perf_events: Fix resource leak in x86 __hw_perf_event_init()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kernel / cpu / perf_event.c
blobf571f514de2a8d1603cdccb0ed72e4dda5b0b389
1 /*
2 * Performance events x86 architecture code
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
12 * For licencing details see kernel-base/COPYING
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/highmem.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
28 #include <asm/apic.h>
29 #include <asm/stacktrace.h>
30 #include <asm/nmi.h>
32 #if 0
33 #undef wrmsrl
34 #define wrmsrl(msr, val) \
35 do { \
36 trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
37 (unsigned long)(val)); \
38 native_write_msr((msr), (u32)((u64)(val)), \
39 (u32)((u64)(val) >> 32)); \
40 } while (0)
41 #endif
44 * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
46 static unsigned long
47 copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
49 unsigned long offset, addr = (unsigned long)from;
50 int type = in_nmi() ? KM_NMI : KM_IRQ0;
51 unsigned long size, len = 0;
52 struct page *page;
53 void *map;
54 int ret;
56 do {
57 ret = __get_user_pages_fast(addr, 1, 0, &page);
58 if (!ret)
59 break;
61 offset = addr & (PAGE_SIZE - 1);
62 size = min(PAGE_SIZE - offset, n - len);
64 map = kmap_atomic(page, type);
65 memcpy(to, map+offset, size);
66 kunmap_atomic(map, type);
67 put_page(page);
69 len += size;
70 to += size;
71 addr += size;
73 } while (len < n);
75 return len;
78 struct event_constraint {
79 union {
80 unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
81 u64 idxmsk64;
83 u64 code;
84 u64 cmask;
85 int weight;
88 struct amd_nb {
89 int nb_id; /* NorthBridge id */
90 int refcnt; /* reference count */
91 struct perf_event *owners[X86_PMC_IDX_MAX];
92 struct event_constraint event_constraints[X86_PMC_IDX_MAX];
95 #define MAX_LBR_ENTRIES 16
97 struct cpu_hw_events {
99 * Generic x86 PMC bits
101 struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */
102 unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
103 int enabled;
105 int n_events;
106 int n_added;
107 int assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
108 u64 tags[X86_PMC_IDX_MAX];
109 struct perf_event *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
112 * Intel DebugStore bits
114 struct debug_store *ds;
115 u64 pebs_enabled;
118 * Intel LBR bits
120 int lbr_users;
121 void *lbr_context;
122 struct perf_branch_stack lbr_stack;
123 struct perf_branch_entry lbr_entries[MAX_LBR_ENTRIES];
126 * AMD specific bits
128 struct amd_nb *amd_nb;
131 #define __EVENT_CONSTRAINT(c, n, m, w) {\
132 { .idxmsk64 = (n) }, \
133 .code = (c), \
134 .cmask = (m), \
135 .weight = (w), \
138 #define EVENT_CONSTRAINT(c, n, m) \
139 __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
142 * Constraint on the Event code.
144 #define INTEL_EVENT_CONSTRAINT(c, n) \
145 EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVTSEL_MASK)
148 * Constraint on the Event code + UMask + fixed-mask
150 #define FIXED_EVENT_CONSTRAINT(c, n) \
151 EVENT_CONSTRAINT(c, (1ULL << (32+n)), INTEL_ARCH_FIXED_MASK)
154 * Constraint on the Event code + UMask
156 #define PEBS_EVENT_CONSTRAINT(c, n) \
157 EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK)
159 #define EVENT_CONSTRAINT_END \
160 EVENT_CONSTRAINT(0, 0, 0)
162 #define for_each_event_constraint(e, c) \
163 for ((e) = (c); (e)->cmask; (e)++)
165 union perf_capabilities {
166 struct {
167 u64 lbr_format : 6;
168 u64 pebs_trap : 1;
169 u64 pebs_arch_reg : 1;
170 u64 pebs_format : 4;
171 u64 smm_freeze : 1;
173 u64 capabilities;
177 * struct x86_pmu - generic x86 pmu
179 struct x86_pmu {
181 * Generic x86 PMC bits
183 const char *name;
184 int version;
185 int (*handle_irq)(struct pt_regs *);
186 void (*disable_all)(void);
187 void (*enable_all)(void);
188 void (*enable)(struct perf_event *);
189 void (*disable)(struct perf_event *);
190 int (*hw_config)(struct perf_event_attr *attr, struct hw_perf_event *hwc);
191 int (*schedule_events)(struct cpu_hw_events *cpuc, int n, int *assign);
192 unsigned eventsel;
193 unsigned perfctr;
194 u64 (*event_map)(int);
195 u64 (*raw_event)(u64);
196 int max_events;
197 int num_events;
198 int num_events_fixed;
199 int event_bits;
200 u64 event_mask;
201 int apic;
202 u64 max_period;
203 struct event_constraint *
204 (*get_event_constraints)(struct cpu_hw_events *cpuc,
205 struct perf_event *event);
207 void (*put_event_constraints)(struct cpu_hw_events *cpuc,
208 struct perf_event *event);
209 struct event_constraint *event_constraints;
210 void (*quirks)(void);
212 void (*cpu_prepare)(int cpu);
213 void (*cpu_starting)(int cpu);
214 void (*cpu_dying)(int cpu);
215 void (*cpu_dead)(int cpu);
218 * Intel Arch Perfmon v2+
220 u64 intel_ctrl;
221 union perf_capabilities intel_cap;
224 * Intel DebugStore bits
226 int bts, pebs;
227 int pebs_record_size;
228 void (*drain_pebs)(struct pt_regs *regs);
229 struct event_constraint *pebs_constraints;
232 * Intel LBR
234 unsigned long lbr_tos, lbr_from, lbr_to; /* MSR base regs */
235 int lbr_nr; /* hardware stack size */
238 static struct x86_pmu x86_pmu __read_mostly;
240 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
241 .enabled = 1,
244 static int x86_perf_event_set_period(struct perf_event *event);
247 * Generalized hw caching related hw_event table, filled
248 * in on a per model basis. A value of 0 means
249 * 'not supported', -1 means 'hw_event makes no sense on
250 * this CPU', any other value means the raw hw_event
251 * ID.
