4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
61 #include <asm/pgalloc.h>
62 #include <asm/uaccess.h>
64 #include <asm/tlbflush.h>
65 #include <asm/pgtable.h>
69 #ifndef CONFIG_NEED_MULTIPLE_NODES
70 /* use the per-pgdat data instead for discontigmem - mbligh */
71 unsigned long max_mapnr
;
74 EXPORT_SYMBOL(max_mapnr
);
75 EXPORT_SYMBOL(mem_map
);
78 unsigned long num_physpages
;
80 * A number of key systems in x86 including ioremap() rely on the assumption
81 * that high_memory defines the upper bound on direct map memory, then end
82 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
83 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
88 EXPORT_SYMBOL(num_physpages
);
89 EXPORT_SYMBOL(high_memory
);
92 * Randomize the address space (stacks, mmaps, brk, etc.).
94 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
95 * as ancient (libc5 based) binaries can segfault. )
97 int randomize_va_space __read_mostly
=
98 #ifdef CONFIG_COMPAT_BRK
104 static int __init
disable_randmaps(char *s
)
106 randomize_va_space
= 0;
109 __setup("norandmaps", disable_randmaps
);
111 unsigned long zero_pfn __read_mostly
;
112 unsigned long highest_memmap_pfn __read_mostly
;
115 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117 static int __init
init_zero_pfn(void)
119 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
122 core_initcall(init_zero_pfn
);
125 * If a p?d_bad entry is found while walking page tables, report
126 * the error, before resetting entry to p?d_none. Usually (but
127 * very seldom) called out from the p?d_none_or_clear_bad macros.
130 void pgd_clear_bad(pgd_t
*pgd
)
136 void pud_clear_bad(pud_t
*pud
)
142 void pmd_clear_bad(pmd_t
*pmd
)
149 * Note: this doesn't free the actual pages themselves. That
150 * has been handled earlier when unmapping all the memory regions.
152 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
155 pgtable_t token
= pmd_pgtable(*pmd
);
157 pte_free_tlb(tlb
, token
, addr
);
161 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
162 unsigned long addr
, unsigned long end
,
163 unsigned long floor
, unsigned long ceiling
)
170 pmd
= pmd_offset(pud
, addr
);
172 next
= pmd_addr_end(addr
, end
);
173 if (pmd_none_or_clear_bad(pmd
))
175 free_pte_range(tlb
, pmd
, addr
);
176 } while (pmd
++, addr
= next
, addr
!= end
);
186 if (end
- 1 > ceiling
- 1)
189 pmd
= pmd_offset(pud
, start
);
191 pmd_free_tlb(tlb
, pmd
, start
);
194 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
195 unsigned long addr
, unsigned long end
,
196 unsigned long floor
, unsigned long ceiling
)
203 pud
= pud_offset(pgd
, addr
);
205 next
= pud_addr_end(addr
, end
);
206 if (pud_none_or_clear_bad(pud
))
208 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
209 } while (pud
++, addr
= next
, addr
!= end
);
215 ceiling
&= PGDIR_MASK
;
219 if (end
- 1 > ceiling
- 1)
222 pud
= pud_offset(pgd
, start
);
224 pud_free_tlb(tlb
, pud
, start
);
228 * This function frees user-level page tables of a process.
230 * Must be called with pagetable lock held.
232 void free_pgd_range(struct mmu_gather
*tlb
,
233 unsigned long addr
, unsigned long end
,
234 unsigned long floor
, unsigned long ceiling
)
241 * The next few lines have given us lots of grief...
243 * Why are we testing PMD* at this top level? Because often
244 * there will be no work to do at all, and we'd prefer not to
245 * go all the way down to the bottom just to discover that.
247 * Why all these "- 1"s? Because 0 represents both the bottom
248 * of the address space and the top of it (using -1 for the
249 * top wouldn't help much: the masks would do the wrong thing).
250 * The rule is that addr 0 and floor 0 refer to the bottom of
251 * the address space, but end 0 and ceiling 0 refer to the top
252 * Comparisons need to use "end - 1" and "ceiling - 1" (though
253 * that end 0 case should be mythical).
255 * Wherever addr is brought up or ceiling brought down, we must
256 * be careful to reject "the opposite 0" before it confuses the
257 * subsequent tests. But what about where end is brought down
258 * by PMD_SIZE below? no, end can't go down to 0 there.
260 * Whereas we round start (addr) and ceiling down, by different
261 * masks at different levels, in order to test whether a table
262 * now has no other vmas using it, so can be freed, we don't
263 * bother to round floor or end up - the tests don't need that.
277 if (end
- 1 > ceiling
- 1)
283 pgd
= pgd_offset(tlb
->mm
, addr
);
285 next
= pgd_addr_end(addr
, end
);
286 if (pgd_none_or_clear_bad(pgd
))
288 free_pud_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
289 } while (pgd
++, addr
= next
, addr
!= end
);
292 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
293 unsigned long floor
, unsigned long ceiling
)
296 struct vm_area_struct
*next
= vma
->vm_next
;
297 unsigned long addr
= vma
->vm_start
;
300 * Hide vma from rmap and truncate_pagecache before freeing
303 anon_vma_unlink(vma
);
304 unlink_file_vma(vma
);
306 if (is_vm_hugetlb_page(vma
)) {
307 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
308 floor
, next
? next
->vm_start
: ceiling
);
311 * Optimization: gather nearby vmas into one call down
313 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
314 && !is_vm_hugetlb_page(next
)) {
317 anon_vma_unlink(vma
);
318 unlink_file_vma(vma
);
320 free_pgd_range(tlb
, addr
, vma
->vm_end
,
321 floor
, next
? next
->vm_start
: ceiling
);
327 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
, unsigned long address
)
329 pgtable_t
new = pte_alloc_one(mm
, address
);
334 * Ensure all pte setup (eg. pte page lock and page clearing) are
335 * visible before the pte is made visible to other CPUs by being
336 * put into page tables.
338 * The other side of the story is the pointer chasing in the page
339 * table walking code (when walking the page table without locking;
340 * ie. most of the time). Fortunately, these data accesses consist
341 * of a chain of data-dependent loads, meaning most CPUs (alpha
342 * being the notable exception) will already guarantee loads are
343 * seen in-order. See the alpha page table accessors for the
344 * smp_read_barrier_depends() barriers in page table walking code.
346 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
348 spin_lock(&mm
->page_table_lock
);
349 if (!pmd_present(*pmd
)) { /* Has another populated it ? */
351 pmd_populate(mm
, pmd
, new);
354 spin_unlock(&mm
->page_table_lock
);
360 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
362 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
366 smp_wmb(); /* See comment in __pte_alloc */
368 spin_lock(&init_mm
.page_table_lock
);
369 if (!pmd_present(*pmd
)) { /* Has another populated it ? */
370 pmd_populate_kernel(&init_mm
, pmd
, new);
373 spin_unlock(&init_mm
.page_table_lock
);
375 pte_free_kernel(&init_mm
, new);
379 static inline void add_mm_rss(struct mm_struct
*mm
, int file_rss
, int anon_rss
)
382 add_mm_counter(mm
, file_rss
, file_rss
);
384 add_mm_counter(mm
, anon_rss
, anon_rss
);
388 * This function is called to print an error when a bad pte
389 * is found. For example, we might have a PFN-mapped pte in
390 * a region that doesn't allow it.
392 * The calling function must still handle the error.
394 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
395 pte_t pte
, struct page
*page
)
397 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
398 pud_t
*pud
= pud_offset(pgd
, addr
);
399 pmd_t
*pmd
= pmd_offset(pud
, addr
);
400 struct address_space
*mapping
;
402 static unsigned long resume
;
403 static unsigned long nr_shown
;
404 static unsigned long nr_unshown
;
407 * Allow a burst of 60 reports, then keep quiet for that minute;
408 * or allow a steady drip of one report per second.
410 if (nr_shown
== 60) {
411 if (time_before(jiffies
, resume
)) {
417 "BUG: Bad page map: %lu messages suppressed\n",
424 resume
= jiffies
+ 60 * HZ
;
426 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
427 index
= linear_page_index(vma
, addr
);
430 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
432 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
435 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
436 page
, (void *)page
->flags
, page_count(page
),
437 page_mapcount(page
), page
->mapping
, page
->index
);
440 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
441 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
443 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
446 print_symbol(KERN_ALERT
"vma->vm_ops->fault: %s\n",
447 (unsigned long)vma
->vm_ops
->fault
);
448 if (vma
->vm_file
&& vma
->vm_file
->f_op
)
449 print_symbol(KERN_ALERT
"vma->vm_file->f_op->mmap: %s\n",
450 (unsigned long)vma
->vm_file
->f_op
->mmap
);
452 add_taint(TAINT_BAD_PAGE
);
455 static inline int is_cow_mapping(unsigned int flags
)
457 return (flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
461 static inline int is_zero_pfn(unsigned long pfn
)
463 return pfn
== zero_pfn
;
468 static inline unsigned long my_zero_pfn(unsigned long addr
)
475 * vm_normal_page -- This function gets the "struct page" associated with a pte.
477 * "Special" mappings do not wish to be associated with a "struct page" (either
478 * it doesn't exist, or it exists but they don't want to touch it). In this
479 * case, NULL is returned here. "Normal" mappings do have a struct page.
481 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
482 * pte bit, in which case this function is trivial. Secondly, an architecture
483 * may not have a spare pte bit, which requires a more complicated scheme,
486 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
487 * special mapping (even if there are underlying and valid "struct pages").
488 * COWed pages of a VM_PFNMAP are always normal.
490 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
491 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
492 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
493 * mapping will always honor the rule
495 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
497 * And for normal mappings this is false.
499 * This restricts such mappings to be a linear translation from virtual address
500 * to pfn. To get around this restriction, we allow arbitrary mappings so long
501 * as the vma is not a COW mapping; in that case, we know that all ptes are
502 * special (because none can have been COWed).
505 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
507 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
508 * page" backing, however the difference is that _all_ pages with a struct
509 * page (that is, those where pfn_valid is true) are refcounted and considered
510 * normal pages by the VM. The disadvantage is that pages are refcounted
511 * (which can be slower and simply not an option for some PFNMAP users). The
512 * advantage is that we don't have to follow the strict linearity rule of
513 * PFNMAP mappings in order to support COWable mappings.
