spi: fix the read path in spidev
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / spi / spidev.c
blobf5b60c70389b771bc752be6178ed38cfed2730f9
1 /*
2 * spidev.c -- simple synchronous userspace interface to SPI devices
4 * Copyright (C) 2006 SWAPP
5 * Andrea Paterniani <a.paterniani@swapp-eng.it>
6 * Copyright (C) 2007 David Brownell (simplification, cleanup)
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/ioctl.h>
26 #include <linux/fs.h>
27 #include <linux/device.h>
28 #include <linux/err.h>
29 #include <linux/list.h>
30 #include <linux/errno.h>
31 #include <linux/mutex.h>
32 #include <linux/slab.h>
34 #include <linux/spi/spi.h>
35 #include <linux/spi/spidev.h>
37 #include <asm/uaccess.h>
41 * This supports acccess to SPI devices using normal userspace I/O calls.
42 * Note that while traditional UNIX/POSIX I/O semantics are half duplex,
43 * and often mask message boundaries, full SPI support requires full duplex
44 * transfers. There are several kinds of of internal message boundaries to
45 * handle chipselect management and other protocol options.
47 * SPI has a character major number assigned. We allocate minor numbers
48 * dynamically using a bitmask. You must use hotplug tools, such as udev
49 * (or mdev with busybox) to create and destroy the /dev/spidevB.C device
50 * nodes, since there is no fixed association of minor numbers with any
51 * particular SPI bus or device.
53 #define SPIDEV_MAJOR 153 /* assigned */
54 #define N_SPI_MINORS 32 /* ... up to 256 */
56 static unsigned long minors[N_SPI_MINORS / BITS_PER_LONG];
59 /* Bit masks for spi_device.mode management. Note that incorrect
60 * settings for CS_HIGH and 3WIRE can cause *lots* of trouble for other
61 * devices on a shared bus: CS_HIGH, because this device will be
62 * active when it shouldn't be; 3WIRE, because when active it won't
63 * behave as it should.
65 * REVISIT should changing those two modes be privileged?
67 #define SPI_MODE_MASK (SPI_CPHA | SPI_CPOL | SPI_CS_HIGH \
68 | SPI_LSB_FIRST | SPI_3WIRE | SPI_LOOP)
70 struct spidev_data {
71 dev_t devt;
72 spinlock_t spi_lock;
73 struct spi_device *spi;
74 struct list_head device_entry;
76 /* buffer is NULL unless this device is open (users > 0) */
77 struct mutex buf_lock;
78 unsigned users;
79 u8 *buffer;
82 static LIST_HEAD(device_list);
83 static DEFINE_MUTEX(device_list_lock);
85 static unsigned bufsiz = 4096;
86 module_param(bufsiz, uint, S_IRUGO);
87 MODULE_PARM_DESC(bufsiz, "data bytes in biggest supported SPI message");
89 /*-------------------------------------------------------------------------*/
92 * We can't use the standard synchronous wrappers for file I/O; we
93 * need to protect against async removal of the underlying spi_device.