254 #define C(x) PERF_COUNT_HW_CACHE_##x
256 static u64 __read_mostly hw_cache_event_ids
257 [PERF_COUNT_HW_CACHE_MAX]
258 [PERF_COUNT_HW_CACHE_OP_MAX]
259 [PERF_COUNT_HW_CACHE_RESULT_MAX];
262 * Propagate event elapsed time into the generic event.
263 * Can only be executed on the CPU where the event is active.
264 * Returns the delta events processed.
266 static u64
267 x86_perf_event_update(struct perf_event *event)
269 struct hw_perf_event *hwc = &event->hw;
270 int shift = 64 - x86_pmu.event_bits;
271 u64 prev_raw_count, new_raw_count;
272 int idx = hwc->idx;
273 s64 delta;
275 if (idx == X86_PMC_IDX_FIXED_BTS)
276 return 0;
279 * Careful: an NMI might modify the previous event value.
281 * Our tactic to handle this is to first atomically read and
282 * exchange a new raw count - then add that new-prev delta
283 * count to the generic event atomically:
285 again:
286 prev_raw_count = atomic64_read(&hwc->prev_count);
287 rdmsrl(hwc->event_base + idx, new_raw_count);
289 if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
290 new_raw_count) != prev_raw_count)
291 goto again;
294 * Now we have the new raw value and have updated the prev
295 * timestamp already. We can now calculate the elapsed delta
296 * (event-)time and add that to the generic event.
298 * Careful, not all hw sign-extends above the physical width
299 * of the count.
301 delta = (new_raw_count << shift) - (prev_raw_count << shift);
302 delta >>= shift;
304 atomic64_add(delta, &event->count);
305 atomic64_sub(delta, &hwc->period_left);
307 return new_raw_count;
310 static atomic_t active_events;
311 static DEFINE_MUTEX(pmc_reserve_mutex);
313 #ifdef CONFIG_X86_LOCAL_APIC
315 static bool reserve_pmc_hardware(void)
317 int i;
319 if (nmi_watchdog == NMI_LOCAL_APIC)
320 disable_lapic_nmi_watchdog();
322 for (i = 0; i < x86_pmu.num_events; i++) {
323 if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
324 goto perfctr_fail;
327 for (i = 0; i < x86_pmu.num_events; i++) {
328 if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
329 goto eventsel_fail;
332 return true;
334 eventsel_fail:
335 for (i--; i >= 0; i--)
336 release_evntsel_nmi(x86_pmu.eventsel + i);
338 i = x86_pmu.num_events;
340 perfctr_fail:
341 for (i--; i >= 0; i--)
342 release_perfctr_nmi(x86_pmu.perfctr + i);
344 if (nmi_watchdog == NMI_LOCAL_APIC)
345 enable_lapic_nmi_watchdog();
347 return false;
350 static void release_pmc_hardware(void)
352 int i;
354 for (i = 0; i < x86_pmu.num_events; i++) {
355 release_perfctr_nmi(x86_pmu.perfctr + i);
356 release_evntsel_nmi(x86_pmu.eventsel + i);
359 if (nmi_watchdog == NMI_LOCAL_APIC)
360 enable_lapic_nmi_watchdog();
363 #else
365 static bool reserve_pmc_hardware(void) { return true; }
366 static void release_pmc_hardware(void) {}
368 #endif
370 static int reserve_ds_buffers(void);
371 static void release_ds_buffers(void);
373 static void hw_perf_event_destroy(struct perf_event *event)
375 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
376 release_pmc_hardware();
377 release_ds_buffers();
378 mutex_unlock(&pmc_reserve_mutex);
382 static inline int x86_pmu_initialized(void)
384 return x86_pmu.handle_irq != NULL;
387 static inline int
388 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr)
390 unsigned int cache_type, cache_op, cache_result;
391 u64 config, val;
393 config = attr->config;
395 cache_type = (config >> 0) & 0xff;
396 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
397 return -EINVAL;
399 cache_op = (config >> 8) & 0xff;
400 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
401 return -EINVAL;
403 cache_result = (config >> 16) & 0xff;
404 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
405 return -EINVAL;
407 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
409 if (val == 0)
410 return -ENOENT;
412 if (val == -1)
413 return -EINVAL;
415 hwc->config |= val;
417 return 0;
420 static int x86_hw_config(struct perf_event_attr *attr, struct hw_perf_event *hwc)
423 * Generate PMC IRQs:
424 * (keep 'enabled' bit clear for now)
426 hwc->config = ARCH_PERFMON_EVENTSEL_INT;
429 * Count user and OS events unless requested not to
431 if (!attr->exclude_user)
432 hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
433 if (!attr->exclude_kernel)
434 hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
436 return 0;
440 * Setup the hardware configuration for a given attr_type
442 static int __hw_perf_event_init(struct perf_event *event)
444 struct perf_event_attr *attr = &event->attr;
445 struct hw_perf_event *hwc = &event->hw;
