2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/uio.h>
22 #include <linux/sched.h>
24 #include <linux/file.h>
26 #include <linux/mman.h>
27 #include <linux/slab.h>
28 #include <linux/timer.h>
29 #include <linux/aio.h>
30 #include <linux/highmem.h>
31 #include <linux/workqueue.h>
32 #include <linux/security.h>
34 #include <asm/kmap_types.h>
35 #include <asm/uaccess.h>
36 #include <asm/mmu_context.h>
39 #define dprintk printk
41 #define dprintk(x...) do { ; } while (0)
44 /*------ sysctl variables----*/
45 static DEFINE_SPINLOCK(aio_nr_lock
);
46 unsigned long aio_nr
; /* current system wide number of aio requests */
47 unsigned long aio_max_nr
= 0x10000; /* system wide maximum number of aio requests */
48 /*----end sysctl variables---*/
50 static struct kmem_cache
*kiocb_cachep
;
51 static struct kmem_cache
*kioctx_cachep
;
53 static struct workqueue_struct
*aio_wq
;
55 /* Used for rare fput completion. */
56 static void aio_fput_routine(struct work_struct
*);
57 static DECLARE_WORK(fput_work
, aio_fput_routine
);
59 static DEFINE_SPINLOCK(fput_lock
);
60 static LIST_HEAD(fput_head
);
62 static void aio_kick_handler(struct work_struct
*);
63 static void aio_queue_work(struct kioctx
*);
66 * Creates the slab caches used by the aio routines, panic on
67 * failure as this is done early during the boot sequence.
69 static int __init
aio_setup(void)
71 kiocb_cachep
= kmem_cache_create("kiocb", sizeof(struct kiocb
),
72 0, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
73 kioctx_cachep
= kmem_cache_create("kioctx", sizeof(struct kioctx
),
74 0, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
76 aio_wq
= create_workqueue("aio");
78 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page
));
83 static void aio_free_ring(struct kioctx
*ctx
)
85 struct aio_ring_info
*info
= &ctx
->ring_info
;
88 for (i
=0; i
<info
->nr_pages
; i
++)
89 put_page(info
->ring_pages
[i
]);
91 if (info
->mmap_size
) {
92 down_write(&ctx
->mm
->mmap_sem
);
93 do_munmap(ctx
->mm
, info
->mmap_base
, info
->mmap_size
);
94 up_write(&ctx
->mm
->mmap_sem
);
97 if (info
->ring_pages
&& info
->ring_pages
!= info
->internal_pages
)
98 kfree(info
->ring_pages
);
99 info
->ring_pages
= NULL
;
103 static int aio_setup_ring(struct kioctx
*ctx
)
105 struct aio_ring
*ring
;
106 struct aio_ring_info
*info
= &ctx
->ring_info
;
107 unsigned nr_events
= ctx
->max_reqs
;
111 /* Compensate for the ring buffer's head/tail overlap entry */
112 nr_events
+= 2; /* 1 is required, 2 for good luck */
114 size
= sizeof(struct aio_ring
);
115 size
+= sizeof(struct io_event
) * nr_events
;
116 nr_pages
= (size
+ PAGE_SIZE
-1) >> PAGE_SHIFT
;
121 nr_events
= (PAGE_SIZE
* nr_pages
- sizeof(struct aio_ring
)) / sizeof(struct io_event
);
124 info
->ring_pages
= info
->internal_pages
;
125 if (nr_pages
> AIO_RING_PAGES
) {
126 info
->ring_pages
= kcalloc(nr_pages
, sizeof(struct page
*), GFP_KERNEL
);
127 if (!info
->ring_pages
)
131 info
->mmap_size
= nr_pages
* PAGE_SIZE
;
132 dprintk("attempting mmap of %lu bytes\n", info
->mmap_size
);
133 down_write(&ctx
->mm
->mmap_sem
);
134 info
->mmap_base
= do_mmap(NULL
, 0, info
->mmap_size
,
135 PROT_READ
|PROT_WRITE
, MAP_ANON
|MAP_PRIVATE
,
137 if (IS_ERR((void *)info
->mmap_base
)) {
138 up_write(&ctx
->mm
->mmap_sem
);
139 printk("mmap err: %ld\n", -info
->mmap_base
);
145 dprintk("mmap address: 0x%08lx\n", info
->mmap_base
);
146 info
->nr_pages
= get_user_pages(current
, ctx
->mm
,
147 info
->mmap_base
, nr_pages
,
148 1, 0, info
->ring_pages
, NULL
);
149 up_write(&ctx
->mm
->mmap_sem
);
151 if (unlikely(info
->nr_pages
!= nr_pages
)) {
156 ctx
->user_id
= info
->mmap_base
;
158 info
->nr
= nr_events
; /* trusted copy */
160 ring
= kmap_atomic(info
->ring_pages
[0], KM_USER0
);
161 ring
->nr
= nr_events
; /* user copy */
162 ring
->id
= ctx
->user_id
;
163 ring
->head
= ring
->tail
= 0;
164 ring
->magic
= AIO_RING_MAGIC
;
165 ring
->compat_features
= AIO_RING_COMPAT_FEATURES
;
166 ring
->incompat_features
= AIO_RING_INCOMPAT_FEATURES
;
167 ring
->header_length
= sizeof(struct aio_ring
);
168 kunmap_atomic(ring
, KM_USER0
);
174 /* aio_ring_event: returns a pointer to the event at the given index from
175 * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
177 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
178 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
179 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
181 #define aio_ring_event(info, nr, km) ({ \
182 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
183 struct io_event *__event; \
184 __event = kmap_atomic( \
185 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
186 __event += pos % AIO_EVENTS_PER_PAGE; \
190 #define put_aio_ring_event(event, km) do { \
191 struct io_event *__event = (event); \
193 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
197 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
199 static struct kioctx
*ioctx_alloc(unsigned nr_events
)
201 struct mm_struct
*mm
;
204 /* Prevent overflows */
205 if ((nr_events
> (0x10000000U
/ sizeof(struct io_event
))) ||
206 (nr_events
> (0x10000000U
/ sizeof(struct kiocb
)))) {
207 pr_debug("ENOMEM: nr_events too high\n");
208 return ERR_PTR(-EINVAL
);
211 if ((unsigned long)nr_events
> aio_max_nr
)
212 return ERR_PTR(-EAGAIN
);
214 ctx
= kmem_cache_alloc(kioctx_cachep
, GFP_KERNEL
);
216 return ERR_PTR(-ENOMEM
);
218 memset(ctx
, 0, sizeof(*ctx
));
219 ctx
->max_reqs
= nr_events
;
220 mm
= ctx
->mm
= current
->mm
;
221 atomic_inc(&mm
->mm_count
);
223 atomic_set(&ctx
->users
, 1);
224 spin_lock_init(&ctx
->ctx_lock
);
225 spin_lock_init(&ctx
->ring_info
.ring_lock
);
226 init_waitqueue_head(&ctx
->wait
);
228 INIT_LIST_HEAD(&ctx
->active_reqs
);
229 INIT_LIST_HEAD(&ctx
->run_list
);
230 INIT_DELAYED_WORK(&ctx
->wq
, aio_kick_handler
);
232 if (aio_setup_ring(ctx
) < 0)
235 /* limit the number of system wide aios */
236 spin_lock(&aio_nr_lock
);
237 if (aio_nr
+ ctx
->max_reqs
> aio_max_nr
||
238 aio_nr
+ ctx
->max_reqs
< aio_nr
)
241 aio_nr
+= ctx
->max_reqs
;
242 spin_unlock(&aio_nr_lock
);
243 if (ctx
->max_reqs
== 0)
246 /* now link into global list. kludge. FIXME */
247 write_lock(&mm
->ioctx_list_lock
);
248 ctx
->next
= mm
->ioctx_list
;
249 mm
->ioctx_list
= ctx
;
250 write_unlock(&mm
->ioctx_list_lock
);
252 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
253 ctx
, ctx
->user_id
, current
->mm
, ctx
->ring_info
.nr
);
258 return ERR_PTR(-EAGAIN
);
262 kmem_cache_free(kioctx_cachep
, ctx
);
263 ctx
= ERR_PTR(-ENOMEM
);
265 dprintk("aio: error allocating ioctx %p\n", ctx
);
270 * Cancels all outstanding aio requests on an aio context. Used
271 * when the processes owning a context have all exited to encourage
272 * the rapid destruction of the kioctx.
