2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
15 * This work is based on the LPC-trie which is originally descibed in:
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
26 * Code from fib_hash has been reused which includes the following header:
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
33 * IPv4 FIB: lookup engine and maintenance routines.
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
43 * Substantial contributions to this work comes from:
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
51 #define VERSION "0.409"
53 #include <asm/uaccess.h>
54 #include <asm/system.h>
55 #include <linux/bitops.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
59 #include <linux/string.h>
60 #include <linux/socket.h>
61 #include <linux/sockios.h>
62 #include <linux/errno.h>
64 #include <linux/inet.h>
65 #include <linux/inetdevice.h>
66 #include <linux/netdevice.h>
67 #include <linux/if_arp.h>
68 #include <linux/proc_fs.h>
69 #include <linux/rcupdate.h>
70 #include <linux/skbuff.h>
71 #include <linux/netlink.h>
72 #include <linux/init.h>
73 #include <linux/list.h>
74 #include <linux/slab.h>
75 #include <net/net_namespace.h>
77 #include <net/protocol.h>
78 #include <net/route.h>
81 #include <net/ip_fib.h>
82 #include "fib_lookup.h"
84 #define MAX_STAT_DEPTH 32
86 #define KEYLENGTH (8*sizeof(t_key))
88 typedef unsigned int t_key
;
92 #define NODE_TYPE_MASK 0x1UL
93 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
95 #define IS_TNODE(n) (!(n->parent & T_LEAF))
96 #define IS_LEAF(n) (n->parent & T_LEAF)
104 unsigned long parent
;
106 struct hlist_head list
;
111 struct hlist_node hlist
;
114 struct list_head falh
;
118 unsigned long parent
;
120 unsigned char pos
; /* 2log(KEYLENGTH) bits needed */
121 unsigned char bits
; /* 2log(KEYLENGTH) bits needed */
122 unsigned int full_children
; /* KEYLENGTH bits needed */
123 unsigned int empty_children
; /* KEYLENGTH bits needed */
126 struct work_struct work
;
127 struct tnode
*tnode_free
;
129 struct node
*child
[0];
132 #ifdef CONFIG_IP_FIB_TRIE_STATS
133 struct trie_use_stats
{
135 unsigned int backtrack
;
136 unsigned int semantic_match_passed
;
137 unsigned int semantic_match_miss
;
138 unsigned int null_node_hit
;
139 unsigned int resize_node_skipped
;
144 unsigned int totdepth
;
145 unsigned int maxdepth
;
148 unsigned int nullpointers
;
149 unsigned int prefixes
;
150 unsigned int nodesizes
[MAX_STAT_DEPTH
];
155 #ifdef CONFIG_IP_FIB_TRIE_STATS
156 struct trie_use_stats stats
;
160 static void put_child(struct trie
*t
, struct tnode
*tn
, int i
, struct node
*n
);
161 static void tnode_put_child_reorg(struct tnode
*tn
, int i
, struct node
*n
,
163 static struct node
*resize(struct trie
*t
, struct tnode
*tn
);
164 static struct tnode
*inflate(struct trie
*t
, struct tnode
*tn
);
165 static struct tnode
*halve(struct trie
*t
, struct tnode
*tn
);
166 /* tnodes to free after resize(); protected by RTNL */
167 static struct tnode
*tnode_free_head
;
168 static size_t tnode_free_size
;
171 * synchronize_rcu after call_rcu for that many pages; it should be especially
172 * useful before resizing the root node with PREEMPT_NONE configs; the value was
173 * obtained experimentally, aiming to avoid visible slowdown.
175 static const int sync_pages
= 128;
177 static struct kmem_cache
*fn_alias_kmem __read_mostly
;
178 static struct kmem_cache
*trie_leaf_kmem __read_mostly
;
180 static inline struct tnode
*node_parent(struct node
*node
)
182 return (struct tnode
*)(node
->parent
& ~NODE_TYPE_MASK
);
185 static inline struct tnode
*node_parent_rcu(struct node
*node
)
187 struct tnode
*ret
= node_parent(node
);
189 return rcu_dereference_rtnl(ret
);
192 /* Same as rcu_assign_pointer
193 * but that macro() assumes that value is a pointer.
195 static inline void node_set_parent(struct node
*node
, struct tnode
*ptr
)
198 node
->parent
= (unsigned long)ptr
| NODE_TYPE(node
);
201 static inline struct node
*tnode_get_child(struct tnode
*tn
, unsigned int i
)
203 BUG_ON(i
>= 1U << tn
->bits
);
208 static inline struct node
*tnode_get_child_rcu(struct tnode
*tn
, unsigned int i
)
210 struct node
*ret
= tnode_get_child(tn
, i
);
212 return rcu_dereference_rtnl(ret
);
215 static inline int tnode_child_length(const struct tnode
*tn
)
217 return 1 << tn
->bits
;
220 static inline t_key
mask_pfx(t_key k
, unsigned short l
)
222 return (l
== 0) ? 0 : k
>> (KEYLENGTH
-l
) << (KEYLENGTH
-l
);
225 static inline t_key
tkey_extract_bits(t_key a
, int offset
, int bits
)
227 if (offset
< KEYLENGTH
)
228 return ((t_key
)(a
<< offset
)) >> (KEYLENGTH
- bits
);
233 static inline int tkey_equals(t_key a
, t_key b
)
238 static inline int tkey_sub_equals(t_key a
, int offset
, int bits
, t_key b
)
240 if (bits
== 0 || offset
>= KEYLENGTH
)
242 bits
= bits
> KEYLENGTH
? KEYLENGTH
: bits
;
243 return ((a
^ b
) << offset
) >> (KEYLENGTH
- bits
) == 0;
246 static inline int tkey_mismatch(t_key a
, int offset
, t_key b
)
253 while ((diff
<< i
) >> (KEYLENGTH
-1) == 0)
259 To understand this stuff, an understanding of keys and all their bits is
260 necessary. Every node in the trie has a key associated with it, but not
261 all of the bits in that key are significant.
263 Consider a node 'n' and its parent 'tp'.
265 If n is a leaf, every bit in its key is significant. Its presence is
266 necessitated by path compression, since during a tree traversal (when
267 searching for a leaf - unless we are doing an insertion) we will completely
268 ignore all skipped bits we encounter. Thus we need to verify, at the end of
269 a potentially successful search, that we have indeed been walking the
272 Note that we can never "miss" the correct key in the tree if present by
273 following the wrong path. Path compression ensures that segments of the key
274 that are the same for all keys with a given prefix are skipped, but the
275 skipped part *is* identical for each node in the subtrie below the skipped
276 bit! trie_insert() in this implementation takes care of that - note the
277 call to tkey_sub_equals() in trie_insert().
279 if n is an internal node - a 'tnode' here, the various parts of its key
280 have many different meanings.
283 _________________________________________________________________
284 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
285 -----------------------------------------------------------------
286 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
288 _________________________________________________________________
289 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
290 -----------------------------------------------------------------
291 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
298 First, let's just ignore the bits that come before the parent tp, that is
299 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
300 not use them for anything.
302 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
303 index into the parent's child array. That is, they will be used to find
304 'n' among tp's children.
306 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
309 All the bits we have seen so far are significant to the node n. The rest
310 of the bits are really not needed or indeed known in n->key.
312 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
313 n's child array, and will of course be different for each child.
