integrity: IMA policy
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / exec.c
blob9c789a525cc419fbadad01e192821878f57d9d14
1 /*
2 * linux/fs/exec.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * #!-checking implemented by tytso.
9 */
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/ima.h>
49 #include <linux/syscalls.h>
50 #include <linux/tsacct_kern.h>
51 #include <linux/cn_proc.h>
52 #include <linux/audit.h>
53 #include <linux/tracehook.h>
54 #include <linux/kmod.h>
56 #include <asm/uaccess.h>
57 #include <asm/mmu_context.h>
58 #include <asm/tlb.h>
59 #include "internal.h"
61 #ifdef __alpha__
62 /* for /sbin/loader handling in search_binary_handler() */
63 #include <linux/a.out.h>
64 #endif
66 int core_uses_pid;
67 char core_pattern[CORENAME_MAX_SIZE] = "core";
68 int suid_dumpable = 0;
70 /* The maximal length of core_pattern is also specified in sysctl.c */
72 static LIST_HEAD(formats);
73 static DEFINE_RWLOCK(binfmt_lock);
75 int register_binfmt(struct linux_binfmt * fmt)
77 if (!fmt)
78 return -EINVAL;
79 write_lock(&binfmt_lock);
80 list_add(&fmt->lh, &formats);
81 write_unlock(&binfmt_lock);
82 return 0;
85 EXPORT_SYMBOL(register_binfmt);
87 void unregister_binfmt(struct linux_binfmt * fmt)
89 write_lock(&binfmt_lock);
90 list_del(&fmt->lh);
91 write_unlock(&binfmt_lock);
94 EXPORT_SYMBOL(unregister_binfmt);
96 static inline void put_binfmt(struct linux_binfmt * fmt)
98 module_put(fmt->module);
102 * Note that a shared library must be both readable and executable due to
103 * security reasons.
105 * Also note that we take the address to load from from the file itself.
107 asmlinkage long sys_uselib(const char __user * library)
109 struct file *file;
110 struct nameidata nd;
111 char *tmp = getname(library);
112 int error = PTR_ERR(tmp);
114 if (!IS_ERR(tmp)) {
115 error = path_lookup_open(AT_FDCWD, tmp,
116 LOOKUP_FOLLOW, &nd,
117 FMODE_READ|FMODE_EXEC);
118 putname(tmp);
120 if (error)
121 goto out;
123 error = -EINVAL;
124 if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
125 goto exit;
127 error = -EACCES;
128 if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
129 goto exit;
131 error = vfs_permission(&nd, MAY_READ | MAY_EXEC | MAY_OPEN);
132 if (error)
133 goto exit;
134 error = ima_path_check(&nd.path, MAY_READ | MAY_EXEC | MAY_OPEN);
135 if (error)
136 goto exit;
138 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
139 error = PTR_ERR(file);
140 if (IS_ERR(file))
141 goto out;
143 error = -ENOEXEC;
144 if(file->f_op) {
145 struct linux_binfmt * fmt;
147 read_lock(&binfmt_lock);
148 list_for_each_entry(fmt, &formats, lh) {
149 if (!fmt->load_shlib)
150 continue;
151 if (!try_module_get(fmt->module))
152 continue;
153 read_unlock(&binfmt_lock);
154 error = fmt->load_shlib(file);
155 read_lock(&binfmt_lock);
156 put_binfmt(fmt);
157 if (error != -ENOEXEC)
158 break;
160 read_unlock(&binfmt_lock);
162 fput(file);
163 out:
164 return error;
165 exit:
166 release_open_intent(&nd);
167 path_put(&nd.path);
168 goto out;
171 #ifdef CONFIG_MMU
173 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
174 int write)
176 struct page *page;
177 int ret;
179 #ifdef CONFIG_STACK_GROWSUP
180 if (write) {
181 ret = expand_stack_downwards(bprm->vma, pos);
182 if (ret < 0)
183 return NULL;
185 #endif
186 ret = get_user_pages(current, bprm->mm, pos,
187 1, write, 1, &page, NULL);
188 if (ret <= 0)
189 return NULL;
191 if (write) {
192 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
193 struct rlimit *rlim;
196 * We've historically supported up to 32 pages (ARG_MAX)
197 * of argument strings even with small stacks
199 if (size <= ARG_MAX)
200 return page;
203 * Limit to 1/4-th the stack size for the argv+env strings.
204 * This ensures that:
205 * - the remaining binfmt code will not run out of stack space,
206 * - the program will have a reasonable amount of stack left
207 * to work from.