446 u64 config;
447 int err;
449 if (!x86_pmu_initialized())
450 return -ENODEV;
452 err = 0;
453 if (!atomic_inc_not_zero(&active_events)) {
454 mutex_lock(&pmc_reserve_mutex);
455 if (atomic_read(&active_events) == 0) {
456 if (!reserve_pmc_hardware())
457 err = -EBUSY;
458 else {
459 err = reserve_ds_buffers();
460 if (err)
461 release_pmc_hardware();
464 if (!err)
465 atomic_inc(&active_events);
466 mutex_unlock(&pmc_reserve_mutex);
468 if (err)
469 return err;
471 event->destroy = hw_perf_event_destroy;
473 hwc->idx = -1;
474 hwc->last_cpu = -1;
475 hwc->last_tag = ~0ULL;
477 /* Processor specifics */
478 err = x86_pmu.hw_config(attr, hwc);
479 if (err)
480 return err;
482 if (!hwc->sample_period) {
483 hwc->sample_period = x86_pmu.max_period;
484 hwc->last_period = hwc->sample_period;
485 atomic64_set(&hwc->period_left, hwc->sample_period);
486 } else {
488 * If we have a PMU initialized but no APIC
489 * interrupts, we cannot sample hardware
490 * events (user-space has to fall back and
491 * sample via a hrtimer based software event):
493 if (!x86_pmu.apic)
494 return -EOPNOTSUPP;
498 * Raw hw_event type provide the config in the hw_event structure
500 if (attr->type == PERF_TYPE_RAW) {
501 hwc->config |= x86_pmu.raw_event(attr->config);
502 if ((hwc->config & ARCH_PERFMON_EVENTSEL_ANY) &&
503 perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
504 return -EACCES;
505 return 0;
508 if (attr->type == PERF_TYPE_HW_CACHE)
509 return set_ext_hw_attr(hwc, attr);
511 if (attr->config >= x86_pmu.max_events)
512 return -EINVAL;
515 * The generic map:
517 config = x86_pmu.event_map(attr->config);
519 if (config == 0)
520 return -ENOENT;
522 if (config == -1LL)
523 return -EINVAL;
526 * Branch tracing:
528 if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
529 (hwc->sample_period == 1)) {
530 /* BTS is not supported by this architecture. */
531 if (!x86_pmu.bts)
532 return -EOPNOTSUPP;
534 /* BTS is currently only allowed for user-mode. */
535 if (!attr->exclude_kernel)
536 return -EOPNOTSUPP;
539 hwc->config |= config;
541 return 0;
544 static void x86_pmu_disable_all(void)
546 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
547 int idx;
549 for (idx = 0; idx < x86_pmu.num_events; idx++) {
550 u64 val;
552 if (!test_bit(idx, cpuc->active_mask))
553 continue;
554 rdmsrl(x86_pmu.eventsel + idx, val);
555 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
556 continue;
557 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
558 wrmsrl(x86_pmu.eventsel + idx, val);
562 void hw_perf_disable(void)
564 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
566 if (!x86_pmu_initialized())
567 return;
569 if (!cpuc->enabled)
570 return;
572 cpuc->n_added = 0;
573 cpuc->enabled = 0;
574 barrier();
576 x86_pmu.disable_all();
579 static void x86_pmu_enable_all(void)
581 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
582 int idx;
584 for (idx = 0; idx < x86_pmu.num_events; idx++) {
585 struct perf_event *event = cpuc->events[idx];
586 u64 val;
588 if (!test_bit(idx, cpuc->active_mask))
589 continue;
591 val = event->hw.config;
592 val |= ARCH_PERFMON_EVENTSEL_ENABLE;
593 wrmsrl(x86_pmu.eventsel + idx, val);
597 static const struct pmu pmu;
599 static inline int is_x86_event(struct perf_event *event)
601 return event->pmu == &pmu;
604 static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
606 struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
607 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
608 int i, j, w, wmax, num = 0;
609 struct hw_perf_event *hwc;
611 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
613 for (i = 0; i < n; i++) {
614 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
615 constraints[i] = c;
619 * fastpath, try to reuse previous register
621 for (i = 0; i < n; i++) {
622 hwc = &cpuc->event_list[i]->hw;
623 c = constraints[i];
625 /* never assigned */
626 if (hwc->idx == -1)
627 break;
629 /* constraint still honored */
630 if (!test_bit(hwc->idx, c->idxmsk))
631 break;
633 /* not already used */
634 if (test_bit(hwc->idx, used_mask))
635 break;
637 __set_bit(hwc->idx, used_mask);
638 if (assign)
639 assign[i] = hwc->idx;
641 if (i == n)
642 goto done;
645 * begin slow path
648 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
651 * weight = number of possible counters
653 * 1 = most constrained, only works on one counter
654 * wmax = least constrained, works on any counter
656 * assign events to counters starting with most
657 * constrained events.
