4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
11 #include <linux/vmalloc.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/slab.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/debugobjects.h>
21 #include <linux/kallsyms.h>
22 #include <linux/list.h>
23 #include <linux/rbtree.h>
24 #include <linux/radix-tree.h>
25 #include <linux/rcupdate.h>
26 #include <linux/pfn.h>
27 #include <linux/kmemleak.h>
28 #include <linux/highmem.h>
29 #include <asm/atomic.h>
30 #include <asm/uaccess.h>
31 #include <asm/tlbflush.h>
34 /*** Page table manipulation functions ***/
36 static void vunmap_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
)
40 pte
= pte_offset_kernel(pmd
, addr
);
42 pte_t ptent
= ptep_get_and_clear(&init_mm
, addr
, pte
);
43 WARN_ON(!pte_none(ptent
) && !pte_present(ptent
));
44 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
47 static void vunmap_pmd_range(pud_t
*pud
, unsigned long addr
, unsigned long end
)
52 pmd
= pmd_offset(pud
, addr
);
54 next
= pmd_addr_end(addr
, end
);
55 if (pmd_none_or_clear_bad(pmd
))
57 vunmap_pte_range(pmd
, addr
, next
);
58 } while (pmd
++, addr
= next
, addr
!= end
);
61 static void vunmap_pud_range(pgd_t
*pgd
, unsigned long addr
, unsigned long end
)
66 pud
= pud_offset(pgd
, addr
);
68 next
= pud_addr_end(addr
, end
);
69 if (pud_none_or_clear_bad(pud
))
71 vunmap_pmd_range(pud
, addr
, next
);
72 } while (pud
++, addr
= next
, addr
!= end
);
75 static void vunmap_page_range(unsigned long addr
, unsigned long end
)
81 pgd
= pgd_offset_k(addr
);
83 next
= pgd_addr_end(addr
, end
);
84 if (pgd_none_or_clear_bad(pgd
))
86 vunmap_pud_range(pgd
, addr
, next
);
87 } while (pgd
++, addr
= next
, addr
!= end
);
90 static int vmap_pte_range(pmd_t
*pmd
, unsigned long addr
,
91 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
96 * nr is a running index into the array which helps higher level
97 * callers keep track of where we're up to.
100 pte
= pte_alloc_kernel(pmd
, addr
);
104 struct page
*page
= pages
[*nr
];
106 if (WARN_ON(!pte_none(*pte
)))
110 set_pte_at(&init_mm
, addr
, pte
, mk_pte(page
, prot
));
112 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
116 static int vmap_pmd_range(pud_t
*pud
, unsigned long addr
,
117 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
122 pmd
= pmd_alloc(&init_mm
, pud
, addr
);
126 next
= pmd_addr_end(addr
, end
);
127 if (vmap_pte_range(pmd
, addr
, next
, prot
, pages
, nr
))
129 } while (pmd
++, addr
= next
, addr
!= end
);
133 static int vmap_pud_range(pgd_t
*pgd
, unsigned long addr
,
134 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
139 pud
= pud_alloc(&init_mm
, pgd
, addr
);
143 next
= pud_addr_end(addr
, end
);
144 if (vmap_pmd_range(pud
, addr
, next
, prot
, pages
, nr
))
146 } while (pud
++, addr
= next
, addr
!= end
);
151 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
152 * will have pfns corresponding to the "pages" array.
154 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
156 static int vmap_page_range_noflush(unsigned long start
, unsigned long end
,
157 pgprot_t prot
, struct page
**pages
)
161 unsigned long addr
= start
;
166 pgd
= pgd_offset_k(addr
);
168 next
= pgd_addr_end(addr
, end
);
169 err
= vmap_pud_range(pgd
, addr
, next
, prot
, pages
, &nr
);
172 } while (pgd
++, addr
= next
, addr
!= end
);
177 static int vmap_page_range(unsigned long start
, unsigned long end
,
178 pgprot_t prot
, struct page
**pages
)
182 ret
= vmap_page_range_noflush(start
, end
, prot
, pages
);
183 flush_cache_vmap(start
, end
);
187 int is_vmalloc_or_module_addr(const void *x
)
190 * ARM, x86-64 and sparc64 put modules in a special place,
191 * and fall back on vmalloc() if that fails. Others
192 * just put it in the vmalloc space.
194 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
195 unsigned long addr
= (unsigned long)x
;
196 if (addr
>= MODULES_VADDR
&& addr
< MODULES_END
)
199 return is_vmalloc_addr(x
);
203 * Walk a vmap address to the struct page it maps.
205 struct page
*vmalloc_to_page(const void *vmalloc_addr
)
207 unsigned long addr
= (unsigned long) vmalloc_addr
;
208 struct page
*page
= NULL
;
209 pgd_t
*pgd
= pgd_offset_k(addr
);
212 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
213 * architectures that do not vmalloc module space
215 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr
));
217 if (!pgd_none(*pgd
)) {
218 pud_t
*pud
= pud_offset(pgd
, addr
);
219 if (!pud_none(*pud
)) {
220 pmd_t
*pmd
= pmd_offset(pud
, addr
);
221 if (!pmd_none(*pmd
)) {
224 ptep
= pte_offset_map(pmd
, addr
);
226 if (pte_present(pte
))
227 page
= pte_page(pte
);
234 EXPORT_SYMBOL(vmalloc_to_page
);
237 * Map a vmalloc()-space virtual address to the physical page frame number.
239 unsigned long vmalloc_to_pfn(const void *vmalloc_addr
)
241 return page_to_pfn(vmalloc_to_page(vmalloc_addr
));
243 EXPORT_SYMBOL(vmalloc_to_pfn
);
246 /*** Global kva allocator ***/
248 #define VM_LAZY_FREE 0x01
249 #define VM_LAZY_FREEING 0x02
250 #define VM_VM_AREA 0x04
253 unsigned long va_start
;
254 unsigned long va_end
;
256 struct rb_node rb_node
; /* address sorted rbtree */
257 struct list_head list
; /* address sorted list */
258 struct list_head purge_list
; /* "lazy purge" list */
260 struct rcu_head rcu_head
;
263 static DEFINE_SPINLOCK(vmap_area_lock
);
264 static struct rb_root vmap_area_root
= RB_ROOT
;
265 static LIST_HEAD(vmap_area_list
);
266 static unsigned long vmap_area_pcpu_hole
;
268 static struct vmap_area
*__find_vmap_area(unsigned long addr
)
270 struct rb_node
*n
= vmap_area_root
.rb_node
;
273 struct vmap_area
*va
;
275 va
= rb_entry(n
, struct vmap_area
, rb_node
);
276 if (addr
< va
->va_start
)
278 else if (addr
> va
->va_start
)
287 static void __insert_vmap_area(struct vmap_area
*va
)
289 struct rb_node
**p
= &vmap_area_root
.rb_node
;
290 struct rb_node
*parent
= NULL
;
294 struct vmap_area
*tmp
;
297 tmp
= rb_entry(parent
, struct vmap_area
, rb_node
);
298 if (va
->va_start
< tmp
->va_end
)
300 else if (va
->va_end
> tmp
->va_start
)
306 rb_link_node(&va
->rb_node
, parent
, p
);
307 rb_insert_color(&va
->rb_node
, &vmap_area_root
);
309 /* address-sort this list so it is usable like the vmlist */
310 tmp
= rb_prev(&va
->rb_node
);
312 struct vmap_area
*prev
;
313 prev
= rb_entry(tmp
, struct vmap_area
, rb_node
);
314 list_add_rcu(&va
->list
, &prev
->list
);
316 list_add_rcu(&va
->list
, &vmap_area_list
);
319 static void purge_vmap_area_lazy(void);
322 * Allocate a region of KVA of the specified size and alignment, within the
325 static struct vmap_area
*alloc_vmap_area(unsigned long size
,
327 unsigned long vstart
, unsigned long vend
,
328 int node
, gfp_t gfp_mask
)
330 struct vmap_area
*va
;
336 BUG_ON(size
& ~PAGE_MASK
);
338 va
= kmalloc_node(sizeof(struct vmap_area
),
339 gfp_mask
& GFP_RECLAIM_MASK
, node
);
341 return ERR_PTR(-ENOMEM
);
344 addr
= ALIGN(vstart
, align
);
346 spin_lock(&vmap_area_lock
);
347 if (addr
+ size
- 1 < addr
)
350 /* XXX: could have a last_hole cache */
351 n
= vmap_area_root
.rb_node
;
353 struct vmap_area
*first
= NULL
;
356 struct vmap_area
*tmp
;
357 tmp
= rb_entry(n
, struct vmap_area
, rb_node
);
358 if (tmp
->va_end
>= addr
) {
359 if (!first
&& tmp
->va_start
< addr
+ size
)
371 if (first
->va_end
< addr
) {
372 n
= rb_next(&first
->rb_node
);
374 first
= rb_entry(n
, struct vmap_area
, rb_node
);
379 while (addr
+ size
> first
->va_start
&& addr
+ size
<= vend
) {
380 addr
= ALIGN(first
->va_end
+ PAGE_SIZE
, align
);
381 if (addr
+ size
- 1 < addr
)
384 n
= rb_next(&first
->rb_node
);
386 first
= rb_entry(n
, struct vmap_area
, rb_node
);
392 if (addr
+ size
> vend
) {
394 spin_unlock(&vmap_area_lock
);
396 purge_vmap_area_lazy();
400 if (printk_ratelimit())
402 "vmap allocation for size %lu failed: "
403 "use vmalloc=<size> to increase size.\n", size
);
405 return ERR_PTR(-EBUSY
);
408 BUG_ON(addr
& (align
-1));
411 va
->va_end
= addr
+ size
;
413 __insert_vmap_area(va
);
414 spin_unlock(&vmap_area_lock
);
419 static void rcu_free_va(struct rcu_head
*head
)
421 struct vmap_area
*va
= container_of(head
, struct vmap_area
, rcu_head
);
426 static void __free_vmap_area(struct vmap_area
*va
)
428 BUG_ON(RB_EMPTY_NODE(&va
->rb_node
));
429 rb_erase(&va
->rb_node
, &vmap_area_root
);
430 RB_CLEAR_NODE(&va
->rb_node
);
431 list_del_rcu(&va
->list
);
434 * Track the highest possible candidate for pcpu area
435 * allocation. Areas outside of vmalloc area can be returned
436 * here too, consider only end addresses which fall inside
437 * vmalloc area proper.