209 rlim = current->signal->rlim;
210 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
211 put_page(page);
212 return NULL;
216 return page;
219 static void put_arg_page(struct page *page)
221 put_page(page);
224 static void free_arg_page(struct linux_binprm *bprm, int i)
228 static void free_arg_pages(struct linux_binprm *bprm)
232 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
233 struct page *page)
235 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
238 static int __bprm_mm_init(struct linux_binprm *bprm)
240 int err = -ENOMEM;
241 struct vm_area_struct *vma = NULL;
242 struct mm_struct *mm = bprm->mm;
244 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
245 if (!vma)
246 goto err;
248 down_write(&mm->mmap_sem);
249 vma->vm_mm = mm;
252 * Place the stack at the largest stack address the architecture
253 * supports. Later, we'll move this to an appropriate place. We don't
254 * use STACK_TOP because that can depend on attributes which aren't
255 * configured yet.
257 vma->vm_end = STACK_TOP_MAX;
258 vma->vm_start = vma->vm_end - PAGE_SIZE;
260 vma->vm_flags = VM_STACK_FLAGS;
261 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
262 err = insert_vm_struct(mm, vma);
263 if (err) {
264 up_write(&mm->mmap_sem);
265 goto err;
268 mm->stack_vm = mm->total_vm = 1;
269 up_write(&mm->mmap_sem);
271 bprm->p = vma->vm_end - sizeof(void *);
273 return 0;
275 err:
276 if (vma) {
277 bprm->vma = NULL;
278 kmem_cache_free(vm_area_cachep, vma);
281 return err;
284 static bool valid_arg_len(struct linux_binprm *bprm, long len)
286 return len <= MAX_ARG_STRLEN;
289 #else
291 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
292 int write)
294 struct page *page;
296 page = bprm->page[pos / PAGE_SIZE];
297 if (!page && write) {
298 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
299 if (!page)
300 return NULL;
301 bprm->page[pos / PAGE_SIZE] = page;
304 return page;
307 static void put_arg_page(struct page *page)
311 static void free_arg_page(struct linux_binprm *bprm, int i)
313 if (bprm->page[i]) {
314 __free_page(bprm->page[i]);
315 bprm->page[i] = NULL;
319 static void free_arg_pages(struct linux_binprm *bprm)
321 int i;
323 for (i = 0; i < MAX_ARG_PAGES; i++)
324 free_arg_page(bprm, i);
327 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
328 struct page *page)
332 static int __bprm_mm_init(struct linux_binprm *bprm)
334 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
335 return 0;
338 static bool valid_arg_len(struct linux_binprm *bprm, long len)
340 return len <= bprm->p;
343 #endif /* CONFIG_MMU */
346 * Create a new mm_struct and populate it with a temporary stack
347 * vm_area_struct. We don't have enough context at this point to set the stack
348 * flags, permissions, and offset, so we use temporary values. We'll update
349 * them later in setup_arg_pages().
351 int bprm_mm_init(struct linux_binprm *bprm)
353 int err;
354 struct mm_struct *mm = NULL;
356 bprm->mm = mm = mm_alloc();
357 err = -ENOMEM;
358 if (!mm)
359 goto err;
361 err = init_new_context(current, mm);
362 if (err)
363 goto err;
365 err = __bprm_mm_init(bprm);
366 if (err)
367 goto err;
369 return 0;
371 err:
372 if (mm) {
373 bprm->mm = NULL;
374 mmdrop(mm);
377 return err;
381 * count() counts the number of strings in array ARGV.
383 static int count(char __user * __user * argv, int max)
385 int i = 0;
387 if (argv != NULL) {
388 for (;;) {
389 char __user * p;
391 if (get_user(p, argv))
392 return -EFAULT;
393 if (!p)
394 break;
395 argv++;
396 if (i++ >= max)
397 return -E2BIG;
398 cond_resched();
401 return i;
405 * 'copy_strings()' copies argument/environment strings from the old
406 * processes's memory to the new process's stack. The call to get_user_pages()
407 * ensures the destination page is created and not swapped out.