316 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
321 static inline void check_tnode(const struct tnode
*tn
)
323 WARN_ON(tn
&& tn
->pos
+tn
->bits
> 32);
326 static const int halve_threshold
= 25;
327 static const int inflate_threshold
= 50;
328 static const int halve_threshold_root
= 15;
329 static const int inflate_threshold_root
= 30;
331 static void __alias_free_mem(struct rcu_head
*head
)
333 struct fib_alias
*fa
= container_of(head
, struct fib_alias
, rcu
);
334 kmem_cache_free(fn_alias_kmem
, fa
);
337 static inline void alias_free_mem_rcu(struct fib_alias
*fa
)
339 call_rcu(&fa
->rcu
, __alias_free_mem
);
342 static void __leaf_free_rcu(struct rcu_head
*head
)
344 struct leaf
*l
= container_of(head
, struct leaf
, rcu
);
345 kmem_cache_free(trie_leaf_kmem
, l
);
348 static inline void free_leaf(struct leaf
*l
)
350 call_rcu_bh(&l
->rcu
, __leaf_free_rcu
);
353 static void __leaf_info_free_rcu(struct rcu_head
*head
)
355 kfree(container_of(head
, struct leaf_info
, rcu
));
358 static inline void free_leaf_info(struct leaf_info
*leaf
)
360 call_rcu(&leaf
->rcu
, __leaf_info_free_rcu
);
363 static struct tnode
*tnode_alloc(size_t size
)
365 if (size
<= PAGE_SIZE
)
366 return kzalloc(size
, GFP_KERNEL
);
368 return __vmalloc(size
, GFP_KERNEL
| __GFP_ZERO
, PAGE_KERNEL
);
371 static void __tnode_vfree(struct work_struct
*arg
)
373 struct tnode
*tn
= container_of(arg
, struct tnode
, work
);
377 static void __tnode_free_rcu(struct rcu_head
*head
)
379 struct tnode
*tn
= container_of(head
, struct tnode
, rcu
);
380 size_t size
= sizeof(struct tnode
) +
381 (sizeof(struct node
*) << tn
->bits
);
383 if (size
<= PAGE_SIZE
)
386 INIT_WORK(&tn
->work
, __tnode_vfree
);
387 schedule_work(&tn
->work
);
391 static inline void tnode_free(struct tnode
*tn
)
394 free_leaf((struct leaf
*) tn
);
396 call_rcu(&tn
->rcu
, __tnode_free_rcu
);
399 static void tnode_free_safe(struct tnode
*tn
)
402 tn
->tnode_free
= tnode_free_head
;
403 tnode_free_head
= tn
;
404 tnode_free_size
+= sizeof(struct tnode
) +
405 (sizeof(struct node
*) << tn
->bits
);
408 static void tnode_free_flush(void)
412 while ((tn
= tnode_free_head
)) {
413 tnode_free_head
= tn
->tnode_free
;
414 tn
->tnode_free
= NULL
;
418 if (tnode_free_size
>= PAGE_SIZE
* sync_pages
) {
424 static struct leaf
*leaf_new(void)
426 struct leaf
*l
= kmem_cache_alloc(trie_leaf_kmem
, GFP_KERNEL
);
429 INIT_HLIST_HEAD(&l
->list
);
434 static struct leaf_info
*leaf_info_new(int plen
)
436 struct leaf_info
*li
= kmalloc(sizeof(struct leaf_info
), GFP_KERNEL
);
439 INIT_LIST_HEAD(&li
->falh
);
444 static struct tnode
*tnode_new(t_key key
, int pos
, int bits
)
446 size_t sz
= sizeof(struct tnode
) + (sizeof(struct node
*) << bits
);
447 struct tnode
*tn
= tnode_alloc(sz
);
450 tn
->parent
= T_TNODE
;
454 tn
->full_children
= 0;
455 tn
->empty_children
= 1<<bits
;
458 pr_debug("AT %p s=%zu %zu\n", tn
, sizeof(struct tnode
),
459 sizeof(struct node
) << bits
);
464 * Check whether a tnode 'n' is "full", i.e. it is an internal node
465 * and no bits are skipped. See discussion in dyntree paper p. 6
468 static inline int tnode_full(const struct tnode
*tn
, const struct node
*n
)
470 if (n
== NULL
|| IS_LEAF(n
))
473 return ((struct tnode
*) n
)->pos
== tn
->pos
+ tn
->bits
;
476 static inline void put_child(struct trie
*t
, struct tnode
*tn
, int i
,
479 tnode_put_child_reorg(tn
, i
, n
, -1);
483 * Add a child at position i overwriting the old value.
484 * Update the value of full_children and empty_children.
487 static void tnode_put_child_reorg(struct tnode
*tn
, int i
, struct node
*n
,
490 struct node
*chi
= tn
->child
[i
];
493 BUG_ON(i
>= 1<<tn
->bits
);
495 /* update emptyChildren */
496 if (n
== NULL
&& chi
!= NULL
)
497 tn
->empty_children
++;
498 else if (n
!= NULL
&& chi
== NULL
)
499 tn
->empty_children
--;
501 /* update fullChildren */
503 wasfull
= tnode_full(tn
, chi
);
505 isfull
= tnode_full(tn
, n
);
506 if (wasfull
&& !isfull
)
508 else if (!wasfull
&& isfull
)
512 node_set_parent(n
, tn
);
514 rcu_assign_pointer(tn
->child
[i
], n
);
518 static struct node
*resize(struct trie
*t
, struct tnode
*tn
)
521 struct tnode
*old_tn
;
522 int inflate_threshold_use
;
523 int halve_threshold_use
;
529 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
530 tn
, inflate_threshold
, halve_threshold
);
533 if (tn
->empty_children
== tnode_child_length(tn
)) {
538 if (tn
->empty_children
== tnode_child_length(tn
) - 1)
541 * Double as long as the resulting node has a number of
542 * nonempty nodes that are above the threshold.
546 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
547 * the Helsinki University of Technology and Matti Tikkanen of Nokia
548 * Telecommunications, page 6:
549 * "A node is doubled if the ratio of non-empty children to all
550 * children in the *doubled* node is at least 'high'."
552 * 'high' in this instance is the variable 'inflate_threshold'. It
553 * is expressed as a percentage, so we multiply it with
554 * tnode_child_length() and instead of multiplying by 2 (since the
555 * child array will be doubled by inflate()) and multiplying
556 * the left-hand side by 100 (to handle the percentage thing) we
557 * multiply the left-hand side by 50.
559 * The left-hand side may look a bit weird: tnode_child_length(tn)
560 * - tn->empty_children is of course the number of non-null children
561 * in the current node. tn->full_children is the number of "full"
562 * children, that is non-null tnodes with a skip value of 0.
563 * All of those will be doubled in the resulting inflated tnode, so
564 * we just count them one extra time here.
566 * A clearer way to write this would be:
568 * to_be_doubled = tn->full_children;
569 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
572 * new_child_length = tnode_child_length(tn) * 2;
574 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
576 * if (new_fill_factor >= inflate_threshold)
578 * ...and so on, tho it would mess up the while () loop.
581 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
585 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
586 * inflate_threshold * new_child_length
588 * expand not_to_be_doubled and to_be_doubled, and shorten:
589 * 100 * (tnode_child_length(tn) - tn->empty_children +
590 * tn->full_children) >= inflate_threshold * new_child_length
592 * expand new_child_length:
593 * 100 * (tnode_child_length(tn) - tn->empty_children +
594 * tn->full_children) >=
595 * inflate_threshold * tnode_child_length(tn) * 2
598 * 50 * (tn->full_children + tnode_child_length(tn) -
599 * tn->empty_children) >= inflate_threshold *
600 * tnode_child_length(tn)
606 /* Keep root node larger */
608 if (!node_parent((struct node
*)tn
)) {
609 inflate_threshold_use
= inflate_threshold_root
;
610 halve_threshold_use
= halve_threshold_root
;
612 inflate_threshold_use
= inflate_threshold
;
613 halve_threshold_use
= halve_threshold
;
617 while ((tn
->full_children
> 0 && max_work
-- &&
618 50 * (tn
->full_children
+ tnode_child_length(tn
)
619 - tn
->empty_children
)
620 >= inflate_threshold_use
* tnode_child_length(tn
))) {
627 #ifdef CONFIG_IP_FIB_TRIE_STATS
628 t
->stats
.resize_node_skipped
++;
636 /* Return if at least one inflate is run */
637 if (max_work
!= MAX_WORK
)
638 return (struct node
*) tn
;
641 * Halve as long as the number of empty children in this
642 * node is above threshold.
646 while (tn
->bits
> 1 && max_work
-- &&
647 100 * (tnode_child_length(tn
) - tn
->empty_children
) <
648 halve_threshold_use
* tnode_child_length(tn
)) {
654 #ifdef CONFIG_IP_FIB_TRIE_STATS
655 t
->stats
.resize_node_skipped
++;
662 /* Only one child remains */
663 if (tn
->empty_children
== tnode_child_length(tn
) - 1) {
665 for (i
= 0; i
< tnode_child_length(tn
); i
++) {
672 /* compress one level */
674 node_set_parent(n
, NULL
);
679 return (struct node
*) tn
;
682 static struct tnode
*inflate(struct trie
*t
, struct tnode
*tn
)
684 struct tnode
*oldtnode
= tn
;
685 int olen
= tnode_child_length(tn
);
688 pr_debug("In inflate\n");
690 tn
= tnode_new(oldtnode
->key
, oldtnode
->pos
, oldtnode
->bits
+ 1);
693 return ERR_PTR(-ENOMEM
);
696 * Preallocate and store tnodes before the actual work so we
697 * don't get into an inconsistent state if memory allocation
698 * fails. In case of failure we return the oldnode and inflate
699 * of tnode is ignored.