439 if (va
->va_end
> VMALLOC_START
&& va
->va_end
<= VMALLOC_END
)
440 vmap_area_pcpu_hole
= max(vmap_area_pcpu_hole
, va
->va_end
);
442 call_rcu(&va
->rcu_head
, rcu_free_va
);
446 * Free a region of KVA allocated by alloc_vmap_area
448 static void free_vmap_area(struct vmap_area
*va
)
450 spin_lock(&vmap_area_lock
);
451 __free_vmap_area(va
);
452 spin_unlock(&vmap_area_lock
);
456 * Clear the pagetable entries of a given vmap_area
458 static void unmap_vmap_area(struct vmap_area
*va
)
460 vunmap_page_range(va
->va_start
, va
->va_end
);
463 static void vmap_debug_free_range(unsigned long start
, unsigned long end
)
466 * Unmap page tables and force a TLB flush immediately if
467 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
468 * bugs similarly to those in linear kernel virtual address
469 * space after a page has been freed.
471 * All the lazy freeing logic is still retained, in order to
472 * minimise intrusiveness of this debugging feature.
474 * This is going to be *slow* (linear kernel virtual address
475 * debugging doesn't do a broadcast TLB flush so it is a lot
478 #ifdef CONFIG_DEBUG_PAGEALLOC
479 vunmap_page_range(start
, end
);
480 flush_tlb_kernel_range(start
, end
);
485 * lazy_max_pages is the maximum amount of virtual address space we gather up
486 * before attempting to purge with a TLB flush.
488 * There is a tradeoff here: a larger number will cover more kernel page tables
489 * and take slightly longer to purge, but it will linearly reduce the number of
490 * global TLB flushes that must be performed. It would seem natural to scale
491 * this number up linearly with the number of CPUs (because vmapping activity
492 * could also scale linearly with the number of CPUs), however it is likely
493 * that in practice, workloads might be constrained in other ways that mean
494 * vmap activity will not scale linearly with CPUs. Also, I want to be
495 * conservative and not introduce a big latency on huge systems, so go with
496 * a less aggressive log scale. It will still be an improvement over the old
497 * code, and it will be simple to change the scale factor if we find that it
498 * becomes a problem on bigger systems.
500 static unsigned long lazy_max_pages(void)
504 log
= fls(num_online_cpus());
506 return log
* (32UL * 1024 * 1024 / PAGE_SIZE
);
509 static atomic_t vmap_lazy_nr
= ATOMIC_INIT(0);
512 * Purges all lazily-freed vmap areas.
514 * If sync is 0 then don't purge if there is already a purge in progress.
515 * If force_flush is 1, then flush kernel TLBs between *start and *end even
516 * if we found no lazy vmap areas to unmap (callers can use this to optimise
517 * their own TLB flushing).
518 * Returns with *start = min(*start, lowest purged address)
519 * *end = max(*end, highest purged address)
521 static void __purge_vmap_area_lazy(unsigned long *start
, unsigned long *end
,
522 int sync
, int force_flush
)
524 static DEFINE_SPINLOCK(purge_lock
);
526 struct vmap_area
*va
;
527 struct vmap_area
*n_va
;
531 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
532 * should not expect such behaviour. This just simplifies locking for
533 * the case that isn't actually used at the moment anyway.
535 if (!sync
&& !force_flush
) {
536 if (!spin_trylock(&purge_lock
))
539 spin_lock(&purge_lock
);
542 list_for_each_entry_rcu(va
, &vmap_area_list
, list
) {
543 if (va
->flags
& VM_LAZY_FREE
) {
544 if (va
->va_start
< *start
)
545 *start
= va
->va_start
;
546 if (va
->va_end
> *end
)
548 nr
+= (va
->va_end
- va
->va_start
) >> PAGE_SHIFT
;
550 list_add_tail(&va
->purge_list
, &valist
);
551 va
->flags
|= VM_LAZY_FREEING
;
552 va
->flags
&= ~VM_LAZY_FREE
;
558 BUG_ON(nr
> atomic_read(&vmap_lazy_nr
));
559 atomic_sub(nr
, &vmap_lazy_nr
);
562 if (nr
|| force_flush
)
563 flush_tlb_kernel_range(*start
, *end
);
566 spin_lock(&vmap_area_lock
);
567 list_for_each_entry_safe(va
, n_va
, &valist
, purge_list
)
568 __free_vmap_area(va
);
569 spin_unlock(&vmap_area_lock
);
571 spin_unlock(&purge_lock
);
575 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
576 * is already purging.
578 static void try_purge_vmap_area_lazy(void)
580 unsigned long start
= ULONG_MAX
, end
= 0;
582 __purge_vmap_area_lazy(&start
, &end
, 0, 0);
586 * Kick off a purge of the outstanding lazy areas.
588 static void purge_vmap_area_lazy(void)
590 unsigned long start
= ULONG_MAX
, end
= 0;
592 __purge_vmap_area_lazy(&start
, &end
, 1, 0);
596 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
597 * called for the correct range previously.
599 static void free_unmap_vmap_area_noflush(struct vmap_area
*va
)
601 va
->flags
|= VM_LAZY_FREE
;
602 atomic_add((va
->va_end
- va
->va_start
) >> PAGE_SHIFT
, &vmap_lazy_nr
);
603 if (unlikely(atomic_read(&vmap_lazy_nr
) > lazy_max_pages()))
604 try_purge_vmap_area_lazy();
608 * Free and unmap a vmap area
610 static void free_unmap_vmap_area(struct vmap_area
*va
)
612 flush_cache_vunmap(va
->va_start
, va
->va_end
);
613 free_unmap_vmap_area_noflush(va
);
616 static struct vmap_area
*find_vmap_area(unsigned long addr
)
618 struct vmap_area
*va
;
620 spin_lock(&vmap_area_lock
);
621 va
= __find_vmap_area(addr
);
622 spin_unlock(&vmap_area_lock
);
627 static void free_unmap_vmap_area_addr(unsigned long addr
)
629 struct vmap_area
*va
;
631 va
= find_vmap_area(addr
);
633 free_unmap_vmap_area(va
);
637 /*** Per cpu kva allocator ***/
640 * vmap space is limited especially on 32 bit architectures. Ensure there is
641 * room for at least 16 percpu vmap blocks per CPU.