409 static int copy_strings(int argc, char __user * __user * argv,
410 struct linux_binprm *bprm)
412 struct page *kmapped_page = NULL;
413 char *kaddr = NULL;
414 unsigned long kpos = 0;
415 int ret;
417 while (argc-- > 0) {
418 char __user *str;
419 int len;
420 unsigned long pos;
422 if (get_user(str, argv+argc) ||
423 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
424 ret = -EFAULT;
425 goto out;
428 if (!valid_arg_len(bprm, len)) {
429 ret = -E2BIG;
430 goto out;
433 /* We're going to work our way backwords. */
434 pos = bprm->p;
435 str += len;
436 bprm->p -= len;
438 while (len > 0) {
439 int offset, bytes_to_copy;
441 offset = pos % PAGE_SIZE;
442 if (offset == 0)
443 offset = PAGE_SIZE;
445 bytes_to_copy = offset;
446 if (bytes_to_copy > len)
447 bytes_to_copy = len;
449 offset -= bytes_to_copy;
450 pos -= bytes_to_copy;
451 str -= bytes_to_copy;
452 len -= bytes_to_copy;
454 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
455 struct page *page;
457 page = get_arg_page(bprm, pos, 1);
458 if (!page) {
459 ret = -E2BIG;
460 goto out;
463 if (kmapped_page) {
464 flush_kernel_dcache_page(kmapped_page);
465 kunmap(kmapped_page);
466 put_arg_page(kmapped_page);
468 kmapped_page = page;
469 kaddr = kmap(kmapped_page);
470 kpos = pos & PAGE_MASK;
471 flush_arg_page(bprm, kpos, kmapped_page);
473 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
474 ret = -EFAULT;
475 goto out;
479 ret = 0;
480 out:
481 if (kmapped_page) {
482 flush_kernel_dcache_page(kmapped_page);
483 kunmap(kmapped_page);
484 put_arg_page(kmapped_page);
486 return ret;
490 * Like copy_strings, but get argv and its values from kernel memory.
492 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
494 int r;
495 mm_segment_t oldfs = get_fs();
496 set_fs(KERNEL_DS);
497 r = copy_strings(argc, (char __user * __user *)argv, bprm);
498 set_fs(oldfs);
499 return r;
501 EXPORT_SYMBOL(copy_strings_kernel);
503 #ifdef CONFIG_MMU
506 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
507 * the binfmt code determines where the new stack should reside, we shift it to
508 * its final location. The process proceeds as follows:
510 * 1) Use shift to calculate the new vma endpoints.
511 * 2) Extend vma to cover both the old and new ranges. This ensures the
512 * arguments passed to subsequent functions are consistent.
513 * 3) Move vma's page tables to the new range.
514 * 4) Free up any cleared pgd range.
515 * 5) Shrink the vma to cover only the new range.
517 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
519 struct mm_struct *mm = vma->vm_mm;
520 unsigned long old_start = vma->vm_start;
521 unsigned long old_end = vma->vm_end;
522 unsigned long length = old_end - old_start;
523 unsigned long new_start = old_start - shift;
524 unsigned long new_end = old_end - shift;
525 struct mmu_gather *tlb;
527 BUG_ON(new_start > new_end);
530 * ensure there are no vmas between where we want to go
531 * and where we are
533 if (vma != find_vma(mm, new_start))
534 return -EFAULT;
537 * cover the whole range: [new_start, old_end)
539 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
542 * move the page tables downwards, on failure we rely on
543 * process cleanup to remove whatever mess we made.
545 if (length != move_page_tables(vma, old_start,
546 vma, new_start, length))
547 return -ENOMEM;
549 lru_add_drain();
550 tlb = tlb_gather_mmu(mm, 0);
551 if (new_end > old_start) {
553 * when the old and new regions overlap clear from new_end.
555 free_pgd_range(tlb, new_end, old_end, new_end,
556 vma->vm_next ? vma->vm_next->vm_start : 0);
557 } else {
559 * otherwise, clean from old_start; this is done to not touch
560 * the address space in [new_end, old_start) some architectures
561 * have constraints on va-space that make this illegal (IA64) -
562 * for the others its just a little faster.
564 free_pgd_range(tlb, old_start, old_end, new_end,
565 vma->vm_next ? vma->vm_next->vm_start : 0);
567 tlb_finish_mmu(tlb, new_end, old_end);
570 * shrink the vma to just the new range.
572 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
574 return 0;
577 #define EXTRA_STACK_VM_PAGES 20 /* random */
580 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
581 * the stack is optionally relocated, and some extra space is added.
