_MULTICORE_RAID456
1291 static void async_run_ops(void *param, async_cookie_t cookie)
1293 struct stripe_head *sh = param;
1294 unsigned long ops_request = sh->ops.request;
1296 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1297 wake_up(&sh->ops.wait_for_ops);
1299 __raid_run_ops(sh, ops_request);
1300 release_stripe(sh);
1303 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1305 /* since handle_stripe can be called outside of raid5d context
1306 * we need to ensure sh->ops.request is de-staged before another
1307 * request arrives
1309 wait_event(sh->ops.wait_for_ops,
1310 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1311 sh->ops.request = ops_request;
1313 atomic_inc(&sh->count);
1314 async_schedule(async_run_ops, sh);
1316 #else
1317 #define raid_run_ops __raid_run_ops
1318 #endif
1320 static int grow_one_stripe(raid5_conf_t *conf)
1322 struct stripe_head *sh;
1323 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
1324 if (!sh)
1325 return 0;
1326 memset(sh, 0, sizeof(*sh) + (conf->pool_size-1)*sizeof(struct r5dev));
1327 sh->raid_conf = conf;
1328 spin_lock_init(&sh->lock);
1329 #ifdef CONFIG_MULTICORE_RAID456
1330 init_waitqueue_head(&sh->ops.wait_for_ops);
1331 #endif
1333 if (grow_buffers(sh)) {
1334 shrink_buffers(sh);
1335 kmem_cache_free(conf->slab_cache, sh);
1336 return 0;
1338 /* we just created an active stripe so... */
1339 atomic_set(&sh->count, 1);
1340 atomic_inc(&conf->active_stripes);
1341 INIT_LIST_HEAD(&sh->lru);
1342 release_stripe(sh);
1343 return 1;
1346 static int grow_stripes(raid5_conf_t *conf, int num)
1348 struct kmem_cache *sc;
1349 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1351 if (conf->mddev->gendisk)
1352 sprintf(conf->cache_name[0],
1353 "raid%d-%s", conf->level, mdname(conf->mddev));
1354 else
1355 sprintf(conf->cache_name[0],
1356 "raid%d-%p", conf->level, conf->mddev);
1357 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1359 conf->active_name = 0;
1360 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1361 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1362 0, 0, NULL);
1363 if (!sc)
1364 return 1;
1365 conf->slab_cache = sc;
1366 conf->pool_size = devs;
1367 while (num--)
1368 if (!grow_one_stripe(conf))
1369 return 1;
1370 return 0;
1374 * scribble_len - return the required size of the scribble region
1375 * @num - total number of disks in the array
1377 * The size must be enough to contain:
1378 * 1/ a struct page pointer for each device in the array +2
1379 * 2/ room to convert each entry in (1) to its corresponding dma
1380 * (dma_map_page()) or page (page_address()) address.
1382 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1383 * calculate over all devices (not just the data blocks), using zeros in place
1384 * of the P and Q blocks.
1386 static size_t scribble_len(int num)
1388 size_t len;
1390 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1392 return len;
1395 static int resize_stripes(raid5_conf_t *conf, int newsize)
1397 /* Make all the stripes able to hold 'newsize' devices.
1398 * New slots in each stripe get 'page' set to a new page.
1400 * This happens in stages:
1401 * 1/ create a new kmem_cache and allocate the required number of
1402 * stripe_heads.
1403 * 2/ gather all the old stripe_heads and tranfer the pages across
1404 * to the new stripe_heads. This will have the side effect of
1405 * freezing the array as once all stripe_heads have been collected,
1406 * no IO will be possible. Old stripe heads are freed once their
1407 * pages have been transferred over, and the old kmem_cache is
1408 * freed when all stripes are done.
1409 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1410 * we simple return a failre status - no need to clean anything up.
1411 * 4/ allocate new pages for the new slots in the new stripe_heads.
1412 * If this fails, we don't bother trying the shrink the
1413 * stripe_heads down again, we just leave them as they are.
1414 * As each stripe_head is processed the new one is released into
1415 * active service.
1417 * Once step2 is started, we cannot afford to wait for a write,
1418 * so we use GFP_NOIO allocations.
1420 struct stripe_head *osh, *nsh;
1421 LIST_HEAD(newstripes);
1422 struct disk_info *ndisks;
1423 unsigned long cpu;
1424 int err;
1425 struct kmem_cache *sc;
1426 int i;
1428 if (newsize <= conf->pool_size)
1429 return 0; /* never bother to shrink */
1431 err = md_allow_write(conf->mddev);
1432 if (err)
1433 return err;
1435 /* Step 1 */
1436 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1437 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1438 0, 0, NULL);
1439 if (!sc)
1440 return -ENOMEM;
1442 for (i = conf->max_nr_stripes; i; i--) {
1443 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1444 if (!nsh)
1445 break;
1447 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1449 nsh->raid_conf = conf;
1450 spin_lock_init(&nsh->lock);
1451 #ifdef CONFIG_MULTICORE_RAID456
1452 init_waitqueue_head(&nsh->ops.wait_for_ops);
1453 #endif
1455 list_add(&nsh->lru, &newstripes);
1457 if (i) {
1458 /* didn't get enough, give up */
1459 while (!list_empty(&newstripes)) {
1460 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1461 list_del(&nsh->lru);
1462 kmem_cache_free(sc, nsh);
1464 kmem_cache_destroy(sc);
1465 return -ENOMEM;
1467 /* Step 2 - Must use GFP_NOIO now.
1468 * OK, we have enough stripes, start collecting inactive
1469 * stripes and copying them over
1471 list_for_each_entry(nsh, &newstripes, lru) {
1472 spin_lock_irq(&conf->device_lock);
1473 wait_event_lock_irq(conf->wait_for_stripe,
1474 !list_empty(&conf->inactive_list),
1475 conf->device_lock,
1476 unplug_slaves(conf->mddev)
1478 osh = get_free_stripe(conf);
1479 spin_unlock_irq(&conf->device_lock);
1480 atomic_set(&nsh->count, 1);
1481 for(i=0; i<conf->pool_size; i++)
1482 nsh->dev[i].page = osh->dev[i].page;
1483 for( ; i<newsize; i++)
1484 nsh->dev[i].page = NULL;
1485 kmem_cache_free(conf->slab_cache, osh);
1487 kmem_cache_destroy(conf->slab_cache);
1489 /* Step 3.
1490 * At this point, we are holding all the stripes so the array
1491 * is completely stalled, so now is a good time to resize
1492 * conf->disks and the scribble region
1494 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1495 if (ndisks) {
1496 for (i=0; i<conf->raid_disks; i++)
1497 ndisks[i] = conf->disks[i];
1498 kfree(conf->disks);
1499 conf->disks = ndisks;
1500 } else
1501 err = -ENOMEM;
1503 get_online_cpus();
1504 conf->scribble_len = scribble_len(newsize);
1505 for_each_present_cpu(cpu) {
1506 struct raid5_percpu *percpu;
1507 void *scribble;
1509 percpu = per_cpu_ptr(conf->percpu, cpu);
1510 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1512 if (scribble) {
1513 kfree(percpu->scribble);
1514 percpu->scribble = scribble;
1515 } else {
1516 err = -ENOMEM;
1517 break;
1520 put_online_cpus();
1522 /* Step 4, return new stripes to service */
1523 while(!list_empty(&newstripes)) {
1524 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1525 list_del_init(&nsh->lru);
1527 for (i=conf->raid_disks; i < newsize; i++)
1528 if (nsh->dev[i].page == NULL) {
1529 struct page *p = alloc_page(GFP_NOIO);
1530 nsh->dev[i].page = p;
1531 if (!p)
1532 err = -ENOMEM;
1534 release_stripe(nsh);
1536 /* critical section pass, GFP_NOIO no longer needed */
1538 conf->slab_cache = sc;
1539 conf->active_name = 1-conf->active_name;
1540 conf->pool_size = newsize;
1541 return err;
1544 static int drop_one_stripe(raid5_conf_t *conf)
1546 struct stripe_head *sh;
1548 spin_lock_irq(&conf->device_lock);
1549 sh = get_free_stripe(conf);
1550 spin_unlock_irq(&conf->device_lock);
1551 if (!sh)
1552 return 0;
1553 BUG_ON(atomic_read(&sh->count));
1554 shrink_buffers(sh);
1555 kmem_cache_free(conf->slab_cache, sh);
1556 atomic_dec(&conf->active_stripes);
1557 return 1;
1560 static void shrink_stripes(raid5_conf_t *conf)
1562 while (drop_one_stripe(conf))
1565 if (conf->slab_cache)
1566 kmem_cache_destroy(conf->slab_cache);
1567 conf->slab_cache = NULL;
1570 static void raid5_end_read_request(struct bio * bi, int error)
1572 struct stripe_head *sh = bi->bi_private;
1573 raid5_conf_t *conf = sh->raid_conf;
1574 int disks = sh->disks, i;
1575 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1576 char b[BDEVNAME_SIZE];
1577 mdk_rdev_t *rdev;
1580 for (i=0 ; i<disks; i++)
1581 if (bi == &sh->dev[i].req)
1582 break;
1584 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1585 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1586 uptodate);
1587 if (i == disks) {
1588 BUG();
1589 return;
1592 if (uptodate) {
1593 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1594 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1595 rdev = conf->disks[i].rdev;
1596 printk_rl(KERN_INFO "md/raid:%s: read error corrected"
1597 " (%lu sectors at %llu on %s)\n",
1598 mdname(conf->mddev), STRIPE_SECTORS,
1599 (unsigned long long)(sh->sector
1600 + rdev->data_offset),
1601 bdevname(rdev->bdev, b));
1602 clear_bit(R5_ReadError, &sh->dev[i].flags);
1603 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1605 if (atomic_read(&conf->disks[i].rdev->read_errors))
1606 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1607 } else {
1608 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1609 int retry = 0;
1610 rdev = conf->disks[i].rdev;
1612 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1613 atomic_inc(&rdev->read_errors);
1614 if (conf->mddev->degraded >= conf->max_degraded)
1615 printk_rl(KERN_WARNING
1616 "md/raid:%s: read error not correctable "
1617 "(sector %llu on %s).\n",
1618 mdname(conf->mddev),
1619 (unsigned long long)(sh->sector
1620 + rdev->data_offset),
1621 bdn);
1622 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1623 /* Oh, no!!! */
1624 printk_rl(KERN_WARNING
1625 "md/raid:%s: read error NOT corrected!! "
1626 "(sector %llu on %s).\n",
1627 mdname(conf->mddev),
1628 (unsigned long long)(sh->sector
1629 + rdev->data_offset),
1630 bdn);
1631 else if (atomic_read(&rdev->read_errors)
1632 > conf->max_nr_stripes)
1633 printk(KERN_WARNING
1634 "md/raid:%s: Too many read errors, failing device %s.\n",
1635 mdname(conf->mddev), bdn);
1636 else
1637 retry = 1;
1638 if (retry)
1639 set_bit(R5_ReadError, &sh->dev[i].flags);
1640 else {
1641 clear_bit(R5_ReadError, &sh->dev[i].flags);
1642 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1643 md_error(conf->mddev, rdev);
1646 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1647 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1648 set_bit(STRIPE_HANDLE, &sh->state);
1649 release_stripe(sh);
1652 static void raid5_end_write_request(struct bio *bi, int error)
1654 struct stripe_head *sh = bi->bi_private;
1655 raid5_conf_t *conf = sh->raid_conf;
1656 int disks = sh->disks, i;
1657 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1659 for (i=0 ; i<disks; i++)
1660 if (bi == &sh->dev[i].req)
1661 break;
1663 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1664 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1665 uptodate);
1666 if (i == disks) {
1667 BUG();
1668 return;
1671 if (!uptodate)
1672 md_error(conf->mddev, conf->disks[i].rdev);
1674 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1676 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1677 set_bit(STRIPE_HANDLE, &sh->state);
1678 release_stripe(sh);
1682 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1684 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1686 struct r5dev *dev = &sh->dev[i];
1688 bio_init(&dev->req);
1689 dev->req.bi_io_vec = &dev->vec;
1690 dev->req.bi_vcnt++;
1691 dev->req.bi_max_vecs++;
1692 dev->vec.bv_page = dev->page;
1693 dev->vec.bv_len = STRIPE_SIZE;
1694 dev->vec.bv_offset = 0;
1696 dev->req.bi_sector = sh->sector;
1697 dev->req.bi_private = sh;
1699 dev->flags = 0;
1700 dev->sector = compute_blocknr(sh, i, previous);
1703 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1705 char b[BDEVNAME_SIZE];
1706 raid5_conf_t *conf = mddev->private;
1707 pr_debug("raid456: error called\n");
1709 if (!test_bit(Faulty, &rdev->flags)) {
1710 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1711 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1712 unsigned long flags;
1713 spin_lock_irqsave(&conf->device_lock, flags);
1714 mddev->degraded++;
1715 spin_unlock_irqrestore(&conf->device_lock, flags);
1717 * if recovery was running, make sure it aborts.
1719 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1721 set_bit(Faulty, &rdev->flags);
1722 printk(KERN_ALERT
1723 "md/raid:%s: Disk failure on %s, disabling device.\n"
1724 KERN_ALERT
1725 "md/raid:%s: Operation continuing on %d devices.\n",
1726 mdname(mddev),
1727 bdevname(rdev->bdev, b),
1728 mdname(mddev),
1729 conf->raid_disks - mddev->degraded);
1734 * Input: a 'big' sector number,
1735 * Output: index of the data and parity disk, and the sector # in them.
1737 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1738 int previous, int *dd_idx,
1739 struct stripe_head *sh)
1741 sector_t stripe, stripe2;
1742 sector_t chunk_number;
1743 unsigned int chunk_offset;
1744 int pd_idx, qd_idx;
1745 int ddf_layout = 0;
1746 sector_t new_sector;
1747 int algorithm = previous ? conf->prev_algo
1748 : conf->algorithm;
1749 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1750 : conf->chunk_sectors;
1751 int raid_disks = previous ? conf->previous_raid_disks
1752 : conf->raid_disks;
1753 int data_disks = raid_disks - conf->max_degraded;
1755 /* First compute the information on this sector */
1758 * Compute the chunk number and the sector offset inside the chunk
1760 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1761 chunk_number = r_sector;
1764 * Compute the stripe number
1766 stripe = chunk_number;
1767 *dd_idx = sector_div(stripe, data_disks);
1768 stripe2 = stripe;
1770 * Select the parity disk based on the user selected algorithm.
1772 pd_idx = qd_idx = ~0;
1773 switch(conf->level) {
1774 case 4:
1775 pd_idx = data_disks;
1776 break;
1777 case 5:
1778 switch (algorithm) {
1779 case ALGORITHM_LEFT_ASYMMETRIC:
1780 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1781 if (*dd_idx >= pd_idx)
1782 (*dd_idx)++;
1783 break;
1784 case ALGORITHM_RIGHT_ASYMMETRIC:
1785 pd_idx = sector_div(stripe2, raid_disks);
1786 if (*dd_idx >= pd_idx)
1787 (*dd_idx)++;
1788 break;
1789 case ALGORITHM_LEFT_SYMMETRIC:
1790 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1791 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1792 break;
1793 case ALGORITHM_RIGHT_SYMMETRIC:
1794 pd_idx = sector_div(stripe2, raid_disks);
1795 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1796 break;
1797 case ALGORITHM_PARITY_0:
1798 pd_idx = 0;
1799 (*dd_idx)++;
1800 break;
1801 case ALGORITHM_PARITY_N:
1802 pd_idx = data_disks;
1803 break;
1804 default:
1805 BUG();
1807 break;
1808 case 6:
1810 switch (algorithm) {
1811 case ALGORITHM_LEFT_ASYMMETRIC:
1812 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1813 qd_idx = pd_idx + 1;
1814 if (pd_idx == raid_disks-1) {
1815 (*dd_idx)++; /* Q D D D P */
1816 qd_idx = 0;
1817 } else if (*dd_idx >= pd_idx)
1818 (*dd_idx) += 2; /* D D P Q D */
1819 break;
1820 case ALGORITHM_RIGHT_ASYMMETRIC:
1821 pd_idx = sector_div(stripe2, raid_disks);
1822 qd_idx = pd_idx + 1;
1823 if (pd_idx == raid_disks-1) {
1824 (*dd_idx)++; /* Q D D D P */
1825 qd_idx = 0;
1826 } else if (*dd_idx >= pd_idx)
1827 (*dd_idx) += 2; /* D D P Q D */
1828 break;
1829 case ALGORITHM_LEFT_SYMMETRIC:
1830 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1831 qd_idx = (pd_idx + 1) % raid_disks;
1832 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1833 break;
1834 case ALGORITHM_RIGHT_SYMMETRIC:
1835 pd_idx = sector_div(stripe2, raid_disks);
1836 qd_idx = (pd_idx + 1) % raid_disks;
1837 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1838 break;
1840 case ALGORITHM_PARITY_0:
1841 pd_idx = 0;
1842 qd_idx = 1;
1843 (*dd_idx) += 2;
1844 break;
1845 case ALGORITHM_PARITY_N:
1846 pd_idx = data_disks;
1847 qd_idx = data_disks + 1;
1848 break;
1850 case ALGORITHM_ROTATING_ZERO_RESTART:
1851 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1852 * of blocks for computing Q is different.