95 static void spidev_complete(void *arg)
97 complete(arg);
100 static ssize_t
101 spidev_sync(struct spidev_data *spidev, struct spi_message *message)
103 DECLARE_COMPLETION_ONSTACK(done);
104 int status;
106 message->complete = spidev_complete;
107 message->context = &done;
109 spin_lock_irq(&spidev->spi_lock);
110 if (spidev->spi == NULL)
111 status = -ESHUTDOWN;
112 else
113 status = spi_async(spidev->spi, message);
114 spin_unlock_irq(&spidev->spi_lock);
116 if (status == 0) {
117 wait_for_completion(&done);
118 status = message->status;
119 if (status == 0)
120 status = message->actual_length;
122 return status;
125 static inline ssize_t
126 spidev_sync_write(struct spidev_data *spidev, size_t len)
128 struct spi_transfer t = {
129 .tx_buf = spidev->buffer,
130 .len = len,
132 struct spi_message m;
134 spi_message_init(&m);
135 spi_message_add_tail(&t, &m);
136 return spidev_sync(spidev, &m);
139 static inline ssize_t
140 spidev_sync_read(struct spidev_data *spidev, size_t len)
142 struct spi_transfer t = {
143 .rx_buf = spidev->buffer,
144 .len = len,
146 struct spi_message m;
148 spi_message_init(&m);
149 spi_message_add_tail(&t, &m);
150 return spidev_sync(spidev, &m);
153 /*-------------------------------------------------------------------------*/
155 /* Read-only message with current device setup */
156 static ssize_t
157 spidev_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
159 struct spidev_data *spidev;
160 ssize_t status = 0;
162 /* chipselect only toggles at start or end of operation */
163 if (count > bufsiz)
164 return -EMSGSIZE;
166 spidev = filp->private_data;
168 mutex_lock(&spidev->buf_lock);
169 status = spidev_sync_read(spidev, count);
170 if (status > 0) {
171 unsigned long missing;
173 missing = copy_to_user(buf, spidev->buffer, status);
174 if (missing == status)
175 status = -EFAULT;
176 else
177 status = status - missing;
179 mutex_unlock(&spidev->buf_lock);
181 return status;
184 /* Write-only message with current device setup */
185 static ssize_t
186 spidev_write(struct file *filp, const char __user *buf,
187 size_t count, loff_t *f_pos)
189 struct spidev_data *spidev;
190 ssize_t status = 0;
191 unsigned long missing;
193 /* chipselect only toggles at start or end of operation */
194 if (count > bufsiz)
195 return -EMSGSIZE;
197 spidev = filp->private_data;
199 mutex_lock(&spidev->buf_lock);
200 missing = copy_from_user(spidev->buffer, buf, count);
201 if (missing == 0) {
202 status = spidev_sync_write(spidev, count);
203 } else
204 status = -EFAULT;
205 mutex_unlock(&spidev->buf_lock);
207 return status;
210 static int spidev_message(struct spidev_data *spidev,
211 struct spi_ioc_transfer *u_xfers, unsigned n_xfers)
213 struct spi_message msg;
214 struct spi_transfer *k_xfers;
215 struct spi_transfer *k_tmp;
216 struct spi_ioc_transfer *u_tmp;
217 unsigned n, total;
218 u8 *buf;
219 int status = -EFAULT;
221 spi_message_init(&msg);
222 k_xfers = kcalloc(n_xfers, sizeof(*k_tmp), GFP_KERNEL);
223 if (k_xfers == NULL)
224 return -ENOMEM;
226 /* Construct spi_message, copying any tx data to bounce buffer.
227 * We walk the array of user-provided transfers, using each one
228 * to initialize a kernel version of the same transfer.
230 mutex_lock(&spidev->buf_lock);
231 buf = spidev->buffer;
232 total = 0;
233 for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;
235 n--, k_tmp++, u_tmp++) {
236 k_tmp->len = u_tmp->len;
238 total += k_tmp->len;
239 if (total > bufsiz) {
240 status = -EMSGSIZE;
241 goto done;
244 if (u_tmp->rx_buf) {
245 k_tmp->rx_buf = buf;
246 if (!access_ok(VERIFY_WRITE, (u8 __user *)
247 (uintptr_t) u_tmp->rx_buf,
248 u_tmp->len))
249 goto done;
251 if (u_tmp->tx_buf) {
252 k_tmp->tx_buf = buf;
253 if (copy_from_user(buf, (const u8 __user *)
254 (uintptr_t) u_tmp->tx_buf,
255 u_tmp->len))
256 goto done;
258 buf += k_tmp->len;
260 k_tmp->cs_change = !!u_tmp->cs_change;
261 k_tmp->bits_per_word = u_tmp->bits_per_word;
262 k_tmp->delay_usecs = u_tmp->delay_usecs;
263 k_tmp->speed_hz = u_tmp->speed_hz;
264 #ifdef VERBOSE
265 dev_dbg(&spi->dev,
266 " xfer len %zd %s%s%s%dbits %u usec %uHz\n",
267 u_tmp->len,
268 u_tmp->rx_buf ? "rx " : "",
269 u_tmp->tx_buf ? "tx " : "",
270 u_tmp->cs_change ? "cs " : "",
271 u_tmp->bits_per_word ? : spi->bits_per_word,
272 u_tmp->delay_usecs,
273 u_tmp->speed_hz ? : spi->max_speed_hz);
274 #endif
275 spi_message_add_tail(k_tmp, &msg);
278 status = spidev_sync(spidev, &msg);
279 if (status < 0)
280 goto done;
282 /* copy any rx data out of bounce buffer */
283 buf = spidev->buffer;
284 for (n = n_xfers, u_tmp = u_xfers; n; n--, u_tmp++) {
285 if (u_tmp->rx_buf) {
286 if (__copy_to_user((u8 __user *)
287 (uintptr_t) u_tmp->rx_buf, buf,
288 u_tmp->len)) {
289 status = -EFAULT;
290 goto done;
293 buf += u_tmp->len;
295 status = total;
297 done:
298 mutex_unlock(&spidev->buf_lock);
299 kfree(k_xfers);
300 return status;
303 static int
304 spidev_ioctl(struct inode *inode, struct file *filp,
305 unsigned int cmd, unsigned long arg)
307 int err = 0;
308 int retval = 0;
309 struct spidev_data *spidev;
310 struct spi_device *spi;
311 u32 tmp;
312 unsigned n_ioc;
313 struct spi_ioc_transfer *ioc;
315 /* Check type and command number */
316 if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC)
317 return -ENOTTY;
319 /* Check access direction once here; don't repeat below.