583 int setup_arg_pages(struct linux_binprm *bprm,
584 unsigned long stack_top,
585 int executable_stack)
587 unsigned long ret;
588 unsigned long stack_shift;
589 struct mm_struct *mm = current->mm;
590 struct vm_area_struct *vma = bprm->vma;
591 struct vm_area_struct *prev = NULL;
592 unsigned long vm_flags;
593 unsigned long stack_base;
595 #ifdef CONFIG_STACK_GROWSUP
596 /* Limit stack size to 1GB */
597 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
598 if (stack_base > (1 << 30))
599 stack_base = 1 << 30;
601 /* Make sure we didn't let the argument array grow too large. */
602 if (vma->vm_end - vma->vm_start > stack_base)
603 return -ENOMEM;
605 stack_base = PAGE_ALIGN(stack_top - stack_base);
607 stack_shift = vma->vm_start - stack_base;
608 mm->arg_start = bprm->p - stack_shift;
609 bprm->p = vma->vm_end - stack_shift;
610 #else
611 stack_top = arch_align_stack(stack_top);
612 stack_top = PAGE_ALIGN(stack_top);
613 stack_shift = vma->vm_end - stack_top;
615 bprm->p -= stack_shift;
616 mm->arg_start = bprm->p;
617 #endif
619 if (bprm->loader)
620 bprm->loader -= stack_shift;
621 bprm->exec -= stack_shift;
623 down_write(&mm->mmap_sem);
624 vm_flags = VM_STACK_FLAGS;
627 * Adjust stack execute permissions; explicitly enable for
628 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
629 * (arch default) otherwise.
631 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
632 vm_flags |= VM_EXEC;
633 else if (executable_stack == EXSTACK_DISABLE_X)
634 vm_flags &= ~VM_EXEC;
635 vm_flags |= mm->def_flags;
637 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
638 vm_flags);
639 if (ret)
640 goto out_unlock;
641 BUG_ON(prev != vma);
643 /* Move stack pages down in memory. */
644 if (stack_shift) {
645 ret = shift_arg_pages(vma, stack_shift);
646 if (ret) {
647 up_write(&mm->mmap_sem);
648 return ret;
652 #ifdef CONFIG_STACK_GROWSUP
653 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
654 #else
655 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
656 #endif
657 ret = expand_stack(vma, stack_base);
658 if (ret)
659 ret = -EFAULT;
661 out_unlock:
662 up_write(&mm->mmap_sem);
663 return 0;
665 EXPORT_SYMBOL(setup_arg_pages);
667 #endif /* CONFIG_MMU */
669 struct file *open_exec(const char *name)
671 struct nameidata nd;
672 struct file *file;
673 int err;
675 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd,
676 FMODE_READ|FMODE_EXEC);
677 if (err)
678 goto out;
680 err = -EACCES;
681 if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
682 goto out_path_put;
684 if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
685 goto out_path_put;
687 err = vfs_permission(&nd, MAY_EXEC | MAY_OPEN);
688 if (err)
689 goto out_path_put;
690 err = ima_path_check(&nd.path, MAY_EXEC | MAY_OPEN);
691 if (err)
692 goto out_path_put;
694 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
695 if (IS_ERR(file))
696 return file;
698 err = deny_write_access(file);
699 if (err) {
700 fput(file);
701 goto out;
704 return file;
706 out_path_put:
707 release_open_intent(&nd);
708 path_put(&nd.path);
709 out:
710 return ERR_PTR(err);
712 EXPORT_SYMBOL(open_exec);
714 int kernel_read(struct file *file, unsigned long offset,
715 char *addr, unsigned long count)
717 mm_segment_t old_fs;
718 loff_t pos = offset;
719 int result;
721 old_fs = get_fs();
722 set_fs(get_ds());
723 /* The cast to a user pointer is valid due to the set_fs() */
724 result = vfs_read(file, (void __user *)addr, count, &pos);
725 set_fs(old_fs);
726 return result;
729 EXPORT_SYMBOL(kernel_read);
731 static int exec_mmap(struct mm_struct *mm)
733 struct task_struct *tsk;
734 struct mm_struct * old_mm, *active_mm;
736 /* Notify parent that we're no longer interested in the old VM */
737 tsk = current;
738 old_mm = current->mm;
739 mm_release(tsk, old_mm);
741 if (old_mm) {
743 * Make sure that if there is a core dump in progress
744 * for the old mm, we get out and die instead of going
745 * through with the exec. We must hold mmap_sem around
746 * checking core_state and changing tsk->mm.
748 down_read(&old_mm->mmap_sem);
749 if (unlikely(old_mm->core_state)) {
750 up_read(&old_mm->mmap_sem);
751 return -EINTR;
754 task_lock(tsk);
755 active_mm = tsk->active_mm;
756 tsk->mm = mm;
757 tsk->active_mm = mm;
758 activate_mm(active_mm, mm);
759 task_unlock(tsk);
760 arch_pick_mmap_layout(mm);
761 if (old_mm) {
762 up_read(&old_mm->mmap_sem);
763 BUG_ON(active_mm != old_mm);
764 mm_update_next_owner(old_mm);
765 mmput(old_mm);
766 return 0;
768 mmdrop(active_mm);
769 return 0;
773 * This function makes sure the current process has its own signal table,
774 * so that flush_signal_handlers can later reset the handlers without
775 * disturbing other processes. (Other processes might share the signal
776 * table via the CLONE_SIGHAND option to clone().)