1854 pd_idx = sector_div(stripe2, raid_disks);
1855 qd_idx = pd_idx + 1;
1856 if (pd_idx == raid_disks-1) {
1857 (*dd_idx)++; /* Q D D D P */
1858 qd_idx = 0;
1859 } else if (*dd_idx >= pd_idx)
1860 (*dd_idx) += 2; /* D D P Q D */
1861 ddf_layout = 1;
1862 break;
1864 case ALGORITHM_ROTATING_N_RESTART:
1865 /* Same a left_asymmetric, by first stripe is
1866 * D D D P Q rather than
1867 * Q D D D P
1869 stripe2 += 1;
1870 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1871 qd_idx = pd_idx + 1;
1872 if (pd_idx == raid_disks-1) {
1873 (*dd_idx)++; /* Q D D D P */
1874 qd_idx = 0;
1875 } else if (*dd_idx >= pd_idx)
1876 (*dd_idx) += 2; /* D D P Q D */
1877 ddf_layout = 1;
1878 break;
1880 case ALGORITHM_ROTATING_N_CONTINUE:
1881 /* Same as left_symmetric but Q is before P */
1882 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1883 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1884 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1885 ddf_layout = 1;
1886 break;
1888 case ALGORITHM_LEFT_ASYMMETRIC_6:
1889 /* RAID5 left_asymmetric, with Q on last device */
1890 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1891 if (*dd_idx >= pd_idx)
1892 (*dd_idx)++;
1893 qd_idx = raid_disks - 1;
1894 break;
1896 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1897 pd_idx = sector_div(stripe2, raid_disks-1);
1898 if (*dd_idx >= pd_idx)
1899 (*dd_idx)++;
1900 qd_idx = raid_disks - 1;
1901 break;
1903 case ALGORITHM_LEFT_SYMMETRIC_6:
1904 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1905 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1906 qd_idx = raid_disks - 1;
1907 break;
1909 case ALGORITHM_RIGHT_SYMMETRIC_6:
1910 pd_idx = sector_div(stripe2, raid_disks-1);
1911 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1912 qd_idx = raid_disks - 1;
1913 break;
1915 case ALGORITHM_PARITY_0_6:
1916 pd_idx = 0;
1917 (*dd_idx)++;
1918 qd_idx = raid_disks - 1;
1919 break;
1921 default:
1922 BUG();
1924 break;
1927 if (sh) {
1928 sh->pd_idx = pd_idx;
1929 sh->qd_idx = qd_idx;
1930 sh->ddf_layout = ddf_layout;
1933 * Finally, compute the new sector number
1935 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1936 return new_sector;
1940 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1942 raid5_conf_t *conf = sh->raid_conf;
1943 int raid_disks = sh->disks;
1944 int data_disks = raid_disks - conf->max_degraded;
1945 sector_t new_sector = sh->sector, check;
1946 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1947 : conf->chunk_sectors;
1948 int algorithm = previous ? conf->prev_algo
1949 : conf->algorithm;
1950 sector_t stripe;
1951 int chunk_offset;
1952 sector_t chunk_number;
1953 int dummy1, dd_idx = i;
1954 sector_t r_sector;
1955 struct stripe_head sh2;
1958 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1959 stripe = new_sector;
1961 if (i == sh->pd_idx)
1962 return 0;
1963 switch(conf->level) {
1964 case 4: break;
1965 case 5:
1966 switch (algorithm) {
1967 case ALGORITHM_LEFT_ASYMMETRIC:
1968 case ALGORITHM_RIGHT_ASYMMETRIC:
1969 if (i > sh->pd_idx)
1970 i--;
1971 break;
1972 case ALGORITHM_LEFT_SYMMETRIC:
1973 case ALGORITHM_RIGHT_SYMMETRIC:
1974 if (i < sh->pd_idx)
1975 i += raid_disks;
1976 i -= (sh->pd_idx + 1);
1977 break;
1978 case ALGORITHM_PARITY_0:
1979 i -= 1;
1980 break;
1981 case ALGORITHM_PARITY_N:
1982 break;
1983 default:
1984 BUG();
1986 break;
1987 case 6:
1988 if (i == sh->qd_idx)
1989 return 0; /* It is the Q disk */
1990 switch (algorithm) {
1991 case ALGORITHM_LEFT_ASYMMETRIC:
1992 case ALGORITHM_RIGHT_ASYMMETRIC:
1993 case ALGORITHM_ROTATING_ZERO_RESTART:
1994 case ALGORITHM_ROTATING_N_RESTART:
1995 if (sh->pd_idx == raid_disks-1)
1996 i--; /* Q D D D P */
1997 else if (i > sh->pd_idx)
1998 i -= 2; /* D D P Q D */
1999 break;
2000 case ALGORITHM_LEFT_SYMMETRIC:
2001 case ALGORITHM_RIGHT_SYMMETRIC:
2002 if (sh->pd_idx == raid_disks-1)
2003 i--; /* Q D D D P */
2004 else {
2005 /* D D P Q D */
2006 if (i < sh->pd_idx)
2007 i += raid_disks;
2008 i -= (sh->pd_idx + 2);
2010 break;
2011 case ALGORITHM_PARITY_0:
2012 i -= 2;
2013 break;
2014 case ALGORITHM_PARITY_N:
2015 break;
2016 case ALGORITHM_ROTATING_N_CONTINUE:
2017 /* Like left_symmetric, but P is before Q */
2018 if (sh->pd_idx == 0)
2019 i--; /* P D D D Q */
2020 else {
2021 /* D D Q P D */
2022 if (i < sh->pd_idx)
2023 i += raid_disks;
2024 i -= (sh->pd_idx + 1);
2026 break;
2027 case ALGORITHM_LEFT_ASYMMETRIC_6:
2028 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2029 if (i > sh->pd_idx)
2030 i--;
2031 break;
2032 case ALGORITHM_LEFT_SYMMETRIC_6:
2033 case ALGORITHM_RIGHT_SYMMETRIC_6:
2034 if (i < sh->pd_idx)
2035 i += data_disks + 1;
2036 i -= (sh->pd_idx + 1);
2037 break;
2038 case ALGORITHM_PARITY_0_6:
2039 i -= 1;
2040 break;
2041 default:
2042 BUG();
2044 break;
2047 chunk_number = stripe * data_disks + i;
2048 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2050 check = raid5_compute_sector(conf, r_sector,
2051 previous, &dummy1, &sh2);
2052 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2053 || sh2.qd_idx != sh->qd_idx) {
2054 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2055 mdname(conf->mddev));
2056 return 0;
2058 return r_sector;
2062 static void
2063 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2064 int rcw, int expand)
2066 int i, pd_idx = sh->pd_idx, disks = sh->disks;
2067 raid5_conf_t *conf = sh->raid_conf;
2068 int level = conf->level;
2070 if (rcw) {
2071 /* if we are not expanding this is a proper write request, and
2072 * there will be bios with new data to be drained into the
2073 * stripe cache
2075 if (!expand) {
2076 sh->reconstruct_state = reconstruct_state_drain_run;
2077 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2078 } else
2079 sh->reconstruct_state = reconstruct_state_run;
2081 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2083 for (i = disks; i--; ) {
2084 struct r5dev *dev = &sh->dev[i];
2086 if (dev->towrite) {
2087 set_bit(R5_LOCKED, &dev->flags);
2088 set_bit(R5_Wantdrain, &dev->flags);
2089 if (!expand)
2090 clear_bit(R5_UPTODATE, &dev->flags);
2091 s->locked++;
2094 if (s->locked + conf->max_degraded == disks)
2095 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2096 atomic_inc(&conf->pending_full_writes);
2097 } else {
2098 BUG_ON(level == 6);
2099 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2100 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2102 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2103 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2104 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2105 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2107 for (i = disks; i--; ) {
2108 struct r5dev *dev = &sh->dev[i];
2109 if (i == pd_idx)
2110 continue;
2112 if (dev->towrite &&
2113 (test_bit(R5_UPTODATE, &dev->flags) ||
2114 test_bit(R5_Wantcompute, &dev->flags))) {
2115 set_bit(R5_Wantdrain, &dev->flags);
2116 set_bit(R5_LOCKED, &dev->flags);
2117 clear_bit(R5_UPTODATE, &dev->flags);
2118 s->locked++;
2123 /* keep the parity disk(s) locked while asynchronous operations
2124 * are in flight
2126 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2127 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2128 s->locked++;
2130 if (level == 6) {
2131 int qd_idx = sh->qd_idx;
2132 struct r5dev *dev = &sh->dev[qd_idx];
2134 set_bit(R5_LOCKED, &dev->flags);
2135 clear_bit(R5_UPTODATE, &dev->flags);
2136 s->locked++;
2139 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2140 __func__, (unsigned long long)sh->sector,
2141 s->locked, s->ops_request);
2145 * Each stripe/dev can have one or more bion attached.
2146 * toread/towrite point to the first in a chain.
2147 * The bi_next chain must be in order.
2149 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2151 struct bio **bip;
2152 raid5_conf_t *conf = sh->raid_conf;
2153 int firstwrite=0;
2155 pr_debug("adding bh b#%llu to stripe s#%llu\n",
2156 (unsigned long long)bi->bi_sector,
2157 (unsigned long long)sh->sector);
2160 spin_lock(&sh->lock);
2161 spin_lock_irq(&conf->device_lock);
2162 if (forwrite) {
2163 bip = &sh->dev[dd_idx].towrite;
2164 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2165 firstwrite = 1;
2166 } else
2167 bip = &sh->dev[dd_idx].toread;
2168 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2169 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2170 goto overlap;
2171 bip = & (*bip)->bi_next;
2173 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2174 goto overlap;
2176 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2177 if (*bip)
2178 bi->bi_next = *bip;
2179 *bip = bi;
2180 bi->bi_phys_segments++;
2181 spin_unlock_irq(&conf->device_lock);
2182 spin_unlock(&sh->lock);
2184 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2185 (unsigned long long)bi->bi_sector,
2186 (unsigned long long)sh->sector, dd_idx);
2188 if (conf->mddev->bitmap && firstwrite) {
2189 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2190 STRIPE_SECTORS, 0);
2191 sh->bm_seq = conf->seq_flush+1;
2192 set_bit(STRIPE_BIT_DELAY, &sh->state);
2195 if (forwrite) {
2196 /* check if page is covered */
2197 sector_t sector = sh->dev[dd_idx].sector;
2198 for (bi=sh->dev[dd_idx].towrite;
2199 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2200 bi && bi->bi_sector <= sector;
2201 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2202 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2203 sector = bi->bi_sector + (bi->bi_size>>9);
2205 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2206 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2208 return 1;
2210 overlap:
2211 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2212 spin_unlock_irq(&conf->device_lock);
2213 spin_unlock(&sh->lock);
2214 return 0;
2217 static void end_reshape(raid5_conf_t *conf);
2219 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2220 struct stripe_head *sh)
2222 int sectors_per_chunk =
2223 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2224 int dd_idx;
2225 int chunk_offset = sector_div(stripe, sectors_per_chunk);
2226 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2228 raid5_compute_sector(conf,
2229 stripe * (disks - conf->max_degraded)
2230 *sectors_per_chunk + chunk_offset,
2231 previous,
2232 &dd_idx, sh);
2235 static void
2236 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2237 struct stripe_head_state *s, int disks,
2238 struct bio **return_bi)
2240 int i;
2241 for (i = disks; i--; ) {
2242 struct bio *bi;
2243 int bitmap_end = 0;
2245 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2246 mdk_rdev_t *rdev;
2247 rcu_read_lock();
2248 rdev = rcu_dereference(conf->disks[i].rdev);
2249 if (rdev && test_bit(In_sync, &rdev->flags))
2250 /* multiple read failures in one stripe */
2251 md_error(conf->mddev, rdev);
2252 rcu_read_unlock();
2254 spin_lock_irq(&conf->device_lock);
2255 /* fail all writes first */
2256 bi = sh->dev[i].towrite;
2257 sh->dev[i].towrite = NULL;
2258 if (bi) {
2259 s->to_write--;
2260 bitmap_end = 1;
2263 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2264 wake_up(&conf->wait_for_overlap);
2266 while (bi && bi->bi_sector <
2267 sh->dev[i].sector + STRIPE_SECTORS) {
2268 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2269 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2270 if (!raid5_dec_bi_phys_segments(bi)) {
2271 md_write_end(conf->mddev);
2272 bi->bi_next = *return_bi;
2273 *return_bi = bi;
2275 bi = nextbi;
2277 /* and fail all 'written' */
2278 bi = sh->dev[i].written;
2279 sh->dev[i].written = NULL;
2280 if (bi) bitmap_end = 1;
2281 while (bi && bi->bi_sector <
2282 sh->dev[i].sector + STRIPE_SECTORS) {
2283 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2284 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2285 if (!raid5_dec_bi_phys_segments(bi)) {
2286 md_write_end(conf->mddev);
2287 bi->bi_next = *return_bi;
2288 *return_bi = bi;
2290 bi = bi2;
2293 /* fail any reads if this device is non-operational and
2294 * the data has not reached the cache yet.
2296 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2297 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2298 test_bit(R5_ReadError, &sh->dev[i].flags))) {
2299 bi = sh->dev[i].toread;
2300 sh->dev[i].toread = NULL;
2301 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2302 wake_up(&conf->wait_for_overlap);
2303 if (bi) s->to_read--;
2304 while (bi && bi->bi_sector <
2305 sh->dev[i].sector + STRIPE_SECTORS) {
2306 struct bio *nextbi =
2307 r5_next_bio(bi, sh->dev[i].sector);
2308 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2309 if (!raid5_dec_bi_phys_segments(bi)) {
2310 bi->bi_next = *return_bi;
2311 *return_bi = bi;
2313 bi = nextbi;
2316 spin_unlock_irq(&conf->device_lock);
2317 if (bitmap_end)
2318 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2319 STRIPE_SECTORS, 0, 0);
2322 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2323 if (atomic_dec_and_test(&conf->pending_full_writes))
2324 md_wakeup_thread(conf->mddev->thread);
2327 /* fetch_block5 - checks the given member device to see if its data needs
2328 * to be read or computed to satisfy a request.
2330 * Returns 1 when no more member devices need to be checked, otherwise returns
2331 * 0 to tell the loop in handle_stripe_fill5 to continue
2333 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2334 int disk_idx, int disks)
2336 struct r5dev *dev = &sh->dev[disk_idx];
2337 struct r5dev *failed_dev = &sh->dev[s->failed_num];
2339 /* is the data in this block needed, and can we get it? */
2340 if (!test_bit(R5_LOCKED, &dev->flags) &&
2341 !test_bit(R5_UPTODATE, &dev->flags) &&
2342 (dev->toread ||
2343 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2344 s->syncing || s->expanding ||
2345 (s->failed &&
2346 (failed_dev->toread ||
2347 (failed_dev->towrite &&
2348 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2349 /* We would like to get this block, possibly by computing it,
2350 * otherwise read it if the backing disk is insync
2352 if ((s->uptodate == disks - 1) &&
2353 (s->failed && disk_idx == s->failed_num)) {
2354 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2355 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2356 set_bit(R5_Wantcompute, &dev->flags);
2357 sh->ops.target = disk_idx;
2358 sh->ops.target2 = -1;
2359 s->req_compute = 1;
2360 /* Careful: from this point on 'uptodate' is in the eye
2361 * of raid_run_ops which services 'compute' operations
2362 * before writes. R5_Wantcompute flags a block that will
2363 * be R5_UPTODATE by the time it is needed for a
2364 * subsequent operation.
2366 s->uptodate++;
2367 return 1; /* uptodate + compute == disks */
2368 } else if (test_bit(R5_Insync, &dev->flags)) {
2369 set_bit(R5_LOCKED, &dev->flags);
2370 set_bit(R5_Wantread, &dev->flags);
2371 s->locked++;
2372 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2373 s->syncing);
2377 return 0;
2381 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2383 static void handle_stripe_fill5(struct stripe_head *sh,
2384 struct stripe_head_state *s, int disks)
2386 int i;
2388 /* look for blocks to read/compute, skip this if a compute
2389 * is already in flight, or if the stripe contents are in the
2390 * midst of changing due to a write
2392 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2393 !sh->reconstruct_state)
2394 for (i = disks; i--; )
2395 if (fetch_block5(sh, s, i, disks))
2396 break;
2397 set_bit(STRIPE_HANDLE, &sh->state);
2400 /* fetch_block6 - checks the given member device to see if its data needs
2401 * to be read or computed to satisfy a request.
2403 * Returns 1 when no more member devices need to be checked, otherwise returns
2404 * 0 to tell the loop in handle_stripe_fill6 to continue
2406 static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2407 struct r6_state *r6s, int disk_idx, int disks)
2409 struct r5dev *dev = &sh->dev[disk_idx];
2410 struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
2411 &sh->dev[r6s->failed_num[1]] };
2413 if (!test_bit(R5_LOCKED, &dev->flags) &&
2414 !test_bit(R5_UPTODATE, &dev->flags) &&
2415 (dev->toread ||
2416 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2417 s->syncing || s->expanding ||
2418 (s->failed >= 1 &&
2419 (fdev[0]->toread || s->to_write)) ||
2420 (s->failed >= 2 &&
2421 (fdev[1]->toread || s->to_write)))) {
2422 /* we would like to get this block, possibly by computing it,
2423 * otherwise read it if the backing disk is insync
2425 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2426 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2427 if ((s->uptodate == disks - 1) &&
2428 (s->failed && (disk_idx == r6s->failed_num[0] ||
2429 disk_idx == r6s->failed_num[1]))) {
2430 /* have disk failed, and we're requested to fetch it;
2431 * do compute it
2433 pr_debug("Computing stripe %llu block %d\n",
2434 (unsigned long long)sh->sector, disk_idx);
2435 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2436 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2437 set_bit(R5_Wantcompute, &dev->flags);
2438 sh->ops.target = disk_idx;
2439 sh->ops.target2 = -1; /* no 2nd target */
2440 s->req_compute = 1;
2441 s->uptodate++;
2442 return 1;
2443 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2444 /* Computing 2-failure is *very* expensive; only
2445 * do it if failed >= 2
2447 int other;
2448 for (other = disks; other--; ) {
2449 if (other == disk_idx)
2450 continue;
2451 if (!test_bit(R5_UPTODATE,
2452 &sh->dev[other].flags))
2453 break;
2455 BUG_ON(other < 0);
2456 pr_debug("Computing stripe %llu blocks %d,%d\n",
2457 (unsigned long long)sh->sector,
2458 disk_idx, other);
2459 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2460 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2461 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2462 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2463 sh->ops.target = disk_idx;
2464 sh->ops.target2 = other;
2465 s->uptodate += 2;
2466 s->req_compute = 1;
2467 return 1;
2468 } else if (test_bit(R5_Insync, &dev->flags)) {
2469 set_bit(R5_LOCKED, &dev->flags);
2470 set_bit(R5_Wantread, &dev->flags);
2471 s->locked++;
2472 pr_debug("Reading block %d (sync=%d)\n",
2473 disk_idx, s->syncing);
2477 return 0;
2481 * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2483 static void handle_stripe_fill6(struct stripe_head *sh,
2484 struct stripe_head_state *s, struct r6_state *r6s,
2485 int disks)
2487 int i;
2489 /* look for blocks to read/compute, skip this if a compute
2490 * is already in flight, or if the stripe contents are in the
2491 * midst of changing due to a write
2493 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2494 !sh->reconstruct_state)
2495 for (i = disks; i--; )
2496 if (fetch_block6(sh, s, r6s, i, disks))
2497 break;
2498 set_bit(STRIPE_HANDLE, &sh->state);
2502 /* handle_stripe_clean_event
2503 * any written block on an uptodate or failed drive can be returned.
2504 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2505 * never LOCKED, so we don't need to test 'failed' directly.