659 wmax = x86_pmu.num_events;
662 * when fixed event counters are present,
663 * wmax is incremented by 1 to account
664 * for one more choice
666 if (x86_pmu.num_events_fixed)
667 wmax++;
669 for (w = 1, num = n; num && w <= wmax; w++) {
670 /* for each event */
671 for (i = 0; num && i < n; i++) {
672 c = constraints[i];
673 hwc = &cpuc->event_list[i]->hw;
675 if (c->weight != w)
676 continue;
678 for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
679 if (!test_bit(j, used_mask))
680 break;
683 if (j == X86_PMC_IDX_MAX)
684 break;
686 __set_bit(j, used_mask);
688 if (assign)
689 assign[i] = j;
690 num--;
693 done:
695 * scheduling failed or is just a simulation,
696 * free resources if necessary
698 if (!assign || num) {
699 for (i = 0; i < n; i++) {
700 if (x86_pmu.put_event_constraints)
701 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
704 return num ? -ENOSPC : 0;
708 * dogrp: true if must collect siblings events (group)
709 * returns total number of events and error code
711 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
713 struct perf_event *event;
714 int n, max_count;
716 max_count = x86_pmu.num_events + x86_pmu.num_events_fixed;
718 /* current number of events already accepted */
719 n = cpuc->n_events;
721 if (is_x86_event(leader)) {
722 if (n >= max_count)
723 return -ENOSPC;
724 cpuc->event_list[n] = leader;
725 n++;
727 if (!dogrp)
728 return n;
730 list_for_each_entry(event, &leader->sibling_list, group_entry) {
731 if (!is_x86_event(event) ||
732 event->state <= PERF_EVENT_STATE_OFF)
733 continue;
735 if (n >= max_count)
736 return -ENOSPC;
738 cpuc->event_list[n] = event;
739 n++;
741 return n;
744 static inline void x86_assign_hw_event(struct perf_event *event,
745 struct cpu_hw_events *cpuc, int i)
747 struct hw_perf_event *hwc = &event->hw;
749 hwc->idx = cpuc->assign[i];
750 hwc->last_cpu = smp_processor_id();
751 hwc->last_tag = ++cpuc->tags[i];
753 if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
754 hwc->config_base = 0;
755 hwc->event_base = 0;
756 } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
757 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
759 * We set it so that event_base + idx in wrmsr/rdmsr maps to
760 * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
762 hwc->event_base =
763 MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
764 } else {
765 hwc->config_base = x86_pmu.eventsel;
766 hwc->event_base = x86_pmu.perfctr;
770 static inline int match_prev_assignment(struct hw_perf_event *hwc,
771 struct cpu_hw_events *cpuc,
772 int i)
774 return hwc->idx == cpuc->assign[i] &&
775 hwc->last_cpu == smp_processor_id() &&
776 hwc->last_tag == cpuc->tags[i];
779 static int x86_pmu_start(struct perf_event *event);
780 static void x86_pmu_stop(struct perf_event *event);
782 void hw_perf_enable(void)
784 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
785 struct perf_event *event;
786 struct hw_perf_event *hwc;
787 int i;
789 if (!x86_pmu_initialized())
790 return;
792 if (cpuc->enabled)
793 return;
795 if (cpuc->n_added) {
796 int n_running = cpuc->n_events - cpuc->n_added;
798 * apply assignment obtained either from
799 * hw_perf_group_sched_in() or x86_pmu_enable()
801 * step1: save events moving to new counters
802 * step2: reprogram moved events into new counters
804 for (i = 0; i < n_running; i++) {
805 event = cpuc->event_list[i];
806 hwc = &event->hw;
809 * we can avoid reprogramming counter if:
810 * - assigned same counter as last time
811 * - running on same CPU as last time
812 * - no other event has used the counter since
814 if (hwc->idx == -1 ||
815 match_prev_assignment(hwc, cpuc, i))
816 continue;
818 x86_pmu_stop(event);
821 for (i = 0; i < cpuc->n_events; i++) {
822 event = cpuc->event_list[i];
823 hwc = &event->hw;
825 if (!match_prev_assignment(hwc, cpuc, i))
826 x86_assign_hw_event(event, cpuc, i);
827 else if (i < n_running)
828 continue;
830 x86_pmu_start(event);
832 cpuc->n_added = 0;
833 perf_events_lapic_init();
836 cpuc->enabled = 1;
837 barrier();
839 x86_pmu.enable_all();
842 static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc)
844 wrmsrl(hwc->config_base + hwc->idx,
845 hwc->config | ARCH_PERFMON_EVENTSEL_ENABLE);
848 static inline void x86_pmu_disable_event(struct perf_event *event)
850 struct hw_perf_event *hwc = &event->hw;
852 wrmsrl(hwc->config_base + hwc->idx, hwc->config);
855 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
858 * Set the next IRQ period, based on the hwc->period_left value.