778 static int de_thread(struct task_struct *tsk)
780 struct signal_struct *sig = tsk->signal;
781 struct sighand_struct *oldsighand = tsk->sighand;
782 spinlock_t *lock = &oldsighand->siglock;
783 int count;
785 if (thread_group_empty(tsk))
786 goto no_thread_group;
789 * Kill all other threads in the thread group.
791 spin_lock_irq(lock);
792 if (signal_group_exit(sig)) {
794 * Another group action in progress, just
795 * return so that the signal is processed.
797 spin_unlock_irq(lock);
798 return -EAGAIN;
800 sig->group_exit_task = tsk;
801 zap_other_threads(tsk);
803 /* Account for the thread group leader hanging around: */
804 count = thread_group_leader(tsk) ? 1 : 2;
805 sig->notify_count = count;
806 while (atomic_read(&sig->count) > count) {
807 __set_current_state(TASK_UNINTERRUPTIBLE);
808 spin_unlock_irq(lock);
809 schedule();
810 spin_lock_irq(lock);
812 spin_unlock_irq(lock);
815 * At this point all other threads have exited, all we have to
816 * do is to wait for the thread group leader to become inactive,
817 * and to assume its PID:
819 if (!thread_group_leader(tsk)) {
820 struct task_struct *leader = tsk->group_leader;
822 sig->notify_count = -1; /* for exit_notify() */
823 for (;;) {
824 write_lock_irq(&tasklist_lock);
825 if (likely(leader->exit_state))
826 break;
827 __set_current_state(TASK_UNINTERRUPTIBLE);
828 write_unlock_irq(&tasklist_lock);
829 schedule();
833 * The only record we have of the real-time age of a
834 * process, regardless of execs it's done, is start_time.
835 * All the past CPU time is accumulated in signal_struct
836 * from sister threads now dead. But in this non-leader
837 * exec, nothing survives from the original leader thread,
838 * whose birth marks the true age of this process now.
839 * When we take on its identity by switching to its PID, we
840 * also take its birthdate (always earlier than our own).
842 tsk->start_time = leader->start_time;
844 BUG_ON(!same_thread_group(leader, tsk));
845 BUG_ON(has_group_leader_pid(tsk));
847 * An exec() starts a new thread group with the
848 * TGID of the previous thread group. Rehash the
849 * two threads with a switched PID, and release
850 * the former thread group leader:
853 /* Become a process group leader with the old leader's pid.
854 * The old leader becomes a thread of the this thread group.
855 * Note: The old leader also uses this pid until release_task
856 * is called. Odd but simple and correct.
858 detach_pid(tsk, PIDTYPE_PID);
859 tsk->pid = leader->pid;
860 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
861 transfer_pid(leader, tsk, PIDTYPE_PGID);
862 transfer_pid(leader, tsk, PIDTYPE_SID);
863 list_replace_rcu(&leader->tasks, &tsk->tasks);
865 tsk->group_leader = tsk;
866 leader->group_leader = tsk;
868 tsk->exit_signal = SIGCHLD;
870 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
871 leader->exit_state = EXIT_DEAD;
872 write_unlock_irq(&tasklist_lock);
874 release_task(leader);
877 sig->group_exit_task = NULL;
878 sig->notify_count = 0;
880 no_thread_group:
881 exit_itimers(sig);
882 flush_itimer_signals();
884 if (atomic_read(&oldsighand->count) != 1) {
885 struct sighand_struct *newsighand;
887 * This ->sighand is shared with the CLONE_SIGHAND
888 * but not CLONE_THREAD task, switch to the new one.