516 #ifdef __HAVE_ARCH_PTE_SPECIAL
517 # define HAVE_PTE_SPECIAL 1
519 # define HAVE_PTE_SPECIAL 0
521 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
524 unsigned long pfn
= pte_pfn(pte
);
526 if (HAVE_PTE_SPECIAL
) {
527 if (likely(!pte_special(pte
)))
529 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
531 if (!is_zero_pfn(pfn
))
532 print_bad_pte(vma
, addr
, pte
, NULL
);
536 /* !HAVE_PTE_SPECIAL case follows: */
538 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
539 if (vma
->vm_flags
& VM_MIXEDMAP
) {
545 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
546 if (pfn
== vma
->vm_pgoff
+ off
)
548 if (!is_cow_mapping(vma
->vm_flags
))
553 if (is_zero_pfn(pfn
))
556 if (unlikely(pfn
> highest_memmap_pfn
)) {
557 print_bad_pte(vma
, addr
, pte
, NULL
);
562 * NOTE! We still have PageReserved() pages in the page tables.
563 * eg. VDSO mappings can cause them to exist.
566 return pfn_to_page(pfn
);
570 * copy one vm_area from one task to the other. Assumes the page tables
571 * already present in the new task to be cleared in the whole range
572 * covered by this vma.
576 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
577 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
578 unsigned long addr
, int *rss
)
580 unsigned long vm_flags
= vma
->vm_flags
;
581 pte_t pte
= *src_pte
;
584 /* pte contains position in swap or file, so copy. */
585 if (unlikely(!pte_present(pte
))) {
586 if (!pte_file(pte
)) {
587 swp_entry_t entry
= pte_to_swp_entry(pte
);
589 swap_duplicate(entry
);
590 /* make sure dst_mm is on swapoff's mmlist. */
591 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
592 spin_lock(&mmlist_lock
);
593 if (list_empty(&dst_mm
->mmlist
))
594 list_add(&dst_mm
->mmlist
,
596 spin_unlock(&mmlist_lock
);
598 if (is_write_migration_entry(entry
) &&
599 is_cow_mapping(vm_flags
)) {
601 * COW mappings require pages in both parent
602 * and child to be set to read.
604 make_migration_entry_read(&entry
);
605 pte
= swp_entry_to_pte(entry
);
606 set_pte_at(src_mm
, addr
, src_pte
, pte
);
613 * If it's a COW mapping, write protect it both
614 * in the parent and the child
616 if (is_cow_mapping(vm_flags
)) {
617 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
618 pte
= pte_wrprotect(pte
);
622 * If it's a shared mapping, mark it clean in
625 if (vm_flags
& VM_SHARED
)
626 pte
= pte_mkclean(pte
);
627 pte
= pte_mkold(pte
);
629 page
= vm_normal_page(vma
, addr
, pte
);
633 rss
[PageAnon(page
)]++;
637 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
640 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
641 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
642 unsigned long addr
, unsigned long end
)
644 pte_t
*src_pte
, *dst_pte
;
645 spinlock_t
*src_ptl
, *dst_ptl
;
651 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
654 src_pte
= pte_offset_map_nested(src_pmd
, addr
);
655 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
656 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
657 arch_enter_lazy_mmu_mode();
661 * We are holding two locks at this point - either of them
662 * could generate latencies in another task on another CPU.
664 if (progress
>= 32) {
666 if (need_resched() ||
667 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
670 if (pte_none(*src_pte
)) {
674 copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
, vma
, addr
, rss
);
676 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
678 arch_leave_lazy_mmu_mode();
679 spin_unlock(src_ptl
);
680 pte_unmap_nested(src_pte
- 1);
681 add_mm_rss(dst_mm
, rss
[0], rss
[1]);
682 pte_unmap_unlock(dst_pte
- 1, dst_ptl
);
689 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
690 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
691 unsigned long addr
, unsigned long end
)
693 pmd_t
*src_pmd
, *dst_pmd
;
696 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
699 src_pmd
= pmd_offset(src_pud
, addr
);
701 next
= pmd_addr_end(addr
, end
);
702 if (pmd_none_or_clear_bad(src_pmd
))
704 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
707 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
711 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
712 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
713 unsigned long addr
, unsigned long end
)
715 pud_t
*src_pud
, *dst_pud
;
718 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
721 src_pud
= pud_offset(src_pgd
, addr
);
723 next
= pud_addr_end(addr
, end
);
724 if (pud_none_or_clear_bad(src_pud
))
726 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
729 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
733 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
734 struct vm_area_struct
*vma
)
736 pgd_t
*src_pgd
, *dst_pgd
;
738 unsigned long addr
= vma
->vm_start
;
739 unsigned long end
= vma
->vm_end
;
743 * Don't copy ptes where a page fault will fill them correctly.
744 * Fork becomes much lighter when there are big shared or private
745 * readonly mappings. The tradeoff is that copy_page_range is more
746 * efficient than faulting.
748 if (!(vma
->vm_flags
& (VM_HUGETLB
|VM_NONLINEAR
|VM_PFNMAP
|VM_INSERTPAGE
))) {
753 if (is_vm_hugetlb_page(vma
))
754 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
756 if (unlikely(is_pfn_mapping(vma
))) {
758 * We do not free on error cases below as remove_vma
759 * gets called on error from higher level routine
761 ret
= track_pfn_vma_copy(vma
);
767 * We need to invalidate the secondary MMU mappings only when
768 * there could be a permission downgrade on the ptes of the
769 * parent mm. And a permission downgrade will only happen if
770 * is_cow_mapping() returns true.
772 if (is_cow_mapping(vma
->vm_flags
))
773 mmu_notifier_invalidate_range_start(src_mm
, addr
, end
);
776 dst_pgd
= pgd_offset(dst_mm
, addr
);
777 src_pgd
= pgd_offset(src_mm
, addr
);
779 next
= pgd_addr_end(addr
, end
);
780 if (pgd_none_or_clear_bad(src_pgd
))
782 if (unlikely(copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
787 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
789 if (is_cow_mapping(vma
->vm_flags
))
790 mmu_notifier_invalidate_range_end(src_mm
,
795 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
796 struct vm_area_struct
*vma
, pmd_t
*pmd
,
797 unsigned long addr
, unsigned long end
,
798 long *zap_work
, struct zap_details
*details
)
800 struct mm_struct
*mm
= tlb
->mm
;
806 pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
807 arch_enter_lazy_mmu_mode();
810 if (pte_none(ptent
)) {
815 (*zap_work
) -= PAGE_SIZE
;
817 if (pte_present(ptent
)) {
820 page
= vm_normal_page(vma
, addr
, ptent
);
821 if (unlikely(details
) && page
) {
823 * unmap_shared_mapping_pages() wants to
824 * invalidate cache without truncating:
825 * unmap shared but keep private pages.
827 if (details
->check_mapping
&&
828 details
->check_mapping
!= page
->mapping
)
831 * Each page->index must be checked when
832 * invalidating or truncating nonlinear.
834 if (details
->nonlinear_vma
&&
835 (page
->index
< details
->first_index
||
836 page
->index
> details
->last_index
))
839 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
841 tlb_remove_tlb_entry(tlb
, pte
, addr
);
844 if (unlikely(details
) && details
->nonlinear_vma
845 && linear_page_index(details
->nonlinear_vma
,
846 addr
) != page
->index
)
847 set_pte_at(mm
, addr
, pte
,
848 pgoff_to_pte(page
->index
));
852 if (pte_dirty(ptent
))
853 set_page_dirty(page
);
854 if (pte_young(ptent
) &&
855 likely(!VM_SequentialReadHint(vma
)))
856 mark_page_accessed(page
);
859 page_remove_rmap(page
);
860 if (unlikely(page_mapcount(page
) < 0))
861 print_bad_pte(vma
, addr
, ptent
, page
);
862 tlb_remove_page(tlb
, page
);
866 * If details->check_mapping, we leave swap entries;
867 * if details->nonlinear_vma, we leave file entries.
869 if (unlikely(details
))
871 if (pte_file(ptent
)) {
872 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
)))
873 print_bad_pte(vma
, addr
, ptent
, NULL
);
875 (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent
))))
876 print_bad_pte(vma
, addr
, ptent
, NULL
);
877 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
878 } while (pte
++, addr
+= PAGE_SIZE
, (addr
!= end
&& *zap_work
> 0));
880 add_mm_rss(mm
, file_rss
, anon_rss
);
881 arch_leave_lazy_mmu_mode();
882 pte_unmap_unlock(pte
- 1, ptl
);
887 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
888 struct vm_area_struct
*vma
, pud_t
*pud
,
889 unsigned long addr
, unsigned long end
,
890 long *zap_work
, struct zap_details
*details
)
895 pmd
= pmd_offset(pud
, addr
);
897 next
= pmd_addr_end(addr
, end
);
898 if (pmd_none_or_clear_bad(pmd
)) {
902 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
,
904 } while (pmd
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
909 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
910 struct vm_area_struct
*vma
, pgd_t
*pgd
,
911 unsigned long addr
, unsigned long end
,
912 long *zap_work
, struct zap_details
*details
)
917 pud
= pud_offset(pgd
, addr
);
919 next
= pud_addr_end(addr
, end
);
920 if (pud_none_or_clear_bad(pud
)) {
924 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
,
926 } while (pud
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
931 static unsigned long unmap_page_range(struct mmu_gather
*tlb
,
932 struct vm_area_struct
*vma
,
933 unsigned long addr
, unsigned long end
,
934 long *zap_work
, struct zap_details
*details
)
939 if (details
&& !details
->check_mapping
&& !details
->nonlinear_vma
)
943 tlb_start_vma(tlb
, vma
);
944 pgd
= pgd_offset(vma
->vm_mm
, addr
);
946 next
= pgd_addr_end(addr
, end
);
947 if (pgd_none_or_clear_bad(pgd
)) {
951 next
= zap_pud_range(tlb
, vma
, pgd
, addr
, next
,
953 } while (pgd
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
954 tlb_end_vma(tlb
, vma
);
959 #ifdef CONFIG_PREEMPT
960 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
962 /* No preempt: go for improved straight-line efficiency */
963 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
967 * unmap_vmas - unmap a range of memory covered by a list of vma's
968 * @tlbp: address of the caller's struct mmu_gather
969 * @vma: the starting vma
970 * @start_addr: virtual address at which to start unmapping
971 * @end_addr: virtual address at which to end unmapping
972 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
973 * @details: details of nonlinear truncation or shared cache invalidation
975 * Returns the end address of the unmapping (restart addr if interrupted).
977 * Unmap all pages in the vma list.
979 * We aim to not hold locks for too long (for scheduling latency reasons).
980 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
981 * return the ending mmu_gather to the caller.
983 * Only addresses between `start' and `end' will be unmapped.
985 * The VMA list must be sorted in ascending virtual address order.
987 * unmap_vmas() assumes that the caller will flush the whole unmapped address
988 * range after unmap_vmas() returns. So the only responsibility here is to
989 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
990 * drops the lock and schedules.