274 static void aio_cancel_all(struct kioctx
*ctx
)
276 int (*cancel
)(struct kiocb
*, struct io_event
*);
278 spin_lock_irq(&ctx
->ctx_lock
);
280 while (!list_empty(&ctx
->active_reqs
)) {
281 struct list_head
*pos
= ctx
->active_reqs
.next
;
282 struct kiocb
*iocb
= list_kiocb(pos
);
283 list_del_init(&iocb
->ki_list
);
284 cancel
= iocb
->ki_cancel
;
285 kiocbSetCancelled(iocb
);
288 spin_unlock_irq(&ctx
->ctx_lock
);
290 spin_lock_irq(&ctx
->ctx_lock
);
293 spin_unlock_irq(&ctx
->ctx_lock
);
296 static void wait_for_all_aios(struct kioctx
*ctx
)
298 struct task_struct
*tsk
= current
;
299 DECLARE_WAITQUEUE(wait
, tsk
);
301 spin_lock_irq(&ctx
->ctx_lock
);
302 if (!ctx
->reqs_active
)
305 add_wait_queue(&ctx
->wait
, &wait
);
306 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
307 while (ctx
->reqs_active
) {
308 spin_unlock_irq(&ctx
->ctx_lock
);
310 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
311 spin_lock_irq(&ctx
->ctx_lock
);
313 __set_task_state(tsk
, TASK_RUNNING
);
314 remove_wait_queue(&ctx
->wait
, &wait
);
317 spin_unlock_irq(&ctx
->ctx_lock
);
320 /* wait_on_sync_kiocb:
321 * Waits on the given sync kiocb to complete.
323 ssize_t fastcall
wait_on_sync_kiocb(struct kiocb
*iocb
)
325 while (iocb
->ki_users
) {
326 set_current_state(TASK_UNINTERRUPTIBLE
);
331 __set_current_state(TASK_RUNNING
);
332 return iocb
->ki_user_data
;
335 /* exit_aio: called when the last user of mm goes away. At this point,
336 * there is no way for any new requests to be submited or any of the
337 * io_* syscalls to be called on the context. However, there may be
338 * outstanding requests which hold references to the context; as they
339 * go away, they will call put_ioctx and release any pinned memory
340 * associated with the request (held via struct page * references).
342 void fastcall
exit_aio(struct mm_struct
*mm
)
344 struct kioctx
*ctx
= mm
->ioctx_list
;
345 mm
->ioctx_list
= NULL
;
347 struct kioctx
*next
= ctx
->next
;
351 wait_for_all_aios(ctx
);
353 * this is an overkill, but ensures we don't leave
354 * the ctx on the aio_wq
356 flush_workqueue(aio_wq
);
358 if (1 != atomic_read(&ctx
->users
))
360 "exit_aio:ioctx still alive: %d %d %d\n",
361 atomic_read(&ctx
->users
), ctx
->dead
,
369 * Called when the last user of an aio context has gone away,
370 * and the struct needs to be freed.
372 void fastcall
__put_ioctx(struct kioctx
*ctx
)
374 unsigned nr_events
= ctx
->max_reqs
;
376 BUG_ON(ctx
->reqs_active
);
378 cancel_delayed_work(&ctx
->wq
);
379 flush_workqueue(aio_wq
);
383 pr_debug("__put_ioctx: freeing %p\n", ctx
);
384 kmem_cache_free(kioctx_cachep
, ctx
);
387 spin_lock(&aio_nr_lock
);
388 BUG_ON(aio_nr
- nr_events
> aio_nr
);
390 spin_unlock(&aio_nr_lock
);
395 * Allocate a slot for an aio request. Increments the users count
396 * of the kioctx so that the kioctx stays around until all requests are
397 * complete. Returns NULL if no requests are free.
399 * Returns with kiocb->users set to 2. The io submit code path holds
400 * an extra reference while submitting the i/o.
401 * This prevents races between the aio code path referencing the
402 * req (after submitting it) and aio_complete() freeing the req.
404 static struct kiocb
*FASTCALL(__aio_get_req(struct kioctx
*ctx
));
405 static struct kiocb fastcall
*__aio_get_req(struct kioctx
*ctx
)
407 struct kiocb
*req
= NULL
;
408 struct aio_ring
*ring
;
411 req
= kmem_cache_alloc(kiocb_cachep
, GFP_KERNEL
);
419 req
->ki_cancel
= NULL
;
420 req
->ki_retry
= NULL
;
423 req
->ki_iovec
= NULL
;
424 INIT_LIST_HEAD(&req
->ki_run_list
);
426 /* Check if the completion queue has enough free space to
427 * accept an event from this io.