702 for (i
= 0; i
< olen
; i
++) {
705 inode
= (struct tnode
*) tnode_get_child(oldtnode
, i
);
708 inode
->pos
== oldtnode
->pos
+ oldtnode
->bits
&&
710 struct tnode
*left
, *right
;
711 t_key m
= ~0U << (KEYLENGTH
- 1) >> inode
->pos
;
713 left
= tnode_new(inode
->key
&(~m
), inode
->pos
+ 1,
718 right
= tnode_new(inode
->key
|m
, inode
->pos
+ 1,
726 put_child(t
, tn
, 2*i
, (struct node
*) left
);
727 put_child(t
, tn
, 2*i
+1, (struct node
*) right
);
731 for (i
= 0; i
< olen
; i
++) {
733 struct node
*node
= tnode_get_child(oldtnode
, i
);
734 struct tnode
*left
, *right
;
741 /* A leaf or an internal node with skipped bits */
743 if (IS_LEAF(node
) || ((struct tnode
*) node
)->pos
>
744 tn
->pos
+ tn
->bits
- 1) {
745 if (tkey_extract_bits(node
->key
,
746 oldtnode
->pos
+ oldtnode
->bits
,
748 put_child(t
, tn
, 2*i
, node
);
750 put_child(t
, tn
, 2*i
+1, node
);
754 /* An internal node with two children */
755 inode
= (struct tnode
*) node
;
757 if (inode
->bits
== 1) {
758 put_child(t
, tn
, 2*i
, inode
->child
[0]);
759 put_child(t
, tn
, 2*i
+1, inode
->child
[1]);
761 tnode_free_safe(inode
);
765 /* An internal node with more than two children */
767 /* We will replace this node 'inode' with two new
768 * ones, 'left' and 'right', each with half of the
769 * original children. The two new nodes will have
770 * a position one bit further down the key and this
771 * means that the "significant" part of their keys
772 * (see the discussion near the top of this file)
773 * will differ by one bit, which will be "0" in
774 * left's key and "1" in right's key. Since we are
775 * moving the key position by one step, the bit that
776 * we are moving away from - the bit at position
777 * (inode->pos) - is the one that will differ between
778 * left and right. So... we synthesize that bit in the
780 * The mask 'm' below will be a single "one" bit at
781 * the position (inode->pos)
784 /* Use the old key, but set the new significant
788 left
= (struct tnode
*) tnode_get_child(tn
, 2*i
);
789 put_child(t
, tn
, 2*i
, NULL
);
793 right
= (struct tnode
*) tnode_get_child(tn
, 2*i
+1);
794 put_child(t
, tn
, 2*i
+1, NULL
);
798 size
= tnode_child_length(left
);
799 for (j
= 0; j
< size
; j
++) {
800 put_child(t
, left
, j
, inode
->child
[j
]);
801 put_child(t
, right
, j
, inode
->child
[j
+ size
]);
803 put_child(t
, tn
, 2*i
, resize(t
, left
));
804 put_child(t
, tn
, 2*i
+1, resize(t
, right
));
806 tnode_free_safe(inode
);
808 tnode_free_safe(oldtnode
);
812 int size
= tnode_child_length(tn
);
815 for (j
= 0; j
< size
; j
++)
817 tnode_free((struct tnode
*)tn
->child
[j
]);
821 return ERR_PTR(-ENOMEM
);
825 static struct tnode
*halve(struct trie
*t
, struct tnode
*tn
)
827 struct tnode
*oldtnode
= tn
;
828 struct node
*left
, *right
;
830 int olen
= tnode_child_length(tn
);
832 pr_debug("In halve\n");
834 tn
= tnode_new(oldtnode
->key
, oldtnode
->pos
, oldtnode
->bits
- 1);
837 return ERR_PTR(-ENOMEM
);
840 * Preallocate and store tnodes before the actual work so we
841 * don't get into an inconsistent state if memory allocation
842 * fails. In case of failure we return the oldnode and halve
843 * of tnode is ignored.
846 for (i
= 0; i
< olen
; i
+= 2) {
847 left
= tnode_get_child(oldtnode
, i
);
848 right
= tnode_get_child(oldtnode
, i
+1);
850 /* Two nonempty children */
854 newn
= tnode_new(left
->key
, tn
->pos
+ tn
->bits
, 1);
859 put_child(t
, tn
, i
/2, (struct node
*)newn
);
864 for (i
= 0; i
< olen
; i
+= 2) {
865 struct tnode
*newBinNode
;
867 left
= tnode_get_child(oldtnode
, i
);
868 right
= tnode_get_child(oldtnode
, i
+1);
870 /* At least one of the children is empty */
872 if (right
== NULL
) /* Both are empty */
874 put_child(t
, tn
, i
/2, right
);
879 put_child(t
, tn
, i
/2, left
);
883 /* Two nonempty children */
884 newBinNode
= (struct tnode
*) tnode_get_child(tn
, i
/2);
885 put_child(t
, tn
, i
/2, NULL
);
886 put_child(t
, newBinNode
, 0, left
);
887 put_child(t
, newBinNode
, 1, right
);
888 put_child(t
, tn
, i
/2, resize(t
, newBinNode
));
890 tnode_free_safe(oldtnode
);
894 int size
= tnode_child_length(tn
);
897 for (j
= 0; j
< size
; j
++)
899 tnode_free((struct tnode
*)tn
->child
[j
]);
903 return ERR_PTR(-ENOMEM
);
907 /* readside must use rcu_read_lock currently dump routines
908 via get_fa_head and dump */
910 static struct leaf_info
*find_leaf_info(struct leaf
*l
, int plen
)
912 struct hlist_head
*head
= &l
->list
;
913 struct hlist_node
*node
;
914 struct leaf_info
*li
;
916 hlist_for_each_entry_rcu(li
, node
, head
, hlist
)
917 if (li
->plen
== plen
)
923 static inline struct list_head
*get_fa_head(struct leaf
*l
, int plen
)
925 struct leaf_info
*li
= find_leaf_info(l
, plen
);
933 static void insert_leaf_info(struct hlist_head
*head
, struct leaf_info
*new)
935 struct leaf_info
*li
= NULL
, *last
= NULL
;
936 struct hlist_node
*node
;
938 if (hlist_empty(head
)) {
939 hlist_add_head_rcu(&new->hlist
, head
);
941 hlist_for_each_entry(li
, node
, head
, hlist
) {
942 if (new->plen
> li
->plen
)
948 hlist_add_after_rcu(&last
->hlist
, &new->hlist
);
950 hlist_add_before_rcu(&new->hlist
, &li
->hlist
);
954 /* rcu_read_lock needs to be hold by caller from readside */
957 fib_find_node(struct trie
*t
, u32 key
)
964 n
= rcu_dereference_rtnl(t
->trie
);
966 while (n
!= NULL
&& NODE_TYPE(n
) == T_TNODE
) {
967 tn
= (struct tnode
*) n
;
971 if (tkey_sub_equals(tn
->key
, pos
, tn
->pos
-pos
, key
)) {
972 pos
= tn
->pos
+ tn
->bits
;
973 n
= tnode_get_child_rcu(tn
,
974 tkey_extract_bits(key
,
980 /* Case we have found a leaf. Compare prefixes */
982 if (n
!= NULL
&& IS_LEAF(n
) && tkey_equals(key
, n
->key
))
983 return (struct leaf
*)n
;
988 static void trie_rebalance(struct trie
*t
, struct tnode
*tn
)
996 while (tn
!= NULL
&& (tp
= node_parent((struct node
*)tn
)) != NULL
) {
997 cindex
= tkey_extract_bits(key
, tp
->pos
, tp
->bits
);
998 wasfull
= tnode_full(tp
, tnode_get_child(tp
, cindex
));
999 tn
= (struct tnode
*) resize(t
, (struct tnode
*)tn
);
1001 tnode_put_child_reorg((struct tnode
*)tp
, cindex
,
1002 (struct node
*)tn
, wasfull
);
1004 tp
= node_parent((struct node
*) tn
);
1006 rcu_assign_pointer(t
->trie
, (struct node
*)tn
);
1014 /* Handle last (top) tnode */
1016 tn
= (struct tnode
*)resize(t
, (struct tnode
*)tn
);
1018 rcu_assign_pointer(t
->trie
, (struct node
*)tn
);
1022 /* only used from updater-side */
1024 static struct list_head
*fib_insert_node(struct trie
*t
, u32 key
, int plen
)
1027 struct tnode
*tp
= NULL
, *tn
= NULL
;
1031 struct list_head
*fa_head
= NULL
;
1032 struct leaf_info
*li
;
1038 /* If we point to NULL, stop. Either the tree is empty and we should
1039 * just put a new leaf in if, or we have reached an empty child slot,
1040 * and we should just put our new leaf in that.
1041 * If we point to a T_TNODE, check if it matches our key. Note that
1042 * a T_TNODE might be skipping any number of bits - its 'pos' need
1043 * not be the parent's 'pos'+'bits'!