644 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
645 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
646 * instead (we just need a rough idea)
648 #if BITS_PER_LONG == 32
649 #define VMALLOC_SPACE (128UL*1024*1024)
651 #define VMALLOC_SPACE (128UL*1024*1024*1024)
654 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
655 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
656 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
657 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
658 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
659 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
660 #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
661 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
662 VMALLOC_PAGES / NR_CPUS / 16))
664 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
666 static bool vmap_initialized __read_mostly
= false;
668 struct vmap_block_queue
{
670 struct list_head free
;
671 struct list_head dirty
;
672 unsigned int nr_dirty
;
677 struct vmap_area
*va
;
678 struct vmap_block_queue
*vbq
;
679 unsigned long free
, dirty
;
680 DECLARE_BITMAP(alloc_map
, VMAP_BBMAP_BITS
);
681 DECLARE_BITMAP(dirty_map
, VMAP_BBMAP_BITS
);
683 struct list_head free_list
;
684 struct rcu_head rcu_head
;
688 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
689 static DEFINE_PER_CPU(struct vmap_block_queue
, vmap_block_queue
);
692 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
693 * in the free path. Could get rid of this if we change the API to return a
694 * "cookie" from alloc, to be passed to free. But no big deal yet.
696 static DEFINE_SPINLOCK(vmap_block_tree_lock
);
697 static RADIX_TREE(vmap_block_tree
, GFP_ATOMIC
);
700 * We should probably have a fallback mechanism to allocate virtual memory
701 * out of partially filled vmap blocks. However vmap block sizing should be
702 * fairly reasonable according to the vmalloc size, so it shouldn't be a
706 static unsigned long addr_to_vb_idx(unsigned long addr
)
708 addr
-= VMALLOC_START
& ~(VMAP_BLOCK_SIZE
-1);
709 addr
/= VMAP_BLOCK_SIZE
;
713 static struct vmap_block
*new_vmap_block(gfp_t gfp_mask
)
715 struct vmap_block_queue
*vbq
;
716 struct vmap_block
*vb
;
717 struct vmap_area
*va
;
718 unsigned long vb_idx
;
721 node
= numa_node_id();
723 vb
= kmalloc_node(sizeof(struct vmap_block
),
724 gfp_mask
& GFP_RECLAIM_MASK
, node
);
726 return ERR_PTR(-ENOMEM
);
728 va
= alloc_vmap_area(VMAP_BLOCK_SIZE
, VMAP_BLOCK_SIZE
,
729 VMALLOC_START
, VMALLOC_END
,
731 if (unlikely(IS_ERR(va
))) {
733 return ERR_PTR(PTR_ERR(va
));
736 err
= radix_tree_preload(gfp_mask
);
743 spin_lock_init(&vb
->lock
);
745 vb
->free
= VMAP_BBMAP_BITS
;
747 bitmap_zero(vb
->alloc_map
, VMAP_BBMAP_BITS
);
748 bitmap_zero(vb
->dirty_map
, VMAP_BBMAP_BITS
);
749 INIT_LIST_HEAD(&vb
->free_list
);
751 vb_idx
= addr_to_vb_idx(va
->va_start
);
752 spin_lock(&vmap_block_tree_lock
);
753 err
= radix_tree_insert(&vmap_block_tree
, vb_idx
, vb
);
754 spin_unlock(&vmap_block_tree_lock
);
756 radix_tree_preload_end();
758 vbq
= &get_cpu_var(vmap_block_queue
);
760 spin_lock(&vbq
->lock
);
761 list_add(&vb
->free_list
, &vbq
->free
);
762 spin_unlock(&vbq
->lock
);
763 put_cpu_var(vmap_cpu_blocks
);
768 static void rcu_free_vb(struct rcu_head
*head
)
770 struct vmap_block
*vb
= container_of(head
, struct vmap_block
, rcu_head
);
775 static void free_vmap_block(struct vmap_block
*vb
)
777 struct vmap_block
*tmp
;
778 unsigned long vb_idx
;
780 BUG_ON(!list_empty(&vb
->free_list
));
782 vb_idx
= addr_to_vb_idx(vb
->va
->va_start
);
783 spin_lock(&vmap_block_tree_lock
);
784 tmp
= radix_tree_delete(&vmap_block_tree
, vb_idx
);
785 spin_unlock(&vmap_block_tree_lock
);
788 free_unmap_vmap_area_noflush(vb
->va
);
789 call_rcu(&vb
->rcu_head
, rcu_free_vb
);
792 static void *vb_alloc(unsigned long size
, gfp_t gfp_mask
)
794 struct vmap_block_queue
*vbq
;
795 struct vmap_block
*vb
;
796 unsigned long addr
= 0;
799 BUG_ON(size
& ~PAGE_MASK
);
800 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
801 order
= get_order(size
);
805 vbq
= &get_cpu_var(vmap_block_queue
);
806 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
809 spin_lock(&vb
->lock
);
810 i
= bitmap_find_free_region(vb
->alloc_map
,
811 VMAP_BBMAP_BITS
, order
);
814 addr
= vb
->va
->va_start
+ (i
<< PAGE_SHIFT
);
815 BUG_ON(addr_to_vb_idx(addr
) !=
816 addr_to_vb_idx(vb
->va
->va_start
));
817 vb
->free
-= 1UL << order
;
819 spin_lock(&vbq
->lock
);
820 list_del_init(&vb
->free_list
);
821 spin_unlock(&vbq
->lock
);
823 spin_unlock(&vb
->lock
);
826 spin_unlock(&vb
->lock
);
828 put_cpu_var(vmap_cpu_blocks
);
832 vb
= new_vmap_block(gfp_mask
);
841 static void vb_free(const void *addr
, unsigned long size
)
843 unsigned long offset
;
844 unsigned long vb_idx
;
846 struct vmap_block
*vb
;
848 BUG_ON(size
& ~PAGE_MASK
);
849 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
851 flush_cache_vunmap((unsigned long)addr
, (unsigned long)addr
+ size
);
853 order
= get_order(size
);
855 offset
= (unsigned long)addr
& (VMAP_BLOCK_SIZE
- 1);
857 vb_idx
= addr_to_vb_idx((unsigned long)addr
);
859 vb
= radix_tree_lookup(&vmap_block_tree
, vb_idx
);
863 spin_lock(&vb
->lock
);
864 bitmap_allocate_region(vb
->dirty_map
, offset
>> PAGE_SHIFT
, order
);
866 vb
->dirty
+= 1UL << order
;
867 if (vb
->dirty
== VMAP_BBMAP_BITS
) {
868 BUG_ON(vb
->free
|| !list_empty(&vb
->free_list
));
869 spin_unlock(&vb
->lock
);
872 spin_unlock(&vb
->lock
);
876 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
878 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
879 * to amortize TLB flushing overheads. What this means is that any page you
880 * have now, may, in a former life, have been mapped into kernel virtual
881 * address by the vmap layer and so there might be some CPUs with TLB entries
882 * still referencing that page (additional to the regular 1:1 kernel mapping).
884 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
885 * be sure that none of the pages we have control over will have any aliases
886 * from the vmap layer.