429 spin_lock_irq(&ctx
->ctx_lock
);
430 ring
= kmap_atomic(ctx
->ring_info
.ring_pages
[0], KM_USER0
);
431 if (ctx
->reqs_active
< aio_ring_avail(&ctx
->ring_info
, ring
)) {
432 list_add(&req
->ki_list
, &ctx
->active_reqs
);
436 kunmap_atomic(ring
, KM_USER0
);
437 spin_unlock_irq(&ctx
->ctx_lock
);
440 kmem_cache_free(kiocb_cachep
, req
);
447 static inline struct kiocb
*aio_get_req(struct kioctx
*ctx
)
450 /* Handle a potential starvation case -- should be exceedingly rare as
451 * requests will be stuck on fput_head only if the aio_fput_routine is
452 * delayed and the requests were the last user of the struct file.
454 req
= __aio_get_req(ctx
);
455 if (unlikely(NULL
== req
)) {
456 aio_fput_routine(NULL
);
457 req
= __aio_get_req(ctx
);
462 static inline void really_put_req(struct kioctx
*ctx
, struct kiocb
*req
)
464 assert_spin_locked(&ctx
->ctx_lock
);
468 if (req
->ki_iovec
!= &req
->ki_inline_vec
)
469 kfree(req
->ki_iovec
);
470 kmem_cache_free(kiocb_cachep
, req
);
473 if (unlikely(!ctx
->reqs_active
&& ctx
->dead
))
477 static void aio_fput_routine(struct work_struct
*data
)
479 spin_lock_irq(&fput_lock
);
480 while (likely(!list_empty(&fput_head
))) {
481 struct kiocb
*req
= list_kiocb(fput_head
.next
);
482 struct kioctx
*ctx
= req
->ki_ctx
;
484 list_del(&req
->ki_list
);
485 spin_unlock_irq(&fput_lock
);
487 /* Complete the fput */
488 __fput(req
->ki_filp
);
490 /* Link the iocb into the context's free list */
491 spin_lock_irq(&ctx
->ctx_lock
);
492 really_put_req(ctx
, req
);
493 spin_unlock_irq(&ctx
->ctx_lock
);
496 spin_lock_irq(&fput_lock
);
498 spin_unlock_irq(&fput_lock
);
502 * Returns true if this put was the last user of the request.
504 static int __aio_put_req(struct kioctx
*ctx
, struct kiocb
*req
)
506 dprintk(KERN_DEBUG
"aio_put(%p): f_count=%d\n",
507 req
, atomic_read(&req
->ki_filp
->f_count
));
509 assert_spin_locked(&ctx
->ctx_lock
);
512 BUG_ON(req
->ki_users
< 0);
513 if (likely(req
->ki_users
))
515 list_del(&req
->ki_list
); /* remove from active_reqs */
516 req
->ki_cancel
= NULL
;
517 req
->ki_retry
= NULL
;
519 /* Must be done under the lock to serialise against cancellation.
520 * Call this aio_fput as it duplicates fput via the fput_work.
522 if (unlikely(atomic_dec_and_test(&req
->ki_filp
->f_count
))) {
524 spin_lock(&fput_lock
);
525 list_add(&req
->ki_list
, &fput_head
);
526 spin_unlock(&fput_lock
);
527 queue_work(aio_wq
, &fput_work
);
529 really_put_req(ctx
, req
);
534 * Returns true if this put was the last user of the kiocb,
535 * false if the request is still in use.
537 int fastcall
aio_put_req(struct kiocb
*req
)
539 struct kioctx
*ctx
= req
->ki_ctx
;
541 spin_lock_irq(&ctx
->ctx_lock
);
542 ret
= __aio_put_req(ctx
, req
);
543 spin_unlock_irq(&ctx
->ctx_lock
);
547 /* Lookup an ioctx id. ioctx_list is lockless for reads.
548 * FIXME: this is O(n) and is only suitable for development.
550 struct kioctx
*lookup_ioctx(unsigned long ctx_id
)
552 struct kioctx
*ioctx
;
553 struct mm_struct
*mm
;
556 read_lock(&mm
->ioctx_list_lock
);
557 for (ioctx
= mm
->ioctx_list
; ioctx
; ioctx
= ioctx
->next
)
558 if (likely(ioctx
->user_id
== ctx_id
&& !ioctx
->dead
)) {
562 read_unlock(&mm
->ioctx_list_lock
);
569 * Makes the calling kernel thread take on the specified
571 * Called by the retry thread execute retries within the
572 * iocb issuer's mm context, so that copy_from/to_user
573 * operations work seamlessly for aio.
574 * (Note: this routine is intended to be called only
575 * from a kernel thread context)
577 static void use_mm(struct mm_struct
*mm
)
579 struct mm_struct
*active_mm
;
580 struct task_struct
*tsk
= current
;
583 tsk
->flags
|= PF_BORROWED_MM
;
584 active_mm
= tsk
->active_mm
;
585 atomic_inc(&mm
->mm_count
);
589 * Note that on UML this *requires* PF_BORROWED_MM to be set, otherwise
590 * it won't work. Update it accordingly if you change it here
592 switch_mm(active_mm
, mm
, tsk
);
600 * Reverses the effect of use_mm, i.e. releases the
601 * specified mm context which was earlier taken on
602 * by the calling kernel thread
603 * (Note: this routine is intended to be called only
604 * from a kernel thread context)
606 static void unuse_mm(struct mm_struct
*mm
)
608 struct task_struct
*tsk
= current
;
611 tsk
->flags
&= ~PF_BORROWED_MM
;
613 /* active_mm is still 'mm' */
614 enter_lazy_tlb(mm
, tsk
);
619 * Queue up a kiocb to be retried. Assumes that the kiocb
620 * has already been marked as kicked, and places it on
621 * the retry run list for the corresponding ioctx, if it
622 * isn't already queued. Returns 1 if it actually queued
623 * the kiocb (to tell the caller to activate the work
624 * queue to process it), or 0, if it found that it was
627 static inline int __queue_kicked_iocb(struct kiocb
*iocb
)
629 struct kioctx
*ctx
= iocb
->ki_ctx
;
631 assert_spin_locked(&ctx
->ctx_lock
);
633 if (list_empty(&iocb
->ki_run_list
)) {
634 list_add_tail(&iocb
->ki_run_list
,
642 * This is the core aio execution routine. It is
643 * invoked both for initial i/o submission and
644 * subsequent retries via the aio_kick_handler.
645 * Expects to be invoked with iocb->ki_ctx->lock
646 * already held. The lock is released and reacquired
647 * as needed during processing.