859 * To be called with the event disabled in hw:
861 static int
862 x86_perf_event_set_period(struct perf_event *event)
864 struct hw_perf_event *hwc = &event->hw;
865 s64 left = atomic64_read(&hwc->period_left);
866 s64 period = hwc->sample_period;
867 int ret = 0, idx = hwc->idx;
869 if (idx == X86_PMC_IDX_FIXED_BTS)
870 return 0;
873 * If we are way outside a reasonable range then just skip forward:
875 if (unlikely(left <= -period)) {
876 left = period;
877 atomic64_set(&hwc->period_left, left);
878 hwc->last_period = period;
879 ret = 1;
882 if (unlikely(left <= 0)) {
883 left += period;
884 atomic64_set(&hwc->period_left, left);
885 hwc->last_period = period;
886 ret = 1;
889 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
891 if (unlikely(left < 2))
892 left = 2;
894 if (left > x86_pmu.max_period)
895 left = x86_pmu.max_period;
897 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
900 * The hw event starts counting from this event offset,
901 * mark it to be able to extra future deltas:
903 atomic64_set(&hwc->prev_count, (u64)-left);
905 wrmsrl(hwc->event_base + idx,
906 (u64)(-left) & x86_pmu.event_mask);
908 perf_event_update_userpage(event);
910 return ret;
913 static void x86_pmu_enable_event(struct perf_event *event)
915 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
916 if (cpuc->enabled)
917 __x86_pmu_enable_event(&event->hw);
921 * activate a single event
923 * The event is added to the group of enabled events
924 * but only if it can be scehduled with existing events.
926 * Called with PMU disabled. If successful and return value 1,
927 * then guaranteed to call perf_enable() and hw_perf_enable()
929 static int x86_pmu_enable(struct perf_event *event)
931 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
932 struct hw_perf_event *hwc;
933 int assign[X86_PMC_IDX_MAX];
934 int n, n0, ret;
936 hwc = &event->hw;
938 n0 = cpuc->n_events;
939 n = collect_events(cpuc, event, false);
940 if (n < 0)
941 return n;
943 ret = x86_pmu.schedule_events(cpuc, n, assign);
944 if (ret)
945 return ret;
947 * copy new assignment, now we know it is possible
948 * will be used by hw_perf_enable()
950 memcpy(cpuc->assign, assign, n*sizeof(int));
952 cpuc->n_events = n;
953 cpuc->n_added += n - n0;
955 return 0;
958 static int x86_pmu_start(struct perf_event *event)
960 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
961 int idx = event->hw.idx;
963 if (idx == -1)
964 return -EAGAIN;
966 x86_perf_event_set_period(event);
967 cpuc->events[idx] = event;
968 __set_bit(idx, cpuc->active_mask);
969 x86_pmu.enable(event);
970 perf_event_update_userpage(event);
972 return 0;
975 static void x86_pmu_unthrottle(struct perf_event *event)
977 int ret = x86_pmu_start(event);
978 WARN_ON_ONCE(ret);
981 void perf_event_print_debug(void)
983 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
984 u64 pebs;
985 struct cpu_hw_events *cpuc;
986 unsigned long flags;
987 int cpu, idx;
989 if (!x86_pmu.num_events)
990 return;
992 local_irq_save(flags);
994 cpu = smp_processor_id();
995 cpuc = &per_cpu(cpu_hw_events, cpu);
997 if (x86_pmu.version >= 2) {
998 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
999 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1000 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1001 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1002 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1004 pr_info("\n");
1005 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1006 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1007 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1008 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1009 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1011 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1013 for (idx = 0; idx < x86_pmu.num_events; idx++) {
1014 rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
1015 rdmsrl(x86_pmu.perfctr + idx, pmc_count);
1017 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1019 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1020 cpu, idx, pmc_ctrl);
1021 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1022 cpu, idx, pmc_count);
1023 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1024 cpu, idx, prev_left);
1026 for (idx = 0; idx < x86_pmu.num_events_fixed; idx++) {
1027 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1029 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1030 cpu, idx, pmc_count);
1032 local_irq_restore(flags);
1035 static void x86_pmu_stop(struct perf_event *event)
1037 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1038 struct hw_perf_event *hwc = &event->hw;