888 void vm_unmap_aliases(void)
890 unsigned long start
= ULONG_MAX
, end
= 0;
894 if (unlikely(!vmap_initialized
))
897 for_each_possible_cpu(cpu
) {
898 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
899 struct vmap_block
*vb
;
902 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
905 spin_lock(&vb
->lock
);
906 i
= find_first_bit(vb
->dirty_map
, VMAP_BBMAP_BITS
);
907 while (i
< VMAP_BBMAP_BITS
) {
910 j
= find_next_zero_bit(vb
->dirty_map
,
913 s
= vb
->va
->va_start
+ (i
<< PAGE_SHIFT
);
914 e
= vb
->va
->va_start
+ (j
<< PAGE_SHIFT
);
915 vunmap_page_range(s
, e
);
924 i
= find_next_bit(vb
->dirty_map
,
927 spin_unlock(&vb
->lock
);
932 __purge_vmap_area_lazy(&start
, &end
, 1, flush
);
934 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
937 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
938 * @mem: the pointer returned by vm_map_ram
939 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
941 void vm_unmap_ram(const void *mem
, unsigned int count
)
943 unsigned long size
= count
<< PAGE_SHIFT
;
944 unsigned long addr
= (unsigned long)mem
;
947 BUG_ON(addr
< VMALLOC_START
);
948 BUG_ON(addr
> VMALLOC_END
);
949 BUG_ON(addr
& (PAGE_SIZE
-1));
951 debug_check_no_locks_freed(mem
, size
);
952 vmap_debug_free_range(addr
, addr
+size
);
954 if (likely(count
<= VMAP_MAX_ALLOC
))
957 free_unmap_vmap_area_addr(addr
);
959 EXPORT_SYMBOL(vm_unmap_ram
);
962 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
963 * @pages: an array of pointers to the pages to be mapped
964 * @count: number of pages
965 * @node: prefer to allocate data structures on this node
966 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
968 * Returns: a pointer to the address that has been mapped, or %NULL on failure
970 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
, pgprot_t prot
)
972 unsigned long size
= count
<< PAGE_SHIFT
;
976 if (likely(count
<= VMAP_MAX_ALLOC
)) {
977 mem
= vb_alloc(size
, GFP_KERNEL
);
980 addr
= (unsigned long)mem
;
982 struct vmap_area
*va
;
983 va
= alloc_vmap_area(size
, PAGE_SIZE
,
984 VMALLOC_START
, VMALLOC_END
, node
, GFP_KERNEL
);
991 if (vmap_page_range(addr
, addr
+ size
, prot
, pages
) < 0) {
992 vm_unmap_ram(mem
, count
);
997 EXPORT_SYMBOL(vm_map_ram
);
1000 * vm_area_register_early - register vmap area early during boot
1001 * @vm: vm_struct to register
1002 * @align: requested alignment
1004 * This function is used to register kernel vm area before
1005 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1006 * proper values on entry and other fields should be zero. On return,
1007 * vm->addr contains the allocated address.
1009 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1011 void __init
vm_area_register_early(struct vm_struct
*vm
, size_t align
)
1013 static size_t vm_init_off __initdata
;
1016 addr
= ALIGN(VMALLOC_START
+ vm_init_off
, align
);
1017 vm_init_off
= PFN_ALIGN(addr
+ vm
->size
) - VMALLOC_START
;
1019 vm
->addr
= (void *)addr
;
1025 void __init
vmalloc_init(void)
1027 struct vmap_area
*va
;
1028 struct vm_struct
*tmp
;
1031 for_each_possible_cpu(i
) {
1032 struct vmap_block_queue
*vbq
;
1034 vbq
= &per_cpu(vmap_block_queue
, i
);
1035 spin_lock_init(&vbq
->lock
);
1036 INIT_LIST_HEAD(&vbq
->free
);
1037 INIT_LIST_HEAD(&vbq
->dirty
);
1041 /* Import existing vmlist entries. */
1042 for (tmp
= vmlist
; tmp
; tmp
= tmp
->next
) {
1043 va
= kzalloc(sizeof(struct vmap_area
), GFP_NOWAIT
);
1044 va
->flags
= tmp
->flags
| VM_VM_AREA
;
1045 va
->va_start
= (unsigned long)tmp
->addr
;
1046 va
->va_end
= va
->va_start
+ tmp
->size
;
1047 __insert_vmap_area(va
);
1050 vmap_area_pcpu_hole
= VMALLOC_END
;
1052 vmap_initialized
= true;
1056 * map_kernel_range_noflush - map kernel VM area with the specified pages
1057 * @addr: start of the VM area to map
1058 * @size: size of the VM area to map
1059 * @prot: page protection flags to use
1060 * @pages: pages to map
1062 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1063 * specify should have been allocated using get_vm_area() and its
1067 * This function does NOT do any cache flushing. The caller is
1068 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1069 * before calling this function.
1072 * The number of pages mapped on success, -errno on failure.
1074 int map_kernel_range_noflush(unsigned long addr
, unsigned long size
,
1075 pgprot_t prot
, struct page
**pages
)
1077 return vmap_page_range_noflush(addr
, addr
+ size
, prot
, pages
);
1081 * unmap_kernel_range_noflush - unmap kernel VM area
1082 * @addr: start of the VM area to unmap
1083 * @size: size of the VM area to unmap
1085 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1086 * specify should have been allocated using get_vm_area() and its
1090 * This function does NOT do any cache flushing. The caller is
1091 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1092 * before calling this function and flush_tlb_kernel_range() after.
1094 void unmap_kernel_range_noflush(unsigned long addr
, unsigned long size
)
1096 vunmap_page_range(addr
, addr
+ size
);
1100 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1101 * @addr: start of the VM area to unmap
1102 * @size: size of the VM area to unmap
1104 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1105 * the unmapping and tlb after.
1107 void unmap_kernel_range(unsigned long addr
, unsigned long size
)
1109 unsigned long end
= addr
+ size
;
1111 flush_cache_vunmap(addr
, end
);
1112 vunmap_page_range(addr
, end
);
1113 flush_tlb_kernel_range(addr
, end
);
1116 int map_vm_area(struct vm_struct
*area
, pgprot_t prot
, struct page
***pages
)
1118 unsigned long addr
= (unsigned long)area
->addr
;
1119 unsigned long end
= addr
+ area
->size
- PAGE_SIZE
;
1122 err
= vmap_page_range(addr
, end
, prot
, *pages
);
1130 EXPORT_SYMBOL_GPL(map_vm_area
);
1132 /*** Old vmalloc interfaces ***/
1133 DEFINE_RWLOCK(vmlist_lock
);
1134 struct vm_struct
*vmlist
;
1136 static void insert_vmalloc_vm(struct vm_struct
*vm
, struct vmap_area
*va
,
1137 unsigned long flags
, void *caller
)
1139 struct vm_struct
*tmp
, **p
;
1142 vm
->addr
= (void *)va
->va_start
;
1143 vm
->size
= va
->va_end
- va
->va_start
;
1144 vm
->caller
= caller
;
1146 va
->flags
|= VM_VM_AREA
;
1148 write_lock(&vmlist_lock
);
1149 for (p
= &vmlist
; (tmp
= *p
) != NULL
; p
= &tmp
->next
) {
1150 if (tmp
->addr
>= vm
->addr
)
1155 write_unlock(&vmlist_lock
);
1158 static struct vm_struct
*__get_vm_area_node(unsigned long size
,
1159 unsigned long flags
, unsigned long start
, unsigned long end
,
1160 int node
, gfp_t gfp_mask
, void *caller
)
1162 static struct vmap_area
*va
;
1163 struct vm_struct
*area
;
1164 unsigned long align
= 1;
1166 BUG_ON(in_interrupt());
1167 if (flags
& VM_IOREMAP
) {
1168 int bit
= fls(size
);
1170 if (bit
> IOREMAP_MAX_ORDER
)
1171 bit
= IOREMAP_MAX_ORDER
;
1172 else if (bit
< PAGE_SHIFT
)
1178 size
= PAGE_ALIGN(size
);
1179 if (unlikely(!size
))
1182 area
= kzalloc_node(sizeof(*area
), gfp_mask
& GFP_RECLAIM_MASK
, node
);
1183 if (unlikely(!area
))
1187 * We always allocate a guard page.