1045 * If it does match the current key, get pos/bits from it, extract
1046 * the index from our key, push the T_TNODE and walk the tree.
1048 * If it doesn't, we have to replace it with a new T_TNODE.
1050 * If we point to a T_LEAF, it might or might not have the same key
1051 * as we do. If it does, just change the value, update the T_LEAF's
1052 * value, and return it.
1053 * If it doesn't, we need to replace it with a T_TNODE.
1056 while (n
!= NULL
&& NODE_TYPE(n
) == T_TNODE
) {
1057 tn
= (struct tnode
*) n
;
1061 if (tkey_sub_equals(tn
->key
, pos
, tn
->pos
-pos
, key
)) {
1063 pos
= tn
->pos
+ tn
->bits
;
1064 n
= tnode_get_child(tn
,
1065 tkey_extract_bits(key
,
1069 BUG_ON(n
&& node_parent(n
) != tn
);
1075 * n ----> NULL, LEAF or TNODE
1077 * tp is n's (parent) ----> NULL or TNODE
1080 BUG_ON(tp
&& IS_LEAF(tp
));
1082 /* Case 1: n is a leaf. Compare prefixes */
1084 if (n
!= NULL
&& IS_LEAF(n
) && tkey_equals(key
, n
->key
)) {
1085 l
= (struct leaf
*) n
;
1086 li
= leaf_info_new(plen
);
1091 fa_head
= &li
->falh
;
1092 insert_leaf_info(&l
->list
, li
);
1101 li
= leaf_info_new(plen
);
1108 fa_head
= &li
->falh
;
1109 insert_leaf_info(&l
->list
, li
);
1111 if (t
->trie
&& n
== NULL
) {
1112 /* Case 2: n is NULL, and will just insert a new leaf */
1114 node_set_parent((struct node
*)l
, tp
);
1116 cindex
= tkey_extract_bits(key
, tp
->pos
, tp
->bits
);
1117 put_child(t
, (struct tnode
*)tp
, cindex
, (struct node
*)l
);
1119 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1121 * Add a new tnode here
1122 * first tnode need some special handling
1126 pos
= tp
->pos
+tp
->bits
;
1131 newpos
= tkey_mismatch(key
, pos
, n
->key
);
1132 tn
= tnode_new(n
->key
, newpos
, 1);
1135 tn
= tnode_new(key
, newpos
, 1); /* First tnode */
1144 node_set_parent((struct node
*)tn
, tp
);
1146 missbit
= tkey_extract_bits(key
, newpos
, 1);
1147 put_child(t
, tn
, missbit
, (struct node
*)l
);
1148 put_child(t
, tn
, 1-missbit
, n
);
1151 cindex
= tkey_extract_bits(key
, tp
->pos
, tp
->bits
);
1152 put_child(t
, (struct tnode
*)tp
, cindex
,
1155 rcu_assign_pointer(t
->trie
, (struct node
*)tn
);
1160 if (tp
&& tp
->pos
+ tp
->bits
> 32)
1161 pr_warning("fib_trie"
1162 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1163 tp
, tp
->pos
, tp
->bits
, key
, plen
);
1165 /* Rebalance the trie */
1167 trie_rebalance(t
, tp
);
1173 * Caller must hold RTNL.
1175 int fib_table_insert(struct fib_table
*tb
, struct fib_config
*cfg
)
1177 struct trie
*t
= (struct trie
*) tb
->tb_data
;
1178 struct fib_alias
*fa
, *new_fa
;
1179 struct list_head
*fa_head
= NULL
;
1180 struct fib_info
*fi
;
1181 int plen
= cfg
->fc_dst_len
;
1182 u8 tos
= cfg
->fc_tos
;
1190 key
= ntohl(cfg
->fc_dst
);
1192 pr_debug("Insert table=%u %08x/%d\n", tb
->tb_id
, key
, plen
);
1194 mask
= ntohl(inet_make_mask(plen
));
1201 fi
= fib_create_info(cfg
);
1207 l
= fib_find_node(t
, key
);
1211 fa_head
= get_fa_head(l
, plen
);
1212 fa
= fib_find_alias(fa_head
, tos
, fi
->fib_priority
);
1215 /* Now fa, if non-NULL, points to the first fib alias
1216 * with the same keys [prefix,tos,priority], if such key already
1217 * exists or to the node before which we will insert new one.
1219 * If fa is NULL, we will need to allocate a new one and
1220 * insert to the head of f.
1222 * If f is NULL, no fib node matched the destination key
1223 * and we need to allocate a new one of those as well.
1226 if (fa
&& fa
->fa_tos
== tos
&&
1227 fa
->fa_info
->fib_priority
== fi
->fib_priority
) {
1228 struct fib_alias
*fa_first
, *fa_match
;
1231 if (cfg
->fc_nlflags
& NLM_F_EXCL
)
1235 * 1. Find exact match for type, scope, fib_info to avoid
1237 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1241 fa
= list_entry(fa
->fa_list
.prev
, struct fib_alias
, fa_list
);
1242 list_for_each_entry_continue(fa
, fa_head
, fa_list
) {
1243 if (fa
->fa_tos
!= tos
)
1245 if (fa
->fa_info
->fib_priority
!= fi
->fib_priority
)
1247 if (fa
->fa_type
== cfg
->fc_type
&&
1248 fa
->fa_scope
== cfg
->fc_scope
&&
1249 fa
->fa_info
== fi
) {
1255 if (cfg
->fc_nlflags
& NLM_F_REPLACE
) {
1256 struct fib_info
*fi_drop
;
1266 new_fa
= kmem_cache_alloc(fn_alias_kmem
, GFP_KERNEL
);
1270 fi_drop
= fa
->fa_info
;
1271 new_fa
->fa_tos
= fa
->fa_tos
;
1272 new_fa
->fa_info
= fi
;
1273 new_fa
->fa_type
= cfg
->fc_type
;
1274 new_fa
->fa_scope
= cfg
->fc_scope
;
1275 state
= fa
->fa_state
;
1276 new_fa
->fa_state
= state
& ~FA_S_ACCESSED
;
1278 list_replace_rcu(&fa
->fa_list
, &new_fa
->fa_list
);
1279 alias_free_mem_rcu(fa
);
1281 fib_release_info(fi_drop
);
1282 if (state
& FA_S_ACCESSED
)
1283 rt_cache_flush(cfg
->fc_nlinfo
.nl_net
, -1);
1284 rtmsg_fib(RTM_NEWROUTE
, htonl(key
), new_fa
, plen
,
1285 tb
->tb_id
, &cfg
->fc_nlinfo
, NLM_F_REPLACE
);
1289 /* Error if we find a perfect match which
1290 * uses the same scope, type, and nexthop
1296 if (!(cfg
->fc_nlflags
& NLM_F_APPEND
))
1300 if (!(cfg
->fc_nlflags
& NLM_F_CREATE
))
1304 new_fa
= kmem_cache_alloc(fn_alias_kmem
, GFP_KERNEL
);
1308 new_fa
->fa_info
= fi
;
1309 new_fa
->fa_tos
= tos
;
1310 new_fa
->fa_type
= cfg
->fc_type
;
1311 new_fa
->fa_scope
= cfg
->fc_scope
;
1312 new_fa
->fa_state
= 0;
1314 * Insert new entry to the list.
1318 fa_head
= fib_insert_node(t
, key
, plen
);
1319 if (unlikely(!fa_head
)) {
1321 goto out_free_new_fa
;
1325 list_add_tail_rcu(&new_fa
->fa_list
,
1326 (fa
? &fa
->fa_list
: fa_head
));
1328 rt_cache_flush(cfg
->fc_nlinfo
.nl_net
, -1);
1329 rtmsg_fib(RTM_NEWROUTE
, htonl(key
), new_fa
, plen
, tb
->tb_id
,
1330 &cfg
->fc_nlinfo
, 0);
1335 kmem_cache_free(fn_alias_kmem
, new_fa
);
1337 fib_release_info(fi
);
1342 /* should be called with rcu_read_lock */
1343 static int check_leaf(struct trie
*t
, struct leaf
*l
,
1344 t_key key
, const struct flowi
*flp
,
1345 struct fib_result
*res
, int fib_flags
)
1347 struct leaf_info
*li
;
1348 struct hlist_head
*hhead
= &l
->list
;
1349 struct hlist_node
*node
;
1351 hlist_for_each_entry_rcu(li
, node
, hhead
, hlist
) {
1353 int plen
= li
->plen
;
1354 __be32 mask
= inet_make_mask(plen
);
1356 if (l
->key
!= (key
& ntohl(mask
)))
1359 err
= fib_semantic_match(&li
->falh
, flp
, res
, plen
, fib_flags
);
1361 #ifdef CONFIG_IP_FIB_TRIE_STATS
1363 t
->stats
.semantic_match_passed
++;
1365 t
->stats
.semantic_match_miss
++;
1374 int fib_table_lookup(struct fib_table
*tb
, const struct flowi
*flp
,
1375 struct fib_result
*res
, int fib_flags
)
1377 struct trie
*t
= (struct trie
*) tb
->tb_data
;
1382 t_key key
= ntohl(flp
->fl4_dst
);
1385 int current_prefix_length
= KEYLENGTH
;
1387 t_key pref_mismatch
;
1391 n
= rcu_dereference(t
->trie
);
1395 #ifdef CONFIG_IP_FIB_TRIE_STATS
1401 ret
= check_leaf(t
, (struct leaf
*)n
, key
, flp
, res
, fib_flags
);
1405 pn
= (struct tnode
*) n
;
1413 cindex
= tkey_extract_bits(mask_pfx(key
, current_prefix_length
),
1416 n
= tnode_get_child_rcu(pn
, cindex
);
1419 #ifdef CONFIG_IP_FIB_TRIE_STATS
1420 t
->stats
.null_node_hit
++;
1426 ret
= check_leaf(t
, (struct leaf
*)n
, key
, flp
, res
, fib_flags
);
1432 cn
= (struct tnode
*)n
;
1435 * It's a tnode, and we can do some extra checks here if we
1436 * like, to avoid descending into a dead-end branch.