992 unsigned long unmap_vmas(struct mmu_gather
**tlbp
,
993 struct vm_area_struct
*vma
, unsigned long start_addr
,
994 unsigned long end_addr
, unsigned long *nr_accounted
,
995 struct zap_details
*details
)
997 long zap_work
= ZAP_BLOCK_SIZE
;
998 unsigned long tlb_start
= 0; /* For tlb_finish_mmu */
999 int tlb_start_valid
= 0;
1000 unsigned long start
= start_addr
;
1001 spinlock_t
*i_mmap_lock
= details
? details
->i_mmap_lock
: NULL
;
1002 int fullmm
= (*tlbp
)->fullmm
;
1003 struct mm_struct
*mm
= vma
->vm_mm
;
1005 mmu_notifier_invalidate_range_start(mm
, start_addr
, end_addr
);
1006 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
) {
1009 start
= max(vma
->vm_start
, start_addr
);
1010 if (start
>= vma
->vm_end
)
1012 end
= min(vma
->vm_end
, end_addr
);
1013 if (end
<= vma
->vm_start
)
1016 if (vma
->vm_flags
& VM_ACCOUNT
)
1017 *nr_accounted
+= (end
- start
) >> PAGE_SHIFT
;
1019 if (unlikely(is_pfn_mapping(vma
)))
1020 untrack_pfn_vma(vma
, 0, 0);
1022 while (start
!= end
) {
1023 if (!tlb_start_valid
) {
1025 tlb_start_valid
= 1;
1028 if (unlikely(is_vm_hugetlb_page(vma
))) {
1030 * It is undesirable to test vma->vm_file as it
1031 * should be non-null for valid hugetlb area.
1032 * However, vm_file will be NULL in the error
1033 * cleanup path of do_mmap_pgoff. When
1034 * hugetlbfs ->mmap method fails,
1035 * do_mmap_pgoff() nullifies vma->vm_file
1036 * before calling this function to clean up.
1037 * Since no pte has actually been setup, it is
1038 * safe to do nothing in this case.
1041 unmap_hugepage_range(vma
, start
, end
, NULL
);
1042 zap_work
-= (end
- start
) /
1043 pages_per_huge_page(hstate_vma(vma
));
1048 start
= unmap_page_range(*tlbp
, vma
,
1049 start
, end
, &zap_work
, details
);
1052 BUG_ON(start
!= end
);
1056 tlb_finish_mmu(*tlbp
, tlb_start
, start
);
1058 if (need_resched() ||
1059 (i_mmap_lock
&& spin_needbreak(i_mmap_lock
))) {
1067 *tlbp
= tlb_gather_mmu(vma
->vm_mm
, fullmm
);
1068 tlb_start_valid
= 0;
1069 zap_work
= ZAP_BLOCK_SIZE
;
1073 mmu_notifier_invalidate_range_end(mm
, start_addr
, end_addr
);
1074 return start
; /* which is now the end (or restart) address */
1078 * zap_page_range - remove user pages in a given range
1079 * @vma: vm_area_struct holding the applicable pages
1080 * @address: starting address of pages to zap
1081 * @size: number of bytes to zap
1082 * @details: details of nonlinear truncation or shared cache invalidation
1084 unsigned long zap_page_range(struct vm_area_struct
*vma
, unsigned long address
,
1085 unsigned long size
, struct zap_details
*details
)
1087 struct mm_struct
*mm
= vma
->vm_mm
;
1088 struct mmu_gather
*tlb
;
1089 unsigned long end
= address
+ size
;
1090 unsigned long nr_accounted
= 0;
1093 tlb
= tlb_gather_mmu(mm
, 0);
1094 update_hiwater_rss(mm
);
1095 end
= unmap_vmas(&tlb
, vma
, address
, end
, &nr_accounted
, details
);
1097 tlb_finish_mmu(tlb
, address
, end
);
1102 * zap_vma_ptes - remove ptes mapping the vma
1103 * @vma: vm_area_struct holding ptes to be zapped
1104 * @address: starting address of pages to zap
1105 * @size: number of bytes to zap
1107 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1109 * The entire address range must be fully contained within the vma.
1111 * Returns 0 if successful.
1113 int zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1116 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1117 !(vma
->vm_flags
& VM_PFNMAP
))
1119 zap_page_range(vma
, address
, size
, NULL
);
1122 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1125 * Do a quick page-table lookup for a single page.
1127 struct page
*follow_page(struct vm_area_struct
*vma
, unsigned long address
,
1136 struct mm_struct
*mm
= vma
->vm_mm
;
1138 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
1139 if (!IS_ERR(page
)) {
1140 BUG_ON(flags
& FOLL_GET
);
1145 pgd
= pgd_offset(mm
, address
);
1146 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
1149 pud
= pud_offset(pgd
, address
);
1152 if (pud_huge(*pud
)) {
1153 BUG_ON(flags
& FOLL_GET
);
1154 page
= follow_huge_pud(mm
, address
, pud
, flags
& FOLL_WRITE
);
1157 if (unlikely(pud_bad(*pud
)))
1160 pmd
= pmd_offset(pud
, address
);
1163 if (pmd_huge(*pmd
)) {
1164 BUG_ON(flags
& FOLL_GET
);
1165 page
= follow_huge_pmd(mm
, address
, pmd
, flags
& FOLL_WRITE
);
1168 if (unlikely(pmd_bad(*pmd
)))
1171 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1174 if (!pte_present(pte
))
1176 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
1179 page
= vm_normal_page(vma
, address
, pte
);
1180 if (unlikely(!page
)) {
1181 if ((flags
& FOLL_DUMP
) ||
1182 !is_zero_pfn(pte_pfn(pte
)))
1184 page
= pte_page(pte
);
1187 if (flags
& FOLL_GET
)
1189 if (flags
& FOLL_TOUCH
) {
1190 if ((flags
& FOLL_WRITE
) &&
1191 !pte_dirty(pte
) && !PageDirty(page
))
1192 set_page_dirty(page
);
1194 * pte_mkyoung() would be more correct here, but atomic care
1195 * is needed to avoid losing the dirty bit: it is easier to use
1196 * mark_page_accessed().
1198 mark_page_accessed(page
);
1201 pte_unmap_unlock(ptep
, ptl
);
1206 pte_unmap_unlock(ptep
, ptl
);
1207 return ERR_PTR(-EFAULT
);
1210 pte_unmap_unlock(ptep
, ptl
);
1216 * When core dumping an enormous anonymous area that nobody
1217 * has touched so far, we don't want to allocate unnecessary pages or
1218 * page tables. Return error instead of NULL to skip handle_mm_fault,
1219 * then get_dump_page() will return NULL to leave a hole in the dump.
1220 * But we can only make this optimization where a hole would surely
1221 * be zero-filled if handle_mm_fault() actually did handle it.
1223 if ((flags
& FOLL_DUMP
) &&
1224 (!vma
->vm_ops
|| !vma
->vm_ops
->fault
))
1225 return ERR_PTR(-EFAULT
);
1229 int __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
1230 unsigned long start
, int nr_pages
, unsigned int gup_flags
,
1231 struct page
**pages
, struct vm_area_struct
**vmas
)
1234 unsigned long vm_flags
;
1239 VM_BUG_ON(!!pages
!= !!(gup_flags
& FOLL_GET
));
1242 * Require read or write permissions.
1243 * If FOLL_FORCE is set, we only require the "MAY" flags.
1245 vm_flags
= (gup_flags
& FOLL_WRITE
) ?
1246 (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
1247 vm_flags
&= (gup_flags
& FOLL_FORCE
) ?
1248 (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
1252 struct vm_area_struct
*vma
;
1254 vma
= find_extend_vma(mm
, start
);
1255 if (!vma
&& in_gate_area(tsk
, start
)) {
1256 unsigned long pg
= start
& PAGE_MASK
;
1257 struct vm_area_struct
*gate_vma
= get_gate_vma(tsk
);
1263 /* user gate pages are read-only */
1264 if (gup_flags
& FOLL_WRITE
)
1265 return i
? : -EFAULT
;
1267 pgd
= pgd_offset_k(pg
);
1269 pgd
= pgd_offset_gate(mm
, pg
);
1270 BUG_ON(pgd_none(*pgd
));
1271 pud
= pud_offset(pgd
, pg
);
1272 BUG_ON(pud_none(*pud
));
1273 pmd
= pmd_offset(pud
, pg
);
1275 return i
? : -EFAULT
;
1276 pte
= pte_offset_map(pmd
, pg
);
1277 if (pte_none(*pte
)) {
1279 return i
? : -EFAULT
;
1282 struct page
*page
= vm_normal_page(gate_vma
, start
, *pte
);
1297 (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) ||
1298 !(vm_flags
& vma
->vm_flags
))
1299 return i
? : -EFAULT
;
1301 if (is_vm_hugetlb_page(vma
)) {
1302 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
1303 &start
, &nr_pages
, i
, gup_flags
);
1309 unsigned int foll_flags
= gup_flags
;
1312 * If we have a pending SIGKILL, don't keep faulting
1313 * pages and potentially allocating memory.
1315 if (unlikely(fatal_signal_pending(current
)))
1316 return i
? i
: -ERESTARTSYS
;
1319 while (!(page
= follow_page(vma
, start
, foll_flags
))) {
1322 ret
= handle_mm_fault(mm
, vma
, start
,
1323 (foll_flags
& FOLL_WRITE
) ?
1324 FAULT_FLAG_WRITE
: 0);
1326 if (ret
& VM_FAULT_ERROR
) {
1327 if (ret
& VM_FAULT_OOM
)
1328 return i
? i
: -ENOMEM
;
1330 (VM_FAULT_HWPOISON
|VM_FAULT_SIGBUS
))
1331 return i
? i
: -EFAULT
;
1334 if (ret
& VM_FAULT_MAJOR
)
1340 * The VM_FAULT_WRITE bit tells us that
1341 * do_wp_page has broken COW when necessary,
1342 * even if maybe_mkwrite decided not to set
1343 * pte_write. We can thus safely do subsequent
1344 * page lookups as if they were reads. But only
1345 * do so when looping for pte_write is futile:
1346 * in some cases userspace may also be wanting
1347 * to write to the gotten user page, which a
1348 * read fault here might prevent (a readonly
1349 * page might get reCOWed by userspace write).
1351 if ((ret
& VM_FAULT_WRITE
) &&
1352 !(vma
->vm_flags
& VM_WRITE
))
1353 foll_flags
&= ~FOLL_WRITE
;
1358 return i
? i
: PTR_ERR(page
);
1362 flush_anon_page(vma
, page
, start
);
1363 flush_dcache_page(page
);
1370 } while (nr_pages
&& start
< vma
->vm_end
);
1376 * get_user_pages() - pin user pages in memory
1377 * @tsk: task_struct of target task
1378 * @mm: mm_struct of target mm
1379 * @start: starting user address
1380 * @nr_pages: number of pages from start to pin
1381 * @write: whether pages will be written to by the caller
1382 * @force: whether to force write access even if user mapping is
1383 * readonly. This will result in the page being COWed even
1384 * in MAP_SHARED mappings. You do not want this.