1191 va
= alloc_vmap_area(size
, align
, start
, end
, node
, gfp_mask
);
1197 insert_vmalloc_vm(area
, va
, flags
, caller
);
1201 struct vm_struct
*__get_vm_area(unsigned long size
, unsigned long flags
,
1202 unsigned long start
, unsigned long end
)
1204 return __get_vm_area_node(size
, flags
, start
, end
, -1, GFP_KERNEL
,
1205 __builtin_return_address(0));
1207 EXPORT_SYMBOL_GPL(__get_vm_area
);
1209 struct vm_struct
*__get_vm_area_caller(unsigned long size
, unsigned long flags
,
1210 unsigned long start
, unsigned long end
,
1213 return __get_vm_area_node(size
, flags
, start
, end
, -1, GFP_KERNEL
,
1218 * get_vm_area - reserve a contiguous kernel virtual area
1219 * @size: size of the area
1220 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1222 * Search an area of @size in the kernel virtual mapping area,
1223 * and reserved it for out purposes. Returns the area descriptor
1224 * on success or %NULL on failure.
1226 struct vm_struct
*get_vm_area(unsigned long size
, unsigned long flags
)
1228 return __get_vm_area_node(size
, flags
, VMALLOC_START
, VMALLOC_END
,
1229 -1, GFP_KERNEL
, __builtin_return_address(0));
1232 struct vm_struct
*get_vm_area_caller(unsigned long size
, unsigned long flags
,
1235 return __get_vm_area_node(size
, flags
, VMALLOC_START
, VMALLOC_END
,
1236 -1, GFP_KERNEL
, caller
);
1239 struct vm_struct
*get_vm_area_node(unsigned long size
, unsigned long flags
,
1240 int node
, gfp_t gfp_mask
)
1242 return __get_vm_area_node(size
, flags
, VMALLOC_START
, VMALLOC_END
, node
,
1243 gfp_mask
, __builtin_return_address(0));
1246 static struct vm_struct
*find_vm_area(const void *addr
)
1248 struct vmap_area
*va
;
1250 va
= find_vmap_area((unsigned long)addr
);
1251 if (va
&& va
->flags
& VM_VM_AREA
)
1258 * remove_vm_area - find and remove a continuous kernel virtual area
1259 * @addr: base address
1261 * Search for the kernel VM area starting at @addr, and remove it.
1262 * This function returns the found VM area, but using it is NOT safe
1263 * on SMP machines, except for its size or flags.
1265 struct vm_struct
*remove_vm_area(const void *addr
)
1267 struct vmap_area
*va
;
1269 va
= find_vmap_area((unsigned long)addr
);
1270 if (va
&& va
->flags
& VM_VM_AREA
) {
1271 struct vm_struct
*vm
= va
->private;
1272 struct vm_struct
*tmp
, **p
;
1274 * remove from list and disallow access to this vm_struct
1275 * before unmap. (address range confliction is maintained by
1278 write_lock(&vmlist_lock
);
1279 for (p
= &vmlist
; (tmp
= *p
) != vm
; p
= &tmp
->next
)
1282 write_unlock(&vmlist_lock
);
1284 vmap_debug_free_range(va
->va_start
, va
->va_end
);
1285 free_unmap_vmap_area(va
);
1286 vm
->size
-= PAGE_SIZE
;
1293 static void __vunmap(const void *addr
, int deallocate_pages
)
1295 struct vm_struct
*area
;
1300 if ((PAGE_SIZE
-1) & (unsigned long)addr
) {
1301 WARN(1, KERN_ERR
"Trying to vfree() bad address (%p)\n", addr
);
1305 area
= remove_vm_area(addr
);
1306 if (unlikely(!area
)) {
1307 WARN(1, KERN_ERR
"Trying to vfree() nonexistent vm area (%p)\n",
1312 debug_check_no_locks_freed(addr
, area
->size
);
1313 debug_check_no_obj_freed(addr
, area
->size
);
1315 if (deallocate_pages
) {
1318 for (i
= 0; i
< area
->nr_pages
; i
++) {
1319 struct page
*page
= area
->pages
[i
];
1325 if (area
->flags
& VM_VPAGES
)
1336 * vfree - release memory allocated by vmalloc()
1337 * @addr: memory base address
1339 * Free the virtually continuous memory area starting at @addr, as
1340 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1341 * NULL, no operation is performed.
1343 * Must not be called in interrupt context.
1345 void vfree(const void *addr
)
1347 BUG_ON(in_interrupt());
1349 kmemleak_free(addr
);
1353 EXPORT_SYMBOL(vfree
);
1356 * vunmap - release virtual mapping obtained by vmap()
1357 * @addr: memory base address
1359 * Free the virtually contiguous memory area starting at @addr,
1360 * which was created from the page array passed to vmap().
1362 * Must not be called in interrupt context.
1364 void vunmap(const void *addr
)
1366 BUG_ON(in_interrupt());
1370 EXPORT_SYMBOL(vunmap
);
1373 * vmap - map an array of pages into virtually contiguous space
1374 * @pages: array of page pointers
1375 * @count: number of pages to map
1376 * @flags: vm_area->flags
1377 * @prot: page protection for the mapping
1379 * Maps @count pages from @pages into contiguous kernel virtual
1382 void *vmap(struct page
**pages
, unsigned int count
,
1383 unsigned long flags
, pgprot_t prot
)
1385 struct vm_struct
*area
;
1389 if (count
> totalram_pages
)
1392 area
= get_vm_area_caller((count
<< PAGE_SHIFT
), flags
,
1393 __builtin_return_address(0));
1397 if (map_vm_area(area
, prot
, &pages
)) {
1404 EXPORT_SYMBOL(vmap
);
1406 static void *__vmalloc_node(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
,
1407 int node
, void *caller
);
1408 static void *__vmalloc_area_node(struct vm_struct
*area
, gfp_t gfp_mask
,
1409 pgprot_t prot
, int node
, void *caller
)
1411 struct page
**pages
;
1412 unsigned int nr_pages
, array_size
, i
;
1414 nr_pages
= (area
->size
- PAGE_SIZE
) >> PAGE_SHIFT
;
1415 array_size
= (nr_pages
* sizeof(struct page
*));
1417 area
->nr_pages
= nr_pages
;
1418 /* Please note that the recursion is strictly bounded. */
1419 if (array_size
> PAGE_SIZE
) {
1420 pages
= __vmalloc_node(array_size
, gfp_mask
| __GFP_ZERO
,
1421 PAGE_KERNEL
, node
, caller
);
1422 area
->flags
|= VM_VPAGES
;
1424 pages
= kmalloc_node(array_size
,
1425 (gfp_mask
& GFP_RECLAIM_MASK
) | __GFP_ZERO
,
1428 area
->pages
= pages
;
1429 area
->caller
= caller
;
1431 remove_vm_area(area
->addr
);
1436 for (i
= 0; i
< area
->nr_pages
; i
++) {
1440 page
= alloc_page(gfp_mask
);
1442 page
= alloc_pages_node(node
, gfp_mask
, 0);
1444 if (unlikely(!page
)) {
1445 /* Successfully allocated i pages, free them in __vunmap() */
1449 area
->pages
[i
] = page
;
1452 if (map_vm_area(area
, prot
, &pages
))
1461 void *__vmalloc_area(struct vm_struct
*area
, gfp_t gfp_mask
, pgprot_t prot
)
1463 void *addr
= __vmalloc_area_node(area
, gfp_mask
, prot
, -1,
1464 __builtin_return_address(0));
1467 * A ref_count = 3 is needed because the vm_struct and vmap_area
1468 * structures allocated in the __get_vm_area_node() function contain
1469 * references to the virtual address of the vmalloc'ed block.
1471 kmemleak_alloc(addr
, area
->size
- PAGE_SIZE
, 3, gfp_mask
);
1477 * __vmalloc_node - allocate virtually contiguous memory
1478 * @size: allocation size
1479 * @gfp_mask: flags for the page level allocator
1480 * @prot: protection mask for the allocated pages
1481 * @node: node to use for allocation or -1
1482 * @caller: caller's return address
1484 * Allocate enough pages to cover @size from the page level
1485 * allocator with @gfp_mask flags. Map them into contiguous
1486 * kernel virtual space, using a pagetable protection of @prot.