1039 int idx = hwc->idx;
1041 if (!__test_and_clear_bit(idx, cpuc->active_mask))
1042 return;
1044 x86_pmu.disable(event);
1047 * Drain the remaining delta count out of a event
1048 * that we are disabling:
1050 x86_perf_event_update(event);
1052 cpuc->events[idx] = NULL;
1055 static void x86_pmu_disable(struct perf_event *event)
1057 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1058 int i;
1060 x86_pmu_stop(event);
1062 for (i = 0; i < cpuc->n_events; i++) {
1063 if (event == cpuc->event_list[i]) {
1065 if (x86_pmu.put_event_constraints)
1066 x86_pmu.put_event_constraints(cpuc, event);
1068 while (++i < cpuc->n_events)
1069 cpuc->event_list[i-1] = cpuc->event_list[i];
1071 --cpuc->n_events;
1072 break;
1075 perf_event_update_userpage(event);
1078 static int x86_pmu_handle_irq(struct pt_regs *regs)
1080 struct perf_sample_data data;
1081 struct cpu_hw_events *cpuc;
1082 struct perf_event *event;
1083 struct hw_perf_event *hwc;
1084 int idx, handled = 0;
1085 u64 val;
1087 perf_sample_data_init(&data, 0);
1089 cpuc = &__get_cpu_var(cpu_hw_events);
1091 for (idx = 0; idx < x86_pmu.num_events; idx++) {
1092 if (!test_bit(idx, cpuc->active_mask))
1093 continue;
1095 event = cpuc->events[idx];
1096 hwc = &event->hw;
1098 val = x86_perf_event_update(event);
1099 if (val & (1ULL << (x86_pmu.event_bits - 1)))
1100 continue;
1103 * event overflow
1105 handled = 1;
1106 data.period = event->hw.last_period;
1108 if (!x86_perf_event_set_period(event))
1109 continue;
1111 if (perf_event_overflow(event, 1, &data, regs))
1112 x86_pmu_stop(event);
1115 if (handled)
1116 inc_irq_stat(apic_perf_irqs);
1118 return handled;
1121 void smp_perf_pending_interrupt(struct pt_regs *regs)
1123 irq_enter();
1124 ack_APIC_irq();
1125 inc_irq_stat(apic_pending_irqs);
1126 perf_event_do_pending();
1127 irq_exit();
1130 void set_perf_event_pending(void)
1132 #ifdef CONFIG_X86_LOCAL_APIC
1133 if (!x86_pmu.apic || !x86_pmu_initialized())
1134 return;
1136 apic->send_IPI_self(LOCAL_PENDING_VECTOR);
1137 #endif
1140 void perf_events_lapic_init(void)
1142 if (!x86_pmu.apic || !x86_pmu_initialized())
1143 return;
1146 * Always use NMI for PMU
1148 apic_write(APIC_LVTPC, APIC_DM_NMI);
1151 static int __kprobes
1152 perf_event_nmi_handler(struct notifier_block *self,
1153 unsigned long cmd, void *__args)
1155 struct die_args *args = __args;
1156 struct pt_regs *regs;
1158 if (!atomic_read(&active_events))
1159 return NOTIFY_DONE;
1161 switch (cmd) {
1162 case DIE_NMI:
1163 case DIE_NMI_IPI:
1164 break;
1166 default:
1167 return NOTIFY_DONE;
1170 regs = args->regs;
1172 apic_write(APIC_LVTPC, APIC_DM_NMI);
1174 * Can't rely on the handled return value to say it was our NMI, two
1175 * events could trigger 'simultaneously' raising two back-to-back NMIs.
1177 * If the first NMI handles both, the latter will be empty and daze
1178 * the CPU.
1180 x86_pmu.handle_irq(regs);
1182 return NOTIFY_STOP;
1185 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1186 .notifier_call = perf_event_nmi_handler,
1187 .next = NULL,
1188 .priority = 1
1191 static struct event_constraint unconstrained;
1192 static struct event_constraint emptyconstraint;
1194 static struct event_constraint *
1195 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1197 struct event_constraint *c;
1199 if (x86_pmu.event_constraints) {
1200 for_each_event_constraint(c, x86_pmu.event_constraints) {
1201 if ((event->hw.config & c->cmask) == c->code)
1202 return c;
1206 return &unconstrained;
1209 static int x86_event_sched_in(struct perf_event *event,
1210 struct perf_cpu_context *cpuctx)
1212 int ret = 0;
1214 event->state = PERF_EVENT_STATE_ACTIVE;
1215 event->oncpu = smp_processor_id();
1216 event->tstamp_running += event->ctx->time - event->tstamp_stopped;
1218 if (!is_x86_event(event))
1219 ret = event->pmu->enable(event);
1221 if (!ret && !is_software_event(event))
1222 cpuctx->active_oncpu++;
1224 if (!ret && event->attr.exclusive)
1225 cpuctx->exclusive = 1;
1227 return ret;
1230 static void x86_event_sched_out(struct perf_event *event,
1231 struct perf_cpu_context *cpuctx)
1233 event->state = PERF_EVENT_STATE_INACTIVE;
1234 event->oncpu = -1;
1236 if (!is_x86_event(event))
1237 event->pmu->disable(event);
1239 event->tstamp_running -= event->ctx->time - event->tstamp_stopped;
1241 if (!is_software_event(event))
1242 cpuctx->active_oncpu--;
1244 if (event->attr.exclusive || !cpuctx->active_oncpu)
1245 cpuctx->exclusive = 0;
1249 * Called to enable a whole group of events.
1250 * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
1251 * Assumes the caller has disabled interrupts and has
1252 * frozen the PMU with hw_perf_save_disable.