1437 * This tnode is in the parent's child array at index
1438 * key[p_pos..p_pos+p_bits] but potentially with some bits
1439 * chopped off, so in reality the index may be just a
1440 * subprefix, padded with zero at the end.
1441 * We can also take a look at any skipped bits in this
1442 * tnode - everything up to p_pos is supposed to be ok,
1443 * and the non-chopped bits of the index (se previous
1444 * paragraph) are also guaranteed ok, but the rest is
1445 * considered unknown.
1447 * The skipped bits are key[pos+bits..cn->pos].
1450 /* If current_prefix_length < pos+bits, we are already doing
1451 * actual prefix matching, which means everything from
1452 * pos+(bits-chopped_off) onward must be zero along some
1453 * branch of this subtree - otherwise there is *no* valid
1454 * prefix present. Here we can only check the skipped
1455 * bits. Remember, since we have already indexed into the
1456 * parent's child array, we know that the bits we chopped of
1460 /* NOTA BENE: Checking only skipped bits
1461 for the new node here */
1463 if (current_prefix_length
< pos
+bits
) {
1464 if (tkey_extract_bits(cn
->key
, current_prefix_length
,
1465 cn
->pos
- current_prefix_length
)
1471 * If chopped_off=0, the index is fully validated and we
1472 * only need to look at the skipped bits for this, the new,
1473 * tnode. What we actually want to do is to find out if
1474 * these skipped bits match our key perfectly, or if we will
1475 * have to count on finding a matching prefix further down,
1476 * because if we do, we would like to have some way of
1477 * verifying the existence of such a prefix at this point.
1480 /* The only thing we can do at this point is to verify that
1481 * any such matching prefix can indeed be a prefix to our
1482 * key, and if the bits in the node we are inspecting that
1483 * do not match our key are not ZERO, this cannot be true.
1484 * Thus, find out where there is a mismatch (before cn->pos)
1485 * and verify that all the mismatching bits are zero in the
1490 * Note: We aren't very concerned about the piece of
1491 * the key that precede pn->pos+pn->bits, since these
1492 * have already been checked. The bits after cn->pos
1493 * aren't checked since these are by definition
1494 * "unknown" at this point. Thus, what we want to see
1495 * is if we are about to enter the "prefix matching"
1496 * state, and in that case verify that the skipped
1497 * bits that will prevail throughout this subtree are
1498 * zero, as they have to be if we are to find a
1502 pref_mismatch
= mask_pfx(cn
->key
^ key
, cn
->pos
);
1505 * In short: If skipped bits in this node do not match
1506 * the search key, enter the "prefix matching"
1509 if (pref_mismatch
) {
1510 int mp
= KEYLENGTH
- fls(pref_mismatch
);
1512 if (tkey_extract_bits(cn
->key
, mp
, cn
->pos
- mp
) != 0)
1515 if (current_prefix_length
>= cn
->pos
)
1516 current_prefix_length
= mp
;
1519 pn
= (struct tnode
*)n
; /* Descend */
1526 /* As zero don't change the child key (cindex) */
1527 while ((chopped_off
<= pn
->bits
)
1528 && !(cindex
& (1<<(chopped_off
-1))))
1531 /* Decrease current_... with bits chopped off */
1532 if (current_prefix_length
> pn
->pos
+ pn
->bits
- chopped_off
)
1533 current_prefix_length
= pn
->pos
+ pn
->bits
1537 * Either we do the actual chop off according or if we have
1538 * chopped off all bits in this tnode walk up to our parent.
1541 if (chopped_off
<= pn
->bits
) {
1542 cindex
&= ~(1 << (chopped_off
-1));
1544 struct tnode
*parent
= node_parent_rcu((struct node
*) pn
);
1548 /* Get Child's index */
1549 cindex
= tkey_extract_bits(pn
->key
, parent
->pos
, parent
->bits
);
1553 #ifdef CONFIG_IP_FIB_TRIE_STATS
1554 t
->stats
.backtrack
++;
1567 * Remove the leaf and return parent.
1569 static void trie_leaf_remove(struct trie
*t
, struct leaf
*l
)
1571 struct tnode
*tp
= node_parent((struct node
*) l
);
1573 pr_debug("entering trie_leaf_remove(%p)\n", l
);
1576 t_key cindex
= tkey_extract_bits(l
->key
, tp
->pos
, tp
->bits
);
1577 put_child(t
, (struct tnode
*)tp
, cindex
, NULL
);
1578 trie_rebalance(t
, tp
);
1580 rcu_assign_pointer(t
->trie
, NULL
);
1586 * Caller must hold RTNL.
1588 int fib_table_delete(struct fib_table
*tb
, struct fib_config
*cfg
)
1590 struct trie
*t
= (struct trie
*) tb
->tb_data
;
1592 int plen
= cfg
->fc_dst_len
;
1593 u8 tos
= cfg
->fc_tos
;
1594 struct fib_alias
*fa
, *fa_to_delete
;
1595 struct list_head
*fa_head
;
1597 struct leaf_info
*li
;
1602 key
= ntohl(cfg
->fc_dst
);
1603 mask
= ntohl(inet_make_mask(plen
));
1609 l
= fib_find_node(t
, key
);
1614 fa_head
= get_fa_head(l
, plen
);
1615 fa
= fib_find_alias(fa_head
, tos
, 0);
1620 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key
, plen
, tos
, t
);
1622 fa_to_delete
= NULL
;
1623 fa
= list_entry(fa
->fa_list
.prev
, struct fib_alias
, fa_list
);
1624 list_for_each_entry_continue(fa
, fa_head
, fa_list
) {
1625 struct fib_info
*fi
= fa
->fa_info
;
1627 if (fa
->fa_tos
!= tos
)
1630 if ((!cfg
->fc_type
|| fa
->fa_type
== cfg
->fc_type
) &&
1631 (cfg
->fc_scope
== RT_SCOPE_NOWHERE
||
1632 fa
->fa_scope
== cfg
->fc_scope
) &&
1633 (!cfg
->fc_protocol
||
1634 fi
->fib_protocol
== cfg
->fc_protocol
) &&
1635 fib_nh_match(cfg
, fi
) == 0) {
1645 rtmsg_fib(RTM_DELROUTE
, htonl(key
), fa
, plen
, tb
->tb_id
,
1646 &cfg
->fc_nlinfo
, 0);
1648 l
= fib_find_node(t
, key
);
1649 li
= find_leaf_info(l
, plen
);
1651 list_del_rcu(&fa
->fa_list
);
1653 if (list_empty(fa_head
)) {
1654 hlist_del_rcu(&li
->hlist
);
1658 if (hlist_empty(&l
->list
))
1659 trie_leaf_remove(t
, l
);
1661 if (fa
->fa_state
& FA_S_ACCESSED
)
1662 rt_cache_flush(cfg
->fc_nlinfo
.nl_net
, -1);
1664 fib_release_info(fa
->fa_info
);
1665 alias_free_mem_rcu(fa
);
1669 static int trie_flush_list(struct list_head
*head
)
1671 struct fib_alias
*fa
, *fa_node
;
1674 list_for_each_entry_safe(fa
, fa_node
, head
, fa_list
) {
1675 struct fib_info
*fi
= fa
->fa_info
;
1677 if (fi
&& (fi
->fib_flags
& RTNH_F_DEAD
)) {
1678 list_del_rcu(&fa
->fa_list
);
1679 fib_release_info(fa
->fa_info
);
1680 alias_free_mem_rcu(fa
);
1687 static int trie_flush_leaf(struct leaf
*l
)
1690 struct hlist_head
*lih
= &l
->list
;
1691 struct hlist_node
*node
, *tmp
;
1692 struct leaf_info
*li
= NULL
;
1694 hlist_for_each_entry_safe(li
, node
, tmp
, lih
, hlist
) {
1695 found
+= trie_flush_list(&li
->falh
);
1697 if (list_empty(&li
->falh
)) {
1698 hlist_del_rcu(&li
->hlist
);
1706 * Scan for the next right leaf starting at node p->child[idx]
1707 * Since we have back pointer, no recursion necessary.