1385 * @pages: array that receives pointers to the pages pinned.
1386 * Should be at least nr_pages long. Or NULL, if caller
1387 * only intends to ensure the pages are faulted in.
1388 * @vmas: array of pointers to vmas corresponding to each page.
1389 * Or NULL if the caller does not require them.
1391 * Returns number of pages pinned. This may be fewer than the number
1392 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1393 * were pinned, returns -errno. Each page returned must be released
1394 * with a put_page() call when it is finished with. vmas will only
1395 * remain valid while mmap_sem is held.
1397 * Must be called with mmap_sem held for read or write.
1399 * get_user_pages walks a process's page tables and takes a reference to
1400 * each struct page that each user address corresponds to at a given
1401 * instant. That is, it takes the page that would be accessed if a user
1402 * thread accesses the given user virtual address at that instant.
1404 * This does not guarantee that the page exists in the user mappings when
1405 * get_user_pages returns, and there may even be a completely different
1406 * page there in some cases (eg. if mmapped pagecache has been invalidated
1407 * and subsequently re faulted). However it does guarantee that the page
1408 * won't be freed completely. And mostly callers simply care that the page
1409 * contains data that was valid *at some point in time*. Typically, an IO
1410 * or similar operation cannot guarantee anything stronger anyway because
1411 * locks can't be held over the syscall boundary.
1413 * If write=0, the page must not be written to. If the page is written to,
1414 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1415 * after the page is finished with, and before put_page is called.
1417 * get_user_pages is typically used for fewer-copy IO operations, to get a
1418 * handle on the memory by some means other than accesses via the user virtual
1419 * addresses. The pages may be submitted for DMA to devices or accessed via
1420 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1421 * use the correct cache flushing APIs.
1423 * See also get_user_pages_fast, for performance critical applications.
1425 int get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
1426 unsigned long start
, int nr_pages
, int write
, int force
,
1427 struct page
**pages
, struct vm_area_struct
**vmas
)
1429 int flags
= FOLL_TOUCH
;
1434 flags
|= FOLL_WRITE
;
1436 flags
|= FOLL_FORCE
;
1438 return __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
, vmas
);
1440 EXPORT_SYMBOL(get_user_pages
);
1443 * get_dump_page() - pin user page in memory while writing it to core dump
1444 * @addr: user address
1446 * Returns struct page pointer of user page pinned for dump,
1447 * to be freed afterwards by page_cache_release() or put_page().
1449 * Returns NULL on any kind of failure - a hole must then be inserted into
1450 * the corefile, to preserve alignment with its headers; and also returns
1451 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1452 * allowing a hole to be left in the corefile to save diskspace.
1454 * Called without mmap_sem, but after all other threads have been killed.
1456 #ifdef CONFIG_ELF_CORE
1457 struct page
*get_dump_page(unsigned long addr
)
1459 struct vm_area_struct
*vma
;
1462 if (__get_user_pages(current
, current
->mm
, addr
, 1,
1463 FOLL_FORCE
| FOLL_DUMP
| FOLL_GET
, &page
, &vma
) < 1)
1465 flush_cache_page(vma
, addr
, page_to_pfn(page
));
1468 #endif /* CONFIG_ELF_CORE */
1470 pte_t
*get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1473 pgd_t
* pgd
= pgd_offset(mm
, addr
);
1474 pud_t
* pud
= pud_alloc(mm
, pgd
, addr
);
1476 pmd_t
* pmd
= pmd_alloc(mm
, pud
, addr
);
1478 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1484 * This is the old fallback for page remapping.
1486 * For historical reasons, it only allows reserved pages. Only
1487 * old drivers should use this, and they needed to mark their
1488 * pages reserved for the old functions anyway.
1490 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1491 struct page
*page
, pgprot_t prot
)
1493 struct mm_struct
*mm
= vma
->vm_mm
;
1502 flush_dcache_page(page
);
1503 pte
= get_locked_pte(mm
, addr
, &ptl
);
1507 if (!pte_none(*pte
))
1510 /* Ok, finally just insert the thing.. */
1512 inc_mm_counter(mm
, file_rss
);
1513 page_add_file_rmap(page
);
1514 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1517 pte_unmap_unlock(pte
, ptl
);
1520 pte_unmap_unlock(pte
, ptl
);
1526 * vm_insert_page - insert single page into user vma
1527 * @vma: user vma to map to
1528 * @addr: target user address of this page
1529 * @page: source kernel page
1531 * This allows drivers to insert individual pages they've allocated
1534 * The page has to be a nice clean _individual_ kernel allocation.
1535 * If you allocate a compound page, you need to have marked it as
1536 * such (__GFP_COMP), or manually just split the page up yourself
1537 * (see split_page()).
1539 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1540 * took an arbitrary page protection parameter. This doesn't allow
1541 * that. Your vma protection will have to be set up correctly, which
1542 * means that if you want a shared writable mapping, you'd better
1543 * ask for a shared writable mapping!
1545 * The page does not need to be reserved.
1547 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1550 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1552 if (!page_count(page
))
1554 vma
->vm_flags
|= VM_INSERTPAGE
;
1555 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1557 EXPORT_SYMBOL(vm_insert_page
);
1559 static int insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1560 unsigned long pfn
, pgprot_t prot
)
1562 struct mm_struct
*mm
= vma
->vm_mm
;
1568 pte
= get_locked_pte(mm
, addr
, &ptl
);
1572 if (!pte_none(*pte
))
1575 /* Ok, finally just insert the thing.. */
1576 entry
= pte_mkspecial(pfn_pte(pfn
, prot
));
1577 set_pte_at(mm
, addr
, pte
, entry
);
1578 update_mmu_cache(vma
, addr
, entry
); /* XXX: why not for insert_page? */
1582 pte_unmap_unlock(pte
, ptl
);
1588 * vm_insert_pfn - insert single pfn into user vma
1589 * @vma: user vma to map to
1590 * @addr: target user address of this page
1591 * @pfn: source kernel pfn
1593 * Similar to vm_inert_page, this allows drivers to insert individual pages
1594 * they've allocated into a user vma. Same comments apply.
1596 * This function should only be called from a vm_ops->fault handler, and
1597 * in that case the handler should return NULL.
1599 * vma cannot be a COW mapping.
1601 * As this is called only for pages that do not currently exist, we
1602 * do not need to flush old virtual caches or the TLB.
1604 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1608 pgprot_t pgprot
= vma
->vm_page_prot
;
1610 * Technically, architectures with pte_special can avoid all these
1611 * restrictions (same for remap_pfn_range). However we would like
1612 * consistency in testing and feature parity among all, so we should
1613 * try to keep these invariants in place for everybody.
1615 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
1616 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
1617 (VM_PFNMAP
|VM_MIXEDMAP
));
1618 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
1619 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
1621 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1623 if (track_pfn_vma_new(vma
, &pgprot
, pfn
, PAGE_SIZE
))
1626 ret
= insert_pfn(vma
, addr
, pfn
, pgprot
);
1629 untrack_pfn_vma(vma
, pfn
, PAGE_SIZE
);
1633 EXPORT_SYMBOL(vm_insert_pfn
);
1635 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1638 BUG_ON(!(vma
->vm_flags
& VM_MIXEDMAP
));
1640 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1644 * If we don't have pte special, then we have to use the pfn_valid()
1645 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1646 * refcount the page if pfn_valid is true (hence insert_page rather
1647 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1648 * without pte special, it would there be refcounted as a normal page.
1650 if (!HAVE_PTE_SPECIAL
&& pfn_valid(pfn
)) {
1653 page
= pfn_to_page(pfn
);
1654 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1656 return insert_pfn(vma
, addr
, pfn
, vma
->vm_page_prot
);
1658 EXPORT_SYMBOL(vm_insert_mixed
);
1661 * maps a range of physical memory into the requested pages. the old
1662 * mappings are removed. any references to nonexistent pages results
1663 * in null mappings (currently treated as "copy-on-access")
1665 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1666 unsigned long addr
, unsigned long end
,
1667 unsigned long pfn
, pgprot_t prot
)
1672 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1675 arch_enter_lazy_mmu_mode();
1677 BUG_ON(!pte_none(*pte
));
1678 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
1680 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1681 arch_leave_lazy_mmu_mode();
1682 pte_unmap_unlock(pte
- 1, ptl
);
1686 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1687 unsigned long addr
, unsigned long end
,
1688 unsigned long pfn
, pgprot_t prot
)
1693 pfn
-= addr
>> PAGE_SHIFT
;
1694 pmd
= pmd_alloc(mm
, pud
, addr
);
1698 next
= pmd_addr_end(addr
, end
);
1699 if (remap_pte_range(mm
, pmd
, addr
, next
,
1700 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1702 } while (pmd
++, addr
= next
, addr
!= end
);
1706 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1707 unsigned long addr
, unsigned long end
,
1708 unsigned long pfn
, pgprot_t prot
)
1713 pfn
-= addr
>> PAGE_SHIFT
;
1714 pud
= pud_alloc(mm
, pgd
, addr
);
1718 next
= pud_addr_end(addr
, end
);
1719 if (remap_pmd_range(mm
, pud
, addr
, next
,
1720 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1722 } while (pud
++, addr
= next
, addr
!= end
);
1727 * remap_pfn_range - remap kernel memory to userspace
1728 * @vma: user vma to map to
1729 * @addr: target user address to start at
1730 * @pfn: physical address of kernel memory
1731 * @size: size of map area
1732 * @prot: page protection flags for this mapping
1734 * Note: this is only safe if the mm semaphore is held when called.
1736 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1737 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1741 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1742 struct mm_struct
*mm
= vma
->vm_mm
;
1746 * Physically remapped pages are special. Tell the
1747 * rest of the world about it:
1748 * VM_IO tells people not to look at these pages
1749 * (accesses can have side effects).
1750 * VM_RESERVED is specified all over the place, because
1751 * in 2.4 it kept swapout's vma scan off this vma; but
1752 * in 2.6 the LRU scan won't even find its pages, so this
1753 * flag means no more than count its pages in reserved_vm,
1754 * and omit it from core dump, even when VM_IO turned off.