2507 static void handle_stripe_clean_event(raid5_conf_t *conf,
2508 struct stripe_head *sh, int disks, struct bio **return_bi)
2510 int i;
2511 struct r5dev *dev;
2513 for (i = disks; i--; )
2514 if (sh->dev[i].written) {
2515 dev = &sh->dev[i];
2516 if (!test_bit(R5_LOCKED, &dev->flags) &&
2517 test_bit(R5_UPTODATE, &dev->flags)) {
2518 /* We can return any write requests */
2519 struct bio *wbi, *wbi2;
2520 int bitmap_end = 0;
2521 pr_debug("Return write for disc %d\n", i);
2522 spin_lock_irq(&conf->device_lock);
2523 wbi = dev->written;
2524 dev->written = NULL;
2525 while (wbi && wbi->bi_sector <
2526 dev->sector + STRIPE_SECTORS) {
2527 wbi2 = r5_next_bio(wbi, dev->sector);
2528 if (!raid5_dec_bi_phys_segments(wbi)) {
2529 md_write_end(conf->mddev);
2530 wbi->bi_next = *return_bi;
2531 *return_bi = wbi;
2533 wbi = wbi2;
2535 if (dev->towrite == NULL)
2536 bitmap_end = 1;
2537 spin_unlock_irq(&conf->device_lock);
2538 if (bitmap_end)
2539 bitmap_endwrite(conf->mddev->bitmap,
2540 sh->sector,
2541 STRIPE_SECTORS,
2542 !test_bit(STRIPE_DEGRADED, &sh->state),
2547 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2548 if (atomic_dec_and_test(&conf->pending_full_writes))
2549 md_wakeup_thread(conf->mddev->thread);
2552 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2553 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2555 int rmw = 0, rcw = 0, i;
2556 for (i = disks; i--; ) {
2557 /* would I have to read this buffer for read_modify_write */
2558 struct r5dev *dev = &sh->dev[i];
2559 if ((dev->towrite || i == sh->pd_idx) &&
2560 !test_bit(R5_LOCKED, &dev->flags) &&
2561 !(test_bit(R5_UPTODATE, &dev->flags) ||
2562 test_bit(R5_Wantcompute, &dev->flags))) {
2563 if (test_bit(R5_Insync, &dev->flags))
2564 rmw++;
2565 else
2566 rmw += 2*disks; /* cannot read it */
2568 /* Would I have to read this buffer for reconstruct_write */
2569 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2570 !test_bit(R5_LOCKED, &dev->flags) &&
2571 !(test_bit(R5_UPTODATE, &dev->flags) ||
2572 test_bit(R5_Wantcompute, &dev->flags))) {
2573 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2574 else
2575 rcw += 2*disks;
2578 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2579 (unsigned long long)sh->sector, rmw, rcw);
2580 set_bit(STRIPE_HANDLE, &sh->state);
2581 if (rmw < rcw && rmw > 0)
2582 /* prefer read-modify-write, but need to get some data */
2583 for (i = disks; i--; ) {
2584 struct r5dev *dev = &sh->dev[i];
2585 if ((dev->towrite || i == sh->pd_idx) &&
2586 !test_bit(R5_LOCKED, &dev->flags) &&
2587 !(test_bit(R5_UPTODATE, &dev->flags) ||
2588 test_bit(R5_Wantcompute, &dev->flags)) &&
2589 test_bit(R5_Insync, &dev->flags)) {
2590 if (
2591 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2592 pr_debug("Read_old block "
2593 "%d for r-m-w\n", i);
2594 set_bit(R5_LOCKED, &dev->flags);
2595 set_bit(R5_Wantread, &dev->flags);
2596 s->locked++;
2597 } else {
2598 set_bit(STRIPE_DELAYED, &sh->state);
2599 set_bit(STRIPE_HANDLE, &sh->state);
2603 if (rcw <= rmw && rcw > 0)
2604 /* want reconstruct write, but need to get some data */
2605 for (i = disks; i--; ) {
2606 struct r5dev *dev = &sh->dev[i];
2607 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2608 i != sh->pd_idx &&
2609 !test_bit(R5_LOCKED, &dev->flags) &&
2610 !(test_bit(R5_UPTODATE, &dev->flags) ||
2611 test_bit(R5_Wantcompute, &dev->flags)) &&
2612 test_bit(R5_Insync, &dev->flags)) {
2613 if (
2614 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2615 pr_debug("Read_old block "
2616 "%d for Reconstruct\n", i);
2617 set_bit(R5_LOCKED, &dev->flags);
2618 set_bit(R5_Wantread, &dev->flags);
2619 s->locked++;
2620 } else {
2621 set_bit(STRIPE_DELAYED, &sh->state);
2622 set_bit(STRIPE_HANDLE, &sh->state);
2626 /* now if nothing is locked, and if we have enough data,
2627 * we can start a write request
2629 /* since handle_stripe can be called at any time we need to handle the
2630 * case where a compute block operation has been submitted and then a
2631 * subsequent call wants to start a write request. raid_run_ops only
2632 * handles the case where compute block and reconstruct are requested
2633 * simultaneously. If this is not the case then new writes need to be
2634 * held off until the compute completes.
2636 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2637 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2638 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2639 schedule_reconstruction(sh, s, rcw == 0, 0);
2642 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2643 struct stripe_head *sh, struct stripe_head_state *s,
2644 struct r6_state *r6s, int disks)
2646 int rcw = 0, pd_idx = sh->pd_idx, i;
2647 int qd_idx = sh->qd_idx;
2649 set_bit(STRIPE_HANDLE, &sh->state);
2650 for (i = disks; i--; ) {
2651 struct r5dev *dev = &sh->dev[i];
2652 /* check if we haven't enough data */
2653 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2654 i != pd_idx && i != qd_idx &&
2655 !test_bit(R5_LOCKED, &dev->flags) &&
2656 !(test_bit(R5_UPTODATE, &dev->flags) ||
2657 test_bit(R5_Wantcompute, &dev->flags))) {
2658 rcw++;
2659 if (!test_bit(R5_Insync, &dev->flags))
2660 continue; /* it's a failed drive */
2662 if (
2663 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2664 pr_debug("Read_old stripe %llu "
2665 "block %d for Reconstruct\n",
2666 (unsigned long long)sh->sector, i);
2667 set_bit(R5_LOCKED, &dev->flags);
2668 set_bit(R5_Wantread, &dev->flags);
2669 s->locked++;
2670 } else {
2671 pr_debug("Request delayed stripe %llu "
2672 "block %d for Reconstruct\n",
2673 (unsigned long long)sh->sector, i);
2674 set_bit(STRIPE_DELAYED, &sh->state);
2675 set_bit(STRIPE_HANDLE, &sh->state);
2679 /* now if nothing is locked, and if we have enough data, we can start a
2680 * write request
2682 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2683 s->locked == 0 && rcw == 0 &&
2684 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2685 schedule_reconstruction(sh, s, 1, 0);
2689 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2690 struct stripe_head_state *s, int disks)
2692 struct r5dev *dev = NULL;
2694 set_bit(STRIPE_HANDLE, &sh->state);
2696 switch (sh->check_state) {
2697 case check_state_idle:
2698 /* start a new check operation if there are no failures */
2699 if (s->failed == 0) {
2700 BUG_ON(s->uptodate != disks);
2701 sh->check_state = check_state_run;
2702 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2703 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2704 s->uptodate--;
2705 break;
2707 dev = &sh->dev[s->failed_num];
2708 /* fall through */
2709 case check_state_compute_result:
2710 sh->check_state = check_state_idle;
2711 if (!dev)
2712 dev = &sh->dev[sh->pd_idx];
2714 /* check that a write has not made the stripe insync */
2715 if (test_bit(STRIPE_INSYNC, &sh->state))
2716 break;
2718 /* either failed parity check, or recovery is happening */
2719 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2720 BUG_ON(s->uptodate != disks);
2722 set_bit(R5_LOCKED, &dev->flags);
2723 s->locked++;
2724 set_bit(R5_Wantwrite, &dev->flags);
2726 clear_bit(STRIPE_DEGRADED, &sh->state);
2727 set_bit(STRIPE_INSYNC, &sh->state);
2728 break;
2729 case check_state_run:
2730 break; /* we will be called again upon completion */
2731 case check_state_check_result:
2732 sh->check_state = check_state_idle;
2734 /* if a failure occurred during the check operation, leave
2735 * STRIPE_INSYNC not set and let the stripe be handled again
2737 if (s->failed)
2738 break;
2740 /* handle a successful check operation, if parity is correct
2741 * we are done. Otherwise update the mismatch count and repair
2742 * parity if !MD_RECOVERY_CHECK
2744 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2745 /* parity is correct (on disc,
2746 * not in buffer any more)
2748 set_bit(STRIPE_INSYNC, &sh->state);
2749 else {
2750 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2751 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2752 /* don't try to repair!! */
2753 set_bit(STRIPE_INSYNC, &sh->state);
2754 else {
2755 sh->check_state = check_state_compute_run;
2756 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2757 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2758 set_bit(R5_Wantcompute,
2759 &sh->dev[sh->pd_idx].flags);
2760 sh->ops.target = sh->pd_idx;
2761 sh->ops.target2 = -1;
2762 s->uptodate++;
2765 break;
2766 case check_state_compute_run:
2767 break;
2768 default:
2769 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2770 __func__, sh->check_state,
2771 (unsigned long long) sh->sector);
2772 BUG();
2777 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2778 struct stripe_head_state *s,
2779 struct r6_state *r6s, int disks)
2781 int pd_idx = sh->pd_idx;
2782 int qd_idx = sh->qd_idx;
2783 struct r5dev *dev;
2785 set_bit(STRIPE_HANDLE, &sh->state);
2787 BUG_ON(s->failed > 2);
2789 /* Want to check and possibly repair P and Q.
2790 * However there could be one 'failed' device, in which
2791 * case we can only check one of them, possibly using the
2792 * other to generate missing data
2795 switch (sh->check_state) {
2796 case check_state_idle:
2797 /* start a new check operation if there are < 2 failures */
2798 if (s->failed == r6s->q_failed) {
2799 /* The only possible failed device holds Q, so it
2800 * makes sense to check P (If anything else were failed,
2801 * we would have used P to recreate it).
2803 sh->check_state = check_state_run;
2805 if (!r6s->q_failed && s->failed < 2) {
2806 /* Q is not failed, and we didn't use it to generate
2807 * anything, so it makes sense to check it
2809 if (sh->check_state == check_state_run)
2810 sh->check_state = check_state_run_pq;
2811 else
2812 sh->check_state = check_state_run_q;
2815 /* discard potentially stale zero_sum_result */
2816 sh->ops.zero_sum_result = 0;
2818 if (sh->check_state == check_state_run) {
2819 /* async_xor_zero_sum destroys the contents of P */
2820 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2821 s->uptodate--;
2823 if (sh->check_state >= check_state_run &&
2824 sh->check_state <= check_state_run_pq) {
2825 /* async_syndrome_zero_sum preserves P and Q, so
2826 * no need to mark them !uptodate here
2828 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2829 break;
2832 /* we have 2-disk failure */
2833 BUG_ON(s->failed != 2);
2834 /* fall through */
2835 case check_state_compute_result:
2836 sh->check_state = check_state_idle;
2838 /* check that a write has not made the stripe insync */
2839 if (test_bit(STRIPE_INSYNC, &sh->state))
2840 break;
2842 /* now write out any block on a failed drive,
2843 * or P or Q if they were recomputed
2845 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2846 if (s->failed == 2) {
2847 dev = &sh->dev[r6s->failed_num[1]];
2848 s->locked++;
2849 set_bit(R5_LOCKED, &dev->flags);
2850 set_bit(R5_Wantwrite, &dev->flags);
2852 if (s->failed >= 1) {
2853 dev = &sh->dev[r6s->failed_num[0]];
2854 s->locked++;
2855 set_bit(R5_LOCKED, &dev->flags);
2856 set_bit(R5_Wantwrite, &dev->flags);
2858 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2859 dev = &sh->dev[pd_idx];
2860 s->locked++;
2861 set_bit(R5_LOCKED, &dev->flags);
2862 set_bit(R5_Wantwrite, &dev->flags);
2864 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2865 dev = &sh->dev[qd_idx];
2866 s->locked++;
2867 set_bit(R5_LOCKED, &dev->flags);
2868 set_bit(R5_Wantwrite, &dev->flags);
2870 clear_bit(STRIPE_DEGRADED, &sh->state);
2872 set_bit(STRIPE_INSYNC, &sh->state);
2873 break;
2874 case check_state_run:
2875 case check_state_run_q:
2876 case check_state_run_pq:
2877 break; /* we will be called again upon completion */
2878 case check_state_check_result:
2879 sh->check_state = check_state_idle;
2881 /* handle a successful check operation, if parity is correct
2882 * we are done. Otherwise update the mismatch count and repair
2883 * parity if !MD_RECOVERY_CHECK
2885 if (sh->ops.zero_sum_result == 0) {
2886 /* both parities are correct */
2887 if (!s->failed)
2888 set_bit(STRIPE_INSYNC, &sh->state);
2889 else {
2890 /* in contrast to the raid5 case we can validate
2891 * parity, but still have a failure to write
2892 * back
2894 sh->check_state = check_state_compute_result;
2895 /* Returning at this point means that we may go
2896 * off and bring p and/or q uptodate again so
2897 * we make sure to check zero_sum_result again
2898 * to verify if p or q need writeback
2901 } else {
2902 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2903 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2904 /* don't try to repair!! */
2905 set_bit(STRIPE_INSYNC, &sh->state);
2906 else {
2907 int *target = &sh->ops.target;
2909 sh->ops.target = -1;
2910 sh->ops.target2 = -1;
2911 sh->check_state = check_state_compute_run;
2912 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2913 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2914 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2915 set_bit(R5_Wantcompute,
2916 &sh->dev[pd_idx].flags);
2917 *target = pd_idx;
2918 target = &sh->ops.target2;
2919 s->uptodate++;
2921 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2922 set_bit(R5_Wantcompute,
2923 &sh->dev[qd_idx].flags);
2924 *target = qd_idx;
2925 s->uptodate++;
2929 break;
2930 case check_state_compute_run:
2931 break;
2932 default:
2933 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2934 __func__, sh->check_state,
2935 (unsigned long long) sh->sector);
2936 BUG();
2940 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2941 struct r6_state *r6s)
2943 int i;
2945 /* We have read all the blocks in this stripe and now we need to
2946 * copy some of them into a target stripe for expand.
2948 struct dma_async_tx_descriptor *tx = NULL;
2949 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2950 for (i = 0; i < sh->disks; i++)
2951 if (i != sh->pd_idx && i != sh->qd_idx) {
2952 int dd_idx, j;
2953 struct stripe_head *sh2;
2954 struct async_submit_ctl submit;
2956 sector_t bn = compute_blocknr(sh, i, 1);
2957 sector_t s = raid5_compute_sector(conf, bn, 0,
2958 &dd_idx, NULL);
2959 sh2 = get_active_stripe(conf, s, 0, 1, 1);
2960 if (sh2 == NULL)
2961 /* so far only the early blocks of this stripe
2962 * have been requested. When later blocks
2963 * get requested, we will try again
2965 continue;
2966 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2967 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2968 /* must have already done this block */
2969 release_stripe(sh2);
2970 continue;
2973 /* place all the copies on one channel */
2974 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2975 tx = async_memcpy(sh2->dev[dd_idx].page,
2976 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2977 &submit);
2979 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2980 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2981 for (j = 0; j < conf->raid_disks; j++)
2982 if (j != sh2->pd_idx &&
2983 (!r6s || j != sh2->qd_idx) &&
2984 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2985 break;
2986 if (j == conf->raid_disks) {
2987 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2988 set_bit(STRIPE_HANDLE, &sh2->state);
2990 release_stripe(sh2);
2993 /* done submitting copies, wait for them to complete */
2994 if (tx) {
2995 async_tx_ack(tx);
2996 dma_wait_for_async_tx(tx);
3002 * handle_stripe - do things to a stripe.
3004 * We lock the stripe and then examine the state of various bits
3005 * to see what needs to be done.
3006 * Possible results:
3007 * return some read request which now have data
3008 * return some write requests which are safely on disc
3009 * schedule a read on some buffers
3010 * schedule a write of some buffers
3011 * return confirmation of parity correctness
3013 * buffers are taken off read_list or write_list, and bh_cache buffers
3014 * get BH_Lock set before the stripe lock is released.