1488 static void *__vmalloc_node(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
,
1489 int node
, void *caller
)
1491 struct vm_struct
*area
;
1493 unsigned long real_size
= size
;
1495 size
= PAGE_ALIGN(size
);
1496 if (!size
|| (size
>> PAGE_SHIFT
) > totalram_pages
)
1499 area
= __get_vm_area_node(size
, VM_ALLOC
, VMALLOC_START
, VMALLOC_END
,
1500 node
, gfp_mask
, caller
);
1505 addr
= __vmalloc_area_node(area
, gfp_mask
, prot
, node
, caller
);
1508 * A ref_count = 3 is needed because the vm_struct and vmap_area
1509 * structures allocated in the __get_vm_area_node() function contain
1510 * references to the virtual address of the vmalloc'ed block.
1512 kmemleak_alloc(addr
, real_size
, 3, gfp_mask
);
1517 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
)
1519 return __vmalloc_node(size
, gfp_mask
, prot
, -1,
1520 __builtin_return_address(0));
1522 EXPORT_SYMBOL(__vmalloc
);
1525 * vmalloc - allocate virtually contiguous memory
1526 * @size: allocation size
1527 * Allocate enough pages to cover @size from the page level
1528 * allocator and map them into contiguous kernel virtual space.
1530 * For tight control over page level allocator and protection flags
1531 * use __vmalloc() instead.
1533 void *vmalloc(unsigned long size
)
1535 return __vmalloc_node(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
,
1536 -1, __builtin_return_address(0));
1538 EXPORT_SYMBOL(vmalloc
);
1541 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1542 * @size: allocation size
1544 * The resulting memory area is zeroed so it can be mapped to userspace
1545 * without leaking data.
1547 void *vmalloc_user(unsigned long size
)
1549 struct vm_struct
*area
;
1552 ret
= __vmalloc_node(size
, GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
1553 PAGE_KERNEL
, -1, __builtin_return_address(0));
1555 area
= find_vm_area(ret
);
1556 area
->flags
|= VM_USERMAP
;
1560 EXPORT_SYMBOL(vmalloc_user
);
1563 * vmalloc_node - allocate memory on a specific node
1564 * @size: allocation size
1567 * Allocate enough pages to cover @size from the page level
1568 * allocator and map them into contiguous kernel virtual space.
1570 * For tight control over page level allocator and protection flags
1571 * use __vmalloc() instead.
1573 void *vmalloc_node(unsigned long size
, int node
)
1575 return __vmalloc_node(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
,
1576 node
, __builtin_return_address(0));
1578 EXPORT_SYMBOL(vmalloc_node
);
1580 #ifndef PAGE_KERNEL_EXEC
1581 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1585 * vmalloc_exec - allocate virtually contiguous, executable memory
1586 * @size: allocation size
1588 * Kernel-internal function to allocate enough pages to cover @size
1589 * the page level allocator and map them into contiguous and
1590 * executable kernel virtual space.
1592 * For tight control over page level allocator and protection flags
1593 * use __vmalloc() instead.
1596 void *vmalloc_exec(unsigned long size
)
1598 return __vmalloc_node(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL_EXEC
,
1599 -1, __builtin_return_address(0));
1602 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1603 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1604 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1605 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1607 #define GFP_VMALLOC32 GFP_KERNEL
1611 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1612 * @size: allocation size
1614 * Allocate enough 32bit PA addressable pages to cover @size from the
1615 * page level allocator and map them into contiguous kernel virtual space.
1617 void *vmalloc_32(unsigned long size
)
1619 return __vmalloc_node(size
, GFP_VMALLOC32
, PAGE_KERNEL
,
1620 -1, __builtin_return_address(0));
1622 EXPORT_SYMBOL(vmalloc_32
);
1625 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1626 * @size: allocation size
1628 * The resulting memory area is 32bit addressable and zeroed so it can be
1629 * mapped to userspace without leaking data.
1631 void *vmalloc_32_user(unsigned long size
)
1633 struct vm_struct
*area
;
1636 ret
= __vmalloc_node(size
, GFP_VMALLOC32
| __GFP_ZERO
, PAGE_KERNEL
,
1637 -1, __builtin_return_address(0));
1639 area
= find_vm_area(ret
);
1640 area
->flags
|= VM_USERMAP
;
1644 EXPORT_SYMBOL(vmalloc_32_user
);
1647 * small helper routine , copy contents to buf from addr.
1648 * If the page is not present, fill zero.
1651 static int aligned_vread(char *buf
, char *addr
, unsigned long count
)
1657 unsigned long offset
, length
;
1659 offset
= (unsigned long)addr
& ~PAGE_MASK
;
1660 length
= PAGE_SIZE
- offset
;
1663 p
= vmalloc_to_page(addr
);
1665 * To do safe access to this _mapped_ area, we need
1666 * lock. But adding lock here means that we need to add
1667 * overhead of vmalloc()/vfree() calles for this _debug_
1668 * interface, rarely used. Instead of that, we'll use
1669 * kmap() and get small overhead in this access function.
1673 * we can expect USER0 is not used (see vread/vwrite's
1674 * function description)
1676 void *map
= kmap_atomic(p
, KM_USER0
);
1677 memcpy(buf
, map
+ offset
, length
);
1678 kunmap_atomic(map
, KM_USER0
);
1680 memset(buf
, 0, length
);
1690 static int aligned_vwrite(char *buf
, char *addr
, unsigned long count
)
1696 unsigned long offset
, length
;
1698 offset
= (unsigned long)addr
& ~PAGE_MASK
;
1699 length
= PAGE_SIZE
- offset
;
1702 p
= vmalloc_to_page(addr
);
1704 * To do safe access to this _mapped_ area, we need
1705 * lock. But adding lock here means that we need to add
1706 * overhead of vmalloc()/vfree() calles for this _debug_
1707 * interface, rarely used. Instead of that, we'll use
1708 * kmap() and get small overhead in this access function.
1712 * we can expect USER0 is not used (see vread/vwrite's
1713 * function description)
1715 void *map
= kmap_atomic(p
, KM_USER0
);
1716 memcpy(map
+ offset
, buf
, length
);
1717 kunmap_atomic(map
, KM_USER0
);
1728 * vread() - read vmalloc area in a safe way.
1729 * @buf: buffer for reading data
1730 * @addr: vm address.
1731 * @count: number of bytes to be read.
1733 * Returns # of bytes which addr and buf should be increased.
1734 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
1735 * includes any intersect with alive vmalloc area.
1737 * This function checks that addr is a valid vmalloc'ed area, and
1738 * copy data from that area to a given buffer. If the given memory range
1739 * of [addr...addr+count) includes some valid address, data is copied to
1740 * proper area of @buf. If there are memory holes, they'll be zero-filled.
1741 * IOREMAP area is treated as memory hole and no copy is done.
1743 * If [addr...addr+count) doesn't includes any intersects with alive
1744 * vm_struct area, returns 0.
1745 * @buf should be kernel's buffer. Because this function uses KM_USER0,
1746 * the caller should guarantee KM_USER0 is not used.
1748 * Note: In usual ops, vread() is never necessary because the caller
1749 * should know vmalloc() area is valid and can use memcpy().
1750 * This is for routines which have to access vmalloc area without
1751 * any informaion, as /dev/kmem.
1755 long vread(char *buf
, char *addr
, unsigned long count
)
1757 struct vm_struct
*tmp
;
1758 char *vaddr
, *buf_start
= buf
;
1759 unsigned long buflen
= count
;
1762 /* Don't allow overflow */
1763 if ((unsigned long) addr
+ count
< count
)
1764 count
= -(unsigned long) addr
;
1766 read_lock(&vmlist_lock
);
1767 for (tmp
= vmlist
; count
&& tmp
; tmp
= tmp
->next
) {
1768 vaddr
= (char *) tmp
->addr
;
1769 if (addr
>= vaddr
+ tmp
->size
- PAGE_SIZE
)
1771 while (addr
< vaddr
) {
1779 n
= vaddr
+ tmp
->size
- PAGE_SIZE
- addr
;
1782 if (!(tmp
->flags
& VM_IOREMAP
))
1783 aligned_vread(buf
, addr
, n
);
1784 else /* IOREMAP area is treated as memory hole */
1791 read_unlock(&vmlist_lock
);
1793 if (buf
== buf_start
)
1795 /* zero-fill memory holes */
1796 if (buf
!= buf_start
+ buflen
)
1797 memset(buf
, 0, buflen
- (buf
- buf_start
));
1803 * vwrite() - write vmalloc area in a safe way.