649 * Calls the iocb retry method (already setup for the
650 * iocb on initial submission) for operation specific
651 * handling, but takes care of most of common retry
652 * execution details for a given iocb. The retry method
653 * needs to be non-blocking as far as possible, to avoid
654 * holding up other iocbs waiting to be serviced by the
655 * retry kernel thread.
657 * The trickier parts in this code have to do with
658 * ensuring that only one retry instance is in progress
659 * for a given iocb at any time. Providing that guarantee
660 * simplifies the coding of individual aio operations as
661 * it avoids various potential races.
663 static ssize_t
aio_run_iocb(struct kiocb
*iocb
)
665 struct kioctx
*ctx
= iocb
->ki_ctx
;
666 ssize_t (*retry
)(struct kiocb
*);
669 if (!(retry
= iocb
->ki_retry
)) {
670 printk("aio_run_iocb: iocb->ki_retry = NULL\n");
675 * We don't want the next retry iteration for this
676 * operation to start until this one has returned and
677 * updated the iocb state. However, wait_queue functions
678 * can trigger a kick_iocb from interrupt context in the
679 * meantime, indicating that data is available for the next
680 * iteration. We want to remember that and enable the
681 * next retry iteration _after_ we are through with
684 * So, in order to be able to register a "kick", but
685 * prevent it from being queued now, we clear the kick
686 * flag, but make the kick code *think* that the iocb is
687 * still on the run list until we are actually done.
688 * When we are done with this iteration, we check if
689 * the iocb was kicked in the meantime and if so, queue
693 kiocbClearKicked(iocb
);
696 * This is so that aio_complete knows it doesn't need to
697 * pull the iocb off the run list (We can't just call
698 * INIT_LIST_HEAD because we don't want a kick_iocb to
699 * queue this on the run list yet)
701 iocb
->ki_run_list
.next
= iocb
->ki_run_list
.prev
= NULL
;
702 spin_unlock_irq(&ctx
->ctx_lock
);
704 /* Quit retrying if the i/o has been cancelled */
705 if (kiocbIsCancelled(iocb
)) {
707 aio_complete(iocb
, ret
, 0);
708 /* must not access the iocb after this */
713 * Now we are all set to call the retry method in async
714 * context. By setting this thread's io_wait context
715 * to point to the wait queue entry inside the currently
716 * running iocb for the duration of the retry, we ensure
717 * that async notification wakeups are queued by the
718 * operation instead of blocking waits, and when notified,
719 * cause the iocb to be kicked for continuation (through
720 * the aio_wake_function callback).
722 BUG_ON(current
->io_wait
!= NULL
);
723 current
->io_wait
= &iocb
->ki_wait
;
725 current
->io_wait
= NULL
;
727 if (ret
!= -EIOCBRETRY
&& ret
!= -EIOCBQUEUED
) {
728 BUG_ON(!list_empty(&iocb
->ki_wait
.task_list
));
729 aio_complete(iocb
, ret
, 0);
732 spin_lock_irq(&ctx
->ctx_lock
);
734 if (-EIOCBRETRY
== ret
) {
736 * OK, now that we are done with this iteration
737 * and know that there is more left to go,
738 * this is where we let go so that a subsequent
739 * "kick" can start the next iteration
742 /* will make __queue_kicked_iocb succeed from here on */
743 INIT_LIST_HEAD(&iocb
->ki_run_list
);
744 /* we must queue the next iteration ourselves, if it
745 * has already been kicked */
746 if (kiocbIsKicked(iocb
)) {
747 __queue_kicked_iocb(iocb
);
750 * __queue_kicked_iocb will always return 1 here, because
751 * iocb->ki_run_list is empty at this point so it should
752 * be safe to unconditionally queue the context into the
763 * Process all pending retries queued on the ioctx
765 * Assumes it is operating within the aio issuer's mm
768 static int __aio_run_iocbs(struct kioctx
*ctx
)
771 struct list_head run_list
;
773 assert_spin_locked(&ctx
->ctx_lock
);
775 list_replace_init(&ctx
->run_list
, &run_list
);
776 while (!list_empty(&run_list
)) {
777 iocb
= list_entry(run_list
.next
, struct kiocb
,
779 list_del(&iocb
->ki_run_list
);
781 * Hold an extra reference while retrying i/o.
783 iocb
->ki_users
++; /* grab extra reference */
785 __aio_put_req(ctx
, iocb
);
787 if (!list_empty(&ctx
->run_list
))
792 static void aio_queue_work(struct kioctx
* ctx
)
794 unsigned long timeout
;
796 * if someone is waiting, get the work started right
797 * away, otherwise, use a longer delay
800 if (waitqueue_active(&ctx
->wait
))
804 queue_delayed_work(aio_wq
, &ctx
->wq
, timeout
);
810 * Process all pending retries queued on the ioctx
812 * Assumes it is operating within the aio issuer's mm
815 static inline void aio_run_iocbs(struct kioctx
*ctx
)
819 spin_lock_irq(&ctx
->ctx_lock
);
821 requeue
= __aio_run_iocbs(ctx
);
822 spin_unlock_irq(&ctx
->ctx_lock
);
828 * just like aio_run_iocbs, but keeps running them until
829 * the list stays empty
831 static inline void aio_run_all_iocbs(struct kioctx
*ctx
)
833 spin_lock_irq(&ctx
->ctx_lock
);
834 while (__aio_run_iocbs(ctx
))
836 spin_unlock_irq(&ctx
->ctx_lock
);
841 * Work queue handler triggered to process pending
842 * retries on an ioctx. Takes on the aio issuer's
843 * mm context before running the iocbs, so that
844 * copy_xxx_user operates on the issuer's address
846 * Run on aiod's context.
848 static void aio_kick_handler(struct work_struct
*work
)
850 struct kioctx
*ctx
= container_of(work
, struct kioctx
, wq
.work
);
851 mm_segment_t oldfs
= get_fs();
852 struct mm_struct
*mm
;
857 spin_lock_irq(&ctx
->ctx_lock
);
858 requeue
=__aio_run_iocbs(ctx
);
860 spin_unlock_irq(&ctx
->ctx_lock
);
864 * we're in a worker thread already, don't use queue_delayed_work,
867 queue_delayed_work(aio_wq
, &ctx
->wq
, 0);
872 * Called by kick_iocb to queue the kiocb for retry
873 * and if required activate the aio work queue to process
876 static void try_queue_kicked_iocb(struct kiocb
*iocb
)
878 struct kioctx
*ctx
= iocb
->ki_ctx
;
882 /* We're supposed to be the only path putting the iocb back on the run
883 * list. If we find that the iocb is *back* on a wait queue already
884 * than retry has happened before we could queue the iocb. This also
885 * means that the retry could have completed and freed our iocb, no
887 BUG_ON((!list_empty(&iocb
->ki_wait
.task_list
)));
889 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
890 /* set this inside the lock so that we can't race with aio_run_iocb()
891 * testing it and putting the iocb on the run list under the lock */
892 if (!kiocbTryKick(iocb
))
893 run
= __queue_kicked_iocb(iocb
);
894 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
901 * Called typically from a wait queue callback context
902 * (aio_wake_function) to trigger a retry of the iocb.