890 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
891 if (!newsighand)
892 return -ENOMEM;
894 atomic_set(&newsighand->count, 1);
895 memcpy(newsighand->action, oldsighand->action,
896 sizeof(newsighand->action));
898 write_lock_irq(&tasklist_lock);
899 spin_lock(&oldsighand->siglock);
900 rcu_assign_pointer(tsk->sighand, newsighand);
901 spin_unlock(&oldsighand->siglock);
902 write_unlock_irq(&tasklist_lock);
904 __cleanup_sighand(oldsighand);
907 BUG_ON(!thread_group_leader(tsk));
908 return 0;
912 * These functions flushes out all traces of the currently running executable
913 * so that a new one can be started
915 static void flush_old_files(struct files_struct * files)
917 long j = -1;
918 struct fdtable *fdt;
920 spin_lock(&files->file_lock);
921 for (;;) {
922 unsigned long set, i;
924 j++;
925 i = j * __NFDBITS;
926 fdt = files_fdtable(files);
927 if (i >= fdt->max_fds)
928 break;
929 set = fdt->close_on_exec->fds_bits[j];
930 if (!set)
931 continue;
932 fdt->close_on_exec->fds_bits[j] = 0;
933 spin_unlock(&files->file_lock);
934 for ( ; set ; i++,set >>= 1) {
935 if (set & 1) {
936 sys_close(i);
939 spin_lock(&files->file_lock);
942 spin_unlock(&files->file_lock);
945 char *get_task_comm(char *buf, struct task_struct *tsk)
947 /* buf must be at least sizeof(tsk->comm) in size */
948 task_lock(tsk);
949 strncpy(buf, tsk->comm, sizeof(tsk->comm));
950 task_unlock(tsk);
951 return buf;
954 void set_task_comm(struct task_struct *tsk, char *buf)
956 task_lock(tsk);
957 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
958 task_unlock(tsk);
961 int flush_old_exec(struct linux_binprm * bprm)
963 char * name;
964 int i, ch, retval;
965 char tcomm[sizeof(current->comm)];
968 * Make sure we have a private signal table and that
969 * we are unassociated from the previous thread group.
971 retval = de_thread(current);
972 if (retval)
973 goto out;
975 set_mm_exe_file(bprm->mm, bprm->file);
978 * Release all of the old mmap stuff
980 retval = exec_mmap(bprm->mm);
981 if (retval)
982 goto out;
984 bprm->mm = NULL; /* We're using it now */
986 /* This is the point of no return */
987 current->sas_ss_sp = current->sas_ss_size = 0;
989 if (current_euid() == current_uid() && current_egid() == current_gid())
990 set_dumpable(current->mm, 1);
991 else
992 set_dumpable(current->mm, suid_dumpable);
994 name = bprm->filename;
996 /* Copies the binary name from after last slash */
997 for (i=0; (ch = *(name++)) != '\0';) {
998 if (ch == '/')
999 i = 0; /* overwrite what we wrote */
1000 else
1001 if (i < (sizeof(tcomm) - 1))
1002 tcomm[i++] = ch;
1004 tcomm[i] = '\0';
1005 set_task_comm(current, tcomm);
1007 current->flags &= ~PF_RANDOMIZE;
1008 flush_thread();
1010 /* Set the new mm task size. We have to do that late because it may
1011 * depend on TIF_32BIT which is only updated in flush_thread() on
1012 * some architectures like powerpc
1014 current->mm->task_size = TASK_SIZE;
1016 /* install the new credentials */
1017 if (bprm->cred->uid != current_euid() ||
1018 bprm->cred->gid != current_egid()) {
1019 current->pdeath_signal = 0;
1020 } else if (file_permission(bprm->file, MAY_READ) ||
1021 bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1022 set_dumpable(current->mm, suid_dumpable);
1025 current->personality &= ~bprm->per_clear;
1027 /* An exec changes our domain. We are no longer part of the thread
1028 group */
1030 current->self_exec_id++;
1032 flush_signal_handlers(current, 0);
1033 flush_old_files(current->files);
1035 return 0;
1037 out:
1038 return retval;
1041 EXPORT_SYMBOL(flush_old_exec);
1044 * install the new credentials for this executable
1046 void install_exec_creds(struct linux_binprm *bprm)
1048 security_bprm_committing_creds(bprm);
1050 commit_creds(bprm->cred);
1051 bprm->cred = NULL;
1053 /* cred_exec_mutex must be held at least to this point to prevent
1054 * ptrace_attach() from altering our determination of the task's
1055 * credentials; any time after this it may be unlocked */
1057 security_bprm_committed_creds(bprm);
1059 EXPORT_SYMBOL(install_exec_creds);
1062 * determine how safe it is to execute the proposed program
1063 * - the caller must hold current->cred_exec_mutex to protect against
1064 * PTRACE_ATTACH
1066 void check_unsafe_exec(struct linux_binprm *bprm)
1068 struct task_struct *p = current;
1070 bprm->unsafe = tracehook_unsafe_exec(p);
1072 if (atomic_read(&p->fs->count) > 1 ||
1073 atomic_read(&p->files->count) > 1 ||
1074 atomic_read(&p->sighand->count) > 1)
1075 bprm->unsafe |= LSM_UNSAFE_SHARE;
1079 * Fill the binprm structure from the inode.
1080 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1082 * This may be called multiple times for binary chains (scripts for example).