1709 static struct leaf
*leaf_walk_rcu(struct tnode
*p
, struct node
*c
)
1715 idx
= tkey_extract_bits(c
->key
, p
->pos
, p
->bits
) + 1;
1719 while (idx
< 1u << p
->bits
) {
1720 c
= tnode_get_child_rcu(p
, idx
++);
1725 prefetch(p
->child
[idx
]);
1726 return (struct leaf
*) c
;
1729 /* Rescan start scanning in new node */
1730 p
= (struct tnode
*) c
;
1734 /* Node empty, walk back up to parent */
1735 c
= (struct node
*) p
;
1736 } while ((p
= node_parent_rcu(c
)) != NULL
);
1738 return NULL
; /* Root of trie */
1741 static struct leaf
*trie_firstleaf(struct trie
*t
)
1743 struct tnode
*n
= (struct tnode
*)rcu_dereference_rtnl(t
->trie
);
1748 if (IS_LEAF(n
)) /* trie is just a leaf */
1749 return (struct leaf
*) n
;
1751 return leaf_walk_rcu(n
, NULL
);
1754 static struct leaf
*trie_nextleaf(struct leaf
*l
)
1756 struct node
*c
= (struct node
*) l
;
1757 struct tnode
*p
= node_parent_rcu(c
);
1760 return NULL
; /* trie with just one leaf */
1762 return leaf_walk_rcu(p
, c
);
1765 static struct leaf
*trie_leafindex(struct trie
*t
, int index
)
1767 struct leaf
*l
= trie_firstleaf(t
);
1769 while (l
&& index
-- > 0)
1770 l
= trie_nextleaf(l
);
1777 * Caller must hold RTNL.
1779 int fib_table_flush(struct fib_table
*tb
)
1781 struct trie
*t
= (struct trie
*) tb
->tb_data
;
1782 struct leaf
*l
, *ll
= NULL
;
1785 for (l
= trie_firstleaf(t
); l
; l
= trie_nextleaf(l
)) {
1786 found
+= trie_flush_leaf(l
);
1788 if (ll
&& hlist_empty(&ll
->list
))
1789 trie_leaf_remove(t
, ll
);
1793 if (ll
&& hlist_empty(&ll
->list
))
1794 trie_leaf_remove(t
, ll
);
1796 pr_debug("trie_flush found=%d\n", found
);
1800 void fib_table_select_default(struct fib_table
*tb
,
1801 const struct flowi
*flp
,
1802 struct fib_result
*res
)
1804 struct trie
*t
= (struct trie
*) tb
->tb_data
;
1805 int order
, last_idx
;
1806 struct fib_info
*fi
= NULL
;
1807 struct fib_info
*last_resort
;
1808 struct fib_alias
*fa
= NULL
;
1809 struct list_head
*fa_head
;
1818 l
= fib_find_node(t
, 0);
1822 fa_head
= get_fa_head(l
, 0);
1826 if (list_empty(fa_head
))
1829 list_for_each_entry_rcu(fa
, fa_head
, fa_list
) {
1830 struct fib_info
*next_fi
= fa
->fa_info
;
1832 if (fa
->fa_scope
!= res
->scope
||
1833 fa
->fa_type
!= RTN_UNICAST
)
1836 if (next_fi
->fib_priority
> res
->fi
->fib_priority
)
1838 if (!next_fi
->fib_nh
[0].nh_gw
||
1839 next_fi
->fib_nh
[0].nh_scope
!= RT_SCOPE_LINK
)
1842 fib_alias_accessed(fa
);
1845 if (next_fi
!= res
->fi
)
1847 } else if (!fib_detect_death(fi
, order
, &last_resort
,
1848 &last_idx
, tb
->tb_default
)) {
1849 fib_result_assign(res
, fi
);
1850 tb
->tb_default
= order
;
1856 if (order
<= 0 || fi
== NULL
) {
1857 tb
->tb_default
= -1;
1861 if (!fib_detect_death(fi
, order
, &last_resort
, &last_idx
,
1863 fib_result_assign(res
, fi
);
1864 tb
->tb_default
= order
;
1868 fib_result_assign(res
, last_resort
);
1869 tb
->tb_default
= last_idx
;
1874 static int fn_trie_dump_fa(t_key key
, int plen
, struct list_head
*fah
,
1875 struct fib_table
*tb
,
1876 struct sk_buff
*skb
, struct netlink_callback
*cb
)
1879 struct fib_alias
*fa
;
1880 __be32 xkey
= htonl(key
);
1885 /* rcu_read_lock is hold by caller */
1887 list_for_each_entry_rcu(fa
, fah
, fa_list
) {
1893 if (fib_dump_info(skb
, NETLINK_CB(cb
->skb
).pid
,
1902 fa
->fa_info
, NLM_F_MULTI
) < 0) {
1912 static int fn_trie_dump_leaf(struct leaf
*l
, struct fib_table
*tb
,
1913 struct sk_buff
*skb
, struct netlink_callback
*cb
)
1915 struct leaf_info
*li
;
1916 struct hlist_node
*node
;
1922 /* rcu_read_lock is hold by caller */
1923 hlist_for_each_entry_rcu(li
, node
, &l
->list
, hlist
) {
1932 if (list_empty(&li
->falh
))
1935 if (fn_trie_dump_fa(l
->key
, li
->plen
, &li
->falh
, tb
, skb
, cb
) < 0) {
1946 int fib_table_dump(struct fib_table
*tb
, struct sk_buff
*skb
,
1947 struct netlink_callback
*cb
)
1950 struct trie
*t
= (struct trie
*) tb
->tb_data
;
1951 t_key key
= cb
->args
[2];
1952 int count
= cb
->args
[3];
1955 /* Dump starting at last key.
1956 * Note: 0.0.0.0/0 (ie default) is first key.