903 * The retry is usually executed by aio workqueue
904 * threads (See aio_kick_handler).
906 void fastcall
kick_iocb(struct kiocb
*iocb
)
908 /* sync iocbs are easy: they can only ever be executing from a
910 if (is_sync_kiocb(iocb
)) {
911 kiocbSetKicked(iocb
);
912 wake_up_process(iocb
->ki_obj
.tsk
);
916 try_queue_kicked_iocb(iocb
);
918 EXPORT_SYMBOL(kick_iocb
);
921 * Called when the io request on the given iocb is complete.
922 * Returns true if this is the last user of the request. The
923 * only other user of the request can be the cancellation code.
925 int fastcall
aio_complete(struct kiocb
*iocb
, long res
, long res2
)
927 struct kioctx
*ctx
= iocb
->ki_ctx
;
928 struct aio_ring_info
*info
;
929 struct aio_ring
*ring
;
930 struct io_event
*event
;
936 * Special case handling for sync iocbs:
937 * - events go directly into the iocb for fast handling
938 * - the sync task with the iocb in its stack holds the single iocb
939 * ref, no other paths have a way to get another ref
940 * - the sync task helpfully left a reference to itself in the iocb
942 if (is_sync_kiocb(iocb
)) {
943 BUG_ON(iocb
->ki_users
!= 1);
944 iocb
->ki_user_data
= res
;
946 wake_up_process(iocb
->ki_obj
.tsk
);
950 info
= &ctx
->ring_info
;
952 /* add a completion event to the ring buffer.
953 * must be done holding ctx->ctx_lock to prevent
954 * other code from messing with the tail
955 * pointer since we might be called from irq
958 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
960 if (iocb
->ki_run_list
.prev
&& !list_empty(&iocb
->ki_run_list
))
961 list_del_init(&iocb
->ki_run_list
);
964 * cancelled requests don't get events, userland was given one
965 * when the event got cancelled.
967 if (kiocbIsCancelled(iocb
))
970 ring
= kmap_atomic(info
->ring_pages
[0], KM_IRQ1
);
973 event
= aio_ring_event(info
, tail
, KM_IRQ0
);
974 if (++tail
>= info
->nr
)
977 event
->obj
= (u64
)(unsigned long)iocb
->ki_obj
.user
;
978 event
->data
= iocb
->ki_user_data
;
982 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
983 ctx
, tail
, iocb
, iocb
->ki_obj
.user
, iocb
->ki_user_data
,
986 /* after flagging the request as done, we
987 * must never even look at it again
989 smp_wmb(); /* make event visible before updating tail */
994 put_aio_ring_event(event
, KM_IRQ0
);
995 kunmap_atomic(ring
, KM_IRQ1
);
997 pr_debug("added to ring %p at [%lu]\n", iocb
, tail
);
999 /* everything turned out well, dispose of the aiocb. */
1000 ret
= __aio_put_req(ctx
, iocb
);
1002 if (waitqueue_active(&ctx
->wait
))
1003 wake_up(&ctx
->wait
);
1005 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
1010 * Pull an event off of the ioctx's event ring. Returns the number of
1011 * events fetched (0 or 1 ;-)
1012 * FIXME: make this use cmpxchg.
1013 * TODO: make the ringbuffer user mmap()able (requires FIXME).
1015 static int aio_read_evt(struct kioctx
*ioctx
, struct io_event
*ent
)
1017 struct aio_ring_info
*info
= &ioctx
->ring_info
;
1018 struct aio_ring
*ring
;
1022 ring
= kmap_atomic(info
->ring_pages
[0], KM_USER0
);
1023 dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1024 (unsigned long)ring
->head
, (unsigned long)ring
->tail
,
1025 (unsigned long)ring
->nr
);
1027 if (ring
->head
== ring
->tail
)
1030 spin_lock(&info
->ring_lock
);
1032 head
= ring
->head
% info
->nr
;
1033 if (head
!= ring
->tail
) {
1034 struct io_event
*evp
= aio_ring_event(info
, head
, KM_USER1
);
1036 head
= (head
+ 1) % info
->nr
;
1037 smp_mb(); /* finish reading the event before updatng the head */
1040 put_aio_ring_event(evp
, KM_USER1
);
1042 spin_unlock(&info
->ring_lock
);
1045 kunmap_atomic(ring
, KM_USER0
);
1046 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret
,
1047 (unsigned long)ring
->head
, (unsigned long)ring
->tail
);
1051 struct aio_timeout
{
1052 struct timer_list timer
;
1054 struct task_struct
*p
;
1057 static void timeout_func(unsigned long data
)
1059 struct aio_timeout
*to
= (struct aio_timeout
*)data
;
1062 wake_up_process(to
->p
);
1065 static inline void init_timeout(struct aio_timeout
*to
)
1067 init_timer(&to
->timer
);
1068 to
->timer
.data
= (unsigned long)to
;
1069 to
->timer
.function
= timeout_func
;
1074 static inline void set_timeout(long start_jiffies
, struct aio_timeout
*to
,
1075 const struct timespec
*ts
)
1077 to
->timer
.expires
= start_jiffies
+ timespec_to_jiffies(ts
);
1078 if (time_after(to
->timer
.expires
, jiffies
))
1079 add_timer(&to
->timer
);
1084 static inline void clear_timeout(struct aio_timeout
*to
)
1086 del_singleshot_timer_sync(&to
->timer
);
1089 static int read_events(struct kioctx
*ctx
,
1090 long min_nr
, long nr
,
1091 struct io_event __user
*event
,
1092 struct timespec __user
*timeout
)
1094 long start_jiffies
= jiffies
;
1095 struct task_struct
*tsk
= current
;
1096 DECLARE_WAITQUEUE(wait
, tsk
);
1099 struct io_event ent
;
1100 struct aio_timeout to
;
1103 /* needed to zero any padding within an entry (there shouldn't be
1104 * any, but C is fun!