3018 static void handle_stripe5(struct stripe_head *sh)
3020 raid5_conf_t *conf = sh->raid_conf;
3021 int disks = sh->disks, i;
3022 struct bio *return_bi = NULL;
3023 struct stripe_head_state s;
3024 struct r5dev *dev;
3025 mdk_rdev_t *blocked_rdev = NULL;
3026 int prexor;
3027 int dec_preread_active = 0;
3029 memset(&s, 0, sizeof(s));
3030 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
3031 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
3032 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
3033 sh->reconstruct_state);
3035 spin_lock(&sh->lock);
3036 clear_bit(STRIPE_HANDLE, &sh->state);
3037 clear_bit(STRIPE_DELAYED, &sh->state);
3039 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3040 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3041 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3043 /* Now to look around and see what can be done */
3044 rcu_read_lock();
3045 for (i=disks; i--; ) {
3046 mdk_rdev_t *rdev;
3048 dev = &sh->dev[i];
3050 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
3051 "written %p\n", i, dev->flags, dev->toread, dev->read,
3052 dev->towrite, dev->written);
3054 /* maybe we can request a biofill operation
3056 * new wantfill requests are only permitted while
3057 * ops_complete_biofill is guaranteed to be inactive
3059 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3060 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3061 set_bit(R5_Wantfill, &dev->flags);
3063 /* now count some things */
3064 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3065 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3066 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
3068 if (test_bit(R5_Wantfill, &dev->flags))
3069 s.to_fill++;
3070 else if (dev->toread)
3071 s.to_read++;
3072 if (dev->towrite) {
3073 s.to_write++;
3074 if (!test_bit(R5_OVERWRITE, &dev->flags))
3075 s.non_overwrite++;
3077 if (dev->written)
3078 s.written++;
3079 rdev = rcu_dereference(conf->disks[i].rdev);
3080 if (blocked_rdev == NULL &&
3081 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3082 blocked_rdev = rdev;
3083 atomic_inc(&rdev->nr_pending);
3085 clear_bit(R5_Insync, &dev->flags);
3086 if (!rdev)
3087 /* Not in-sync */;
3088 else if (test_bit(In_sync, &rdev->flags))
3089 set_bit(R5_Insync, &dev->flags);
3090 else {
3091 /* could be in-sync depending on recovery/reshape status */
3092 if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3093 set_bit(R5_Insync, &dev->flags);
3095 if (!test_bit(R5_Insync, &dev->flags)) {
3096 /* The ReadError flag will just be confusing now */
3097 clear_bit(R5_ReadError, &dev->flags);
3098 clear_bit(R5_ReWrite, &dev->flags);
3100 if (test_bit(R5_ReadError, &dev->flags))
3101 clear_bit(R5_Insync, &dev->flags);
3102 if (!test_bit(R5_Insync, &dev->flags)) {
3103 s.failed++;
3104 s.failed_num = i;
3107 rcu_read_unlock();
3109 if (unlikely(blocked_rdev)) {
3110 if (s.syncing || s.expanding || s.expanded ||
3111 s.to_write || s.written) {
3112 set_bit(STRIPE_HANDLE, &sh->state);
3113 goto unlock;
3115 /* There is nothing for the blocked_rdev to block */
3116 rdev_dec_pending(blocked_rdev, conf->mddev);
3117 blocked_rdev = NULL;
3120 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3121 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3122 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3125 pr_debug("locked=%d uptodate=%d to_read=%d"
3126 " to_write=%d failed=%d failed_num=%d\n",
3127 s.locked, s.uptodate, s.to_read, s.to_write,
3128 s.failed, s.failed_num);
3129 /* check if the array has lost two devices and, if so, some requests might
3130 * need to be failed
3132 if (s.failed > 1 && s.to_read+s.to_write+s.written)
3133 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3134 if (s.failed > 1 && s.syncing) {
3135 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3136 clear_bit(STRIPE_SYNCING, &sh->state);
3137 s.syncing = 0;
3140 /* might be able to return some write requests if the parity block
3141 * is safe, or on a failed drive
3143 dev = &sh->dev[sh->pd_idx];
3144 if ( s.written &&
3145 ((test_bit(R5_Insync, &dev->flags) &&
3146 !test_bit(R5_LOCKED, &dev->flags) &&
3147 test_bit(R5_UPTODATE, &dev->flags)) ||
3148 (s.failed == 1 && s.failed_num == sh->pd_idx)))
3149 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3151 /* Now we might consider reading some blocks, either to check/generate
3152 * parity, or to satisfy requests
3153 * or to load a block that is being partially written.
3155 if (s.to_read || s.non_overwrite ||
3156 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3157 handle_stripe_fill5(sh, &s, disks);
3159 /* Now we check to see if any write operations have recently
3160 * completed
3162 prexor = 0;
3163 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3164 prexor = 1;
3165 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3166 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3167 sh->reconstruct_state = reconstruct_state_idle;
3169 /* All the 'written' buffers and the parity block are ready to
3170 * be written back to disk
3172 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3173 for (i = disks; i--; ) {
3174 dev = &sh->dev[i];
3175 if (test_bit(R5_LOCKED, &dev->flags) &&
3176 (i == sh->pd_idx || dev->written)) {
3177 pr_debug("Writing block %d\n", i);
3178 set_bit(R5_Wantwrite, &dev->flags);
3179 if (prexor)
3180 continue;
3181 if (!test_bit(R5_Insync, &dev->flags) ||
3182 (i == sh->pd_idx && s.failed == 0))
3183 set_bit(STRIPE_INSYNC, &sh->state);
3186 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3187 dec_preread_active = 1;
3190 /* Now to consider new write requests and what else, if anything
3191 * should be read. We do not handle new writes when:
3192 * 1/ A 'write' operation (copy+xor) is already in flight.
3193 * 2/ A 'check' operation is in flight, as it may clobber the parity
3194 * block.
3196 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3197 handle_stripe_dirtying5(conf, sh, &s, disks);
3199 /* maybe we need to check and possibly fix the parity for this stripe
3200 * Any reads will already have been scheduled, so we just see if enough
3201 * data is available. The parity check is held off while parity
3202 * dependent operations are in flight.
3204 if (sh->check_state ||
3205 (s.syncing && s.locked == 0 &&
3206 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3207 !test_bit(STRIPE_INSYNC, &sh->state)))
3208 handle_parity_checks5(conf, sh, &s, disks);
3210 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3211 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3212 clear_bit(STRIPE_SYNCING, &sh->state);
3215 /* If the failed drive is just a ReadError, then we might need to progress
3216 * the repair/check process
3218 if (s.failed == 1 && !conf->mddev->ro &&
3219 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
3220 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
3221 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3223 dev = &sh->dev[s.failed_num];
3224 if (!test_bit(R5_ReWrite, &dev->flags)) {
3225 set_bit(R5_Wantwrite, &dev->flags);
3226 set_bit(R5_ReWrite, &dev->flags);
3227 set_bit(R5_LOCKED, &dev->flags);
3228 s.locked++;
3229 } else {
3230 /* let's read it back */
3231 set_bit(R5_Wantread, &dev->flags);
3232 set_bit(R5_LOCKED, &dev->flags);
3233 s.locked++;
3237 /* Finish reconstruct operations initiated by the expansion process */
3238 if (sh->reconstruct_state == reconstruct_state_result) {
3239 struct stripe_head *sh2
3240 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3241 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3242 /* sh cannot be written until sh2 has been read.
3243 * so arrange for sh to be delayed a little
3245 set_bit(STRIPE_DELAYED, &sh->state);
3246 set_bit(STRIPE_HANDLE, &sh->state);
3247 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3248 &sh2->state))
3249 atomic_inc(&conf->preread_active_stripes);
3250 release_stripe(sh2);
3251 goto unlock;
3253 if (sh2)
3254 release_stripe(sh2);
3256 sh->reconstruct_state = reconstruct_state_idle;
3257 clear_bit(STRIPE_EXPANDING, &sh->state);
3258 for (i = conf->raid_disks; i--; ) {
3259 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3260 set_bit(R5_LOCKED, &sh->dev[i].flags);
3261 s.locked++;
3265 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3266 !sh->reconstruct_state) {
3267 /* Need to write out all blocks after computing parity */
3268 sh->disks = conf->raid_disks;
3269 stripe_set_idx(sh->sector, conf, 0, sh);
3270 schedule_reconstruction(sh, &s, 1, 1);
3271 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3272 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3273 atomic_dec(&conf->reshape_stripes);
3274 wake_up(&conf->wait_for_overlap);
3275 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3278 if (s.expanding && s.locked == 0 &&
3279 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3280 handle_stripe_expansion(conf, sh, NULL);
3282 unlock:
3283 spin_unlock(&sh->lock);
3285 /* wait for this device to become unblocked */
3286 if (unlikely(blocked_rdev))
3287 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3289 if (s.ops_request)
3290 raid_run_ops(sh, s.ops_request);
3292 ops_run_io(sh, &s);
3294 if (dec_preread_active) {
3295 /* We delay this until after ops_run_io so that if make_request
3296 * is waiting on a flush, it won't continue until the writes
3297 * have actually been submitted.
3299 atomic_dec(&conf->preread_active_stripes);
3300 if (atomic_read(&conf->preread_active_stripes) <
3301 IO_THRESHOLD)
3302 md_wakeup_thread(conf->mddev->thread);
3304 return_io(return_bi);
3307 static void handle_stripe6(struct stripe_head *sh)
3309 raid5_conf_t *conf = sh->raid_conf;
3310 int disks = sh->disks;
3311 struct bio *return_bi = NULL;
3312 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3313 struct stripe_head_state s;
3314 struct r6_state r6s;
3315 struct r5dev *dev, *pdev, *qdev;
3316 mdk_rdev_t *blocked_rdev = NULL;
3317 int dec_preread_active = 0;
3319 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3320 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3321 (unsigned long long)sh->sector, sh->state,
3322 atomic_read(&sh->count), pd_idx, qd_idx,
3323 sh->check_state, sh->reconstruct_state);
3324 memset(&s, 0, sizeof(s));
3326 spin_lock(&sh->lock);
3327 clear_bit(STRIPE_HANDLE, &sh->state);
3328 clear_bit(STRIPE_DELAYED, &sh->state);
3330 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3331 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3332 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3333 /* Now to look around and see what can be done */
3335 rcu_read_lock();
3336 for (i=disks; i--; ) {
3337 mdk_rdev_t *rdev;
3338 dev = &sh->dev[i];
3340 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3341 i, dev->flags, dev->toread, dev->towrite, dev->written);
3342 /* maybe we can reply to a read
3344 * new wantfill requests are only permitted while
3345 * ops_complete_biofill is guaranteed to be inactive
3347 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3348 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3349 set_bit(R5_Wantfill, &dev->flags);
3351 /* now count some things */
3352 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3353 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3354 if (test_bit(R5_Wantcompute, &dev->flags)) {
3355 s.compute++;
3356 BUG_ON(s.compute > 2);
3359 if (test_bit(R5_Wantfill, &dev->flags)) {
3360 s.to_fill++;
3361 } else if (dev->toread)
3362 s.to_read++;
3363 if (dev->towrite) {
3364 s.to_write++;
3365 if (!test_bit(R5_OVERWRITE, &dev->flags))
3366 s.non_overwrite++;
3368 if (dev->written)
3369 s.written++;
3370 rdev = rcu_dereference(conf->disks[i].rdev);
3371 if (blocked_rdev == NULL &&
3372 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3373 blocked_rdev = rdev;
3374 atomic_inc(&rdev->nr_pending);
3376 clear_bit(R5_Insync, &dev->flags);
3377 if (!rdev)
3378 /* Not in-sync */;
3379 else if (test_bit(In_sync, &rdev->flags))
3380 set_bit(R5_Insync, &dev->flags);
3381 else {
3382 /* in sync if before recovery_offset */
3383 if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3384 set_bit(R5_Insync, &dev->flags);
3386 if (!test_bit(R5_Insync, &dev->flags)) {
3387 /* The ReadError flag will just be confusing now */
3388 clear_bit(R5_ReadError, &dev->flags);
3389 clear_bit(R5_ReWrite, &dev->flags);
3391 if (test_bit(R5_ReadError, &dev->flags))
3392 clear_bit(R5_Insync, &dev->flags);
3393 if (!test_bit(R5_Insync, &dev->flags)) {
3394 if (s.failed < 2)
3395 r6s.failed_num[s.failed] = i;
3396 s.failed++;
3399 rcu_read_unlock();
3401 if (unlikely(blocked_rdev)) {
3402 if (s.syncing || s.expanding || s.expanded ||
3403 s.to_write || s.written) {
3404 set_bit(STRIPE_HANDLE, &sh->state);
3405 goto unlock;
3407 /* There is nothing for the blocked_rdev to block */
3408 rdev_dec_pending(blocked_rdev, conf->mddev);
3409 blocked_rdev = NULL;
3412 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3413 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3414 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3417 pr_debug("locked=%d uptodate=%d to_read=%d"
3418 " to_write=%d failed=%d failed_num=%d,%d\n",
3419 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3420 r6s.failed_num[0], r6s.failed_num[1]);
3421 /* check if the array has lost >2 devices and, if so, some requests
3422 * might need to be failed
3424 if (s.failed > 2 && s.to_read+s.to_write+s.written)
3425 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3426 if (s.failed > 2 && s.syncing) {
3427 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3428 clear_bit(STRIPE_SYNCING, &sh->state);
3429 s.syncing = 0;
3433 * might be able to return some write requests if the parity blocks
3434 * are safe, or on a failed drive
3436 pdev = &sh->dev[pd_idx];
3437 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3438 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3439 qdev = &sh->dev[qd_idx];
3440 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3441 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3443 if ( s.written &&
3444 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3445 && !test_bit(R5_LOCKED, &pdev->flags)
3446 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3447 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3448 && !test_bit(R5_LOCKED, &qdev->flags)
3449 && test_bit(R5_UPTODATE, &qdev->flags)))))
3450 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3452 /* Now we might consider reading some blocks, either to check/generate
3453 * parity, or to satisfy requests
3454 * or to load a block that is being partially written.
3456 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3457 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3458 handle_stripe_fill6(sh, &s, &r6s, disks);
3460 /* Now we check to see if any write operations have recently
3461 * completed
3463 if (sh->reconstruct_state == reconstruct_state_drain_result) {
3465 sh->reconstruct_state = reconstruct_state_idle;
3466 /* All the 'written' buffers and the parity blocks are ready to
3467 * be written back to disk
3469 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3470 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3471 for (i = disks; i--; ) {
3472 dev = &sh->dev[i];
3473 if (test_bit(R5_LOCKED, &dev->flags) &&
3474 (i == sh->pd_idx || i == qd_idx ||
3475 dev->written)) {
3476 pr_debug("Writing block %d\n", i);
3477 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3478 set_bit(R5_Wantwrite, &dev->flags);
3479 if (!test_bit(R5_Insync, &dev->flags) ||
3480 ((i == sh->pd_idx || i == qd_idx) &&
3481 s.failed == 0))
3482 set_bit(STRIPE_INSYNC, &sh->state);
3485 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3486 dec_preread_active = 1;
3489 /* Now to consider new write requests and what else, if anything
3490 * should be read. We do not handle new writes when:
3491 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3492 * 2/ A 'check' operation is in flight, as it may clobber the parity
3493 * block.
3495 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3496 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3498 /* maybe we need to check and possibly fix the parity for this stripe
3499 * Any reads will already have been scheduled, so we just see if enough
3500 * data is available. The parity check is held off while parity
3501 * dependent operations are in flight.
3503 if (sh->check_state ||
3504 (s.syncing && s.locked == 0 &&
3505 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3506 !test_bit(STRIPE_INSYNC, &sh->state)))
3507 handle_parity_checks6(conf, sh, &s, &r6s, disks);
3509 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3510 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3511 clear_bit(STRIPE_SYNCING, &sh->state);
3514 /* If the failed drives are just a ReadError, then we might need
3515 * to progress the repair/check process
3517 if (s.failed <= 2 && !conf->mddev->ro)
3518 for (i = 0; i < s.failed; i++) {
3519 dev = &sh->dev[r6s.failed_num[i]];
3520 if (test_bit(R5_ReadError, &dev->flags)
3521 && !test_bit(R5_LOCKED, &dev->flags)
3522 && test_bit(R5_UPTODATE, &dev->flags)
3524 if (!test_bit(R5_ReWrite, &dev->flags)) {
3525 set_bit(R5_Wantwrite, &dev->flags);
3526 set_bit(R5_ReWrite, &dev->flags);
3527 set_bit(R5_LOCKED, &dev->flags);
3528 s.locked++;
3529 } else {
3530 /* let's read it back */
3531 set_bit(R5_Wantread, &dev->flags);
3532 set_bit(R5_LOCKED, &dev->flags);
3533 s.locked++;
3538 /* Finish reconstruct operations initiated by the expansion process */
3539 if (sh->reconstruct_state == reconstruct_state_result) {
3540 sh->reconstruct_state = reconstruct_state_idle;
3541 clear_bit(STRIPE_EXPANDING, &sh->state);
3542 for (i = conf->raid_disks; i--; ) {
3543 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3544 set_bit(R5_LOCKED, &sh->dev[i].flags);
3545 s.locked++;
3549 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3550 !sh->reconstruct_state) {
3551 struct stripe_head *sh2
3552 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3553 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3554 /* sh cannot be written until sh2 has been read.
3555 * so arrange for sh to be delayed a little
3557 set_bit(STRIPE_DELAYED, &sh->state);
3558 set_bit(STRIPE_HANDLE, &sh->state);
3559 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3560 &sh2->state))
3561 atomic_inc(&conf->preread_active_stripes);
3562 release_stripe(sh2);
3563 goto unlock;
3565 if (sh2)
3566 release_stripe(sh2);
3568 /* Need to write out all blocks after computing P&Q */
3569 sh->disks = conf->raid_disks;
3570 stripe_set_idx(sh->sector, conf, 0, sh);
3571 schedule_reconstruction(sh, &s, 1, 1);
3572 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3573 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3574 atomic_dec(&conf->reshape_stripes);
3575 wake_up(&conf->wait_for_overlap);
3576 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3579 if (s.expanding && s.locked == 0 &&
3580 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3581 handle_stripe_expansion(conf, sh, &r6s);
3583 unlock:
3584 spin_unlock(&sh->lock);
3586 /* wait for this device to become unblocked */
3587 if (unlikely(blocked_rdev))
3588 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3590 if (s.ops_request)
3591 raid_run_ops(sh, s.ops_request);
3593 ops_run_io(sh, &s);
3596 if (dec_preread_active) {
3597 /* We delay this until after ops_run_io so that if make_request
3598 * is waiting on a flush, it won't continue until the writes
3599 * have actually been submitted.
3601 atomic_dec(&conf->preread_active_stripes);
3602 if (atomic_read(&conf->preread_active_stripes) <
3603 IO_THRESHOLD)
3604 md_wakeup_thread(conf->mddev->thread);
3607 return_io(return_bi);
3610 static void handle_stripe(struct stripe_head *sh)
3612 if (sh->raid_conf->level == 6)
3613 handle_stripe6(sh);
3614 else
3615 handle_stripe5(sh);
3618 static void raid5_activate_delayed(raid5_conf_t *conf)
3620 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3621 while (!list_empty(&conf->delayed_list)) {
3622 struct list_head *l = conf->delayed_list.next;
3623 struct stripe_head *sh;
3624 sh = list_entry(l, struct stripe_head, lru);
3625 list_del_init(l);
3626 clear_bit(STRIPE_DELAYED, &sh->state);
3627 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3628 atomic_inc(&conf->preread_active_stripes);
3629 list_add_tail(&sh->lru, &conf->hold_list);
3631 } else
3632 plugger_set_plug(&conf->plug);
3635 static void activate_bit_delay(raid5_conf_t *conf)
3637 /* device_lock is held */
3638 struct list_head head;
3639 list_add(&head, &conf->bitmap_list);
3640 list_del_init(&conf->bitmap_list);
3641 while (!list_empty(&head)) {
3642 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3643 list_del_init(&sh->lru);
3644 atomic_inc(&sh->count);
3645 __release_stripe(conf, sh);
3649 static void unplug_slaves(mddev_t *mddev)
3651 raid5_conf_t *conf = mddev->private;
3652 int i;
3653 int devs = max(conf->raid_disks, conf->previous_raid_disks);
3655 rcu_read_lock();
3656 for (i = 0; i < devs; i++) {
3657 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3658 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3659 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3661 atomic_inc(&rdev->nr_pending);
3662 rcu_read_unlock();
3664 blk_unplug(r_queue);
3666 rdev_dec_pending(rdev, mddev);
3667 rcu_read_lock();
3670 rcu_read_unlock();
3673 void md_raid5_unplug_device(raid5_conf_t *conf)
3675 unsigned long flags;
3677 spin_lock_irqsave(&conf->device_lock, flags);
3679 if (plugger_remove_plug(&conf->plug)) {
3680 conf->seq_flush++;
3681 raid5_activate_delayed(conf);
3683 md_wakeup_thread(conf->mddev->thread);
3685 spin_unlock_irqrestore(&conf->device_lock, flags);
3687 unplug_slaves(conf->mddev);
3689 EXPORT_SYMBOL_GPL(md_raid5_unplug_device);
3691 static void raid5_unplug(struct plug_handle *plug)
3693 raid5_conf_t *conf = container_of(plug, raid5_conf_t, plug);
3694 md_raid5_unplug_device(conf);
3697 static void raid5_unplug_queue(struct request_queue *q)
3699 mddev_t *mddev = q->queuedata;
3700 md_raid5_unplug_device(mddev->private);
3703 int md_raid5_congested(mddev_t *mddev, int bits)
3705 raid5_conf_t *conf = mddev->private;
3707 /* No difference between reads and writes. Just check
3708 * how busy the stripe_cache is
3711 if (conf->inactive_blocked)
3712 return 1;
3713 if (conf->quiesce)
3714 return 1;
3715 if (list_empty_careful(&conf->inactive_list))
3716 return 1;
3718 return 0;
3720 EXPORT_SYMBOL_GPL(md_raid5_congested);
3722 static int raid5_congested(void *data, int bits)
3724 mddev_t *mddev = data;
3726 return mddev_congested(mddev, bits) ||
3727 md_raid5_congested(mddev, bits);
3730 /* We want read requests to align with chunks where possible,
3731 * but write requests don't need to.