1959 l
= trie_firstleaf(t
);
1961 /* Normally, continue from last key, but if that is missing
1962 * fallback to using slow rescan
1964 l
= fib_find_node(t
, key
);
1966 l
= trie_leafindex(t
, count
);
1970 cb
->args
[2] = l
->key
;
1971 if (fn_trie_dump_leaf(l
, tb
, skb
, cb
) < 0) {
1972 cb
->args
[3] = count
;
1978 l
= trie_nextleaf(l
);
1979 memset(&cb
->args
[4], 0,
1980 sizeof(cb
->args
) - 4*sizeof(cb
->args
[0]));
1982 cb
->args
[3] = count
;
1988 void __init
fib_hash_init(void)
1990 fn_alias_kmem
= kmem_cache_create("ip_fib_alias",
1991 sizeof(struct fib_alias
),
1992 0, SLAB_PANIC
, NULL
);
1994 trie_leaf_kmem
= kmem_cache_create("ip_fib_trie",
1995 max(sizeof(struct leaf
),
1996 sizeof(struct leaf_info
)),
1997 0, SLAB_PANIC
, NULL
);
2001 /* Fix more generic FIB names for init later */
2002 struct fib_table
*fib_hash_table(u32 id
)
2004 struct fib_table
*tb
;
2007 tb
= kmalloc(sizeof(struct fib_table
) + sizeof(struct trie
),
2013 tb
->tb_default
= -1;
2015 t
= (struct trie
*) tb
->tb_data
;
2016 memset(t
, 0, sizeof(*t
));
2018 if (id
== RT_TABLE_LOCAL
)
2019 pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION
);
2024 #ifdef CONFIG_PROC_FS
2025 /* Depth first Trie walk iterator */
2026 struct fib_trie_iter
{
2027 struct seq_net_private p
;
2028 struct fib_table
*tb
;
2029 struct tnode
*tnode
;
2034 static struct node
*fib_trie_get_next(struct fib_trie_iter
*iter
)
2036 struct tnode
*tn
= iter
->tnode
;
2037 unsigned int cindex
= iter
->index
;
2040 /* A single entry routing table */
2044 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2045 iter
->tnode
, iter
->index
, iter
->depth
);
2047 while (cindex
< (1<<tn
->bits
)) {
2048 struct node
*n
= tnode_get_child_rcu(tn
, cindex
);
2053 iter
->index
= cindex
+ 1;
2055 /* push down one level */
2056 iter
->tnode
= (struct tnode
*) n
;
2066 /* Current node exhausted, pop back up */
2067 p
= node_parent_rcu((struct node
*)tn
);
2069 cindex
= tkey_extract_bits(tn
->key
, p
->pos
, p
->bits
)+1;
2079 static struct node
*fib_trie_get_first(struct fib_trie_iter
*iter
,
2087 n
= rcu_dereference(t
->trie
);
2092 iter
->tnode
= (struct tnode
*) n
;
2104 static void trie_collect_stats(struct trie
*t
, struct trie_stat
*s
)
2107 struct fib_trie_iter iter
;
2109 memset(s
, 0, sizeof(*s
));
2112 for (n
= fib_trie_get_first(&iter
, t
); n
; n
= fib_trie_get_next(&iter
)) {
2114 struct leaf
*l
= (struct leaf
*)n
;
2115 struct leaf_info
*li
;
2116 struct hlist_node
*tmp
;
2119 s
->totdepth
+= iter
.depth
;
2120 if (iter
.depth
> s
->maxdepth
)
2121 s
->maxdepth
= iter
.depth
;
2123 hlist_for_each_entry_rcu(li
, tmp
, &l
->list
, hlist
)
2126 const struct tnode
*tn
= (const struct tnode
*) n
;
2130 if (tn
->bits
< MAX_STAT_DEPTH
)
2131 s
->nodesizes
[tn
->bits
]++;
2133 for (i
= 0; i
< (1<<tn
->bits
); i
++)
2142 * This outputs /proc/net/fib_triestats
2144 static void trie_show_stats(struct seq_file
*seq
, struct trie_stat
*stat
)
2146 unsigned int i
, max
, pointers
, bytes
, avdepth
;
2149 avdepth
= stat
->totdepth
*100 / stat
->leaves
;
2153 seq_printf(seq
, "\tAver depth: %u.%02d\n",
2154 avdepth
/ 100, avdepth
% 100);
2155 seq_printf(seq
, "\tMax depth: %u\n", stat
->maxdepth
);
2157 seq_printf(seq
, "\tLeaves: %u\n", stat
->leaves
);
2158 bytes
= sizeof(struct leaf
) * stat
->leaves
;
2160 seq_printf(seq
, "\tPrefixes: %u\n", stat
->prefixes
);
2161 bytes
+= sizeof(struct leaf_info
) * stat
->prefixes
;
2163 seq_printf(seq
, "\tInternal nodes: %u\n\t", stat
->tnodes
);
2164 bytes
+= sizeof(struct tnode
) * stat
->tnodes
;
2166 max
= MAX_STAT_DEPTH
;
2167 while (max
> 0 && stat
->nodesizes
[max
-1] == 0)
2171 for (i
= 1; i
<= max
; i
++)
2172 if (stat
->nodesizes
[i
] != 0) {
2173 seq_printf(seq
, " %u: %u", i
, stat
->nodesizes
[i
]);
2174 pointers
+= (1<<i
) * stat
->nodesizes
[i
];
2176 seq_putc(seq
, '\n');
2177 seq_printf(seq
, "\tPointers: %u\n", pointers
);
2179 bytes
+= sizeof(struct node
*) * pointers
;
2180 seq_printf(seq
, "Null ptrs: %u\n", stat
->nullpointers
);
2181 seq_printf(seq
, "Total size: %u kB\n", (bytes
+ 1023) / 1024);
2184 #ifdef CONFIG_IP_FIB_TRIE_STATS
2185 static void trie_show_usage(struct seq_file
*seq
,
2186 const struct trie_use_stats
*stats
)
2188 seq_printf(seq
, "\nCounters:\n---------\n");
2189 seq_printf(seq
, "gets = %u\n", stats
->gets
);
2190 seq_printf(seq
, "backtracks = %u\n", stats
->backtrack
);
2191 seq_printf(seq
, "semantic match passed = %u\n",
2192 stats
->semantic_match_passed
);
2193 seq_printf(seq
, "semantic match miss = %u\n",
2194 stats
->semantic_match_miss
);
2195 seq_printf(seq
, "null node hit= %u\n", stats
->null_node_hit
);
2196 seq_printf(seq
, "skipped node resize = %u\n\n",
2197 stats
->resize_node_skipped
);
2199 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2201 static void fib_table_print(struct seq_file
*seq
, struct fib_table
*tb
)
2203 if (tb
->tb_id
== RT_TABLE_LOCAL
)
2204 seq_puts(seq
, "Local:\n");
2205 else if (tb
->tb_id
== RT_TABLE_MAIN
)
2206 seq_puts(seq
, "Main:\n");
2208 seq_printf(seq
, "Id %d:\n", tb
->tb_id
);
2212 static int fib_triestat_seq_show(struct seq_file
*seq
, void *v
)
2214 struct net
*net
= (struct net
*)seq
->private;
2218 "Basic info: size of leaf:"
2219 " %Zd bytes, size of tnode: %Zd bytes.\n",
2220 sizeof(struct leaf
), sizeof(struct tnode
));
2222 for (h
= 0; h
< FIB_TABLE_HASHSZ
; h
++) {
2223 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2224 struct hlist_node
*node
;
2225 struct fib_table
*tb
;
2227 hlist_for_each_entry_rcu(tb
, node
, head
, tb_hlist
) {
2228 struct trie
*t
= (struct trie
*) tb
->tb_data
;
2229 struct trie_stat stat
;
2234 fib_table_print(seq
, tb
);
2236 trie_collect_stats(t
, &stat
);
2237 trie_show_stats(seq
, &stat
);
2238 #ifdef CONFIG_IP_FIB_TRIE_STATS
2239 trie_show_usage(seq
, &t
->stats
);
2247 static int fib_triestat_seq_open(struct inode
*inode
, struct file
*file
)
2249 return single_open_net(inode
, file
, fib_triestat_seq_show
);
2252 static const struct file_operations fib_triestat_fops
= {
2253 .owner
= THIS_MODULE
,
2254 .open
= fib_triestat_seq_open
,
2256 .llseek
= seq_lseek
,
2257 .release
= single_release_net
,
2260 static struct node
*fib_trie_get_idx(struct seq_file
*seq
, loff_t pos
)
2262 struct fib_trie_iter
*iter
= seq
->private;
2263 struct net
*net
= seq_file_net(seq
);
2267 for (h
= 0; h
< FIB_TABLE_HASHSZ
; h
++) {
2268 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2269 struct hlist_node
*node
;
2270 struct fib_table
*tb
;
2272 hlist_for_each_entry_rcu(tb
, node
, head
, tb_hlist
) {
2275 for (n
= fib_trie_get_first(iter
,
2276 (struct trie
*) tb
->tb_data
);
2277 n
; n
= fib_trie_get_next(iter
))
2288 static void *fib_trie_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2292 return fib_trie_get_idx(seq
, *pos
);
2295 static void *fib_trie_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2297 struct fib_trie_iter
*iter
= seq
->private;
2298 struct net
*net
= seq_file_net(seq
);
2299 struct fib_table
*tb
= iter
->tb
;
2300 struct hlist_node
*tb_node
;
2305 /* next node in same table */
2306 n
= fib_trie_get_next(iter
);
2310 /* walk rest of this hash chain */
2311 h
= tb
->tb_id
& (FIB_TABLE_HASHSZ
- 1);
2312 while ( (tb_node