1755 * VM_PFNMAP tells the core MM that the base pages are just
1756 * raw PFN mappings, and do not have a "struct page" associated
1759 * There's a horrible special case to handle copy-on-write
1760 * behaviour that some programs depend on. We mark the "original"
1761 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1763 if (addr
== vma
->vm_start
&& end
== vma
->vm_end
) {
1764 vma
->vm_pgoff
= pfn
;
1765 vma
->vm_flags
|= VM_PFN_AT_MMAP
;
1766 } else if (is_cow_mapping(vma
->vm_flags
))
1769 vma
->vm_flags
|= VM_IO
| VM_RESERVED
| VM_PFNMAP
;
1771 err
= track_pfn_vma_new(vma
, &prot
, pfn
, PAGE_ALIGN(size
));
1774 * To indicate that track_pfn related cleanup is not
1775 * needed from higher level routine calling unmap_vmas
1777 vma
->vm_flags
&= ~(VM_IO
| VM_RESERVED
| VM_PFNMAP
);
1778 vma
->vm_flags
&= ~VM_PFN_AT_MMAP
;
1782 BUG_ON(addr
>= end
);
1783 pfn
-= addr
>> PAGE_SHIFT
;
1784 pgd
= pgd_offset(mm
, addr
);
1785 flush_cache_range(vma
, addr
, end
);
1787 next
= pgd_addr_end(addr
, end
);
1788 err
= remap_pud_range(mm
, pgd
, addr
, next
,
1789 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1792 } while (pgd
++, addr
= next
, addr
!= end
);
1795 untrack_pfn_vma(vma
, pfn
, PAGE_ALIGN(size
));
1799 EXPORT_SYMBOL(remap_pfn_range
);
1801 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1802 unsigned long addr
, unsigned long end
,
1803 pte_fn_t fn
, void *data
)
1808 spinlock_t
*uninitialized_var(ptl
);
1810 pte
= (mm
== &init_mm
) ?
1811 pte_alloc_kernel(pmd
, addr
) :
1812 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1816 BUG_ON(pmd_huge(*pmd
));
1818 arch_enter_lazy_mmu_mode();
1820 token
= pmd_pgtable(*pmd
);
1823 err
= fn(pte
, token
, addr
, data
);
1826 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1828 arch_leave_lazy_mmu_mode();
1831 pte_unmap_unlock(pte
-1, ptl
);
1835 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1836 unsigned long addr
, unsigned long end
,
1837 pte_fn_t fn
, void *data
)
1843 BUG_ON(pud_huge(*pud
));
1845 pmd
= pmd_alloc(mm
, pud
, addr
);
1849 next
= pmd_addr_end(addr
, end
);
1850 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
1853 } while (pmd
++, addr
= next
, addr
!= end
);
1857 static int apply_to_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1858 unsigned long addr
, unsigned long end
,
1859 pte_fn_t fn
, void *data
)
1865 pud
= pud_alloc(mm
, pgd
, addr
);
1869 next
= pud_addr_end(addr
, end
);
1870 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
1873 } while (pud
++, addr
= next
, addr
!= end
);
1878 * Scan a region of virtual memory, filling in page tables as necessary
1879 * and calling a provided function on each leaf page table.
1881 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
1882 unsigned long size
, pte_fn_t fn
, void *data
)
1886 unsigned long start
= addr
, end
= addr
+ size
;
1889 BUG_ON(addr
>= end
);
1890 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1891 pgd
= pgd_offset(mm
, addr
);
1893 next
= pgd_addr_end(addr
, end
);
1894 err
= apply_to_pud_range(mm
, pgd
, addr
, next
, fn
, data
);
1897 } while (pgd
++, addr
= next
, addr
!= end
);
1898 mmu_notifier_invalidate_range_end(mm
, start
, end
);
1901 EXPORT_SYMBOL_GPL(apply_to_page_range
);
1904 * handle_pte_fault chooses page fault handler according to an entry
1905 * which was read non-atomically. Before making any commitment, on
1906 * those architectures or configurations (e.g. i386 with PAE) which
1907 * might give a mix of unmatched parts, do_swap_page and do_file_page
1908 * must check under lock before unmapping the pte and proceeding
1909 * (but do_wp_page is only called after already making such a check;
1910 * and do_anonymous_page and do_no_page can safely check later on).
1912 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
1913 pte_t
*page_table
, pte_t orig_pte
)
1916 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1917 if (sizeof(pte_t
) > sizeof(unsigned long)) {
1918 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
1920 same
= pte_same(*page_table
, orig_pte
);
1924 pte_unmap(page_table
);
1929 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1930 * servicing faults for write access. In the normal case, do always want
1931 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1932 * that do not have writing enabled, when used by access_process_vm.
1934 static inline pte_t
maybe_mkwrite(pte_t pte
, struct vm_area_struct
*vma
)
1936 if (likely(vma
->vm_flags
& VM_WRITE
))
1937 pte
= pte_mkwrite(pte
);
1941 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
1944 * If the source page was a PFN mapping, we don't have
1945 * a "struct page" for it. We do a best-effort copy by
1946 * just copying from the original user address. If that
1947 * fails, we just zero-fill it. Live with it.
1949 if (unlikely(!src
)) {
1950 void *kaddr
= kmap_atomic(dst
, KM_USER0
);
1951 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
1954 * This really shouldn't fail, because the page is there
1955 * in the page tables. But it might just be unreadable,
1956 * in which case we just give up and fill the result with
1959 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
1960 memset(kaddr
, 0, PAGE_SIZE
);
1961 kunmap_atomic(kaddr
, KM_USER0
);
1962 flush_dcache_page(dst
);
1964 copy_user_highpage(dst
, src
, va
, vma
);
1968 * This routine handles present pages, when users try to write
1969 * to a shared page. It is done by copying the page to a new address
1970 * and decrementing the shared-page counter for the old page.
1972 * Note that this routine assumes that the protection checks have been
1973 * done by the caller (the low-level page fault routine in most cases).
1974 * Thus we can safely just mark it writable once we've done any necessary
1977 * We also mark the page dirty at this point even though the page will
1978 * change only once the write actually happens. This avoids a few races,
1979 * and potentially makes it more efficient.
1981 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1982 * but allow concurrent faults), with pte both mapped and locked.
1983 * We return with mmap_sem still held, but pte unmapped and unlocked.
1985 static int do_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1986 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
1987 spinlock_t
*ptl
, pte_t orig_pte
)
1989 struct page
*old_page
, *new_page
;
1991 int reuse
= 0, ret
= 0;
1992 int page_mkwrite
= 0;
1993 struct page
*dirty_page
= NULL
;
1995 old_page
= vm_normal_page(vma
, address
, orig_pte
);
1998 * VM_MIXEDMAP !pfn_valid() case
2000 * We should not cow pages in a shared writeable mapping.
2001 * Just mark the pages writable as we can't do any dirty
2002 * accounting on raw pfn maps.
2004 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2005 (VM_WRITE
|VM_SHARED
))
2011 * Take out anonymous pages first, anonymous shared vmas are
2012 * not dirty accountable.
2014 if (PageAnon(old_page
) && !PageKsm(old_page
)) {
2015 if (!trylock_page(old_page
)) {
2016 page_cache_get(old_page
);
2017 pte_unmap_unlock(page_table
, ptl
);
2018 lock_page(old_page
);
2019 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2021 if (!pte_same(*page_table
, orig_pte
)) {
2022 unlock_page(old_page
);
2023 page_cache_release(old_page
);
2026 page_cache_release(old_page
);
2028 reuse
= reuse_swap_page(old_page
);
2029 unlock_page(old_page
);
2030 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2031 (VM_WRITE
|VM_SHARED
))) {
2033 * Only catch write-faults on shared writable pages,
2034 * read-only shared pages can get COWed by
2035 * get_user_pages(.write=1, .force=1).
2037 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2038 struct vm_fault vmf
;
2041 vmf
.virtual_address
= (void __user
*)(address
&
2043 vmf
.pgoff
= old_page
->index
;
2044 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2045 vmf
.page
= old_page
;
2048 * Notify the address space that the page is about to
2049 * become writable so that it can prohibit this or wait
2050 * for the page to get into an appropriate state.
2052 * We do this without the lock held, so that it can
2053 * sleep if it needs to.
2055 page_cache_get(old_page
);
2056 pte_unmap_unlock(page_table
, ptl
);
2058 tmp
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
2060 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
2062 goto unwritable_page
;
2064 if (unlikely(!(tmp
& VM_FAULT_LOCKED
))) {
2065 lock_page(old_page
);
2066 if (!old_page
->mapping
) {
2067 ret
= 0; /* retry the fault */
2068 unlock_page(old_page
);
2069 goto unwritable_page
;
2072 VM_BUG_ON(!PageLocked(old_page
));
2075 * Since we dropped the lock we need to revalidate
2076 * the PTE as someone else may have changed it. If
2077 * they did, we just return, as we can count on the
2078 * MMU to tell us if they didn't also make it writable.
2080 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2082 if (!pte_same(*page_table
, orig_pte
)) {
2083 unlock_page(old_page
);
2084 page_cache_release(old_page
);
2090 dirty_page
= old_page
;
2091 get_page(dirty_page
);
2097 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2098 entry
= pte_mkyoung(orig_pte
);
2099 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2100 if (ptep_set_access_flags(vma
, address
, page_table
, entry
,1))
2101 update_mmu_cache(vma
, address
, entry
);
2102 ret
|= VM_FAULT_WRITE
;
2107 * Ok, we need to copy. Oh, well..
2109 page_cache_get(old_page
);
2111 pte_unmap_unlock(page_table
, ptl
);
2113 if (unlikely(anon_vma_prepare(vma
)))
2116 if (is_zero_pfn(pte_pfn(orig_pte
))) {
2117 new_page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2121 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
2124 cow_user_page(new_page
, old_page
, address
, vma
);
2126 __SetPageUptodate(new_page
);
2129 * Don't let another task, with possibly unlocked vma,
2130 * keep the mlocked page.
2132 if ((vma
->vm_flags
& VM_LOCKED
) && old_page
) {
2133 lock_page(old_page
); /* for LRU manipulation */
2134 clear_page_mlock(old_page
);
2135 unlock_page(old_page
);
2138 if (mem_cgroup_newpage_charge(new_page
, mm
, GFP_KERNEL
))
2142 * Re-check the pte - we dropped the lock
2144 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2145 if (likely(pte_same(*page_table
, orig_pte
))) {
2147 if (!PageAnon(old_page
)) {
2148 dec_mm_counter(mm
, file_rss
);
2149 inc_mm_counter(mm
, anon_rss
);
2152 inc_mm_counter(mm
, anon_rss
);
2153 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2154 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2155 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2157 * Clear the pte entry and flush it first, before updating the
2158 * pte with the new entry. This will avoid a race condition
2159 * seen in the presence of one thread doing SMC and another
2162 ptep_clear_flush(vma
, address
, page_table
);
2163 page_add_new_anon_rmap(new_page
, vma
, address
);
2165 * We call the notify macro here because, when using secondary
2166 * mmu page tables (such as kvm shadow page tables), we want the
2167 * new page to be mapped directly into the secondary page table.