3733 static int raid5_mergeable_bvec(struct request_queue *q,
3734 struct bvec_merge_data *bvm,
3735 struct bio_vec *biovec)
3737 mddev_t *mddev = q->queuedata;
3738 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3739 int max;
3740 unsigned int chunk_sectors = mddev->chunk_sectors;
3741 unsigned int bio_sectors = bvm->bi_size >> 9;
3743 if ((bvm->bi_rw & 1) == WRITE)
3744 return biovec->bv_len; /* always allow writes to be mergeable */
3746 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3747 chunk_sectors = mddev->new_chunk_sectors;
3748 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3749 if (max < 0) max = 0;
3750 if (max <= biovec->bv_len && bio_sectors == 0)
3751 return biovec->bv_len;
3752 else
3753 return max;
3757 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3759 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3760 unsigned int chunk_sectors = mddev->chunk_sectors;
3761 unsigned int bio_sectors = bio->bi_size >> 9;
3763 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3764 chunk_sectors = mddev->new_chunk_sectors;
3765 return chunk_sectors >=
3766 ((sector & (chunk_sectors - 1)) + bio_sectors);
3770 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3771 * later sampled by raid5d.
3773 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3775 unsigned long flags;
3777 spin_lock_irqsave(&conf->device_lock, flags);
3779 bi->bi_next = conf->retry_read_aligned_list;
3780 conf->retry_read_aligned_list = bi;
3782 spin_unlock_irqrestore(&conf->device_lock, flags);
3783 md_wakeup_thread(conf->mddev->thread);
3787 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3789 struct bio *bi;
3791 bi = conf->retry_read_aligned;
3792 if (bi) {
3793 conf->retry_read_aligned = NULL;
3794 return bi;
3796 bi = conf->retry_read_aligned_list;
3797 if(bi) {
3798 conf->retry_read_aligned_list = bi->bi_next;
3799 bi->bi_next = NULL;
3801 * this sets the active strip count to 1 and the processed
3802 * strip count to zero (upper 8 bits)
3804 bi->bi_phys_segments = 1; /* biased count of active stripes */
3807 return bi;
3812 * The "raid5_align_endio" should check if the read succeeded and if it
3813 * did, call bio_endio on the original bio (having bio_put the new bio
3814 * first).
3815 * If the read failed..
3817 static void raid5_align_endio(struct bio *bi, int error)
3819 struct bio* raid_bi = bi->bi_private;
3820 mddev_t *mddev;
3821 raid5_conf_t *conf;
3822 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3823 mdk_rdev_t *rdev;
3825 bio_put(bi);
3827 rdev = (void*)raid_bi->bi_next;
3828 raid_bi->bi_next = NULL;
3829 mddev = rdev->mddev;
3830 conf = mddev->private;
3832 rdev_dec_pending(rdev, conf->mddev);
3834 if (!error && uptodate) {
3835 bio_endio(raid_bi, 0);
3836 if (atomic_dec_and_test(&conf->active_aligned_reads))
3837 wake_up(&conf->wait_for_stripe);
3838 return;
3842 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3844 add_bio_to_retry(raid_bi, conf);
3847 static int bio_fits_rdev(struct bio *bi)
3849 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3851 if ((bi->bi_size>>9) > queue_max_sectors(q))
3852 return 0;
3853 blk_recount_segments(q, bi);
3854 if (bi->bi_phys_segments > queue_max_segments(q))
3855 return 0;
3857 if (q->merge_bvec_fn)
3858 /* it's too hard to apply the merge_bvec_fn at this stage,
3859 * just just give up
3861 return 0;
3863 return 1;
3867 static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3869 raid5_conf_t *conf = mddev->private;
3870 int dd_idx;
3871 struct bio* align_bi;
3872 mdk_rdev_t *rdev;
3874 if (!in_chunk_boundary(mddev, raid_bio)) {
3875 pr_debug("chunk_aligned_read : non aligned\n");
3876 return 0;
3879 * use bio_clone to make a copy of the bio
3881 align_bi = bio_clone(raid_bio, GFP_NOIO);
3882 if (!align_bi)
3883 return 0;
3885 * set bi_end_io to a new function, and set bi_private to the
3886 * original bio.
3888 align_bi->bi_end_io = raid5_align_endio;
3889 align_bi->bi_private = raid_bio;
3891 * compute position
3893 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3895 &dd_idx, NULL);
3897 rcu_read_lock();
3898 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3899 if (rdev && test_bit(In_sync, &rdev->flags)) {
3900 atomic_inc(&rdev->nr_pending);
3901 rcu_read_unlock();
3902 raid_bio->bi_next = (void*)rdev;
3903 align_bi->bi_bdev = rdev->bdev;
3904 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3905 align_bi->bi_sector += rdev->data_offset;
3907 if (!bio_fits_rdev(align_bi)) {
3908 /* too big in some way */
3909 bio_put(align_bi);
3910 rdev_dec_pending(rdev, mddev);
3911 return 0;
3914 spin_lock_irq(&conf->device_lock);
3915 wait_event_lock_irq(conf->wait_for_stripe,
3916 conf->quiesce == 0,
3917 conf->device_lock, /* nothing */);
3918 atomic_inc(&conf->active_aligned_reads);
3919 spin_unlock_irq(&conf->device_lock);
3921 generic_make_request(align_bi);
3922 return 1;
3923 } else {
3924 rcu_read_unlock();
3925 bio_put(align_bi);
3926 return 0;
3930 /* __get_priority_stripe - get the next stripe to process
3932 * Full stripe writes are allowed to pass preread active stripes up until
3933 * the bypass_threshold is exceeded. In general the bypass_count
3934 * increments when the handle_list is handled before the hold_list; however, it
3935 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3936 * stripe with in flight i/o. The bypass_count will be reset when the
3937 * head of the hold_list has changed, i.e. the head was promoted to the
3938 * handle_list.
3940 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3942 struct stripe_head *sh;
3944 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3945 __func__,
3946 list_empty(&conf->handle_list) ? "empty" : "busy",
3947 list_empty(&conf->hold_list) ? "empty" : "busy",
3948 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3950 if (!list_empty(&conf->handle_list)) {
3951 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3953 if (list_empty(&conf->hold_list))
3954 conf->bypass_count = 0;
3955 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3956 if (conf->hold_list.next == conf->last_hold)
3957 conf->bypass_count++;
3958 else {
3959 conf->last_hold = conf->hold_list.next;
3960 conf->bypass_count -= conf->bypass_threshold;
3961 if (conf->bypass_count < 0)
3962 conf->bypass_count = 0;
3965 } else if (!list_empty(&conf->hold_list) &&
3966 ((conf->bypass_threshold &&
3967 conf->bypass_count > conf->bypass_threshold) ||
3968 atomic_read(&conf->pending_full_writes) == 0)) {
3969 sh = list_entry(conf->hold_list.next,
3970 typeof(*sh), lru);
3971 conf->bypass_count -= conf->bypass_threshold;
3972 if (conf->bypass_count < 0)
3973 conf->bypass_count = 0;
3974 } else
3975 return NULL;
3977 list_del_init(&sh->lru);
3978 atomic_inc(&sh->count);
3979 BUG_ON(atomic_read(&sh->count) != 1);
3980 return sh;
3983 static int make_request(mddev_t *mddev, struct bio * bi)
3985 raid5_conf_t *conf = mddev->private;
3986 int dd_idx;
3987 sector_t new_sector;
3988 sector_t logical_sector, last_sector;
3989 struct stripe_head *sh;
3990 const int rw = bio_data_dir(bi);
3991 int remaining;
3993 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3994 md_flush_request(mddev, bi);
3995 return 0;
3998 md_write_start(mddev, bi);
4000 if (rw == READ &&
4001 mddev->reshape_position == MaxSector &&
4002 chunk_aligned_read(mddev,bi))
4003 return 0;
4005 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4006 last_sector = bi->bi_sector + (bi->bi_size>>9);
4007 bi->bi_next = NULL;
4008 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4010 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4011 DEFINE_WAIT(w);
4012 int disks, data_disks;
4013 int previous;
4015 retry:
4016 previous = 0;
4017 disks = conf->raid_disks;
4018 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4019 if (unlikely(conf->reshape_progress != MaxSector)) {
4020 /* spinlock is needed as reshape_progress may be
4021 * 64bit on a 32bit platform, and so it might be
4022 * possible to see a half-updated value
4023 * Ofcourse reshape_progress could change after
4024 * the lock is dropped, so once we get a reference
4025 * to the stripe that we think it is, we will have
4026 * to check again.
4028 spin_lock_irq(&conf->device_lock);
4029 if (mddev->delta_disks < 0
4030 ? logical_sector < conf->reshape_progress
4031 : logical_sector >= conf->reshape_progress) {
4032 disks = conf->previous_raid_disks;
4033 previous = 1;
4034 } else {
4035 if (mddev->delta_disks < 0
4036 ? logical_sector < conf->reshape_safe
4037 : logical_sector >= conf->reshape_safe) {
4038 spin_unlock_irq(&conf->device_lock);
4039 schedule();
4040 goto retry;
4043 spin_unlock_irq(&conf->device_lock);
4045 data_disks = disks - conf->max_degraded;
4047 new_sector = raid5_compute_sector(conf, logical_sector,
4048 previous,
4049 &dd_idx, NULL);
4050 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4051 (unsigned long long)new_sector,
4052 (unsigned long long)logical_sector);
4054 sh = get_active_stripe(conf, new_sector, previous,
4055 (bi->bi_rw&RWA_MASK), 0);
4056 if (sh) {
4057 if (unlikely(previous)) {
4058 /* expansion might have moved on while waiting for a
4059 * stripe, so we must do the range check again.
4060 * Expansion could still move past after this
4061 * test, but as we are holding a reference to
4062 * 'sh', we know that if that happens,
4063 * STRIPE_EXPANDING will get set and the expansion
4064 * won't proceed until we finish with the stripe.
4066 int must_retry = 0;
4067 spin_lock_irq(&conf->device_lock);
4068 if (mddev->delta_disks < 0
4069 ? logical_sector >= conf->reshape_progress
4070 : logical_sector < conf->reshape_progress)
4071 /* mismatch, need to try again */
4072 must_retry = 1;
4073 spin_unlock_irq(&conf->device_lock);
4074 if (must_retry) {
4075 release_stripe(sh);
4076 schedule();
4077 goto retry;
4081 if (bio_data_dir(bi) == WRITE &&
4082 logical_sector >= mddev->suspend_lo &&
4083 logical_sector < mddev->suspend_hi) {
4084 release_stripe(sh);
4085 /* As the suspend_* range is controlled by
4086 * userspace, we want an interruptible
4087 * wait.
4089 flush_signals(current);
4090 prepare_to_wait(&conf->wait_for_overlap,
4091 &w, TASK_INTERRUPTIBLE);
4092 if (logical_sector >= mddev->suspend_lo &&
4093 logical_sector < mddev->suspend_hi)
4094 schedule();
4095 goto retry;
4098 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4099 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
4100 /* Stripe is busy expanding or
4101 * add failed due to overlap. Flush everything
4102 * and wait a while
4104 md_raid5_unplug_device(conf);
4105 release_stripe(sh);
4106 schedule();
4107 goto retry;
4109 finish_wait(&conf->wait_for_overlap, &w);
4110 set_bit(STRIPE_HANDLE, &sh->state);
4111 clear_bit(STRIPE_DELAYED, &sh->state);
4112 if ((bi->bi_rw & REQ_SYNC) &&
4113 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4114 atomic_inc(&conf->preread_active_stripes);
4115 release_stripe(sh);
4116 } else {
4117 /* cannot get stripe for read-ahead, just give-up */
4118 clear_bit(BIO_UPTODATE, &bi->bi_flags);
4119 finish_wait(&conf->wait_for_overlap, &w);
4120 break;
4124 spin_lock_irq(&conf->device_lock);
4125 remaining = raid5_dec_bi_phys_segments(bi);
4126 spin_unlock_irq(&conf->device_lock);
4127 if (remaining == 0) {
4129 if ( rw == WRITE )
4130 md_write_end(mddev);
4132 bio_endio(bi, 0);
4135 return 0;
4138 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
4140 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
4142 /* reshaping is quite different to recovery/resync so it is
4143 * handled quite separately ... here.
4145 * On each call to sync_request, we gather one chunk worth of
4146 * destination stripes and flag them as expanding.
4147 * Then we find all the source stripes and request reads.
4148 * As the reads complete, handle_stripe will copy the data
4149 * into the destination stripe and release that stripe.
4151 raid5_conf_t *conf = mddev->private;
4152 struct stripe_head *sh;
4153 sector_t first_sector, last_sector;
4154 int raid_disks = conf->previous_raid_disks;
4155 int data_disks = raid_disks - conf->max_degraded;
4156 int new_data_disks = conf->raid_disks - conf->max_degraded;
4157 int i;
4158 int dd_idx;
4159 sector_t writepos, readpos, safepos;
4160 sector_t stripe_addr;
4161 int reshape_sectors;
4162 struct list_head stripes;
4164 if (sector_nr == 0) {
4165 /* If restarting in the middle, skip the initial sectors */
4166 if (mddev->delta_disks < 0 &&
4167 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4168 sector_nr = raid5_size(mddev, 0, 0)
4169 - conf->reshape_progress;
4170 } else if (mddev->delta_disks >= 0 &&
4171 conf->reshape_progress > 0)
4172 sector_nr = conf->reshape_progress;
4173 sector_div(sector_nr, new_data_disks);
4174 if (sector_nr) {
4175 mddev->curr_resync_completed = sector_nr;
4176 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4177 *skipped = 1;
4178 return sector_nr;
4182 /* We need to process a full chunk at a time.
4183 * If old and new chunk sizes differ, we need to process the
4184 * largest of these
4186 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4187 reshape_sectors = mddev->new_chunk_sectors;
4188 else
4189 reshape_sectors = mddev->chunk_sectors;
4191 /* we update the metadata when there is more than 3Meg
4192 * in the block range (that is rather arbitrary, should
4193 * probably be time based) or when the data about to be
4194 * copied would over-write the source of the data at
4195 * the front of the range.
4196 * i.e. one new_stripe along from reshape_progress new_maps
4197 * to after where reshape_safe old_maps to
4199 writepos = conf->reshape_progress;
4200 sector_div(writepos, new_data_disks);
4201 readpos = conf->reshape_progress;
4202 sector_div(readpos, data_disks);
4203 safepos = conf->reshape_safe;
4204 sector_div(safepos, data_disks);
4205 if (mddev->delta_disks < 0) {
4206 writepos -= min_t(sector_t, reshape_sectors, writepos);
4207 readpos += reshape_sectors;
4208 safepos += reshape_sectors;
4209 } else {
4210 writepos += reshape_sectors;
4211 readpos -= min_t(sector_t, reshape_sectors, readpos);
4212 safepos -= min_t(sector_t, reshape_sectors, safepos);
4215 /* 'writepos' is the most advanced device address we might write.
4216 * 'readpos' is the least advanced device address we might read.
4217 * 'safepos' is the least address recorded in the metadata as having
4218 * been reshaped.
4219 * If 'readpos' is behind 'writepos', then there is no way that we can
4220 * ensure safety in the face of a crash - that must be done by userspace
4221 * making a backup of the data. So in that case there is no particular
4222 * rush to update metadata.
4223 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4224 * update the metadata to advance 'safepos' to match 'readpos' so that
4225 * we can be safe in the event of a crash.
4226 * So we insist on updating metadata if safepos is behind writepos and
4227 * readpos is beyond writepos.
4228 * In any case, update the metadata every 10 seconds.
4229 * Maybe that number should be configurable, but I'm not sure it is
4230 * worth it.... maybe it could be a multiple of safemode_delay???