1084 int prepare_binprm(struct linux_binprm *bprm)
1086 umode_t mode;
1087 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1088 int retval;
1090 mode = inode->i_mode;
1091 if (bprm->file->f_op == NULL)
1092 return -EACCES;
1094 /* clear any previous set[ug]id data from a previous binary */
1095 bprm->cred->euid = current_euid();
1096 bprm->cred->egid = current_egid();
1098 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1099 /* Set-uid? */
1100 if (mode & S_ISUID) {
1101 bprm->per_clear |= PER_CLEAR_ON_SETID;
1102 bprm->cred->euid = inode->i_uid;
1105 /* Set-gid? */
1107 * If setgid is set but no group execute bit then this
1108 * is a candidate for mandatory locking, not a setgid
1109 * executable.
1111 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1112 bprm->per_clear |= PER_CLEAR_ON_SETID;
1113 bprm->cred->egid = inode->i_gid;
1117 /* fill in binprm security blob */
1118 retval = security_bprm_set_creds(bprm);
1119 if (retval)
1120 return retval;
1121 bprm->cred_prepared = 1;
1123 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1124 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1127 EXPORT_SYMBOL(prepare_binprm);
1130 * Arguments are '\0' separated strings found at the location bprm->p
1131 * points to; chop off the first by relocating brpm->p to right after
1132 * the first '\0' encountered.
1134 int remove_arg_zero(struct linux_binprm *bprm)
1136 int ret = 0;
1137 unsigned long offset;
1138 char *kaddr;
1139 struct page *page;
1141 if (!bprm->argc)
1142 return 0;
1144 do {
1145 offset = bprm->p & ~PAGE_MASK;
1146 page = get_arg_page(bprm, bprm->p, 0);
1147 if (!page) {
1148 ret = -EFAULT;
1149 goto out;
1151 kaddr = kmap_atomic(page, KM_USER0);
1153 for (; offset < PAGE_SIZE && kaddr[offset];
1154 offset++, bprm->p++)
1157 kunmap_atomic(kaddr, KM_USER0);
1158 put_arg_page(page);
1160 if (offset == PAGE_SIZE)
1161 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1162 } while (offset == PAGE_SIZE);
1164 bprm->p++;
1165 bprm->argc--;
1166 ret = 0;
1168 out:
1169 return ret;
1171 EXPORT_SYMBOL(remove_arg_zero);
1174 * cycle the list of binary formats handler, until one recognizes the image
1176 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1178 unsigned int depth = bprm->recursion_depth;
1179 int try,retval;
1180 struct linux_binfmt *fmt;
1181 #ifdef __alpha__
1182 /* handle /sbin/loader.. */
1184 struct exec * eh = (struct exec *) bprm->buf;
1186 if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1187 (eh->fh.f_flags & 0x3000) == 0x3000)
1189 struct file * file;
1190 unsigned long loader;
1192 allow_write_access(bprm->file);
1193 fput(bprm->file);
1194 bprm->file = NULL;
1196 loader = bprm->vma->vm_end - sizeof(void *);
1198 file = open_exec("/sbin/loader");
1199 retval = PTR_ERR(file);
1200 if (IS_ERR(file))
1201 return retval;
1203 /* Remember if the application is TASO. */
1204 bprm->taso = eh->ah.entry < 0x100000000UL;
1206 bprm->file = file;
1207 bprm->loader = loader;
1208 retval = prepare_binprm(bprm);
1209 if (retval<0)
1210 return retval;
1211 /* should call search_binary_handler recursively here,
1212 but it does not matter */
1215 #endif
1216 retval = security_bprm_check(bprm);
1217 if (retval)
1218 return retval;
1219 retval = ima_bprm_check(bprm);
1220 if (retval)
1221 return retval;
1223 /* kernel module loader fixup */
1224 /* so we don't try to load run modprobe in kernel space. */
1225 set_fs(USER_DS);
1227 retval = audit_bprm(bprm);
1228 if (retval)
1229 return retval;
1231 retval = -ENOENT;
1232 for (try=0; try<2; try++) {
1233 read_lock(&binfmt_lock);
1234 list_for_each_entry(fmt, &formats, lh) {
1235 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1236 if (!fn)
1237 continue;
1238 if (!try_module_get(fmt->module))
1239 continue;
1240 read_unlock(&binfmt_lock);
1241 retval = fn(bprm, regs);
1243 * Restore the depth counter to its starting value
1244 * in this call, so we don't have to rely on every
1245 * load_binary function to restore it on return.