1804 * @buf: buffer for source data
1805 * @addr: vm address.
1806 * @count: number of bytes to be read.
1808 * Returns # of bytes which addr and buf should be incresed.
1809 * (same number to @count).
1810 * If [addr...addr+count) doesn't includes any intersect with valid
1811 * vmalloc area, returns 0.
1813 * This function checks that addr is a valid vmalloc'ed area, and
1814 * copy data from a buffer to the given addr. If specified range of
1815 * [addr...addr+count) includes some valid address, data is copied from
1816 * proper area of @buf. If there are memory holes, no copy to hole.
1817 * IOREMAP area is treated as memory hole and no copy is done.
1819 * If [addr...addr+count) doesn't includes any intersects with alive
1820 * vm_struct area, returns 0.
1821 * @buf should be kernel's buffer. Because this function uses KM_USER0,
1822 * the caller should guarantee KM_USER0 is not used.
1824 * Note: In usual ops, vwrite() is never necessary because the caller
1825 * should know vmalloc() area is valid and can use memcpy().
1826 * This is for routines which have to access vmalloc area without
1827 * any informaion, as /dev/kmem.
1829 * The caller should guarantee KM_USER1 is not used.
1832 long vwrite(char *buf
, char *addr
, unsigned long count
)
1834 struct vm_struct
*tmp
;
1836 unsigned long n
, buflen
;
1839 /* Don't allow overflow */
1840 if ((unsigned long) addr
+ count
< count
)
1841 count
= -(unsigned long) addr
;
1844 read_lock(&vmlist_lock
);
1845 for (tmp
= vmlist
; count
&& tmp
; tmp
= tmp
->next
) {
1846 vaddr
= (char *) tmp
->addr
;
1847 if (addr
>= vaddr
+ tmp
->size
- PAGE_SIZE
)
1849 while (addr
< vaddr
) {
1856 n
= vaddr
+ tmp
->size
- PAGE_SIZE
- addr
;
1859 if (!(tmp
->flags
& VM_IOREMAP
)) {
1860 aligned_vwrite(buf
, addr
, n
);
1868 read_unlock(&vmlist_lock
);
1875 * remap_vmalloc_range - map vmalloc pages to userspace
1876 * @vma: vma to cover (map full range of vma)
1877 * @addr: vmalloc memory
1878 * @pgoff: number of pages into addr before first page to map
1880 * Returns: 0 for success, -Exxx on failure
1882 * This function checks that addr is a valid vmalloc'ed area, and
1883 * that it is big enough to cover the vma. Will return failure if
1884 * that criteria isn't met.
1886 * Similar to remap_pfn_range() (see mm/memory.c)
1888 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
1889 unsigned long pgoff
)
1891 struct vm_struct
*area
;
1892 unsigned long uaddr
= vma
->vm_start
;
1893 unsigned long usize
= vma
->vm_end
- vma
->vm_start
;
1895 if ((PAGE_SIZE
-1) & (unsigned long)addr
)
1898 area
= find_vm_area(addr
);
1902 if (!(area
->flags
& VM_USERMAP
))
1905 if (usize
+ (pgoff
<< PAGE_SHIFT
) > area
->size
- PAGE_SIZE
)
1908 addr
+= pgoff
<< PAGE_SHIFT
;
1910 struct page
*page
= vmalloc_to_page(addr
);
1913 ret
= vm_insert_page(vma
, uaddr
, page
);
1920 } while (usize
> 0);
1922 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
1923 vma
->vm_flags
|= VM_RESERVED
;
1927 EXPORT_SYMBOL(remap_vmalloc_range
);
1930 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1933 void __attribute__((weak
)) vmalloc_sync_all(void)
1938 static int f(pte_t
*pte
, pgtable_t table
, unsigned long addr
, void *data
)
1940 /* apply_to_page_range() does all the hard work. */
1945 * alloc_vm_area - allocate a range of kernel address space
1946 * @size: size of the area
1948 * Returns: NULL on failure, vm_struct on success
1950 * This function reserves a range of kernel address space, and
1951 * allocates pagetables to map that range. No actual mappings
1952 * are created. If the kernel address space is not shared
1953 * between processes, it syncs the pagetable across all
1956 struct vm_struct
*alloc_vm_area(size_t size
)
1958 struct vm_struct
*area
;
1960 area
= get_vm_area_caller(size
, VM_IOREMAP
,
1961 __builtin_return_address(0));
1966 * This ensures that page tables are constructed for this region
1967 * of kernel virtual address space and mapped into init_mm.
1969 if (apply_to_page_range(&init_mm
, (unsigned long)area
->addr
,
1970 area
->size
, f
, NULL
)) {
1975 /* Make sure the pagetables are constructed in process kernel
1981 EXPORT_SYMBOL_GPL(alloc_vm_area
);
1983 void free_vm_area(struct vm_struct
*area
)
1985 struct vm_struct
*ret
;
1986 ret
= remove_vm_area(area
->addr
);
1987 BUG_ON(ret
!= area
);
1990 EXPORT_SYMBOL_GPL(free_vm_area
);
1992 static struct vmap_area
*node_to_va(struct rb_node
*n
)
1994 return n
? rb_entry(n
, struct vmap_area
, rb_node
) : NULL
;
1998 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
1999 * @end: target address
2000 * @pnext: out arg for the next vmap_area
2001 * @pprev: out arg for the previous vmap_area
2003 * Returns: %true if either or both of next and prev are found,
2004 * %false if no vmap_area exists
2006 * Find vmap_areas end addresses of which enclose @end. ie. if not
2007 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2009 static bool pvm_find_next_prev(unsigned long end
,
2010 struct vmap_area
**pnext
,
2011 struct vmap_area
**pprev
)
2013 struct rb_node
*n
= vmap_area_root
.rb_node
;
2014 struct vmap_area
*va
= NULL
;
2017 va
= rb_entry(n
, struct vmap_area
, rb_node
);
2018 if (end
< va
->va_end
)
2020 else if (end
> va
->va_end
)
2029 if (va
->va_end
> end
) {
2031 *pprev
= node_to_va(rb_prev(&(*pnext
)->rb_node
));
2034 *pnext
= node_to_va(rb_next(&(*pprev
)->rb_node
));
2040 * pvm_determine_end - find the highest aligned address between two vmap_areas
2041 * @pnext: in/out arg for the next vmap_area
2042 * @pprev: in/out arg for the previous vmap_area
2045 * Returns: determined end address
2047 * Find the highest aligned address between *@pnext and *@pprev below
2048 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2049 * down address is between the end addresses of the two vmap_areas.
2051 * Please note that the address returned by this function may fall
2052 * inside *@pnext vmap_area. The caller is responsible for checking
2055 static unsigned long pvm_determine_end(struct vmap_area
**pnext
,
2056 struct vmap_area
**pprev
,
2057 unsigned long align
)
2059 const unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
2063 addr
= min((*pnext
)->va_start
& ~(align
- 1), vmalloc_end
);
2067 while (*pprev
&& (*pprev
)->va_end
> addr
) {
2069 *pprev
= node_to_va(rb_prev(&(*pnext
)->rb_node
));
2076 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2077 * @offsets: array containing offset of each area
2078 * @sizes: array containing size of each area
2079 * @nr_vms: the number of areas to allocate
2080 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2081 * @gfp_mask: allocation mask
2083 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2084 * vm_structs on success, %NULL on failure
2086 * Percpu allocator wants to use congruent vm areas so that it can
2087 * maintain the offsets among percpu areas. This function allocates
2088 * congruent vmalloc areas for it. These areas tend to be scattered
2089 * pretty far, distance between two areas easily going up to
2090 * gigabytes. To avoid interacting with regular vmallocs, these areas
2091 * are allocated from top.