2169 set_pte_at_notify(mm
, address
, page_table
, entry
);
2170 update_mmu_cache(vma
, address
, entry
);
2173 * Only after switching the pte to the new page may
2174 * we remove the mapcount here. Otherwise another
2175 * process may come and find the rmap count decremented
2176 * before the pte is switched to the new page, and
2177 * "reuse" the old page writing into it while our pte
2178 * here still points into it and can be read by other
2181 * The critical issue is to order this
2182 * page_remove_rmap with the ptp_clear_flush above.
2183 * Those stores are ordered by (if nothing else,)
2184 * the barrier present in the atomic_add_negative
2185 * in page_remove_rmap.
2187 * Then the TLB flush in ptep_clear_flush ensures that
2188 * no process can access the old page before the
2189 * decremented mapcount is visible. And the old page
2190 * cannot be reused until after the decremented
2191 * mapcount is visible. So transitively, TLBs to
2192 * old page will be flushed before it can be reused.
2194 page_remove_rmap(old_page
);
2197 /* Free the old page.. */
2198 new_page
= old_page
;
2199 ret
|= VM_FAULT_WRITE
;
2201 mem_cgroup_uncharge_page(new_page
);
2204 page_cache_release(new_page
);
2206 page_cache_release(old_page
);
2208 pte_unmap_unlock(page_table
, ptl
);
2211 * Yes, Virginia, this is actually required to prevent a race
2212 * with clear_page_dirty_for_io() from clearing the page dirty
2213 * bit after it clear all dirty ptes, but before a racing
2214 * do_wp_page installs a dirty pte.
2216 * do_no_page is protected similarly.
2218 if (!page_mkwrite
) {
2219 wait_on_page_locked(dirty_page
);
2220 set_page_dirty_balance(dirty_page
, page_mkwrite
);
2222 put_page(dirty_page
);
2224 struct address_space
*mapping
= dirty_page
->mapping
;
2226 set_page_dirty(dirty_page
);
2227 unlock_page(dirty_page
);
2228 page_cache_release(dirty_page
);
2231 * Some device drivers do not set page.mapping
2232 * but still dirty their pages
2234 balance_dirty_pages_ratelimited(mapping
);
2238 /* file_update_time outside page_lock */
2240 file_update_time(vma
->vm_file
);
2244 page_cache_release(new_page
);
2248 unlock_page(old_page
);
2249 page_cache_release(old_page
);
2251 page_cache_release(old_page
);
2253 return VM_FAULT_OOM
;
2256 page_cache_release(old_page
);
2261 * Helper functions for unmap_mapping_range().
2263 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2265 * We have to restart searching the prio_tree whenever we drop the lock,
2266 * since the iterator is only valid while the lock is held, and anyway
2267 * a later vma might be split and reinserted earlier while lock dropped.
2269 * The list of nonlinear vmas could be handled more efficiently, using
2270 * a placeholder, but handle it in the same way until a need is shown.
2271 * It is important to search the prio_tree before nonlinear list: a vma
2272 * may become nonlinear and be shifted from prio_tree to nonlinear list
2273 * while the lock is dropped; but never shifted from list to prio_tree.
2275 * In order to make forward progress despite restarting the search,
2276 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2277 * quickly skip it next time around. Since the prio_tree search only
2278 * shows us those vmas affected by unmapping the range in question, we
2279 * can't efficiently keep all vmas in step with mapping->truncate_count:
2280 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2281 * mapping->truncate_count and vma->vm_truncate_count are protected by
2284 * In order to make forward progress despite repeatedly restarting some
2285 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2286 * and restart from that address when we reach that vma again. It might
2287 * have been split or merged, shrunk or extended, but never shifted: so
2288 * restart_addr remains valid so long as it remains in the vma's range.
2289 * unmap_mapping_range forces truncate_count to leap over page-aligned
2290 * values so we can save vma's restart_addr in its truncate_count field.
2292 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2294 static void reset_vma_truncate_counts(struct address_space
*mapping
)
2296 struct vm_area_struct
*vma
;
2297 struct prio_tree_iter iter
;
2299 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, 0, ULONG_MAX
)
2300 vma
->vm_truncate_count
= 0;
2301 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.vm_set
.list
)
2302 vma
->vm_truncate_count
= 0;
2305 static int unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2306 unsigned long start_addr
, unsigned long end_addr
,
2307 struct zap_details
*details
)
2309 unsigned long restart_addr
;
2313 * files that support invalidating or truncating portions of the
2314 * file from under mmaped areas must have their ->fault function
2315 * return a locked page (and set VM_FAULT_LOCKED in the return).
2316 * This provides synchronisation against concurrent unmapping here.
2320 restart_addr
= vma
->vm_truncate_count
;
2321 if (is_restart_addr(restart_addr
) && start_addr
< restart_addr
) {
2322 start_addr
= restart_addr
;
2323 if (start_addr
>= end_addr
) {
2324 /* Top of vma has been split off since last time */
2325 vma
->vm_truncate_count
= details
->truncate_count
;
2330 restart_addr
= zap_page_range(vma
, start_addr
,
2331 end_addr
- start_addr
, details
);
2332 need_break
= need_resched() || spin_needbreak(details
->i_mmap_lock
);
2334 if (restart_addr
>= end_addr
) {
2335 /* We have now completed this vma: mark it so */
2336 vma
->vm_truncate_count
= details
->truncate_count
;
2340 /* Note restart_addr in vma's truncate_count field */
2341 vma
->vm_truncate_count
= restart_addr
;
2346 spin_unlock(details
->i_mmap_lock
);
2348 spin_lock(details
->i_mmap_lock
);
2352 static inline void unmap_mapping_range_tree(struct prio_tree_root
*root
,
2353 struct zap_details
*details
)
2355 struct vm_area_struct
*vma
;
2356 struct prio_tree_iter iter
;
2357 pgoff_t vba
, vea
, zba
, zea
;
2360 vma_prio_tree_foreach(vma
, &iter
, root
,
2361 details
->first_index
, details
->last_index
) {
2362 /* Skip quickly over those we have already dealt with */
2363 if (vma
->vm_truncate_count
== details
->truncate_count
)
2366 vba
= vma
->vm_pgoff
;
2367 vea
= vba
+ ((vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
) - 1;
2368 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2369 zba
= details
->first_index
;
2372 zea
= details
->last_index
;
2376 if (unmap_mapping_range_vma(vma
,
2377 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2378 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2384 static inline void unmap_mapping_range_list(struct list_head
*head
,
2385 struct zap_details
*details
)
2387 struct vm_area_struct
*vma
;
2390 * In nonlinear VMAs there is no correspondence between virtual address
2391 * offset and file offset. So we must perform an exhaustive search
2392 * across *all* the pages in each nonlinear VMA, not just the pages
2393 * whose virtual address lies outside the file truncation point.
2396 list_for_each_entry(vma
, head
, shared
.vm_set
.list
) {
2397 /* Skip quickly over those we have already dealt with */
2398 if (vma
->vm_truncate_count
== details
->truncate_count
)
2400 details
->nonlinear_vma
= vma
;
2401 if (unmap_mapping_range_vma(vma
, vma
->vm_start
,
2402 vma
->vm_end
, details
) < 0)
2408 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2409 * @mapping: the address space containing mmaps to be unmapped.
2410 * @holebegin: byte in first page to unmap, relative to the start of
2411 * the underlying file. This will be rounded down to a PAGE_SIZE
2412 * boundary. Note that this is different from truncate_pagecache(), which
2413 * must keep the partial page. In contrast, we must get rid of
2415 * @holelen: size of prospective hole in bytes. This will be rounded
2416 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2418 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2419 * but 0 when invalidating pagecache, don't throw away private data.
2421 void unmap_mapping_range(struct address_space
*mapping
,
2422 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2424 struct zap_details details
;
2425 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2426 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2428 /* Check for overflow. */
2429 if (sizeof(holelen
) > sizeof(hlen
)) {
2431 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2432 if (holeend
& ~(long long)ULONG_MAX
)
2433 hlen
= ULONG_MAX
- hba
+ 1;
2436 details
.check_mapping
= even_cows
? NULL
: mapping
;
2437 details
.nonlinear_vma
= NULL
;
2438 details
.first_index
= hba
;
2439 details
.last_index
= hba
+ hlen
- 1;
2440 if (details
.last_index
< details
.first_index
)
2441 details
.last_index
= ULONG_MAX
;
2442 details
.i_mmap_lock
= &mapping
->i_mmap_lock
;
2444 spin_lock(&mapping
->i_mmap_lock
);
2446 /* Protect against endless unmapping loops */
2447 mapping
->truncate_count
++;
2448 if (unlikely(is_restart_addr(mapping
->truncate_count
))) {
2449 if (mapping
->truncate_count
== 0)
2450 reset_vma_truncate_counts(mapping
);
2451 mapping
->truncate_count
++;
2453 details
.truncate_count
= mapping
->truncate_count
;
2455 if (unlikely(!prio_tree_empty(&mapping
->i_mmap
)))
2456 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2457 if (unlikely(!list_empty(&mapping
->i_mmap_nonlinear
)))
2458 unmap_mapping_range_list(&mapping
->i_mmap_nonlinear
, &details
);
2459 spin_unlock(&mapping
->i_mmap_lock
);
2461 EXPORT_SYMBOL(unmap_mapping_range
);
2463 int vmtruncate_range(struct inode
*inode
, loff_t offset
, loff_t end
)
2465 struct address_space
*mapping
= inode
->i_mapping
;
2468 * If the underlying filesystem is not going to provide
2469 * a way to truncate a range of blocks (punch a hole) -
2470 * we should return failure right now.
2472 if (!inode
->i_op
->truncate_range
)
2475 mutex_lock(&inode
->i_mutex
);
2476 down_write(&inode
->i_alloc_sem
);
2477 unmap_mapping_range(mapping
, offset
, (end
- offset
), 1);
2478 truncate_inode_pages_range(mapping
, offset
, end
);
2479 unmap_mapping_range(mapping
, offset
, (end
- offset
), 1);
2480 inode
->i_op
->truncate_range(inode
, offset
, end
);
2481 up_write(&inode
->i_alloc_sem
);
2482 mutex_unlock(&inode
->i_mutex
);
2488 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2489 * but allow concurrent faults), and pte mapped but not yet locked.
2490 * We return with mmap_sem still held, but pte unmapped and unlocked.
2492 static int do_swap_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2493 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2494 unsigned int flags
, pte_t orig_pte
)
2500 struct mem_cgroup
*ptr
= NULL
;
2503 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2506 entry
= pte_to_swp_entry(orig_pte
);
2507 if (unlikely(non_swap_entry(entry
))) {
2508 if (is_migration_entry(entry
)) {
2509 migration_entry_wait(mm
, pmd
, address
);
2510 } else if (is_hwpoison_entry(entry
)) {
2511 ret
= VM_FAULT_HWPOISON
;
2513 print_bad_pte(vma
, address
, orig_pte
, NULL
);
2518 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2519 page
= lookup_swap_cache(entry
);
2521 grab_swap_token(mm
); /* Contend for token _before_ read-in */
2522 page
= swapin_readahead(entry
,
2523 GFP_HIGHUSER_MOVABLE
, vma
, address
);
2526 * Back out if somebody else faulted in this pte
2527 * while we released the pte lock.