1106 memset(&ent
, 0, sizeof(ent
));
1109 while (likely(i
< nr
)) {
1110 ret
= aio_read_evt(ctx
, &ent
);
1111 if (unlikely(ret
<= 0))
1114 dprintk("read event: %Lx %Lx %Lx %Lx\n",
1115 ent
.data
, ent
.obj
, ent
.res
, ent
.res2
);
1117 /* Could we split the check in two? */
1119 if (unlikely(copy_to_user(event
, &ent
, sizeof(ent
)))) {
1120 dprintk("aio: lost an event due to EFAULT.\n");
1125 /* Good, event copied to userland, update counts. */
1137 /* racey check, but it gets redone */
1138 if (!retry
&& unlikely(!list_empty(&ctx
->run_list
))) {
1140 aio_run_all_iocbs(ctx
);
1148 if (unlikely(copy_from_user(&ts
, timeout
, sizeof(ts
))))
1151 set_timeout(start_jiffies
, &to
, &ts
);
1154 while (likely(i
< nr
)) {
1155 add_wait_queue_exclusive(&ctx
->wait
, &wait
);
1157 set_task_state(tsk
, TASK_INTERRUPTIBLE
);
1158 ret
= aio_read_evt(ctx
, &ent
);
1164 if (to
.timed_out
) /* Only check after read evt */
1167 if (signal_pending(tsk
)) {
1171 /*ret = aio_read_evt(ctx, &ent);*/
1174 set_task_state(tsk
, TASK_RUNNING
);
1175 remove_wait_queue(&ctx
->wait
, &wait
);
1177 if (unlikely(ret
<= 0))
1181 if (unlikely(copy_to_user(event
, &ent
, sizeof(ent
)))) {
1182 dprintk("aio: lost an event due to EFAULT.\n");
1186 /* Good, event copied to userland, update counts. */
1197 /* Take an ioctx and remove it from the list of ioctx's. Protects
1198 * against races with itself via ->dead.
1200 static void io_destroy(struct kioctx
*ioctx
)
1202 struct mm_struct
*mm
= current
->mm
;
1203 struct kioctx
**tmp
;
1206 /* delete the entry from the list is someone else hasn't already */
1207 write_lock(&mm
->ioctx_list_lock
);
1208 was_dead
= ioctx
->dead
;
1210 for (tmp
= &mm
->ioctx_list
; *tmp
&& *tmp
!= ioctx
;
1211 tmp
= &(*tmp
)->next
)
1215 write_unlock(&mm
->ioctx_list_lock
);
1217 dprintk("aio_release(%p)\n", ioctx
);
1218 if (likely(!was_dead
))
1219 put_ioctx(ioctx
); /* twice for the list */
1221 aio_cancel_all(ioctx
);
1222 wait_for_all_aios(ioctx
);
1223 put_ioctx(ioctx
); /* once for the lookup */
1227 * Create an aio_context capable of receiving at least nr_events.
1228 * ctxp must not point to an aio_context that already exists, and
1229 * must be initialized to 0 prior to the call. On successful
1230 * creation of the aio_context, *ctxp is filled in with the resulting
1231 * handle. May fail with -EINVAL if *ctxp is not initialized,
1232 * if the specified nr_events exceeds internal limits. May fail
1233 * with -EAGAIN if the specified nr_events exceeds the user's limit
1234 * of available events. May fail with -ENOMEM if insufficient kernel
1235 * resources are available. May fail with -EFAULT if an invalid
1236 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1239 asmlinkage
long sys_io_setup(unsigned nr_events
, aio_context_t __user
*ctxp
)
1241 struct kioctx
*ioctx
= NULL
;
1245 ret
= get_user(ctx
, ctxp
);
1250 if (unlikely(ctx
|| nr_events
== 0)) {
1251 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1256 ioctx
= ioctx_alloc(nr_events
);
1257 ret
= PTR_ERR(ioctx
);
1258 if (!IS_ERR(ioctx
)) {
1259 ret
= put_user(ioctx
->user_id
, ctxp
);
1263 get_ioctx(ioctx
); /* io_destroy() expects us to hold a ref */
1272 * Destroy the aio_context specified. May cancel any outstanding
1273 * AIOs and block on completion. Will fail with -ENOSYS if not
1274 * implemented. May fail with -EFAULT if the context pointed to
1277 asmlinkage
long sys_io_destroy(aio_context_t ctx
)
1279 struct kioctx
*ioctx
= lookup_ioctx(ctx
);
1280 if (likely(NULL
!= ioctx
)) {
1284 pr_debug("EINVAL: io_destroy: invalid context id\n");
1288 static void aio_advance_iovec(struct kiocb
*iocb
, ssize_t ret
)
1290 struct iovec
*iov
= &iocb
->ki_iovec
[iocb
->ki_cur_seg
];
1294 while (iocb
->ki_cur_seg
< iocb
->ki_nr_segs
&& ret
> 0) {
1295 ssize_t
this = min((ssize_t
)iov
->iov_len
, ret
);
1296 iov
->iov_base
+= this;
1297 iov
->iov_len
-= this;
1298 iocb
->ki_left
-= this;
1300 if (iov
->iov_len
== 0) {
1306 /* the caller should not have done more io than what fit in
1307 * the remaining iovecs */
1308 BUG_ON(ret
> 0 && iocb
->ki_left
== 0);
1311 static ssize_t
aio_rw_vect_retry(struct kiocb
*iocb
)
1313 struct file
*file
= iocb
->ki_filp
;
1314 struct address_space
*mapping
= file
->f_mapping
;