2093 * Despite its complicated look, this allocator is rather simple. It
2094 * does everything top-down and scans areas from the end looking for
2095 * matching slot. While scanning, if any of the areas overlaps with
2096 * existing vmap_area, the base address is pulled down to fit the
2097 * area. Scanning is repeated till all the areas fit and then all
2098 * necessary data structres are inserted and the result is returned.
2100 struct vm_struct
**pcpu_get_vm_areas(const unsigned long *offsets
,
2101 const size_t *sizes
, int nr_vms
,
2102 size_t align
, gfp_t gfp_mask
)
2104 const unsigned long vmalloc_start
= ALIGN(VMALLOC_START
, align
);
2105 const unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
2106 struct vmap_area
**vas
, *prev
, *next
;
2107 struct vm_struct
**vms
;
2108 int area
, area2
, last_area
, term_area
;
2109 unsigned long base
, start
, end
, last_end
;
2110 bool purged
= false;
2112 gfp_mask
&= GFP_RECLAIM_MASK
;
2114 /* verify parameters and allocate data structures */
2115 BUG_ON(align
& ~PAGE_MASK
|| !is_power_of_2(align
));
2116 for (last_area
= 0, area
= 0; area
< nr_vms
; area
++) {
2117 start
= offsets
[area
];
2118 end
= start
+ sizes
[area
];
2120 /* is everything aligned properly? */
2121 BUG_ON(!IS_ALIGNED(offsets
[area
], align
));
2122 BUG_ON(!IS_ALIGNED(sizes
[area
], align
));
2124 /* detect the area with the highest address */
2125 if (start
> offsets
[last_area
])
2128 for (area2
= 0; area2
< nr_vms
; area2
++) {
2129 unsigned long start2
= offsets
[area2
];
2130 unsigned long end2
= start2
+ sizes
[area2
];
2135 BUG_ON(start2
>= start
&& start2
< end
);
2136 BUG_ON(end2
<= end
&& end2
> start
);
2139 last_end
= offsets
[last_area
] + sizes
[last_area
];
2141 if (vmalloc_end
- vmalloc_start
< last_end
) {
2146 vms
= kzalloc(sizeof(vms
[0]) * nr_vms
, gfp_mask
);
2147 vas
= kzalloc(sizeof(vas
[0]) * nr_vms
, gfp_mask
);
2151 for (area
= 0; area
< nr_vms
; area
++) {
2152 vas
[area
] = kzalloc(sizeof(struct vmap_area
), gfp_mask
);
2153 vms
[area
] = kzalloc(sizeof(struct vm_struct
), gfp_mask
);
2154 if (!vas
[area
] || !vms
[area
])
2158 spin_lock(&vmap_area_lock
);
2160 /* start scanning - we scan from the top, begin with the last area */
2161 area
= term_area
= last_area
;
2162 start
= offsets
[area
];
2163 end
= start
+ sizes
[area
];
2165 if (!pvm_find_next_prev(vmap_area_pcpu_hole
, &next
, &prev
)) {
2166 base
= vmalloc_end
- last_end
;
2169 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2172 BUG_ON(next
&& next
->va_end
<= base
+ end
);
2173 BUG_ON(prev
&& prev
->va_end
> base
+ end
);
2176 * base might have underflowed, add last_end before
2179 if (base
+ last_end
< vmalloc_start
+ last_end
) {
2180 spin_unlock(&vmap_area_lock
);
2182 purge_vmap_area_lazy();
2190 * If next overlaps, move base downwards so that it's
2191 * right below next and then recheck.
2193 if (next
&& next
->va_start
< base
+ end
) {
2194 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2200 * If prev overlaps, shift down next and prev and move
2201 * base so that it's right below new next and then
2204 if (prev
&& prev
->va_end
> base
+ start
) {
2206 prev
= node_to_va(rb_prev(&next
->rb_node
));
2207 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2213 * This area fits, move on to the previous one. If
2214 * the previous one is the terminal one, we're done.
2216 area
= (area
+ nr_vms
- 1) % nr_vms
;
2217 if (area
== term_area
)
2219 start
= offsets
[area
];
2220 end
= start
+ sizes
[area
];
2221 pvm_find_next_prev(base
+ end
, &next
, &prev
);
2224 /* we've found a fitting base, insert all va's */
2225 for (area
= 0; area
< nr_vms
; area
++) {
2226 struct vmap_area
*va
= vas
[area
];
2228 va
->va_start
= base
+ offsets
[area
];
2229 va
->va_end
= va
->va_start
+ sizes
[area
];
2230 __insert_vmap_area(va
);
2233 vmap_area_pcpu_hole
= base
+ offsets
[last_area
];
2235 spin_unlock(&vmap_area_lock
);
2237 /* insert all vm's */
2238 for (area
= 0; area
< nr_vms
; area
++)
2239 insert_vmalloc_vm(vms
[area
], vas
[area
], VM_ALLOC
,
2246 for (area
= 0; area
< nr_vms
; area
++) {
2258 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2259 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2260 * @nr_vms: the number of allocated areas
2262 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2264 void pcpu_free_vm_areas(struct vm_struct
**vms
, int nr_vms
)
2268 for (i
= 0; i
< nr_vms
; i
++)
2269 free_vm_area(vms
[i
]);
2273 #ifdef CONFIG_PROC_FS
2274 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
2277 struct vm_struct
*v
;
2279 read_lock(&vmlist_lock
);
2281 while (n
> 0 && v
) {
2292 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
2294 struct vm_struct
*v
= p
;
2300 static void s_stop(struct seq_file
*m
, void *p
)
2302 read_unlock(&vmlist_lock
);
2305 static void show_numa_info(struct seq_file
*m
, struct vm_struct
*v
)
2308 unsigned int nr
, *counters
= m
->private;
2313 memset(counters
, 0, nr_node_ids
* sizeof(unsigned int));
2315 for (nr
= 0; nr
< v
->nr_pages
; nr
++)
2316 counters
[page_to_nid(v
->pages
[nr
])]++;
2318 for_each_node_state(nr
, N_HIGH_MEMORY
)
2320 seq_printf(m
, " N%u=%u", nr
, counters
[nr
]);
2324 static int s_show(struct seq_file
*m
, void *p
)
2326 struct vm_struct
*v
= p
;
2328 seq_printf(m
, "0x%p-0x%p %7ld",
2329 v
->addr
, v
->addr
+ v
->size
, v
->size
);
2332 char buff
[KSYM_SYMBOL_LEN
];
2335 sprint_symbol(buff
, (unsigned long)v
->caller
);
2340 seq_printf(m
, " pages=%d", v
->nr_pages
);
2343 seq_printf(m
, " phys=%lx", v
->phys_addr
);
2345 if (v
->flags
& VM_IOREMAP
)
2346 seq_printf(m
, " ioremap");
2348 if (v
->flags
& VM_ALLOC
)
2349 seq_printf(m
, " vmalloc");
2351 if (v
->flags
& VM_MAP
)
2352 seq_printf(m
, " vmap");
2354 if (v
->flags
& VM_USERMAP
)
2355 seq_printf(m
, " user");
2357 if (v
->flags
& VM_VPAGES
)
2358 seq_printf(m
, " vpages");
2360 show_numa_info(m
, v
);
2365 static const struct seq_operations vmalloc_op
= {
2372 static int vmalloc_open(struct inode
*inode
, struct file
*file
)
2374 unsigned int *ptr
= NULL
;
2378 ptr
= kmalloc(nr_node_ids
* sizeof(unsigned int), GFP_KERNEL
);
2379 ret
= seq_open(file
, &vmalloc_op
);
2381 struct seq_file
*m
= file
->private_data
;
2388 static const struct file_operations proc_vmalloc_operations
= {
2389 .open
= vmalloc_open
,
2391 .llseek
= seq_lseek
,
2392 .release
= seq_release_private
,
2395 static int __init
proc_vmalloc_init(void)
2397 proc_create("vmallocinfo", S_IRUSR
, NULL
, &proc_vmalloc_operations
);
2400 module_init(proc_vmalloc_init
);