1254 * called with PMU disabled. If successful and return value 1,
1255 * then guaranteed to call perf_enable() and hw_perf_enable()
1257 int hw_perf_group_sched_in(struct perf_event *leader,
1258 struct perf_cpu_context *cpuctx,
1259 struct perf_event_context *ctx)
1261 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1262 struct perf_event *sub;
1263 int assign[X86_PMC_IDX_MAX];
1264 int n0, n1, ret;
1266 if (!x86_pmu_initialized())
1267 return 0;
1269 /* n0 = total number of events */
1270 n0 = collect_events(cpuc, leader, true);
1271 if (n0 < 0)
1272 return n0;
1274 ret = x86_pmu.schedule_events(cpuc, n0, assign);
1275 if (ret)
1276 return ret;
1278 ret = x86_event_sched_in(leader, cpuctx);
1279 if (ret)
1280 return ret;
1282 n1 = 1;
1283 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1284 if (sub->state > PERF_EVENT_STATE_OFF) {
1285 ret = x86_event_sched_in(sub, cpuctx);
1286 if (ret)
1287 goto undo;
1288 ++n1;
1292 * copy new assignment, now we know it is possible
1293 * will be used by hw_perf_enable()
1295 memcpy(cpuc->assign, assign, n0*sizeof(int));
1297 cpuc->n_events = n0;
1298 cpuc->n_added += n1;
1299 ctx->nr_active += n1;
1302 * 1 means successful and events are active
1303 * This is not quite true because we defer
1304 * actual activation until hw_perf_enable() but
1305 * this way we* ensure caller won't try to enable
1306 * individual events
1308 return 1;
1309 undo:
1310 x86_event_sched_out(leader, cpuctx);
1311 n0 = 1;
1312 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1313 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
1314 x86_event_sched_out(sub, cpuctx);
1315 if (++n0 == n1)
1316 break;
1319 return ret;
1322 #include "perf_event_amd.c"
1323 #include "perf_event_p6.c"
1324 #include "perf_event_p4.c"
1325 #include "perf_event_intel_lbr.c"
1326 #include "perf_event_intel_ds.c"
1327 #include "perf_event_intel.c"
1329 static int __cpuinit
1330 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1332 unsigned int cpu = (long)hcpu;
1334 switch (action & ~CPU_TASKS_FROZEN) {
1335 case CPU_UP_PREPARE:
1336 if (x86_pmu.cpu_prepare)
1337 x86_pmu.cpu_prepare(cpu);
1338 break;
1340 case CPU_STARTING:
1341 if (x86_pmu.cpu_starting)
1342 x86_pmu.cpu_starting(cpu);
1343 break;
1345 case CPU_DYING:
1346 if (x86_pmu.cpu_dying)
1347 x86_pmu.cpu_dying(cpu);
1348 break;
1350 case CPU_DEAD:
1351 if (x86_pmu.cpu_dead)
1352 x86_pmu.cpu_dead(cpu);
1353 break;
1355 default:
1356 break;
1359 return NOTIFY_OK;
1362 static void __init pmu_check_apic(void)
1364 if (cpu_has_apic)
1365 return;
1367 x86_pmu.apic = 0;
1368 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1369 pr_info("no hardware sampling interrupt available.\n");
1372 void __init init_hw_perf_events(void)
1374 struct event_constraint *c;
1375 int err;
1377 pr_info("Performance Events: ");
1379 switch (boot_cpu_data.x86_vendor) {
1380 case X86_VENDOR_INTEL:
1381 err = intel_pmu_init();
1382 break;
1383 case X86_VENDOR_AMD:
1384 err = amd_pmu_init();
1385 break;
1386 default:
1387 return;
1389 if (err != 0) {
1390 pr_cont("no PMU driver, software events only.\n");
1391 return;
1394 pmu_check_apic();
1396 pr_cont("%s PMU driver.\n", x86_pmu.name);
1398 if (x86_pmu.quirks)
1399 x86_pmu.quirks();
1401 if (x86_pmu.num_events > X86_PMC_MAX_GENERIC) {
1402 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1403 x86_pmu.num_events, X86_PMC_MAX_GENERIC);
1404 x86_pmu.num_events = X86_PMC_MAX_GENERIC;
1406 x86_pmu.intel_ctrl = (1 << x86_pmu.num_events) - 1;
1407 perf_max_events = x86_pmu.num_events;
1409 if (x86_pmu.num_events_fixed > X86_PMC_MAX_FIXED) {
1410 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1411 x86_pmu.num_events_fixed, X86_PMC_MAX_FIXED);
1412 x86_pmu.num_events_fixed = X86_PMC_MAX_FIXED;
1415 x86_pmu.intel_ctrl |=
1416 ((1LL << x86_pmu.num_events_fixed)-1) << X86_PMC_IDX_FIXED;
1418 perf_events_lapic_init();
1419 register_die_notifier(&perf_event_nmi_notifier);
1421 unconstrained = (struct event_constraint)
1422 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_events) - 1,
1423 0, x86_pmu.num_events);
1425 if (x86_pmu.event_constraints) {
1426 for_each_event_constraint(c, x86_pmu.event_constraints) {
1427 if (c->cmask != INTEL_ARCH_FIXED_MASK)
1428 continue;
1430 c->idxmsk64 |= (1ULL << x86_pmu.num_events) - 1;
1431 c->weight += x86_pmu.num_events;
1435 pr_info("... version: %d\n", x86_pmu.version);
1436 pr_info("... bit width: %d\n", x86_pmu.event_bits);
1437 pr_info("... generic registers: %d\n", x86_pmu.num_events);
1438 pr_info("... value mask: %016Lx\n", x86_pmu.event_mask);
1439 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1440 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_events_fixed);
1441 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1443 perf_cpu_notifier(x86_pmu_notifier);
1446 static inline void x86_pmu_read(struct perf_event *event)
1448 x86_perf_event_update(event);
1451 static const struct pmu pmu = {
1452 .enable = x86_pmu_enable,
1453 .disable = x86_pmu_disable,
1454 .start = x86_pmu_start,
1455 .stop = x86_pmu_stop,
1456 .read = x86_pmu_read,
1457 .unthrottle = x86_pmu_unthrottle,
1461 * validate that we can schedule this event
1463 static int validate_event(struct perf_event *event)
1465 struct cpu_hw_events *fake_cpuc;
1466 struct event_constraint *c;
1467 int ret = 0;
1469 fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1470 if (!fake_cpuc)
1471 return -ENOMEM;
1473 c = x86_pmu.get_event_constraints(fake_cpuc, event);
1475 if (!c || !c->weight)
1476 ret = -ENOSPC;
1478 if (x86_pmu.put_event_constraints)
1479 x86_pmu.put_event_constraints(fake_cpuc, event);
1481 kfree(fake_cpuc);
1483 return ret;
1487 * validate a single event group
1489 * validation include:
1490 * - check events are compatible which each other
1491 * - events do not compete for the same counter
1492 * - number of events <= number of counters
1494 * validation ensures the group can be loaded onto the
1495 * PMU if it was the only group available.