2529 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2530 if (likely(pte_same(*page_table
, orig_pte
)))
2532 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2536 /* Had to read the page from swap area: Major fault */
2537 ret
= VM_FAULT_MAJOR
;
2538 count_vm_event(PGMAJFAULT
);
2539 } else if (PageHWPoison(page
)) {
2540 ret
= VM_FAULT_HWPOISON
;
2541 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2546 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2548 if (mem_cgroup_try_charge_swapin(mm
, page
, GFP_KERNEL
, &ptr
)) {
2554 * Back out if somebody else already faulted in this pte.
2556 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2557 if (unlikely(!pte_same(*page_table
, orig_pte
)))
2560 if (unlikely(!PageUptodate(page
))) {
2561 ret
= VM_FAULT_SIGBUS
;
2566 * The page isn't present yet, go ahead with the fault.
2568 * Be careful about the sequence of operations here.
2569 * To get its accounting right, reuse_swap_page() must be called
2570 * while the page is counted on swap but not yet in mapcount i.e.
2571 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2572 * must be called after the swap_free(), or it will never succeed.
2573 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2574 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2575 * in page->private. In this case, a record in swap_cgroup is silently
2576 * discarded at swap_free().
2579 inc_mm_counter(mm
, anon_rss
);
2580 pte
= mk_pte(page
, vma
->vm_page_prot
);
2581 if ((flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
)) {
2582 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
2583 flags
&= ~FAULT_FLAG_WRITE
;
2585 flush_icache_page(vma
, page
);
2586 set_pte_at(mm
, address
, page_table
, pte
);
2587 page_add_anon_rmap(page
, vma
, address
);
2588 /* It's better to call commit-charge after rmap is established */
2589 mem_cgroup_commit_charge_swapin(page
, ptr
);
2592 if (vm_swap_full() || (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
2593 try_to_free_swap(page
);
2596 if (flags
& FAULT_FLAG_WRITE
) {
2597 ret
|= do_wp_page(mm
, vma
, address
, page_table
, pmd
, ptl
, pte
);
2598 if (ret
& VM_FAULT_ERROR
)
2599 ret
&= VM_FAULT_ERROR
;
2603 /* No need to invalidate - it was non-present before */
2604 update_mmu_cache(vma
, address
, pte
);
2606 pte_unmap_unlock(page_table
, ptl
);
2610 mem_cgroup_cancel_charge_swapin(ptr
);
2611 pte_unmap_unlock(page_table
, ptl
);
2614 page_cache_release(page
);
2619 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2620 * but allow concurrent faults), and pte mapped but not yet locked.
2621 * We return with mmap_sem still held, but pte unmapped and unlocked.
2623 static int do_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2624 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2631 if (!(flags
& FAULT_FLAG_WRITE
)) {
2632 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(address
),
2633 vma
->vm_page_prot
));
2634 ptl
= pte_lockptr(mm
, pmd
);
2636 if (!pte_none(*page_table
))
2641 /* Allocate our own private page. */
2642 pte_unmap(page_table
);
2644 if (unlikely(anon_vma_prepare(vma
)))
2646 page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2649 __SetPageUptodate(page
);
2651 if (mem_cgroup_newpage_charge(page
, mm
, GFP_KERNEL
))
2654 entry
= mk_pte(page
, vma
->vm_page_prot
);
2655 if (vma
->vm_flags
& VM_WRITE
)
2656 entry
= pte_mkwrite(pte_mkdirty(entry
));
2658 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2659 if (!pte_none(*page_table
))
2662 inc_mm_counter(mm
, anon_rss
);
2663 page_add_new_anon_rmap(page
, vma
, address
);
2665 set_pte_at(mm
, address
, page_table
, entry
);
2667 /* No need to invalidate - it was non-present before */
2668 update_mmu_cache(vma
, address
, entry
);
2670 pte_unmap_unlock(page_table
, ptl
);
2673 mem_cgroup_uncharge_page(page
);
2674 page_cache_release(page
);
2677 page_cache_release(page
);
2679 return VM_FAULT_OOM
;
2683 * __do_fault() tries to create a new page mapping. It aggressively
2684 * tries to share with existing pages, but makes a separate copy if
2685 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2686 * the next page fault.
2688 * As this is called only for pages that do not currently exist, we
2689 * do not need to flush old virtual caches or the TLB.
2691 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2692 * but allow concurrent faults), and pte neither mapped nor locked.
2693 * We return with mmap_sem still held, but pte unmapped and unlocked.
2695 static int __do_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2696 unsigned long address
, pmd_t
*pmd
,
2697 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
2705 struct page
*dirty_page
= NULL
;
2706 struct vm_fault vmf
;
2708 int page_mkwrite
= 0;
2710 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
2715 ret
= vma
->vm_ops
->fault(vma
, &vmf
);
2716 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
2719 if (unlikely(PageHWPoison(vmf
.page
))) {
2720 if (ret
& VM_FAULT_LOCKED
)
2721 unlock_page(vmf
.page
);
2722 return VM_FAULT_HWPOISON
;
2726 * For consistency in subsequent calls, make the faulted page always
2729 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
2730 lock_page(vmf
.page
);
2732 VM_BUG_ON(!PageLocked(vmf
.page
));
2735 * Should we do an early C-O-W break?
2738 if (flags
& FAULT_FLAG_WRITE
) {
2739 if (!(vma
->vm_flags
& VM_SHARED
)) {
2741 if (unlikely(anon_vma_prepare(vma
))) {
2745 page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
,
2751 if (mem_cgroup_newpage_charge(page
, mm
, GFP_KERNEL
)) {
2753 page_cache_release(page
);
2758 * Don't let another task, with possibly unlocked vma,
2759 * keep the mlocked page.
2761 if (vma
->vm_flags
& VM_LOCKED
)
2762 clear_page_mlock(vmf
.page
);
2763 copy_user_highpage(page
, vmf
.page
, address
, vma
);
2764 __SetPageUptodate(page
);
2767 * If the page will be shareable, see if the backing
2768 * address space wants to know that the page is about
2769 * to become writable
2771 if (vma
->vm_ops
->page_mkwrite
) {
2775 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2776 tmp
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
2778 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
2780 goto unwritable_page
;
2782 if (unlikely(!(tmp
& VM_FAULT_LOCKED
))) {
2784 if (!page
->mapping
) {
2785 ret
= 0; /* retry the fault */
2787 goto unwritable_page
;
2790 VM_BUG_ON(!PageLocked(page
));
2797 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2800 * This silly early PAGE_DIRTY setting removes a race
2801 * due to the bad i386 page protection. But it's valid
2802 * for other architectures too.
2804 * Note that if FAULT_FLAG_WRITE is set, we either now have
2805 * an exclusive copy of the page, or this is a shared mapping,
2806 * so we can make it writable and dirty to avoid having to
2807 * handle that later.
2809 /* Only go through if we didn't race with anybody else... */
2810 if (likely(pte_same(*page_table
, orig_pte
))) {
2811 flush_icache_page(vma
, page
);
2812 entry
= mk_pte(page
, vma
->vm_page_prot
);
2813 if (flags
& FAULT_FLAG_WRITE
)
2814 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2816 inc_mm_counter(mm
, anon_rss
);
2817 page_add_new_anon_rmap(page
, vma
, address
);
2819 inc_mm_counter(mm
, file_rss
);
2820 page_add_file_rmap(page
);
2821 if (flags
& FAULT_FLAG_WRITE
) {
2823 get_page(dirty_page
);
2826 set_pte_at(mm
, address
, page_table
, entry
);
2828 /* no need to invalidate: a not-present page won't be cached */
2829 update_mmu_cache(vma
, address
, entry
);
2832 mem_cgroup_uncharge_page(page
);
2834 page_cache_release(page
);
2836 anon
= 1; /* no anon but release faulted_page */
2839 pte_unmap_unlock(page_table
, ptl
);
2843 struct address_space
*mapping
= page
->mapping
;
2845 if (set_page_dirty(dirty_page
))
2847 unlock_page(dirty_page
);
2848 put_page(dirty_page
);
2849 if (page_mkwrite
&& mapping
) {
2851 * Some device drivers do not set page.mapping but still
2854 balance_dirty_pages_ratelimited(mapping
);
2857 /* file_update_time outside page_lock */
2859 file_update_time(vma
->vm_file
);
2861 unlock_page(vmf
.page
);
2863 page_cache_release(vmf
.page
);
2869 page_cache_release(page
);
2873 static int do_linear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2874 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2875 unsigned int flags
, pte_t orig_pte
)
2877 pgoff_t pgoff
= (((address
& PAGE_MASK
)
2878 - vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
2880 pte_unmap(page_table
);
2881 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
2885 * Fault of a previously existing named mapping. Repopulate the pte
2886 * from the encoded file_pte if possible. This enables swappable
2889 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2890 * but allow concurrent faults), and pte mapped but not yet locked.
2891 * We return with mmap_sem still held, but pte unmapped and unlocked.
2893 static int do_nonlinear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2894 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2895 unsigned int flags
, pte_t orig_pte
)
2899 flags
|= FAULT_FLAG_NONLINEAR
;
2901 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2904 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
))) {
2906 * Page table corrupted: show pte and kill process.
2908 print_bad_pte(vma
, address
, orig_pte
, NULL
);
2909 return VM_FAULT_OOM
;
2912 pgoff
= pte_to_pgoff(orig_pte
);
2913 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
2917 * These routines also need to handle stuff like marking pages dirty
2918 * and/or accessed for architectures that don't do it in hardware (most
2919 * RISC architectures). The early dirtying is also good on the i386.
2921 * There is also a hook called "update_mmu_cache()" that architectures
2922 * with external mmu caches can use to update those (ie the Sparc or
2923 * PowerPC hashed page tables that act as extended TLBs).
2925 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2926 * but allow concurrent faults), and pte mapped but not yet locked.
2927 * We return with mmap_sem still held, but pte unmapped and unlocked.