4232 if ((mddev->delta_disks < 0
4233 ? (safepos > writepos && readpos < writepos)
4234 : (safepos < writepos && readpos > writepos)) ||
4235 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4236 /* Cannot proceed until we've updated the superblock... */
4237 wait_event(conf->wait_for_overlap,
4238 atomic_read(&conf->reshape_stripes)==0);
4239 mddev->reshape_position = conf->reshape_progress;
4240 mddev->curr_resync_completed = mddev->curr_resync;
4241 conf->reshape_checkpoint = jiffies;
4242 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4243 md_wakeup_thread(mddev->thread);
4244 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4245 kthread_should_stop());
4246 spin_lock_irq(&conf->device_lock);
4247 conf->reshape_safe = mddev->reshape_position;
4248 spin_unlock_irq(&conf->device_lock);
4249 wake_up(&conf->wait_for_overlap);
4250 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4253 if (mddev->delta_disks < 0) {
4254 BUG_ON(conf->reshape_progress == 0);
4255 stripe_addr = writepos;
4256 BUG_ON((mddev->dev_sectors &
4257 ~((sector_t)reshape_sectors - 1))
4258 - reshape_sectors - stripe_addr
4259 != sector_nr);
4260 } else {
4261 BUG_ON(writepos != sector_nr + reshape_sectors);
4262 stripe_addr = sector_nr;
4264 INIT_LIST_HEAD(&stripes);
4265 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4266 int j;
4267 int skipped_disk = 0;
4268 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4269 set_bit(STRIPE_EXPANDING, &sh->state);
4270 atomic_inc(&conf->reshape_stripes);
4271 /* If any of this stripe is beyond the end of the old
4272 * array, then we need to zero those blocks
4274 for (j=sh->disks; j--;) {
4275 sector_t s;
4276 if (j == sh->pd_idx)
4277 continue;
4278 if (conf->level == 6 &&
4279 j == sh->qd_idx)
4280 continue;
4281 s = compute_blocknr(sh, j, 0);
4282 if (s < raid5_size(mddev, 0, 0)) {
4283 skipped_disk = 1;
4284 continue;
4286 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4287 set_bit(R5_Expanded, &sh->dev[j].flags);
4288 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4290 if (!skipped_disk) {
4291 set_bit(STRIPE_EXPAND_READY, &sh->state);
4292 set_bit(STRIPE_HANDLE, &sh->state);
4294 list_add(&sh->lru, &stripes);
4296 spin_lock_irq(&conf->device_lock);
4297 if (mddev->delta_disks < 0)
4298 conf->reshape_progress -= reshape_sectors * new_data_disks;
4299 else
4300 conf->reshape_progress += reshape_sectors * new_data_disks;
4301 spin_unlock_irq(&conf->device_lock);
4302 /* Ok, those stripe are ready. We can start scheduling
4303 * reads on the source stripes.
4304 * The source stripes are determined by mapping the first and last
4305 * block on the destination stripes.
4307 first_sector =
4308 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4309 1, &dd_idx, NULL);
4310 last_sector =
4311 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4312 * new_data_disks - 1),
4313 1, &dd_idx, NULL);
4314 if (last_sector >= mddev->dev_sectors)
4315 last_sector = mddev->dev_sectors - 1;
4316 while (first_sector <= last_sector) {
4317 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4318 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4319 set_bit(STRIPE_HANDLE, &sh->state);
4320 release_stripe(sh);
4321 first_sector += STRIPE_SECTORS;
4323 /* Now that the sources are clearly marked, we can release
4324 * the destination stripes
4326 while (!list_empty(&stripes)) {
4327 sh = list_entry(stripes.next, struct stripe_head, lru);
4328 list_del_init(&sh->lru);
4329 release_stripe(sh);
4331 /* If this takes us to the resync_max point where we have to pause,
4332 * then we need to write out the superblock.
4334 sector_nr += reshape_sectors;
4335 if ((sector_nr - mddev->curr_resync_completed) * 2
4336 >= mddev->resync_max - mddev->curr_resync_completed) {
4337 /* Cannot proceed until we've updated the superblock... */
4338 wait_event(conf->wait_for_overlap,
4339 atomic_read(&conf->reshape_stripes) == 0);
4340 mddev->reshape_position = conf->reshape_progress;
4341 mddev->curr_resync_completed = mddev->curr_resync + reshape_sectors;
4342 conf->reshape_checkpoint = jiffies;
4343 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4344 md_wakeup_thread(mddev->thread);
4345 wait_event(mddev->sb_wait,
4346 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4347 || kthread_should_stop());
4348 spin_lock_irq(&conf->device_lock);
4349 conf->reshape_safe = mddev->reshape_position;
4350 spin_unlock_irq(&conf->device_lock);
4351 wake_up(&conf->wait_for_overlap);
4352 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4354 return reshape_sectors;
4357 /* FIXME go_faster isn't used */
4358 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4360 raid5_conf_t *conf = mddev->private;
4361 struct stripe_head *sh;
4362 sector_t max_sector = mddev->dev_sectors;
4363 int sync_blocks;
4364 int still_degraded = 0;
4365 int i;
4367 if (sector_nr >= max_sector) {
4368 /* just being told to finish up .. nothing much to do */
4369 unplug_slaves(mddev);
4371 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4372 end_reshape(conf);
4373 return 0;
4376 if (mddev->curr_resync < max_sector) /* aborted */
4377 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4378 &sync_blocks, 1);
4379 else /* completed sync */
4380 conf->fullsync = 0;
4381 bitmap_close_sync(mddev->bitmap);
4383 return 0;
4386 /* Allow raid5_quiesce to complete */
4387 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4389 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4390 return reshape_request(mddev, sector_nr, skipped);
4392 /* No need to check resync_max as we never do more than one
4393 * stripe, and as resync_max will always be on a chunk boundary,
4394 * if the check in md_do_sync didn't fire, there is no chance
4395 * of overstepping resync_max here
4398 /* if there is too many failed drives and we are trying
4399 * to resync, then assert that we are finished, because there is
4400 * nothing we can do.
4402 if (mddev->degraded >= conf->max_degraded &&
4403 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4404 sector_t rv = mddev->dev_sectors - sector_nr;
4405 *skipped = 1;
4406 return rv;
4408 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4409 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4410 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4411 /* we can skip this block, and probably more */
4412 sync_blocks /= STRIPE_SECTORS;
4413 *skipped = 1;
4414 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4418 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4420 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4421 if (sh == NULL) {
4422 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4423 /* make sure we don't swamp the stripe cache if someone else
4424 * is trying to get access
4426 schedule_timeout_uninterruptible(1);
4428 /* Need to check if array will still be degraded after recovery/resync
4429 * We don't need to check the 'failed' flag as when that gets set,
4430 * recovery aborts.
4432 for (i = 0; i < conf->raid_disks; i++)
4433 if (conf->disks[i].rdev == NULL)
4434 still_degraded = 1;
4436 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4438 spin_lock(&sh->lock);
4439 set_bit(STRIPE_SYNCING, &sh->state);
4440 clear_bit(STRIPE_INSYNC, &sh->state);
4441 spin_unlock(&sh->lock);
4443 handle_stripe(sh);
4444 release_stripe(sh);
4446 return STRIPE_SECTORS;
4449 static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4451 /* We may not be able to submit a whole bio at once as there
4452 * may not be enough stripe_heads available.
4453 * We cannot pre-allocate enough stripe_heads as we may need
4454 * more than exist in the cache (if we allow ever large chunks).
4455 * So we do one stripe head at a time and record in
4456 * ->bi_hw_segments how many have been done.
4458 * We *know* that this entire raid_bio is in one chunk, so
4459 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4461 struct stripe_head *sh;
4462 int dd_idx;
4463 sector_t sector, logical_sector, last_sector;
4464 int scnt = 0;
4465 int remaining;
4466 int handled = 0;
4468 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4469 sector = raid5_compute_sector(conf, logical_sector,
4470 0, &dd_idx, NULL);
4471 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4473 for (; logical_sector < last_sector;
4474 logical_sector += STRIPE_SECTORS,
4475 sector += STRIPE_SECTORS,
4476 scnt++) {
4478 if (scnt < raid5_bi_hw_segments(raid_bio))
4479 /* already done this stripe */
4480 continue;
4482 sh = get_active_stripe(conf, sector, 0, 1, 0);
4484 if (!sh) {
4485 /* failed to get a stripe - must wait */
4486 raid5_set_bi_hw_segments(raid_bio, scnt);
4487 conf->retry_read_aligned = raid_bio;
4488 return handled;
4491 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4492 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4493 release_stripe(sh);
4494 raid5_set_bi_hw_segments(raid_bio, scnt);
4495 conf->retry_read_aligned = raid_bio;
4496 return handled;
4499 handle_stripe(sh);
4500 release_stripe(sh);
4501 handled++;
4503 spin_lock_irq(&conf->device_lock);
4504 remaining = raid5_dec_bi_phys_segments(raid_bio);
4505 spin_unlock_irq(&conf->device_lock);
4506 if (remaining == 0)
4507 bio_endio(raid_bio, 0);
4508 if (atomic_dec_and_test(&conf->active_aligned_reads))
4509 wake_up(&conf->wait_for_stripe);
4510 return handled;
4515 * This is our raid5 kernel thread.
4517 * We scan the hash table for stripes which can be handled now.
4518 * During the scan, completed stripes are saved for us by the interrupt
4519 * handler, so that they will not have to wait for our next wakeup.
4521 static void raid5d(mddev_t *mddev)
4523 struct stripe_head *sh;
4524 raid5_conf_t *conf = mddev->private;
4525 int handled;
4527 pr_debug("+++ raid5d active\n");
4529 md_check_recovery(mddev);
4531 handled = 0;
4532 spin_lock_irq(&conf->device_lock);
4533 while (1) {
4534 struct bio *bio;
4536 if (conf->seq_flush != conf->seq_write) {
4537 int seq = conf->seq_flush;
4538 spin_unlock_irq(&conf->device_lock);
4539 bitmap_unplug(mddev->bitmap);
4540 spin_lock_irq(&conf->device_lock);
4541 conf->seq_write = seq;
4542 activate_bit_delay(conf);
4545 while ((bio = remove_bio_from_retry(conf))) {
4546 int ok;
4547 spin_unlock_irq(&conf->device_lock);
4548 ok = retry_aligned_read(conf, bio);
4549 spin_lock_irq(&conf->device_lock);
4550 if (!ok)
4551 break;
4552 handled++;
4555 sh = __get_priority_stripe(conf);
4557 if (!sh)
4558 break;
4559 spin_unlock_irq(&conf->device_lock);
4561 handled++;
4562 handle_stripe(sh);
4563 release_stripe(sh);
4564 cond_resched();
4566 spin_lock_irq(&conf->device_lock);
4568 pr_debug("%d stripes handled\n", handled);
4570 spin_unlock_irq(&conf->device_lock);
4572 async_tx_issue_pending_all();
4573 unplug_slaves(mddev);
4575 pr_debug("--- raid5d inactive\n");
4578 static ssize_t
4579 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4581 raid5_conf_t *conf = mddev->private;
4582 if (conf)
4583 return sprintf(page, "%d\n", conf->max_nr_stripes);
4584 else
4585 return 0;
4589 raid5_set_cache_size(mddev_t *mddev, int size)
4591 raid5_conf_t *conf = mddev->private;
4592 int err;
4594 if (size <= 16 || size > 32768)
4595 return -EINVAL;
4596 while (size < conf->max_nr_stripes) {
4597 if (drop_one_stripe(conf))
4598 conf->max_nr_stripes--;
4599 else
4600 break;
4602 err = md_allow_write(mddev);
4603 if (err)
4604 return err;
4605 while (size > conf->max_nr_stripes) {
4606 if (grow_one_stripe(conf))
4607 conf->max_nr_stripes++;
4608 else break;
4610 return 0;
4612 EXPORT_SYMBOL(raid5_set_cache_size);
4614 static ssize_t
4615 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4617 raid5_conf_t *conf = mddev->private;
4618 unsigned long new;
4619 int err;
4621 if (len >= PAGE_SIZE)
4622 return -EINVAL;
4623 if (!conf)
4624 return -ENODEV;
4626 if (strict_strtoul(page, 10, &new))
4627 return -EINVAL;
4628 err = raid5_set_cache_size(mddev, new);
4629 if (err)
4630 return err;
4631 return len;
4634 static struct md_sysfs_entry
4635 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4636 raid5_show_stripe_cache_size,
4637 raid5_store_stripe_cache_size);
4639 static ssize_t
4640 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4642 raid5_conf_t *conf = mddev->private;
4643 if (conf)
4644 return sprintf(page, "%d\n", conf->bypass_threshold);
4645 else
4646 return 0;
4649 static ssize_t
4650 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4652 raid5_conf_t *conf = mddev->private;
4653 unsigned long new;
4654 if (len >= PAGE_SIZE)
4655 return -EINVAL;
4656 if (!conf)
4657 return -ENODEV;
4659 if (strict_strtoul(page, 10, &new))
4660 return -EINVAL;
4661 if (new > conf->max_nr_stripes)
4662 return -EINVAL;
4663 conf->bypass_threshold = new;
4664 return len;
4667 static struct md_sysfs_entry
4668 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4669 S_IRUGO | S_IWUSR,
4670 raid5_show_preread_threshold,
4671 raid5_store_preread_threshold);
4673 static ssize_t
4674 stripe_cache_active_show(mddev_t *mddev, char *page)
4676 raid5_conf_t *conf = mddev->private;
4677 if (conf)
4678 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4679 else
4680 return 0;
4683 static struct md_sysfs_entry
4684 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4686 static struct attribute *raid5_attrs[] = {
4687 &raid5_stripecache_size.attr,
4688 &raid5_stripecache_active.attr,
4689 &raid5_preread_bypass_threshold.attr,
4690 NULL,
4692 static struct attribute_group raid5_attrs_group = {
4693 .name = NULL,
4694 .attrs = raid5_attrs,
4697 static sector_t
4698 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4700 raid5_conf_t *conf = mddev->private;
4702 if (!sectors)
4703 sectors = mddev->dev_sectors;
4704 if (!raid_disks)
4705 /* size is defined by the smallest of previous and new size */
4706 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4708 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4709 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4710 return sectors * (raid_disks - conf->max_degraded);
4713 static void raid5_free_percpu(raid5_conf_t *conf)
4715 struct raid5_percpu *percpu;
4716 unsigned long cpu;
4718 if (!conf->percpu)
4719 return;
4721 get_online_cpus();
4722 for_each_possible_cpu(cpu) {
4723 percpu = per_cpu_ptr(conf->percpu, cpu);
4724 safe_put_page(percpu->spare_page);
4725 kfree(percpu->scribble);
4727 #ifdef CONFIG_HOTPLUG_CPU
4728 unregister_cpu_notifier(&conf->cpu_notify);
4729 #endif
4730 put_online_cpus();
4732 free_percpu(conf->percpu);
4735 static void free_conf(raid5_conf_t *conf)
4737 shrink_stripes(conf);
4738 raid5_free_percpu(conf);
4739 kfree(conf->disks);
4740 kfree(conf->stripe_hashtbl);
4741 kfree(conf);
4744 #ifdef CONFIG_HOTPLUG_CPU
4745 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4746 void *hcpu)
4748 raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4749 long cpu = (long)hcpu;
4750 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4752 switch (action) {
4753 case CPU_UP_PREPARE:
4754 case CPU_UP_PREPARE_FROZEN:
4755 if (conf->level == 6 && !percpu->spare_page)
4756 percpu->spare_page = alloc_page(GFP_KERNEL);
4757 if (!percpu->scribble)
4758 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4760 if (!percpu->scribble ||
4761 (conf->level == 6 && !percpu->spare_page)) {
4762 safe_put_page(percpu->spare_page);
4763 kfree(percpu->scribble);
4764 pr_err("%s: failed memory allocation for cpu%ld\n",
4765 __func__, cpu);
4766 return notifier_from_errno(-ENOMEM);
4768 break;
4769 case CPU_DEAD:
4770 case CPU_DEAD_FROZEN:
4771 safe_put_page(percpu->spare_page);
4772 kfree(percpu->scribble);
4773 percpu->spare_page = NULL;
4774 percpu->scribble = NULL;
4775 break;
4776 default:
4777 break;
4779 return NOTIFY_OK;
4781 #endif
4783 static int raid5_alloc_percpu(raid5_conf_t *conf)
4785 unsigned long cpu;
4786 struct page *spare_page;
4787 struct raid5_percpu __percpu *allcpus;
4788 void *scribble;
4789 int err;
4791 allcpus = alloc_percpu(struct raid5_percpu);
4792 if (!allcpus)
4793 return -ENOMEM;
4794 conf->percpu = allcpus;
4796 get_online_cpus();
4797 err = 0;
4798 for_each_present_cpu(cpu) {
4799 if (conf->level == 6) {
4800 spare_page = alloc_page(GFP_KERNEL);
4801 if (!spare_page) {
4802 err = -ENOMEM;
4803 break;
4805 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4807 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4808 if (!scribble) {
4809 err = -ENOMEM;
4810 break;
4812 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4814 #ifdef CONFIG_HOTPLUG_CPU
4815 conf->cpu_notify.notifier_call = raid456_cpu_notify;
4816 conf->cpu_notify.priority = 0;
4817 if (err == 0)
4818 err = register_cpu_notifier(&conf->cpu_notify);
4819 #endif
4820 put_online_cpus();
4822 return err;
4825 static raid5_conf_t *setup_conf(mddev_t *mddev)
4827 raid5_conf_t *conf;
4828 int raid_disk, memory, max_disks;
4829 mdk_rdev_t *rdev;
4830 struct disk_info *disk;
4832 if (mddev->new_level != 5
4833 && mddev->new_level != 4
4834 && mddev->new_level != 6) {
4835 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4836 mdname(mddev), mddev->new_level);
4837 return ERR_PTR(-EIO);
4839 if ((mddev->new_level == 5
4840 && !algorithm_valid_raid5(mddev->new_layout)) ||
4841 (mddev->new_level == 6
4842 && !algorithm_valid_raid6(mddev->new_layout))) {
4843 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4844 mdname(mddev), mddev->new_layout);
4845 return ERR_PTR(-EIO);
4847 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4848 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4849 mdname(mddev), mddev->raid_disks);
4850 return ERR_PTR(-EINVAL);
4853 if (!mddev->new_chunk_sectors ||
4854 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4855 !is_power_of_2(mddev->new_chunk_sectors)) {
4856 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4857 mdname(mddev), mddev->new_chunk_sectors << 9);
4858 return ERR_PTR(-EINVAL);
4861 conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4862 if (conf == NULL)
4863 goto abort;
4864 spin_lock_init(&conf->device_lock);
4865 init_waitqueue_head(&conf->wait_for_stripe);
4866 init_waitqueue_head(&conf->wait_for_overlap);
4867 INIT_LIST_HEAD(&conf->handle_list);
4868 INIT_LIST_HEAD(&conf->hold_list);
4869 INIT_LIST_HEAD(&conf->delayed_list);
4870 INIT_LIST_HEAD(&conf->bitmap_list);
4871 INIT_LIST_HEAD(&conf->inactive_list);
4872 atomic_set(&conf->active_stripes, 0);
4873 atomic_set(&conf->preread_active_stripes, 0);
4874 atomic_set(&conf->active_aligned_reads, 0);
4875 conf->bypass_threshold = BYPASS_THRESHOLD;
4877 conf->raid_disks = mddev->raid_disks;
4878 if (mddev->reshape_position == MaxSector)
4879 conf->previous_raid_disks = mddev->raid_disks;
4880 else
4881 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4882 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4883 conf->scribble_len = scribble_len(max_disks);
4885 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4886 GFP_KERNEL);
4887 if (!conf->disks)
4888 goto abort;
4890 conf->mddev = mddev;
4892 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4893 goto abort;
4895 conf->level = mddev->new_level;
4896 if (raid5_alloc_percpu(conf) != 0)
4897 goto abort;
4899 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4901 list_for_each_entry(rdev, &mddev->disks, same_set) {
4902 raid_disk = rdev->raid_disk;
4903 if (raid_disk >= max_disks
4904 || raid_disk < 0)
4905 continue;
4906 disk = conf->disks + raid_disk;
4908 disk->rdev = rdev;
4910 if (test_bit(In_sync, &rdev->flags)) {
4911 char b[BDEVNAME_SIZE];
4912 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4913 " disk %d\n",
4914 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4915 } else
4916 /* Cannot rely on bitmap to complete recovery */
4917 conf->fullsync = 1;
4920 conf->chunk_sectors = mddev->new_chunk_sectors;
4921 conf->level = mddev->new_level;
4922 if (conf->level == 6)
4923 conf->max_degraded = 2;
4924 else
4925 conf->max_degraded = 1;
4926 conf->algorithm = mddev->new_layout;
4927 conf->max_nr_stripes = NR_STRIPES;
4928 conf->reshape_progress = mddev->reshape_position;
4929 if (conf->reshape_progress != MaxSector) {
4930 conf->prev_chunk_sectors = mddev->chunk_sectors;
4931 conf->prev_algo = mddev->layout;
4934 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4935 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4936 if (grow_stripes(conf, conf->max_nr_stripes)) {
4937 printk(KERN_ERR
4938 "md/raid:%s: couldn't allocate %dkB for buffers\n",
4939 mdname(mddev), memory);
4940 goto abort;
4941 } else
4942 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4943 mdname(mddev), memory);
4945 conf->thread = md_register_thread(raid5d, mddev, NULL);
4946 if (!conf->thread) {
4947 printk(KERN_ERR
4948 "md/raid:%s: couldn't allocate thread.\n",
4949 mdname(mddev));
4950 goto abort;
4953 return conf;
4955 abort:
4956 if (conf) {
4957 free_conf(conf);
4958 return ERR_PTR(-EIO);
4959 } else
4960 return ERR_PTR(-ENOMEM);
4964 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4966 switch (algo) {
4967 case ALGORITHM_PARITY_0:
4968 if (raid_disk < max_degraded)
4969 return 1;
4970 break;
4971 case ALGORITHM_PARITY_N:
4972 if (raid_disk >= raid_disks - max_degraded)
4973 return 1;
4974 break;
4975 case ALGORITHM_PARITY_0_6:
4976 if (raid_disk == 0 ||
4977 raid_disk == raid_disks - 1)
4978 return 1;
4979 break;
4980 case ALGORITHM_LEFT_ASYMMETRIC_6:
4981 case ALGORITHM_RIGHT_ASYMMETRIC_6:
4982 case ALGORITHM_LEFT_SYMMETRIC_6:
4983 case ALGORITHM_RIGHT_SYMMETRIC_6:
4984 if (raid_disk == raid_disks - 1)
4985 return 1;
4987 return 0;
4990 static int run(mddev_t *mddev)
4992 raid5_conf_t *conf;
4993 int working_disks = 0;
4994 int dirty_parity_disks = 0;
4995 mdk_rdev_t *rdev;
4996 sector_t reshape_offset = 0;
4998 if (mddev->recovery_cp != MaxSector)
4999 printk(KERN_NOTICE "md/raid:%s: not clean"
5000 " -- starting background reconstruction\n",
5001 mdname(mddev));
5002 if (mddev->reshape_position != MaxSector) {
5003 /* Check that we can continue the reshape.