1497 static int validate_group(struct perf_event *event)
1499 struct perf_event *leader = event->group_leader;
1500 struct cpu_hw_events *fake_cpuc;
1501 int ret, n;
1503 ret = -ENOMEM;
1504 fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1505 if (!fake_cpuc)
1506 goto out;
1509 * the event is not yet connected with its
1510 * siblings therefore we must first collect
1511 * existing siblings, then add the new event
1512 * before we can simulate the scheduling
1514 ret = -ENOSPC;
1515 n = collect_events(fake_cpuc, leader, true);
1516 if (n < 0)
1517 goto out_free;
1519 fake_cpuc->n_events = n;
1520 n = collect_events(fake_cpuc, event, false);
1521 if (n < 0)
1522 goto out_free;
1524 fake_cpuc->n_events = n;
1526 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1528 out_free:
1529 kfree(fake_cpuc);
1530 out:
1531 return ret;
1534 const struct pmu *hw_perf_event_init(struct perf_event *event)
1536 const struct pmu *tmp;
1537 int err;
1539 err = __hw_perf_event_init(event);
1540 if (!err) {
1542 * we temporarily connect event to its pmu
1543 * such that validate_group() can classify
1544 * it as an x86 event using is_x86_event()
1546 tmp = event->pmu;
1547 event->pmu = &pmu;
1549 if (event->group_leader != event)
1550 err = validate_group(event);
1551 else
1552 err = validate_event(event);
1554 event->pmu = tmp;
1556 if (err) {
1557 if (event->destroy)
1558 event->destroy(event);
1559 return ERR_PTR(err);
1562 return &pmu;
1566 * callchain support
1569 static inline
1570 void callchain_store(struct perf_callchain_entry *entry, u64 ip)
1572 if (entry->nr < PERF_MAX_STACK_DEPTH)
1573 entry->ip[entry->nr++] = ip;
1576 static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_irq_entry);
1577 static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_nmi_entry);
1580 static void
1581 backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1583 /* Ignore warnings */
1586 static void backtrace_warning(void *data, char *msg)
1588 /* Ignore warnings */
1591 static int backtrace_stack(void *data, char *name)
1593 return 0;
1596 static void backtrace_address(void *data, unsigned long addr, int reliable)
1598 struct perf_callchain_entry *entry = data;
1600 if (reliable)
1601 callchain_store(entry, addr);
1604 static const struct stacktrace_ops backtrace_ops = {
1605 .warning = backtrace_warning,
1606 .warning_symbol = backtrace_warning_symbol,
1607 .stack = backtrace_stack,
1608 .address = backtrace_address,
1609 .walk_stack = print_context_stack_bp,
1612 #include "../dumpstack.h"
1614 static void
1615 perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
1617 callchain_store(entry, PERF_CONTEXT_KERNEL);
1618 callchain_store(entry, regs->ip);
1620 dump_trace(NULL, regs, NULL, regs->bp, &backtrace_ops, entry);
1623 static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
1625 unsigned long bytes;
1627 bytes = copy_from_user_nmi(frame, fp, sizeof(*frame));
1629 return bytes == sizeof(*frame);
1632 static void
1633 perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
1635 struct stack_frame frame;
1636 const void __user *fp;
1638 if (!user_mode(regs))
1639 regs = task_pt_regs(current);
1641 fp = (void __user *)regs->bp;
1643 callchain_store(entry, PERF_CONTEXT_USER);
1644 callchain_store(entry, regs->ip);
1646 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1647 frame.next_frame = NULL;
1648 frame.return_address = 0;
1650 if (!copy_stack_frame(fp, &frame))
1651 break;
1653 if ((unsigned long)fp < regs->sp)
1654 break;
1656 callchain_store(entry, frame.return_address);
1657 fp = frame.next_frame;
1661 static void
1662 perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
1664 int is_user;
1666 if (!regs)
1667 return;
1669 is_user = user_mode(regs);
1671 if (is_user && current->state != TASK_RUNNING)
1672 return;
1674 if (!is_user)
1675 perf_callchain_kernel(regs, entry);
1677 if (current->mm)
1678 perf_callchain_user(regs, entry);
1681 struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1683 struct perf_callchain_entry *entry;
1685 if (in_nmi())
1686 entry = &__get_cpu_var(pmc_nmi_entry);
1687 else
1688 entry = &__get_cpu_var(pmc_irq_entry);
1690 entry->nr = 0;
1692 perf_do_callchain(regs, entry);
1694 return entry;
1697 #ifdef CONFIG_EVENT_TRACING
1698 void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
1700 regs->ip = ip;
1702 * perf_arch_fetch_caller_regs adds another call, we need to increment
1703 * the skip level
1705 regs->bp = rewind_frame_pointer(skip + 1);
1706 regs->cs = __KERNEL_CS;
1707 local_save_flags(regs->flags);
1709 #endif