320 * IOC_DIR is from the user perspective, while access_ok is
321 * from the kernel perspective; so they look reversed.
323 if (_IOC_DIR(cmd) & _IOC_READ)
324 err = !access_ok(VERIFY_WRITE,
325 (void __user *)arg, _IOC_SIZE(cmd));
326 if (err == 0 && _IOC_DIR(cmd) & _IOC_WRITE)
327 err = !access_ok(VERIFY_READ,
328 (void __user *)arg, _IOC_SIZE(cmd));
329 if (err)
330 return -EFAULT;
332 /* guard against device removal before, or while,
333 * we issue this ioctl.
335 spidev = filp->private_data;
336 spin_lock_irq(&spidev->spi_lock);
337 spi = spi_dev_get(spidev->spi);
338 spin_unlock_irq(&spidev->spi_lock);
340 if (spi == NULL)
341 return -ESHUTDOWN;
343 switch (cmd) {
344 /* read requests */
345 case SPI_IOC_RD_MODE:
346 retval = __put_user(spi->mode & SPI_MODE_MASK,
347 (__u8 __user *)arg);
348 break;
349 case SPI_IOC_RD_LSB_FIRST:
350 retval = __put_user((spi->mode & SPI_LSB_FIRST) ? 1 : 0,
351 (__u8 __user *)arg);
352 break;
353 case SPI_IOC_RD_BITS_PER_WORD:
354 retval = __put_user(spi->bits_per_word, (__u8 __user *)arg);
355 break;
356 case SPI_IOC_RD_MAX_SPEED_HZ:
357 retval = __put_user(spi->max_speed_hz, (__u32 __user *)arg);
358 break;
360 /* write requests */
361 case SPI_IOC_WR_MODE:
362 retval = __get_user(tmp, (u8 __user *)arg);
363 if (retval == 0) {
364 u8 save = spi->mode;
366 if (tmp & ~SPI_MODE_MASK) {
367 retval = -EINVAL;
368 break;
371 tmp |= spi->mode & ~SPI_MODE_MASK;
372 spi->mode = (u8)tmp;
373 retval = spi_setup(spi);
374 if (retval < 0)
375 spi->mode = save;
376 else
377 dev_dbg(&spi->dev, "spi mode %02x\n", tmp);
379 break;
380 case SPI_IOC_WR_LSB_FIRST:
381 retval = __get_user(tmp, (__u8 __user *)arg);
382 if (retval == 0) {
383 u8 save = spi->mode;
385 if (tmp)
386 spi->mode |= SPI_LSB_FIRST;
387 else
388 spi->mode &= ~SPI_LSB_FIRST;
389 retval = spi_setup(spi);
390 if (retval < 0)
391 spi->mode = save;
392 else
393 dev_dbg(&spi->dev, "%csb first\n",
394 tmp ? 'l' : 'm');
396 break;
397 case SPI_IOC_WR_BITS_PER_WORD:
398 retval = __get_user(tmp, (__u8 __user *)arg);
399 if (retval == 0) {
400 u8 save = spi->bits_per_word;
402 spi->bits_per_word = tmp;
403 retval = spi_setup(spi);
404 if (retval < 0)
405 spi->bits_per_word = save;
406 else
407 dev_dbg(&spi->dev, "%d bits per word\n", tmp);
409 break;
410 case SPI_IOC_WR_MAX_SPEED_HZ:
411 retval = __get_user(tmp, (__u32 __user *)arg);
412 if (retval == 0) {
413 u32 save = spi->max_speed_hz;
415 spi->max_speed_hz = tmp;
416 retval = spi_setup(spi);
417 if (retval < 0)
418 spi->max_speed_hz = save;
419 else
420 dev_dbg(&spi->dev, "%d Hz (max)\n", tmp);
422 break;
424 default:
425 /* segmented and/or full-duplex I/O request */
426 if (_IOC_NR(cmd) != _IOC_NR(SPI_IOC_MESSAGE(0))