5004 * Currently only disks can change, it must
5005 * increase, and we must be past the point where
5006 * a stripe over-writes itself
5008 sector_t here_new, here_old;
5009 int old_disks;
5010 int max_degraded = (mddev->level == 6 ? 2 : 1);
5012 if (mddev->new_level != mddev->level) {
5013 printk(KERN_ERR "md/raid:%s: unsupported reshape "
5014 "required - aborting.\n",
5015 mdname(mddev));
5016 return -EINVAL;
5018 old_disks = mddev->raid_disks - mddev->delta_disks;
5019 /* reshape_position must be on a new-stripe boundary, and one
5020 * further up in new geometry must map after here in old
5021 * geometry.
5023 here_new = mddev->reshape_position;
5024 if (sector_div(here_new, mddev->new_chunk_sectors *
5025 (mddev->raid_disks - max_degraded))) {
5026 printk(KERN_ERR "md/raid:%s: reshape_position not "
5027 "on a stripe boundary\n", mdname(mddev));
5028 return -EINVAL;
5030 reshape_offset = here_new * mddev->new_chunk_sectors;
5031 /* here_new is the stripe we will write to */
5032 here_old = mddev->reshape_position;
5033 sector_div(here_old, mddev->chunk_sectors *
5034 (old_disks-max_degraded));
5035 /* here_old is the first stripe that we might need to read
5036 * from */
5037 if (mddev->delta_disks == 0) {
5038 /* We cannot be sure it is safe to start an in-place
5039 * reshape. It is only safe if user-space if monitoring
5040 * and taking constant backups.
5041 * mdadm always starts a situation like this in
5042 * readonly mode so it can take control before
5043 * allowing any writes. So just check for that.
5045 if ((here_new * mddev->new_chunk_sectors !=
5046 here_old * mddev->chunk_sectors) ||
5047 mddev->ro == 0) {
5048 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
5049 " in read-only mode - aborting\n",
5050 mdname(mddev));
5051 return -EINVAL;
5053 } else if (mddev->delta_disks < 0
5054 ? (here_new * mddev->new_chunk_sectors <=
5055 here_old * mddev->chunk_sectors)
5056 : (here_new * mddev->new_chunk_sectors >=
5057 here_old * mddev->chunk_sectors)) {
5058 /* Reading from the same stripe as writing to - bad */
5059 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5060 "auto-recovery - aborting.\n",
5061 mdname(mddev));
5062 return -EINVAL;
5064 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5065 mdname(mddev));
5066 /* OK, we should be able to continue; */
5067 } else {
5068 BUG_ON(mddev->level != mddev->new_level);
5069 BUG_ON(mddev->layout != mddev->new_layout);
5070 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5071 BUG_ON(mddev->delta_disks != 0);
5074 if (mddev->private == NULL)
5075 conf = setup_conf(mddev);
5076 else
5077 conf = mddev->private;
5079 if (IS_ERR(conf))
5080 return PTR_ERR(conf);
5082 mddev->thread = conf->thread;
5083 conf->thread = NULL;
5084 mddev->private = conf;
5087 * 0 for a fully functional array, 1 or 2 for a degraded array.
5089 list_for_each_entry(rdev, &mddev->disks, same_set) {
5090 if (rdev->raid_disk < 0)
5091 continue;
5092 if (test_bit(In_sync, &rdev->flags)) {
5093 working_disks++;
5094 continue;
5096 /* This disc is not fully in-sync. However if it
5097 * just stored parity (beyond the recovery_offset),
5098 * when we don't need to be concerned about the
5099 * array being dirty.
5100 * When reshape goes 'backwards', we never have
5101 * partially completed devices, so we only need
5102 * to worry about reshape going forwards.
5104 /* Hack because v0.91 doesn't store recovery_offset properly. */
5105 if (mddev->major_version == 0 &&
5106 mddev->minor_version > 90)
5107 rdev->recovery_offset = reshape_offset;
5109 if (rdev->recovery_offset < reshape_offset) {
5110 /* We need to check old and new layout */
5111 if (!only_parity(rdev->raid_disk,
5112 conf->algorithm,
5113 conf->raid_disks,
5114 conf->max_degraded))
5115 continue;
5117 if (!only_parity(rdev->raid_disk,
5118 conf->prev_algo,
5119 conf->previous_raid_disks,
5120 conf->max_degraded))
5121 continue;
5122 dirty_parity_disks++;
5125 mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
5126 - working_disks);
5128 if (has_failed(conf)) {
5129 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5130 " (%d/%d failed)\n",
5131 mdname(mddev), mddev->degraded, conf->raid_disks);
5132 goto abort;
5135 /* device size must be a multiple of chunk size */
5136 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5137 mddev->resync_max_sectors = mddev->dev_sectors;
5139 if (mddev->degraded > dirty_parity_disks &&
5140 mddev->recovery_cp != MaxSector) {
5141 if (mddev->ok_start_degraded)
5142 printk(KERN_WARNING
5143 "md/raid:%s: starting dirty degraded array"
5144 " - data corruption possible.\n",
5145 mdname(mddev));
5146 else {
5147 printk(KERN_ERR
5148 "md/raid:%s: cannot start dirty degraded array.\n",
5149 mdname(mddev));
5150 goto abort;
5154 if (mddev->degraded == 0)
5155 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5156 " devices, algorithm %d\n", mdname(mddev), conf->level,
5157 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5158 mddev->new_layout);
5159 else
5160 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5161 " out of %d devices, algorithm %d\n",
5162 mdname(mddev), conf->level,
5163 mddev->raid_disks - mddev->degraded,
5164 mddev->raid_disks, mddev->new_layout);
5166 print_raid5_conf(conf);
5168 if (conf->reshape_progress != MaxSector) {
5169 conf->reshape_safe = conf->reshape_progress;
5170 atomic_set(&conf->reshape_stripes, 0);
5171 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5172 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5173 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5174 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5175 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5176 "reshape");
5180 /* Ok, everything is just fine now */
5181 if (mddev->to_remove == &raid5_attrs_group)
5182 mddev->to_remove = NULL;
5183 else if (mddev->kobj.sd &&
5184 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5185 printk(KERN_WARNING
5186 "raid5: failed to create sysfs attributes for %s\n",
5187 mdname(mddev));
5188 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5190 plugger_init(&conf->plug, raid5_unplug);
5191 mddev->plug = &conf->plug;
5192 if (mddev->queue) {
5193 int chunk_size;
5194 /* read-ahead size must cover two whole stripes, which
5195 * is 2 * (datadisks) * chunksize where 'n' is the
5196 * number of raid devices
5198 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5199 int stripe = data_disks *
5200 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5201 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5202 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5204 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5206 mddev->queue->backing_dev_info.congested_data = mddev;
5207 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5208 mddev->queue->queue_lock = &conf->device_lock;
5209 mddev->queue->unplug_fn = raid5_unplug_queue;
5211 chunk_size = mddev->chunk_sectors << 9;
5212 blk_queue_io_min(mddev->queue, chunk_size);
5213 blk_queue_io_opt(mddev->queue, chunk_size *
5214 (conf->raid_disks - conf->max_degraded));
5216 list_for_each_entry(rdev, &mddev->disks, same_set)
5217 disk_stack_limits(mddev->gendisk, rdev->bdev,
5218 rdev->data_offset << 9);
5221 return 0;
5222 abort:
5223 md_unregister_thread(mddev->thread);
5224 mddev->thread = NULL;
5225 if (conf) {
5226 print_raid5_conf(conf);
5227 free_conf(conf);
5229 mddev->private = NULL;
5230 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5231 return -EIO;
5234 static int stop(mddev_t *mddev)
5236 raid5_conf_t *conf = mddev->private;
5238 md_unregister_thread(mddev->thread);
5239 mddev->thread = NULL;
5240 if (mddev->queue)
5241 mddev->queue->backing_dev_info.congested_fn = NULL;
5242 plugger_flush(&conf->plug); /* the unplug fn references 'conf'*/
5243 free_conf(conf);
5244 mddev->private = NULL;
5245 mddev->to_remove = &raid5_attrs_group;
5246 return 0;
5249 #ifdef DEBUG
5250 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
5252 int i;
5254 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5255 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5256 seq_printf(seq, "sh %llu, count %d.\n",
5257 (unsigned long long)sh->sector, atomic_read(&sh->count));
5258 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5259 for (i = 0; i < sh->disks; i++) {
5260 seq_printf(seq, "(cache%d: %p %ld) ",
5261 i, sh->dev[i].page, sh->dev[i].flags);
5263 seq_printf(seq, "\n");
5266 static void printall(struct seq_file *seq, raid5_conf_t *conf)
5268 struct stripe_head *sh;
5269 struct hlist_node *hn;
5270 int i;
5272 spin_lock_irq(&conf->device_lock);
5273 for (i = 0; i < NR_HASH; i++) {
5274 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
5275 if (sh->raid_conf != conf)
5276 continue;
5277 print_sh(seq, sh);
5280 spin_unlock_irq(&conf->device_lock);
5282 #endif
5284 static void status(struct seq_file *seq, mddev_t *mddev)
5286 raid5_conf_t *conf = mddev->private;
5287 int i;
5289 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5290 mddev->chunk_sectors / 2, mddev->layout);
5291 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5292 for (i = 0; i < conf->raid_disks; i++)
5293 seq_printf (seq, "%s",
5294 conf->disks[i].rdev &&
5295 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5296 seq_printf (seq, "]");
5297 #ifdef DEBUG
5298 seq_printf (seq, "\n");
5299 printall(seq, conf);
5300 #endif
5303 static void print_raid5_conf (raid5_conf_t *conf)
5305 int i;
5306 struct disk_info *tmp;
5308 printk(KERN_DEBUG "RAID conf printout:\n");
5309 if (!conf) {
5310 printk("(conf==NULL)\n");
5311 return;
5313 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5314 conf->raid_disks,
5315 conf->raid_disks - conf->mddev->degraded);
5317 for (i = 0; i < conf->raid_disks; i++) {
5318 char b[BDEVNAME_SIZE];
5319 tmp = conf->disks + i;
5320 if (tmp->rdev)
5321 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5322 i, !test_bit(Faulty, &tmp->rdev->flags),
5323 bdevname(tmp->rdev->bdev, b));
5327 static int raid5_spare_active(mddev_t *mddev)
5329 int i;
5330 raid5_conf_t *conf = mddev->private;
5331 struct disk_info *tmp;
5332 int count = 0;
5333 unsigned long flags;
5335 for (i = 0; i < conf->raid_disks; i++) {
5336 tmp = conf->disks + i;
5337 if (tmp->rdev
5338 && tmp->rdev->recovery_offset == MaxSector
5339 && !test_bit(Faulty, &tmp->rdev->flags)
5340 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5341 count++;
5342 sysfs_notify_dirent(tmp->rdev->sysfs_state);
5345 spin_lock_irqsave(&conf->device_lock, flags);
5346 mddev->degraded -= count;
5347 spin_unlock_irqrestore(&conf->device_lock, flags);
5348 print_raid5_conf(conf);
5349 return count;
5352 static int raid5_remove_disk(mddev_t *mddev, int number)
5354 raid5_conf_t *conf = mddev->private;
5355 int err = 0;
5356 mdk_rdev_t *rdev;
5357 struct disk_info *p = conf->disks + number;
5359 print_raid5_conf(conf);
5360 rdev = p->rdev;
5361 if (rdev) {
5362 if (number >= conf->raid_disks &&
5363 conf->reshape_progress == MaxSector)
5364 clear_bit(In_sync, &rdev->flags);
5366 if (test_bit(In_sync, &rdev->flags) ||
5367 atomic_read(&rdev->nr_pending)) {
5368 err = -EBUSY;
5369 goto abort;
5371 /* Only remove non-faulty devices if recovery
5372 * isn't possible.
5374 if (!test_bit(Faulty, &rdev->flags) &&
5375 !has_failed(conf) &&
5376 number < conf->raid_disks) {
5377 err = -EBUSY;
5378 goto abort;
5380 p->rdev = NULL;
5381 synchronize_rcu();
5382 if (atomic_read(&rdev->nr_pending)) {
5383 /* lost the race, try later */
5384 err = -EBUSY;
5385 p->rdev = rdev;
5388 abort:
5390 print_raid5_conf(conf);
5391 return err;
5394 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5396 raid5_conf_t *conf = mddev->private;
5397 int err = -EEXIST;
5398 int disk;
5399 struct disk_info *p;
5400 int first = 0;
5401 int last = conf->raid_disks - 1;
5403 if (has_failed(conf))
5404 /* no point adding a device */
5405 return -EINVAL;
5407 if (rdev->raid_disk >= 0)
5408 first = last = rdev->raid_disk;
5411 * find the disk ... but prefer rdev->saved_raid_disk
5412 * if possible.
5414 if (rdev->saved_raid_disk >= 0 &&
5415 rdev->saved_raid_disk >= first &&
5416 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5417 disk = rdev->saved_raid_disk;
5418 else
5419 disk = first;
5420 for ( ; disk <= last ; disk++)
5421 if ((p=conf->disks + disk)->rdev == NULL) {
5422 clear_bit(In_sync, &rdev->flags);
5423 rdev->raid_disk = disk;
5424 err = 0;
5425 if (rdev->saved_raid_disk != disk)
5426 conf->fullsync = 1;
5427 rcu_assign_pointer(p->rdev, rdev);
5428 break;
5430 print_raid5_conf(conf);
5431 return err;
5434 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5436 /* no resync is happening, and there is enough space
5437 * on all devices, so we can resize.
5438 * We need to make sure resync covers any new space.
5439 * If the array is shrinking we should possibly wait until
5440 * any io in the removed space completes, but it hardly seems
5441 * worth it.
5443 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5444 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5445 mddev->raid_disks));
5446 if (mddev->array_sectors >
5447 raid5_size(mddev, sectors, mddev->raid_disks))
5448 return -EINVAL;
5449 set_capacity(mddev->gendisk, mddev->array_sectors);
5450 revalidate_disk(mddev->gendisk);
5451 if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
5452 mddev->recovery_cp = mddev->dev_sectors;
5453 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5455 mddev->dev_sectors = sectors;
5456 mddev->resync_max_sectors = sectors;
5457 return 0;
5460 static int check_stripe_cache(mddev_t *mddev)
5462 /* Can only proceed if there are plenty of stripe_heads.
5463 * We need a minimum of one full stripe,, and for sensible progress
5464 * it is best to have about 4 times that.
5465 * If we require 4 times, then the default 256 4K stripe_heads will
5466 * allow for chunk sizes up to 256K, which is probably OK.
5467 * If the chunk size is greater, user-space should request more
5468 * stripe_heads first.