2929 static inline int handle_pte_fault(struct mm_struct
*mm
,
2930 struct vm_area_struct
*vma
, unsigned long address
,
2931 pte_t
*pte
, pmd_t
*pmd
, unsigned int flags
)
2937 if (!pte_present(entry
)) {
2938 if (pte_none(entry
)) {
2940 if (likely(vma
->vm_ops
->fault
))
2941 return do_linear_fault(mm
, vma
, address
,
2942 pte
, pmd
, flags
, entry
);
2944 return do_anonymous_page(mm
, vma
, address
,
2947 if (pte_file(entry
))
2948 return do_nonlinear_fault(mm
, vma
, address
,
2949 pte
, pmd
, flags
, entry
);
2950 return do_swap_page(mm
, vma
, address
,
2951 pte
, pmd
, flags
, entry
);
2954 ptl
= pte_lockptr(mm
, pmd
);
2956 if (unlikely(!pte_same(*pte
, entry
)))
2958 if (flags
& FAULT_FLAG_WRITE
) {
2959 if (!pte_write(entry
))
2960 return do_wp_page(mm
, vma
, address
,
2961 pte
, pmd
, ptl
, entry
);
2962 entry
= pte_mkdirty(entry
);
2964 entry
= pte_mkyoung(entry
);
2965 if (ptep_set_access_flags(vma
, address
, pte
, entry
, flags
& FAULT_FLAG_WRITE
)) {
2966 update_mmu_cache(vma
, address
, entry
);
2969 * This is needed only for protection faults but the arch code
2970 * is not yet telling us if this is a protection fault or not.
2971 * This still avoids useless tlb flushes for .text page faults
2974 if (flags
& FAULT_FLAG_WRITE
)
2975 flush_tlb_page(vma
, address
);
2978 pte_unmap_unlock(pte
, ptl
);
2983 * By the time we get here, we already hold the mm semaphore
2985 int handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2986 unsigned long address
, unsigned int flags
)
2993 __set_current_state(TASK_RUNNING
);
2995 count_vm_event(PGFAULT
);
2997 if (unlikely(is_vm_hugetlb_page(vma
)))
2998 return hugetlb_fault(mm
, vma
, address
, flags
);
3000 pgd
= pgd_offset(mm
, address
);
3001 pud
= pud_alloc(mm
, pgd
, address
);
3003 return VM_FAULT_OOM
;
3004 pmd
= pmd_alloc(mm
, pud
, address
);
3006 return VM_FAULT_OOM
;
3007 pte
= pte_alloc_map(mm
, pmd
, address
);
3009 return VM_FAULT_OOM
;
3011 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, flags
);
3014 #ifndef __PAGETABLE_PUD_FOLDED
3016 * Allocate page upper directory.
3017 * We've already handled the fast-path in-line.
3019 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
3021 pud_t
*new = pud_alloc_one(mm
, address
);
3025 smp_wmb(); /* See comment in __pte_alloc */
3027 spin_lock(&mm
->page_table_lock
);
3028 if (pgd_present(*pgd
)) /* Another has populated it */
3031 pgd_populate(mm
, pgd
, new);
3032 spin_unlock(&mm
->page_table_lock
);
3035 #endif /* __PAGETABLE_PUD_FOLDED */
3037 #ifndef __PAGETABLE_PMD_FOLDED
3039 * Allocate page middle directory.
3040 * We've already handled the fast-path in-line.
3042 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
3044 pmd_t
*new = pmd_alloc_one(mm
, address
);
3048 smp_wmb(); /* See comment in __pte_alloc */
3050 spin_lock(&mm
->page_table_lock
);
3051 #ifndef __ARCH_HAS_4LEVEL_HACK
3052 if (pud_present(*pud
)) /* Another has populated it */
3055 pud_populate(mm
, pud
, new);
3057 if (pgd_present(*pud
)) /* Another has populated it */
3060 pgd_populate(mm
, pud
, new);
3061 #endif /* __ARCH_HAS_4LEVEL_HACK */
3062 spin_unlock(&mm
->page_table_lock
);
3065 #endif /* __PAGETABLE_PMD_FOLDED */
3067 int make_pages_present(unsigned long addr
, unsigned long end
)
3069 int ret
, len
, write
;
3070 struct vm_area_struct
* vma
;
3072 vma
= find_vma(current
->mm
, addr
);
3075 write
= (vma
->vm_flags
& VM_WRITE
) != 0;
3076 BUG_ON(addr
>= end
);
3077 BUG_ON(end
> vma
->vm_end
);
3078 len
= DIV_ROUND_UP(end
, PAGE_SIZE
) - addr
/PAGE_SIZE
;
3079 ret
= get_user_pages(current
, current
->mm
, addr
,
3080 len
, write
, 0, NULL
, NULL
);
3083 return ret
== len
? 0 : -EFAULT
;
3086 #if !defined(__HAVE_ARCH_GATE_AREA)
3088 #if defined(AT_SYSINFO_EHDR)
3089 static struct vm_area_struct gate_vma
;
3091 static int __init
gate_vma_init(void)
3093 gate_vma
.vm_mm
= NULL
;
3094 gate_vma
.vm_start
= FIXADDR_USER_START
;
3095 gate_vma
.vm_end
= FIXADDR_USER_END
;
3096 gate_vma
.vm_flags
= VM_READ
| VM_MAYREAD
| VM_EXEC
| VM_MAYEXEC
;
3097 gate_vma
.vm_page_prot
= __P101
;
3099 * Make sure the vDSO gets into every core dump.
3100 * Dumping its contents makes post-mortem fully interpretable later
3101 * without matching up the same kernel and hardware config to see
3102 * what PC values meant.
3104 gate_vma
.vm_flags
|= VM_ALWAYSDUMP
;
3107 __initcall(gate_vma_init
);
3110 struct vm_area_struct
*get_gate_vma(struct task_struct
*tsk
)
3112 #ifdef AT_SYSINFO_EHDR
3119 int in_gate_area_no_task(unsigned long addr
)
3121 #ifdef AT_SYSINFO_EHDR
3122 if ((addr
>= FIXADDR_USER_START
) && (addr
< FIXADDR_USER_END
))
3128 #endif /* __HAVE_ARCH_GATE_AREA */
3130 static int follow_pte(struct mm_struct
*mm
, unsigned long address
,
3131 pte_t
**ptepp
, spinlock_t
**ptlp
)
3138 pgd
= pgd_offset(mm
, address
);
3139 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
3142 pud
= pud_offset(pgd
, address
);
3143 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
3146 pmd
= pmd_offset(pud
, address
);
3147 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
3150 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3154 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
3157 if (!pte_present(*ptep
))
3162 pte_unmap_unlock(ptep
, *ptlp
);
3168 * follow_pfn - look up PFN at a user virtual address
3169 * @vma: memory mapping
3170 * @address: user virtual address
3171 * @pfn: location to store found PFN
3173 * Only IO mappings and raw PFN mappings are allowed.
3175 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3177 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
3184 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3187 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
3190 *pfn
= pte_pfn(*ptep
);
3191 pte_unmap_unlock(ptep
, ptl
);
3194 EXPORT_SYMBOL(follow_pfn
);
3196 #ifdef CONFIG_HAVE_IOREMAP_PROT
3197 int follow_phys(struct vm_area_struct
*vma
,
3198 unsigned long address
, unsigned int flags
,
3199 unsigned long *prot
, resource_size_t
*phys
)
3205 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3208 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
3212 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
3215 *prot
= pgprot_val(pte_pgprot(pte
));
3216 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
3220 pte_unmap_unlock(ptep
, ptl
);
3225 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
3226 void *buf
, int len
, int write
)
3228 resource_size_t phys_addr
;
3229 unsigned long prot
= 0;
3230 void __iomem
*maddr
;
3231 int offset
= addr
& (PAGE_SIZE
-1);
3233 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
3236 maddr
= ioremap_prot(phys_addr
, PAGE_SIZE
, prot
);
3238 memcpy_toio(maddr
+ offset
, buf
, len
);
3240 memcpy_fromio(buf
, maddr
+ offset
, len
);
3248 * Access another process' address space.
3249 * Source/target buffer must be kernel space,
3250 * Do not walk the page table directly, use get_user_pages
3252 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
, void *buf
, int len
, int write
)
3254 struct mm_struct
*mm
;
3255 struct vm_area_struct
*vma
;
3256 void *old_buf
= buf
;
3258 mm
= get_task_mm(tsk
);
3262 down_read(&mm
->mmap_sem
);
3263 /* ignore errors, just check how much was successfully transferred */
3265 int bytes
, ret
, offset
;
3267 struct page
*page
= NULL
;
3269 ret
= get_user_pages(tsk
, mm
, addr
, 1,
3270 write
, 1, &page
, &vma
);
3273 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3274 * we can access using slightly different code.
3276 #ifdef CONFIG_HAVE_IOREMAP_PROT
3277 vma
= find_vma(mm
, addr
);
3280 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
3281 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
3289 offset
= addr
& (PAGE_SIZE
-1);
3290 if (bytes
> PAGE_SIZE
-offset
)
3291 bytes
= PAGE_SIZE
-offset
;
3295 copy_to_user_page(vma
, page
, addr
,
3296 maddr
+ offset
, buf
, bytes
);
3297 set_page_dirty_lock(page
);
3299 copy_from_user_page(vma
, page
, addr
,
3300 buf
, maddr
+ offset
, bytes
);
3303 page_cache_release(page
);
3309 up_read(&mm
->mmap_sem
);
3312 return buf
- old_buf
;
3316 * Print the name of a VMA.
3318 void print_vma_addr(char *prefix
, unsigned long ip
)
3320 struct mm_struct
*mm
= current
->mm
;
3321 struct vm_area_struct
*vma
;
3324 * Do not print if we are in atomic
3325 * contexts (in exception stacks, etc.):
3327 if (preempt_count())
3330 down_read(&mm
->mmap_sem
);
3331 vma
= find_vma(mm
, ip
);
3332 if (vma
&& vma
->vm_file
) {
3333 struct file
*f
= vma
->vm_file
;
3334 char *buf
= (char *)__get_free_page(GFP_KERNEL
);
3338 p
= d_path(&f
->f_path
, buf
, PAGE_SIZE
);
3341 s
= strrchr(p
, '/');
3344 printk("%s%s[%lx+%lx]", prefix
, p
,
3346 vma
->vm_end
- vma
->vm_start
);
3347 free_page((unsigned long)buf
);
3350 up_read(¤t
->mm
->mmap_sem
);
3353 #ifdef CONFIG_PROVE_LOCKING
3354 void might_fault(void)
3357 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3358 * holding the mmap_sem, this is safe because kernel memory doesn't
3359 * get paged out, therefore we'll never actually fault, and the
3360 * below annotations will generate false positives.
3362 if (segment_eq(get_fs(), KERNEL_DS
))
3367 * it would be nicer only to annotate paths which are not under
3368 * pagefault_disable, however that requires a larger audit and
3369 * providing helpers like get_user_atomic.
3371 if (!in_atomic() && current
->mm
)
3372 might_lock_read(¤t
->mm
->mmap_sem
);
3374 EXPORT_SYMBOL(might_fault
);