427 || _IOC_DIR(cmd) != _IOC_WRITE) {
428 retval = -ENOTTY;
429 break;
432 tmp = _IOC_SIZE(cmd);
433 if ((tmp % sizeof(struct spi_ioc_transfer)) != 0) {
434 retval = -EINVAL;
435 break;
437 n_ioc = tmp / sizeof(struct spi_ioc_transfer);
438 if (n_ioc == 0)
439 break;
441 /* copy into scratch area */
442 ioc = kmalloc(tmp, GFP_KERNEL);
443 if (!ioc) {
444 retval = -ENOMEM;
445 break;
447 if (__copy_from_user(ioc, (void __user *)arg, tmp)) {
448 kfree(ioc);
449 retval = -EFAULT;
450 break;
453 /* translate to spi_message, execute */
454 retval = spidev_message(spidev, ioc, n_ioc);
455 kfree(ioc);
456 break;
458 spi_dev_put(spi);
459 return retval;
462 static int spidev_open(struct inode *inode, struct file *filp)
464 struct spidev_data *spidev;
465 int status = -ENXIO;
467 mutex_lock(&device_list_lock);
469 list_for_each_entry(spidev, &device_list, device_entry) {
470 if (spidev->devt == inode->i_rdev) {
471 status = 0;
472 break;
475 if (status == 0) {
476 if (!spidev->buffer) {
477 spidev->buffer = kmalloc(bufsiz, GFP_KERNEL);
478 if (!spidev->buffer) {
479 dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
480 status = -ENOMEM;
483 if (status == 0) {
484 spidev->users++;
485 filp->private_data = spidev;
486 nonseekable_open(inode, filp);
488 } else
489 pr_debug("spidev: nothing for minor %d\n", iminor(inode));
491 mutex_unlock(&device_list_lock);
492 return status;
495 static int spidev_release(struct inode *inode, struct file *filp)
497 struct spidev_data *spidev;
498 int status = 0;
500 mutex_lock(&device_list_lock);
501 spidev = filp->private_data;
502 filp->private_data = NULL;
504 /* last close? */
505 spidev->users--;
506 if (!spidev->users) {
507 int dofree;
509 kfree(spidev->buffer);
510 spidev->buffer = NULL;
512 /* ... after we unbound from the underlying device? */
513 spin_lock_irq(&spidev->spi_lock);
514 dofree = (spidev->spi == NULL);
515 spin_unlock_irq(&spidev->spi_lock);
517 if (dofree)
518 kfree(spidev);
520 mutex_unlock(&device_list_lock);
522 return status;
525 static struct file_operations spidev_fops = {
526 .owner = THIS_MODULE,
527 /* REVISIT switch to aio primitives, so that userspace
528 * gets more complete API coverage. It'll simplify things
529 * too, except for the locking.
531 .write = spidev_write,
532 .read = spidev_read,
533 .ioctl = spidev_ioctl,
534 .open = spidev_open,
535 .release = spidev_release,
538 /*-------------------------------------------------------------------------*/
540 /* The main reason to have this class is to make mdev/udev create the
541 * /dev/spidevB.C character device nodes exposing our userspace API.
542 * It also simplifies memory management.