5470 raid5_conf_t *conf = mddev->private;
5471 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5472 > conf->max_nr_stripes ||
5473 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5474 > conf->max_nr_stripes) {
5475 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5476 mdname(mddev),
5477 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5478 / STRIPE_SIZE)*4);
5479 return 0;
5481 return 1;
5484 static int check_reshape(mddev_t *mddev)
5486 raid5_conf_t *conf = mddev->private;
5488 if (mddev->delta_disks == 0 &&
5489 mddev->new_layout == mddev->layout &&
5490 mddev->new_chunk_sectors == mddev->chunk_sectors)
5491 return 0; /* nothing to do */
5492 if (mddev->bitmap)
5493 /* Cannot grow a bitmap yet */
5494 return -EBUSY;
5495 if (has_failed(conf))
5496 return -EINVAL;
5497 if (mddev->delta_disks < 0) {
5498 /* We might be able to shrink, but the devices must
5499 * be made bigger first.
5500 * For raid6, 4 is the minimum size.
5501 * Otherwise 2 is the minimum
5503 int min = 2;
5504 if (mddev->level == 6)
5505 min = 4;
5506 if (mddev->raid_disks + mddev->delta_disks < min)
5507 return -EINVAL;
5510 if (!check_stripe_cache(mddev))
5511 return -ENOSPC;
5513 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5516 static int raid5_start_reshape(mddev_t *mddev)
5518 raid5_conf_t *conf = mddev->private;
5519 mdk_rdev_t *rdev;
5520 int spares = 0;
5521 int added_devices = 0;
5522 unsigned long flags;
5524 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5525 return -EBUSY;
5527 if (!check_stripe_cache(mddev))
5528 return -ENOSPC;
5530 list_for_each_entry(rdev, &mddev->disks, same_set)
5531 if (rdev->raid_disk < 0 &&
5532 !test_bit(Faulty, &rdev->flags))
5533 spares++;
5535 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5536 /* Not enough devices even to make a degraded array
5537 * of that size
5539 return -EINVAL;
5541 /* Refuse to reduce size of the array. Any reductions in
5542 * array size must be through explicit setting of array_size
5543 * attribute.
5545 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5546 < mddev->array_sectors) {
5547 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5548 "before number of disks\n", mdname(mddev));
5549 return -EINVAL;
5552 atomic_set(&conf->reshape_stripes, 0);
5553 spin_lock_irq(&conf->device_lock);
5554 conf->previous_raid_disks = conf->raid_disks;
5555 conf->raid_disks += mddev->delta_disks;
5556 conf->prev_chunk_sectors = conf->chunk_sectors;
5557 conf->chunk_sectors = mddev->new_chunk_sectors;
5558 conf->prev_algo = conf->algorithm;
5559 conf->algorithm = mddev->new_layout;
5560 if (mddev->delta_disks < 0)
5561 conf->reshape_progress = raid5_size(mddev, 0, 0);
5562 else
5563 conf->reshape_progress = 0;
5564 conf->reshape_safe = conf->reshape_progress;
5565 conf->generation++;
5566 spin_unlock_irq(&conf->device_lock);
5568 /* Add some new drives, as many as will fit.
5569 * We know there are enough to make the newly sized array work.
5570 * Don't add devices if we are reducing the number of
5571 * devices in the array. This is because it is not possible
5572 * to correctly record the "partially reconstructed" state of
5573 * such devices during the reshape and confusion could result.
5575 if (mddev->delta_disks >= 0)
5576 list_for_each_entry(rdev, &mddev->disks, same_set)
5577 if (rdev->raid_disk < 0 &&
5578 !test_bit(Faulty, &rdev->flags)) {
5579 if (raid5_add_disk(mddev, rdev) == 0) {
5580 char nm[20];
5581 if (rdev->raid_disk >= conf->previous_raid_disks) {
5582 set_bit(In_sync, &rdev->flags);
5583 added_devices++;
5584 } else
5585 rdev->recovery_offset = 0;
5586 sprintf(nm, "rd%d", rdev->raid_disk);
5587 if (sysfs_create_link(&mddev->kobj,
5588 &rdev->kobj, nm))
5589 /* Failure here is OK */;
5590 } else
5591 break;
5594 /* When a reshape changes the number of devices, ->degraded
5595 * is measured against the larger of the pre and post number of
5596 * devices.*/
5597 if (mddev->delta_disks > 0) {
5598 spin_lock_irqsave(&conf->device_lock, flags);
5599 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5600 - added_devices;
5601 spin_unlock_irqrestore(&conf->device_lock, flags);
5603 mddev->raid_disks = conf->raid_disks;
5604 mddev->reshape_position = conf->reshape_progress;
5605 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5607 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5608 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5609 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5610 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5611 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5612 "reshape");
5613 if (!mddev->sync_thread) {
5614 mddev->recovery = 0;
5615 spin_lock_irq(&conf->device_lock);
5616 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5617 conf->reshape_progress = MaxSector;
5618 spin_unlock_irq(&conf->device_lock);
5619 return -EAGAIN;
5621 conf->reshape_checkpoint = jiffies;
5622 md_wakeup_thread(mddev->sync_thread);
5623 md_new_event(mddev);
5624 return 0;
5627 /* This is called from the reshape thread and should make any
5628 * changes needed in 'conf'
5630 static void end_reshape(raid5_conf_t *conf)
5633 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5635 spin_lock_irq(&conf->device_lock);
5636 conf->previous_raid_disks = conf->raid_disks;
5637 conf->reshape_progress = MaxSector;
5638 spin_unlock_irq(&conf->device_lock);
5639 wake_up(&conf->wait_for_overlap);
5641 /* read-ahead size must cover two whole stripes, which is
5642 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5644 if (conf->mddev->queue) {
5645 int data_disks = conf->raid_disks - conf->max_degraded;
5646 int stripe = data_disks * ((conf->chunk_sectors << 9)
5647 / PAGE_SIZE);
5648 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5649 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5654 /* This is called from the raid5d thread with mddev_lock held.
5655 * It makes config changes to the device.
5657 static void raid5_finish_reshape(mddev_t *mddev)
5659 raid5_conf_t *conf = mddev->private;
5661 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5663 if (mddev->delta_disks > 0) {
5664 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5665 set_capacity(mddev->gendisk, mddev->array_sectors);
5666 revalidate_disk(mddev->gendisk);
5667 } else {
5668 int d;
5669 mddev->degraded = conf->raid_disks;
5670 for (d = 0; d < conf->raid_disks ; d++)
5671 if (conf->disks[d].rdev &&
5672 test_bit(In_sync,
5673 &conf->disks[d].rdev->flags))
5674 mddev->degraded--;
5675 for (d = conf->raid_disks ;
5676 d < conf->raid_disks - mddev->delta_disks;
5677 d++) {
5678 mdk_rdev_t *rdev = conf->disks[d].rdev;
5679 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5680 char nm[20];
5681 sprintf(nm, "rd%d", rdev->raid_disk);
5682 sysfs_remove_link(&mddev->kobj, nm);
5683 rdev->raid_disk = -1;
5687 mddev->layout = conf->algorithm;
5688 mddev->chunk_sectors = conf->chunk_sectors;
5689 mddev->reshape_position = MaxSector;
5690 mddev->delta_disks = 0;
5694 static void raid5_quiesce(mddev_t *mddev, int state)
5696 raid5_conf_t *conf = mddev->private;
5698 switch(state) {
5699 case 2: /* resume for a suspend */
5700 wake_up(&conf->wait_for_overlap);
5701 break;
5703 case 1: /* stop all writes */
5704 spin_lock_irq(&conf->device_lock);
5705 /* '2' tells resync/reshape to pause so that all
5706 * active stripes can drain
5708 conf->quiesce = 2;
5709 wait_event_lock_irq(conf->wait_for_stripe,
5710 atomic_read(&conf->active_stripes) == 0 &&
5711 atomic_read(&conf->active_aligned_reads) == 0,
5712 conf->device_lock, /* nothing */);
5713 conf->quiesce = 1;
5714 spin_unlock_irq(&conf->device_lock);
5715 /* allow reshape to continue */
5716 wake_up(&conf->wait_for_overlap);
5717 break;
5719 case 0: /* re-enable writes */
5720 spin_lock_irq(&conf->device_lock);
5721 conf->quiesce = 0;
5722 wake_up(&conf->wait_for_stripe);
5723 wake_up(&conf->wait_for_overlap);
5724 spin_unlock_irq(&conf->device_lock);
5725 break;
5730 static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5732 struct raid0_private_data *raid0_priv = mddev->private;
5734 /* for raid0 takeover only one zone is supported */
5735 if (raid0_priv->nr_strip_zones > 1) {
5736 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5737 mdname(mddev));
5738 return ERR_PTR(-EINVAL);
5741 mddev->new_level = level;
5742 mddev->new_layout = ALGORITHM_PARITY_N;
5743 mddev->new_chunk_sectors = mddev->chunk_sectors;
5744 mddev->raid_disks += 1;
5745 mddev->delta_disks = 1;
5746 /* make sure it will be not marked as dirty */
5747 mddev->recovery_cp = MaxSector;
5749 return setup_conf(mddev);
5753 static void *raid5_takeover_raid1(mddev_t *mddev)
5755 int chunksect;
5757 if (mddev->raid_disks != 2 ||
5758 mddev->degraded > 1)
5759 return ERR_PTR(-EINVAL);
5761 /* Should check if there are write-behind devices? */
5763 chunksect = 64*2; /* 64K by default */
5765 /* The array must be an exact multiple of chunksize */
5766 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5767 chunksect >>= 1;
5769 if ((chunksect<<9) < STRIPE_SIZE)
5770 /* array size does not allow a suitable chunk size */
5771 return ERR_PTR(-EINVAL);
5773 mddev->new_level = 5;
5774 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5775 mddev->new_chunk_sectors = chunksect;
5777 return setup_conf(mddev);
5780 static void *raid5_takeover_raid6(mddev_t *mddev)
5782 int new_layout;
5784 switch (mddev->layout) {
5785 case ALGORITHM_LEFT_ASYMMETRIC_6:
5786 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5787 break;
5788 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5789 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5790 break;
5791 case ALGORITHM_LEFT_SYMMETRIC_6:
5792 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5793 break;
5794 case ALGORITHM_RIGHT_SYMMETRIC_6:
5795 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5796 break;
5797 case ALGORITHM_PARITY_0_6:
5798 new_layout = ALGORITHM_PARITY_0;
5799 break;
5800 case ALGORITHM_PARITY_N:
5801 new_layout = ALGORITHM_PARITY_N;
5802 break;
5803 default:
5804 return ERR_PTR(-EINVAL);
5806 mddev->new_level = 5;
5807 mddev->new_layout = new_layout;
5808 mddev->delta_disks = -1;
5809 mddev->raid_disks -= 1;
5810 return setup_conf(mddev);
5814 static int raid5_check_reshape(mddev_t *mddev)
5816 /* For a 2-drive array, the layout and chunk size can be changed
5817 * immediately as not restriping is needed.
5818 * For larger arrays we record the new value - after validation
5819 * to be used by a reshape pass.
5821 raid5_conf_t *conf = mddev->private;
5822 int new_chunk = mddev->new_chunk_sectors;
5824 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5825 return -EINVAL;
5826 if (new_chunk > 0) {
5827 if (!is_power_of_2(new_chunk))
5828 return -EINVAL;
5829 if (new_chunk < (PAGE_SIZE>>9))
5830 return -EINVAL;
5831 if (mddev->array_sectors & (new_chunk-1))
5832 /* not factor of array size */
5833 return -EINVAL;
5836 /* They look valid */
5838 if (mddev->raid_disks == 2) {
5839 /* can make the change immediately */
5840 if (mddev->new_layout >= 0) {
5841 conf->algorithm = mddev->new_layout;
5842 mddev->layout = mddev->new_layout;
5844 if (new_chunk > 0) {
5845 conf->chunk_sectors = new_chunk ;
5846 mddev->chunk_sectors = new_chunk;
5848 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5849 md_wakeup_thread(mddev->thread);
5851 return check_reshape(mddev);
5854 static int raid6_check_reshape(mddev_t *mddev)
5856 int new_chunk = mddev->new_chunk_sectors;
5858 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5859 return -EINVAL;
5860 if (new_chunk > 0) {
5861 if (!is_power_of_2(new_chunk))
5862 return -EINVAL;
5863 if (new_chunk < (PAGE_SIZE >> 9))
5864 return -EINVAL;
5865 if (mddev->array_sectors & (new_chunk-1))
5866 /* not factor of array size */
5867 return -EINVAL;
5870 /* They look valid */
5871 return check_reshape(mddev);
5874 static void *raid5_takeover(mddev_t *mddev)
5876 /* raid5 can take over:
5877 * raid0 - if there is only one strip zone - make it a raid4 layout
5878 * raid1 - if there are two drives. We need to know the chunk size
5879 * raid4 - trivial - just use a raid4 layout.
5880 * raid6 - Providing it is a *_6 layout
5882 if (mddev->level == 0)
5883 return raid45_takeover_raid0(mddev, 5);
5884 if (mddev->level == 1)
5885 return raid5_takeover_raid1(mddev);
5886 if (mddev->level == 4) {
5887 mddev->new_layout = ALGORITHM_PARITY_N;
5888 mddev->new_level = 5;
5889 return setup_conf(mddev);
5891 if (mddev->level == 6)
5892 return raid5_takeover_raid6(mddev);
5894 return ERR_PTR(-EINVAL);
5897 static void *raid4_takeover(mddev_t *mddev)
5899 /* raid4 can take over:
5900 * raid0 - if there is only one strip zone
5901 * raid5 - if layout is right
5903 if (mddev->level == 0)
5904 return raid45_takeover_raid0(mddev, 4);
5905 if (mddev->level == 5 &&
5906 mddev->layout == ALGORITHM_PARITY_N) {
5907 mddev->new_layout = 0;
5908 mddev->new_level = 4;
5909 return setup_conf(mddev);
5911 return ERR_PTR(-EINVAL);
5914 static struct mdk_personality raid5_personality;
5916 static void *raid6_takeover(mddev_t *mddev)
5918 /* Currently can only take over a raid5. We map the
5919 * personality to an equivalent raid6 personality
5920 * with the Q block at the end.
5922 int new_layout;
5924 if (mddev->pers != &raid5_personality)
5925 return ERR_PTR(-EINVAL);
5926 if (mddev->degraded > 1)
5927 return ERR_PTR(-EINVAL);
5928 if (mddev->raid_disks > 253)
5929 return ERR_PTR(-EINVAL);
5930 if (mddev->raid_disks < 3)
5931 return ERR_PTR(-EINVAL);
5933 switch (mddev->layout) {
5934 case ALGORITHM_LEFT_ASYMMETRIC:
5935 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5936 break;
5937 case ALGORITHM_RIGHT_ASYMMETRIC:
5938 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5939 break;
5940 case ALGORITHM_LEFT_SYMMETRIC:
5941 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5942 break;
5943 case ALGORITHM_RIGHT_SYMMETRIC:
5944 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5945 break;
5946 case ALGORITHM_PARITY_0:
5947 new_layout = ALGORITHM_PARITY_0_6;
5948 break;
5949 case ALGORITHM_PARITY_N:
5950 new_layout = ALGORITHM_PARITY_N;
5951 break;
5952 default:
5953 return ERR_PTR(-EINVAL);
5955 mddev->new_level = 6;
5956 mddev->new_layout = new_layout;
5957 mddev->delta_disks = 1;
5958 mddev->raid_disks += 1;
5959 return setup_conf(mddev);
5963 static struct mdk_personality raid6_personality =
5965 .name = "raid6",
5966 .level = 6,
5967 .owner = THIS_MODULE,
5968 .make_request = make_request,
5969 .run = run,
5970 .stop = stop,
5971 .status = status,
5972 .error_handler = error,
5973 .hot_add_disk = raid5_add_disk,
5974 .hot_remove_disk= raid5_remove_disk,
5975 .spare_active = raid5_spare_active,
5976 .sync_request = sync_request,
5977 .resize = raid5_resize,
5978 .size = raid5_size,
5979 .check_reshape = raid6_check_reshape,
5980 .start_reshape = raid5_start_reshape,
5981 .finish_reshape = raid5_finish_reshape,
5982 .quiesce = raid5_quiesce,
5983 .takeover = raid6_takeover,
5985 static struct mdk_personality raid5_personality =
5987 .name = "raid5",
5988 .level = 5,
5989 .owner = THIS_MODULE,
5990 .make_request = make_request,
5991 .run = run,
5992 .stop = stop,
5993 .status = status,
5994 .error_handler = error,
5995 .hot_add_disk = raid5_add_disk,
5996 .hot_remove_disk= raid5_remove_disk,
5997 .spare_active = raid5_spare_active,
5998 .sync_request = sync_request,
5999 .resize = raid5_resize,
6000 .size = raid5_size,
6001 .check_reshape = raid5_check_reshape,
6002 .start_reshape = raid5_start_reshape,
6003 .finish_reshape = raid5_finish_reshape,
6004 .quiesce = raid5_quiesce,
6005 .takeover = raid5_takeover,
6008 static struct mdk_personality raid4_personality =
6010 .name = "raid4",
6011 .level = 4,
6012 .owner = THIS_MODULE,
6013 .make_request = make_request,
6014 .run = run,
6015 .stop = stop,
6016 .status = status,
6017 .error_handler = error,
6018 .hot_add_disk = raid5_add_disk,
6019 .hot_remove_disk= raid5_remove_disk,
6020 .spare_active = raid5_spare_active,
6021 .sync_request = sync_request,
6022 .resize = raid5_resize,
6023 .size = raid5_size,
6024 .check_reshape = raid5_check_reshape,
6025 .start_reshape = raid5_start_reshape,
6026 .finish_reshape = raid5_finish_reshape,
6027 .quiesce = raid5_quiesce,
6028 .takeover = raid4_takeover,
6031 static int __init raid5_init(void)
6033 register_md_personality(&raid6_personality);
6034 register_md_personality(&raid5_personality);
6035 register_md_personality(&raid4_personality);
6036 return 0;
6039 static void raid5_exit(void)
6041 unregister_md_personality(&raid6_personality);
6042 unregister_md_personality(&raid5_personality);
6043 unregister_md_personality(&raid4_personality);
6046 module_init(raid5_init);
6047 module_exit(raid5_exit);
6048 MODULE_LICENSE("GPL");
6049 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6050 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6051 MODULE_ALIAS("md-raid5");
6052 MODULE_ALIAS("md-raid4");
6053 MODULE_ALIAS("md-level-5");
6054 MODULE_ALIAS("md-level-4");
6055 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6056 MODULE_ALIAS("md-raid6");
6057 MODULE_ALIAS("md-level-6");
6059 /* This used to be two separate modules, they were: */
6060 MODULE_ALIAS("raid5");
6061 MODULE_ALIAS("raid6");