= rcu_dereference(tb
->tb_hlist
.next
)) ) {
2313 tb
= hlist_entry(tb_node
, struct fib_table
, tb_hlist
);
2314 n
= fib_trie_get_first(iter
, (struct trie
*) tb
->tb_data
);
2319 /* new hash chain */
2320 while (++h
< FIB_TABLE_HASHSZ
) {
2321 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2322 hlist_for_each_entry_rcu(tb
, tb_node
, head
, tb_hlist
) {
2323 n
= fib_trie_get_first(iter
, (struct trie
*) tb
->tb_data
);
2335 static void fib_trie_seq_stop(struct seq_file
*seq
, void *v
)
2341 static void seq_indent(struct seq_file
*seq
, int n
)
2347 static inline const char *rtn_scope(char *buf
, size_t len
, enum rt_scope_t s
)
2350 case RT_SCOPE_UNIVERSE
: return "universe";
2351 case RT_SCOPE_SITE
: return "site";
2352 case RT_SCOPE_LINK
: return "link";
2353 case RT_SCOPE_HOST
: return "host";
2354 case RT_SCOPE_NOWHERE
: return "nowhere";
2356 snprintf(buf
, len
, "scope=%d", s
);
2361 static const char *const rtn_type_names
[__RTN_MAX
] = {
2362 [RTN_UNSPEC
] = "UNSPEC",
2363 [RTN_UNICAST
] = "UNICAST",
2364 [RTN_LOCAL
] = "LOCAL",
2365 [RTN_BROADCAST
] = "BROADCAST",
2366 [RTN_ANYCAST
] = "ANYCAST",
2367 [RTN_MULTICAST
] = "MULTICAST",
2368 [RTN_BLACKHOLE
] = "BLACKHOLE",
2369 [RTN_UNREACHABLE
] = "UNREACHABLE",
2370 [RTN_PROHIBIT
] = "PROHIBIT",
2371 [RTN_THROW
] = "THROW",
2373 [RTN_XRESOLVE
] = "XRESOLVE",
2376 static inline const char *rtn_type(char *buf
, size_t len
, unsigned int t
)
2378 if (t
< __RTN_MAX
&& rtn_type_names
[t
])
2379 return rtn_type_names
[t
];
2380 snprintf(buf
, len
, "type %u", t
);
2384 /* Pretty print the trie */
2385 static int fib_trie_seq_show(struct seq_file
*seq
, void *v
)
2387 const struct fib_trie_iter
*iter
= seq
->private;
2390 if (!node_parent_rcu(n
))
2391 fib_table_print(seq
, iter
->tb
);
2394 struct tnode
*tn
= (struct tnode
*) n
;
2395 __be32 prf
= htonl(mask_pfx(tn
->key
, tn
->pos
));
2397 seq_indent(seq
, iter
->depth
-1);
2398 seq_printf(seq
, " +-- %pI4/%d %d %d %d\n",
2399 &prf
, tn
->pos
, tn
->bits
, tn
->full_children
,
2400 tn
->empty_children
);
2403 struct leaf
*l
= (struct leaf
*) n
;
2404 struct leaf_info
*li
;
2405 struct hlist_node
*node
;
2406 __be32 val
= htonl(l
->key
);
2408 seq_indent(seq
, iter
->depth
);
2409 seq_printf(seq
, " |-- %pI4\n", &val
);
2411 hlist_for_each_entry_rcu(li
, node
, &l
->list
, hlist
) {
2412 struct fib_alias
*fa
;
2414 list_for_each_entry_rcu(fa
, &li
->falh
, fa_list
) {
2415 char buf1
[32], buf2
[32];
2417 seq_indent(seq
, iter
->depth
+1);
2418 seq_printf(seq
, " /%d %s %s", li
->plen
,
2419 rtn_scope(buf1
, sizeof(buf1
),
2421 rtn_type(buf2
, sizeof(buf2
),
2424 seq_printf(seq
, " tos=%d", fa
->fa_tos
);
2425 seq_putc(seq
, '\n');
2433 static const struct seq_operations fib_trie_seq_ops
= {
2434 .start
= fib_trie_seq_start
,
2435 .next
= fib_trie_seq_next
,
2436 .stop
= fib_trie_seq_stop
,
2437 .show
= fib_trie_seq_show
,
2440 static int fib_trie_seq_open(struct inode
*inode
, struct file
*file
)
2442 return seq_open_net(inode
, file
, &fib_trie_seq_ops
,
2443 sizeof(struct fib_trie_iter
));
2446 static const struct file_operations fib_trie_fops
= {
2447 .owner
= THIS_MODULE
,
2448 .open
= fib_trie_seq_open
,
2450 .llseek
= seq_lseek
,
2451 .release
= seq_release_net
,
2454 struct fib_route_iter
{
2455 struct seq_net_private p
;
2456 struct trie
*main_trie
;
2461 static struct leaf
*fib_route_get_idx(struct fib_route_iter
*iter
, loff_t pos
)
2463 struct leaf
*l
= NULL
;
2464 struct trie
*t
= iter
->main_trie
;
2466 /* use cache location of last found key */
2467 if (iter
->pos
> 0 && pos
>= iter
->pos
&& (l
= fib_find_node(t
, iter
->key
)))
2471 l
= trie_firstleaf(t
);
2474 while (l
&& pos
-- > 0) {
2476 l
= trie_nextleaf(l
);
2480 iter
->key
= pos
; /* remember it */
2482 iter
->pos
= 0; /* forget it */
2487 static void *fib_route_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2490 struct fib_route_iter
*iter
= seq
->private;
2491 struct fib_table
*tb
;
2494 tb
= fib_get_table(seq_file_net(seq
), RT_TABLE_MAIN
);
2498 iter
->main_trie
= (struct trie
*) tb
->tb_data
;
2500 return SEQ_START_TOKEN
;
2502 return fib_route_get_idx(iter
, *pos
- 1);
2505 static void *fib_route_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2507 struct fib_route_iter
*iter
= seq
->private;
2511 if (v
== SEQ_START_TOKEN
) {
2513 l
= trie_firstleaf(iter
->main_trie
);
2516 l
= trie_nextleaf(l
);
2526 static void fib_route_seq_stop(struct seq_file
*seq
, void *v
)
2532 static unsigned int fib_flag_trans(int type
, __be32 mask
, const struct fib_info
*fi
)
2534 unsigned int flags
= 0;
2536 if (type
== RTN_UNREACHABLE
|| type
== RTN_PROHIBIT
)
2538 if (fi
&& fi
->fib_nh
->nh_gw
)
2539 flags
|= RTF_GATEWAY
;
2540 if (mask
== htonl(0xFFFFFFFF))
2547 * This outputs /proc/net/route.
2548 * The format of the file is not supposed to be changed
2549 * and needs to be same as fib_hash output to avoid breaking
2552 static int fib_route_seq_show(struct seq_file
*seq
, void *v
)
2555 struct leaf_info
*li
;
2556 struct hlist_node
*node
;
2558 if (v
== SEQ_START_TOKEN
) {
2559 seq_printf(seq
, "%-127s\n", "Iface\tDestination\tGateway "
2560 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2565 hlist_for_each_entry_rcu(li
, node
, &l
->list
, hlist
) {
2566 struct fib_alias
*fa
;
2567 __be32 mask
, prefix
;
2569 mask
= inet_make_mask(li
->plen
);
2570 prefix
= htonl(l
->key
);
2572 list_for_each_entry_rcu(fa
, &li
->falh
, fa_list
) {
2573 const struct fib_info
*fi
= fa
->fa_info
;
2574 unsigned int flags
= fib_flag_trans(fa
->fa_type
, mask
, fi
);
2577 if (fa
->fa_type
== RTN_BROADCAST
2578 || fa
->fa_type
== RTN_MULTICAST
)
2583 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2584 "%d\t%08X\t%d\t%u\t%u%n",
2585 fi
->fib_dev
? fi
->fib_dev
->name
: "*",
2587 fi
->fib_nh
->nh_gw
, flags
, 0, 0,
2591 fi
->fib_advmss
+ 40 : 0),
2593 fi
->fib_rtt
>> 3, &len
);
2596 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2597 "%d\t%08X\t%d\t%u\t%u%n",
2598 prefix
, 0, flags
, 0, 0, 0,
2599 mask
, 0, 0, 0, &len
);
2601 seq_printf(seq
, "%*s\n", 127 - len
, "");
2608 static const struct seq_operations fib_route_seq_ops
= {
2609 .start
= fib_route_seq_start
,
2610 .next
= fib_route_seq_next
,
2611 .stop
= fib_route_seq_stop
,
2612 .show
= fib_route_seq_show
,
2615 static int fib_route_seq_open(struct inode
*inode
, struct file
*file
)
2617 return seq_open_net(inode
, file
, &fib_route_seq_ops
,
2618 sizeof(struct fib_route_iter
));
2621 static const struct file_operations fib_route_fops
= {
2622 .owner
= THIS_MODULE
,
2623 .open
= fib_route_seq_open
,
2625 .llseek
= seq_lseek
,
2626 .release
= seq_release_net
,
2629 int __net_init
fib_proc_init(struct net
*net
)
2631 if (!proc_net_fops_create(net
, "fib_trie", S_IRUGO
, &fib_trie_fops
))
2634 if (!proc_net_fops_create(net
, "fib_triestat", S_IRUGO
,
2635 &fib_triestat_fops
))
2638 if (!proc_net_fops_create(net
, "route", S_IRUGO
, &fib_route_fops
))
2644 proc_net_remove(net
, "fib_triestat");
2646 proc_net_remove(net
, "fib_trie");
2651 void __net_exit
fib_proc_exit(struct net
*net
)
2653 proc_net_remove(net
, "fib_trie");
2654 proc_net_remove(net
, "fib_triestat");
2655 proc_net_remove(net
, "route");
2658 #endif /* CONFIG_PROC_FS */