545 static struct class *spidev_class;
547 /*-------------------------------------------------------------------------*/
549 static int spidev_probe(struct spi_device *spi)
551 struct spidev_data *spidev;
552 int status;
553 unsigned long minor;
555 /* Allocate driver data */
556 spidev = kzalloc(sizeof(*spidev), GFP_KERNEL);
557 if (!spidev)
558 return -ENOMEM;
560 /* Initialize the driver data */
561 spidev->spi = spi;
562 spin_lock_init(&spidev->spi_lock);
563 mutex_init(&spidev->buf_lock);
565 INIT_LIST_HEAD(&spidev->device_entry);
567 /* If we can allocate a minor number, hook up this device.
568 * Reusing minors is fine so long as udev or mdev is working.
570 mutex_lock(&device_list_lock);
571 minor = find_first_zero_bit(minors, N_SPI_MINORS);
572 if (minor < N_SPI_MINORS) {
573 struct device *dev;
575 spidev->devt = MKDEV(SPIDEV_MAJOR, minor);
576 dev = device_create(spidev_class, &spi->dev, spidev->devt,
577 "spidev%d.%d",
578 spi->master->bus_num, spi->chip_select);
579 status = IS_ERR(dev) ? PTR_ERR(dev) : 0;
580 } else {
581 dev_dbg(&spi->dev, "no minor number available!\n");
582 status = -ENODEV;
584 if (status == 0) {
585 set_bit(minor, minors);
586 spi_set_drvdata(spi, spidev);
587 list_add(&spidev->device_entry, &device_list);
589 mutex_unlock(&device_list_lock);
591 if (status != 0)
592 kfree(spidev);
594 return status;
597 static int spidev_remove(struct spi_device *spi)
599 struct spidev_data *spidev = spi_get_drvdata(spi);
601 /* make sure ops on existing fds can abort cleanly */
602 spin_lock_irq(&spidev->spi_lock);
603 spidev->spi = NULL;
604 spi_set_drvdata(spi, NULL);
605 spin_unlock_irq(&spidev->spi_lock);
607 /* prevent new opens */
608 mutex_lock(&device_list_lock);
609 list_del(&spidev->device_entry);
610 device_destroy(spidev_class, spidev->devt);
611 clear_bit(MINOR(spidev->devt), minors);
612 if (spidev->users == 0)
613 kfree(spidev);
614 mutex_unlock(&device_list_lock);
616 return 0;
619 static struct spi_driver spidev_spi = {
620 .driver = {
621 .name = "spidev",
622 .owner = THIS_MODULE,
624 .probe = spidev_probe,
625 .remove = __devexit_p(spidev_remove),
627 /* NOTE: suspend/resume methods are not necessary here.
628 * We don't do anything except pass the requests to/from
629 * the underlying controller. The refrigerator handles
630 * most issues; the controller driver handles the rest.
634 /*-------------------------------------------------------------------------*/
636 static int __init spidev_init(void)
638 int status;
640 /* Claim our 256 reserved device numbers. Then register a class
641 * that will key udev/mdev to add/remove /dev nodes. Last, register
642 * the driver which manages those device numbers.
644 BUILD_BUG_ON(N_SPI_MINORS > 256);
645 status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops);
646 if (status < 0)
647 return status;
649 spidev_class = class_create(THIS_MODULE, "spidev");
650 if (IS_ERR(spidev_class)) {
651 unregister_chrdev(SPIDEV_MAJOR, spidev_spi.driver.name);
652 return PTR_ERR(spidev_class);
655 status = spi_register_driver(&spidev_spi);
656 if (status < 0) {
657 class_destroy(spidev_class);
658 unregister_chrdev(SPIDEV_MAJOR, spidev_spi.driver.name);
660 return status;
662 module_init(spidev_init);
664 static void __exit spidev_exit(void)
666 spi_unregister_driver(&spidev_spi);
667 class_destroy(spidev_class);
668 unregister_chrdev(SPIDEV_MAJOR, spidev_spi.driver.name);
670 module_exit(spidev_exit);
672 MODULE_AUTHOR("Andrea Paterniani, <a.paterniani@swapp-eng.it>");
673 MODULE_DESCRIPTION("User mode SPI device interface");
674 MODULE_LICENSE("GPL");