1315 struct inode
*inode
= mapping
->host
;
1316 ssize_t (*rw_op
)(struct kiocb
*, const struct iovec
*,
1317 unsigned long, loff_t
);
1319 unsigned short opcode
;
1321 if ((iocb
->ki_opcode
== IOCB_CMD_PREADV
) ||
1322 (iocb
->ki_opcode
== IOCB_CMD_PREAD
)) {
1323 rw_op
= file
->f_op
->aio_read
;
1324 opcode
= IOCB_CMD_PREADV
;
1326 rw_op
= file
->f_op
->aio_write
;
1327 opcode
= IOCB_CMD_PWRITEV
;
1331 ret
= rw_op(iocb
, &iocb
->ki_iovec
[iocb
->ki_cur_seg
],
1332 iocb
->ki_nr_segs
- iocb
->ki_cur_seg
,
1335 aio_advance_iovec(iocb
, ret
);
1337 /* retry all partial writes. retry partial reads as long as its a
1339 } while (ret
> 0 && iocb
->ki_left
> 0 &&
1340 (opcode
== IOCB_CMD_PWRITEV
||
1341 (!S_ISFIFO(inode
->i_mode
) && !S_ISSOCK(inode
->i_mode
))));
1343 /* This means we must have transferred all that we could */
1344 /* No need to retry anymore */
1345 if ((ret
== 0) || (iocb
->ki_left
== 0))
1346 ret
= iocb
->ki_nbytes
- iocb
->ki_left
;
1351 static ssize_t
aio_fdsync(struct kiocb
*iocb
)
1353 struct file
*file
= iocb
->ki_filp
;
1354 ssize_t ret
= -EINVAL
;
1356 if (file
->f_op
->aio_fsync
)
1357 ret
= file
->f_op
->aio_fsync(iocb
, 1);
1361 static ssize_t
aio_fsync(struct kiocb
*iocb
)
1363 struct file
*file
= iocb
->ki_filp
;
1364 ssize_t ret
= -EINVAL
;
1366 if (file
->f_op
->aio_fsync
)
1367 ret
= file
->f_op
->aio_fsync(iocb
, 0);
1371 static ssize_t
aio_setup_vectored_rw(int type
, struct kiocb
*kiocb
)
1375 ret
= rw_copy_check_uvector(type
, (struct iovec __user
*)kiocb
->ki_buf
,
1376 kiocb
->ki_nbytes
, 1,
1377 &kiocb
->ki_inline_vec
, &kiocb
->ki_iovec
);
1381 kiocb
->ki_nr_segs
= kiocb
->ki_nbytes
;
1382 kiocb
->ki_cur_seg
= 0;
1383 /* ki_nbytes/left now reflect bytes instead of segs */
1384 kiocb
->ki_nbytes
= ret
;
1385 kiocb
->ki_left
= ret
;
1392 static ssize_t
aio_setup_single_vector(struct kiocb
*kiocb
)
1394 kiocb
->ki_iovec
= &kiocb
->ki_inline_vec
;
1395 kiocb
->ki_iovec
->iov_base
= kiocb
->ki_buf
;
1396 kiocb
->ki_iovec
->iov_len
= kiocb
->ki_left
;
1397 kiocb
->ki_nr_segs
= 1;
1398 kiocb
->ki_cur_seg
= 0;
1404 * Performs the initial checks and aio retry method
1405 * setup for the kiocb at the time of io submission.
1407 static ssize_t
aio_setup_iocb(struct kiocb
*kiocb
)
1409 struct file
*file
= kiocb
->ki_filp
;
1412 switch (kiocb
->ki_opcode
) {
1413 case IOCB_CMD_PREAD
:
1415 if (unlikely(!(file
->f_mode
& FMODE_READ
)))
1418 if (unlikely(!access_ok(VERIFY_WRITE
, kiocb
->ki_buf
,
1421 ret
= security_file_permission(file
, MAY_READ
);
1424 ret
= aio_setup_single_vector(kiocb
);
1428 if (file
->f_op
->aio_read
)
1429 kiocb
->ki_retry
= aio_rw_vect_retry
;
1431 case IOCB_CMD_PWRITE
:
1433 if (unlikely(!(file
->f_mode
& FMODE_WRITE
)))
1436 if (unlikely(!access_ok(VERIFY_READ
, kiocb
->ki_buf
,
1439 ret
= security_file_permission(file
, MAY_WRITE
);
1442 ret
= aio_setup_single_vector(kiocb
);
1446 if (file
->f_op
->aio_write
)
1447 kiocb
->ki_retry
= aio_rw_vect_retry
;
1449 case IOCB_CMD_PREADV
:
1451 if (unlikely(!(file
->f_mode
& FMODE_READ
)))
1453 ret
= security_file_permission(file
, MAY_READ
);
1456 ret
= aio_setup_vectored_rw(READ
, kiocb
);
1460 if (file
->f_op
->aio_read
)
1461 kiocb
->ki_retry
= aio_rw_vect_retry
;
1463 case IOCB_CMD_PWRITEV
:
1465 if (unlikely(!(file
->f_mode
& FMODE_WRITE
)))
1467 ret
= security_file_permission(file
, MAY_WRITE
);
1470 ret
= aio_setup_vectored_rw(WRITE
, kiocb
);
1474 if (file
->f_op
->aio_write
)
1475 kiocb
->ki_retry
= aio_rw_vect_retry
;
1477 case IOCB_CMD_FDSYNC
:
1479 if (file
->f_op
->aio_fsync
)
1480 kiocb
->ki_retry
= aio_fdsync
;
1482 case IOCB_CMD_FSYNC
:
1484 if (file
->f_op
->aio_fsync
)
1485 kiocb
->ki_retry
= aio_fsync
;
1488 dprintk("EINVAL: io_submit: no operation provided\n");
1492 if (!kiocb
->ki_retry
)
1499 * aio_wake_function:
1500 * wait queue callback function for aio notification,
1501 * Simply triggers a retry of the operation via kick_iocb.
1503 * This callback is specified in the wait queue entry in
1504 * a kiocb (current->io_wait points to this wait queue
1505 * entry when an aio operation executes; it is used
1506 * instead of a synchronous wait when an i/o blocking
1507 * condition is encountered during aio).
1510 * This routine is executed with the wait queue lock held.
1511 * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1512 * the ioctx lock inside the wait queue lock. This is safe
1513 * because this callback isn't used for wait queues which
1514 * are nested inside ioctx lock (i.e. ctx->wait)
1516 static int aio_wake_function(wait_queue_t
*wait
, unsigned mode
,
1517 int sync
, void *key
)
1519 struct kiocb
*iocb
= container_of(wait
, struct kiocb
, ki_wait
);
1521 list_del_init(&wait
->task_list
);
1526 int fastcall
io_submit_one(struct kioctx
*ctx
, struct iocb __user
*user_iocb
,
1533 /* enforce forwards compatibility on users */
1534 if (unlikely(iocb
->aio_reserved1
|| iocb
->aio_reserved2
||
1535 iocb
->aio_reserved3
)) {
1536 pr_debug("EINVAL: io_submit: reserve field set\n");
1540 /* prevent overflows */
1542 (iocb
->aio_buf
!= (unsigned long)iocb
->aio_buf
) ||
1543 (iocb
->aio_nbytes
!= (size_t)iocb
->aio_nbytes
) ||
1544 ((ssize_t
)iocb
->aio_nbytes
< 0)
1546 pr_debug("EINVAL: io_submit: overflow check\n");
1550 file
= fget(iocb
->aio_fildes
);
1551 if (unlikely(!file
))
1554 req
= aio_get_req(ctx
); /* returns with 2 references to req */
1555 if (unlikely(!req
)) {
1560 req
->ki_filp
= file
;
1561 ret
= put_user(req
->ki_key
, &user_iocb
->aio_key
);
1562 if (unlikely(ret
)) {
1563 dprintk("EFAULT: aio_key\n");
1567 req
->ki_obj
.user
= user_iocb
;
1568 req
->ki_user_data
= iocb
->aio_data
;
1569 req
->ki_pos
= iocb
->aio_offset
;
1571 req
->ki_buf
= (char __user
*)(unsigned long)iocb
->aio_buf
;
1572 req
->ki_left
= req
->ki_nbytes
= iocb
->aio_nbytes
;
1573 req
->ki_opcode
= iocb
->aio_lio_opcode
;
1574 init_waitqueue_func_entry(&req
->ki_wait
, aio_wake_function
);
1575 INIT_LIST_HEAD(&req
->ki_wait
.task_list
);
1577 ret
= aio_setup_iocb(req
);
1582 spin_lock_irq(&ctx
->ctx_lock
);
1584 if (!list_empty(&ctx
->run_list
)) {
1585 /* drain the run list */
1586 while (__aio_run_iocbs(ctx
))
1589 spin_unlock_irq(&ctx
->ctx_lock
);
1590 aio_put_req(req
); /* drop extra ref to req */
1594 aio_put_req(req
); /* drop extra ref to req */
1595 aio_put_req(req
); /* drop i/o ref to req */
1600 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1601 * the number of iocbs queued. May return -EINVAL if the aio_context
1602 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1603 * *iocbpp[0] is not properly initialized, if the operation specified
1604 * is invalid for the file descriptor in the iocb. May fail with
1605 * -EFAULT if any of the data structures point to invalid data. May
1606 * fail with -EBADF if the file descriptor specified in the first
1607 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1608 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1609 * fail with -ENOSYS if not implemented.
1611 asmlinkage
long sys_io_submit(aio_context_t ctx_id
, long nr
,
1612 struct iocb __user
* __user
*iocbpp
)
1618 if (unlikely(nr
< 0))
1621 if (unlikely(!access_ok(VERIFY_READ
, iocbpp
, (nr
*sizeof(*iocbpp
)))))
1624 ctx
= lookup_ioctx(ctx_id
);
1625 if (unlikely(!ctx
)) {
1626 pr_debug("EINVAL: io_submit: invalid context id\n");
1631 * AKPM: should this return a partial result if some of the IOs were
1632 * successfully submitted?
1634 for (i
=0; i
<nr
; i
++) {
1635 struct iocb __user
*user_iocb
;
1638 if (unlikely(__get_user(user_iocb
, iocbpp
+ i
))) {
1643 if (unlikely(copy_from_user(&tmp
, user_iocb
, sizeof(tmp
)))) {
1648 ret
= io_submit_one(ctx
, user_iocb
, &tmp
);
1658 * Finds a given iocb for cancellation.
1660 static struct kiocb
*lookup_kiocb(struct kioctx
*ctx
, struct iocb __user
*iocb
,
1663 struct list_head
*pos
;
1665 assert_spin_locked(&ctx
->ctx_lock
);
1667 /* TODO: use a hash or array, this sucks. */
1668 list_for_each(pos
, &ctx
->active_reqs
) {
1669 struct kiocb
*kiocb
= list_kiocb(pos
);
1670 if (kiocb
->ki_obj
.user
== iocb
&& kiocb
->ki_key
== key
)
1677 * Attempts to cancel an iocb previously passed to io_submit. If
1678 * the operation is successfully cancelled, the resulting event is
1679 * copied into the memory pointed to by result without being placed
1680 * into the completion queue and 0 is returned. May fail with
1681 * -EFAULT if any of the data structures pointed to are invalid.
1682 * May fail with -EINVAL if aio_context specified by ctx_id is
1683 * invalid. May fail with -EAGAIN if the iocb specified was not
1684 * cancelled. Will fail with -ENOSYS if not implemented.
1686 asmlinkage
long sys_io_cancel(aio_context_t ctx_id
, struct iocb __user
*iocb
,
1687 struct io_event __user
*result
)
1689 int (*cancel
)(struct kiocb
*iocb
, struct io_event
*res
);
1691 struct kiocb
*kiocb
;
1695 ret
= get_user(key
, &iocb
->aio_key
);
1699 ctx
= lookup_ioctx(ctx_id
);
1703 spin_lock_irq(&ctx
->ctx_lock
);
1705 kiocb
= lookup_kiocb(ctx
, iocb
, key
);
1706 if (kiocb
&& kiocb
->ki_cancel
) {
1707 cancel
= kiocb
->ki_cancel
;
1709 kiocbSetCancelled(kiocb
);
1712 spin_unlock_irq(&ctx
->ctx_lock
);
1714 if (NULL
!= cancel
) {
1715 struct io_event tmp
;
1716 pr_debug("calling cancel\n");
1717 memset(&tmp
, 0, sizeof(tmp
));
1718 tmp
.obj
= (u64
)(unsigned long)kiocb
->ki_obj
.user
;
1719 tmp
.data
= kiocb
->ki_user_data
;
1720 ret
= cancel(kiocb
, &tmp
);
1722 /* Cancellation succeeded -- copy the result
1723 * into the user's buffer.
1725 if (copy_to_user(result
, &tmp
, sizeof(tmp
)))
1737 * Attempts to read at least min_nr events and up to nr events from
1738 * the completion queue for the aio_context specified by ctx_id. May
1739 * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1740 * if nr is out of range, if when is out of range. May fail with
1741 * -EFAULT if any of the memory specified to is invalid. May return
1742 * 0 or < min_nr if no events are available and the timeout specified
1743 * by when has elapsed, where when == NULL specifies an infinite
1744 * timeout. Note that the timeout pointed to by when is relative and
1745 * will be updated if not NULL and the operation blocks. Will fail
1746 * with -ENOSYS if not implemented.
1748 asmlinkage
long sys_io_getevents(aio_context_t ctx_id
,
1751 struct io_event __user
*events
,
1752 struct timespec __user
*timeout
)
1754 struct kioctx
*ioctx
= lookup_ioctx(ctx_id
);
1757 if (likely(ioctx
)) {
1758 if (likely(min_nr
<= nr
&& min_nr
>= 0 && nr
>= 0))
1759 ret
= read_events(ioctx
, min_nr
, nr
, events
, timeout
);
1766 __initcall(aio_setup
);
1768 EXPORT_SYMBOL(aio_complete
);
1769 EXPORT_SYMBOL(aio_put_req
);
1770 EXPORT_SYMBOL(wait_on_sync_kiocb
);