1247 bprm->recursion_depth = depth;
1248 if (retval >= 0) {
1249 if (depth == 0)
1250 tracehook_report_exec(fmt, bprm, regs);
1251 put_binfmt(fmt);
1252 allow_write_access(bprm->file);
1253 if (bprm->file)
1254 fput(bprm->file);
1255 bprm->file = NULL;
1256 current->did_exec = 1;
1257 proc_exec_connector(current);
1258 return retval;
1260 read_lock(&binfmt_lock);
1261 put_binfmt(fmt);
1262 if (retval != -ENOEXEC || bprm->mm == NULL)
1263 break;
1264 if (!bprm->file) {
1265 read_unlock(&binfmt_lock);
1266 return retval;
1269 read_unlock(&binfmt_lock);
1270 if (retval != -ENOEXEC || bprm->mm == NULL) {
1271 break;
1272 #ifdef CONFIG_MODULES
1273 } else {
1274 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1275 if (printable(bprm->buf[0]) &&
1276 printable(bprm->buf[1]) &&
1277 printable(bprm->buf[2]) &&
1278 printable(bprm->buf[3]))
1279 break; /* -ENOEXEC */
1280 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1281 #endif
1284 return retval;
1287 EXPORT_SYMBOL(search_binary_handler);
1289 void free_bprm(struct linux_binprm *bprm)
1291 free_arg_pages(bprm);
1292 if (bprm->cred)
1293 abort_creds(bprm->cred);
1294 kfree(bprm);
1298 * sys_execve() executes a new program.
1300 int do_execve(char * filename,
1301 char __user *__user *argv,
1302 char __user *__user *envp,
1303 struct pt_regs * regs)
1305 struct linux_binprm *bprm;
1306 struct file *file;
1307 struct files_struct *displaced;
1308 int retval;
1310 retval = unshare_files(&displaced);
1311 if (retval)
1312 goto out_ret;
1314 retval = -ENOMEM;
1315 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1316 if (!bprm)
1317 goto out_files;
1319 retval = mutex_lock_interruptible(&current->cred_exec_mutex);
1320 if (retval < 0)
1321 goto out_free;
1323 retval = -ENOMEM;
1324 bprm->cred = prepare_exec_creds();
1325 if (!bprm->cred)
1326 goto out_unlock;
1327 check_unsafe_exec(bprm);
1329 file = open_exec(filename);
1330 retval = PTR_ERR(file);
1331 if (IS_ERR(file))
1332 goto out_unlock;
1334 sched_exec();
1336 bprm->file = file;
1337 bprm->filename = filename;
1338 bprm->interp = filename;
1340 retval = bprm_mm_init(bprm);
1341 if (retval)
1342 goto out_file;
1344 bprm->argc = count(argv, MAX_ARG_STRINGS);
1345 if ((retval = bprm->argc) < 0)
1346 goto out;
1348 bprm->envc = count(envp, MAX_ARG_STRINGS);
1349 if ((retval = bprm->envc) < 0)
1350 goto out;
1352 retval = prepare_binprm(bprm);
1353 if (retval < 0)
1354 goto out;
1356 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1357 if (retval < 0)
1358 goto out;
1360 bprm->exec = bprm->p;
1361 retval = copy_strings(bprm->envc, envp, bprm);
1362 if (retval < 0)
1363 goto out;
1365 retval = copy_strings(bprm->argc, argv, bprm);
1366 if (retval < 0)
1367 goto out;
1369 current->flags &= ~PF_KTHREAD;
1370 retval = search_binary_handler(bprm,regs);
1371 if (retval < 0)
1372 goto out;
1374 /* execve succeeded */
1375 mutex_unlock(&current->cred_exec_mutex);
1376 acct_update_integrals(current);
1377 free_bprm(bprm);
1378 if (displaced)
1379 put_files_struct(displaced);
1380 return retval;
1382 out:
1383 if (bprm->mm)
1384 mmput (bprm->mm);
1386 out_file:
1387 if (bprm->file) {
1388 allow_write_access(bprm->file);
1389 fput(bprm->file);
1392 out_unlock:
1393 mutex_unlock(&current->cred_exec_mutex);
1395 out_free:
1396 free_bprm(bprm);
1398 out_files:
1399 if (displaced)
1400 reset_files_struct(displaced);
1401 out_ret:
1402 return retval;
1405 int set_binfmt(struct linux_binfmt *new)
1407 struct linux_binfmt *old = current->binfmt;
1409 if (new) {
1410 if (!try_module_get(new->module))
1411 return -1;
1413 current->binfmt = new;
1414 if (old)
1415 module_put(old->module);
1416 return 0;
1419 EXPORT_SYMBOL(set_binfmt);
1421 /* format_corename will inspect the pattern parameter, and output a
1422 * name into corename, which must have space for at least
1423 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1425 static int format_corename(char *corename, long signr)
1427 const struct cred *cred = current_cred();
1428 const char *pat_ptr = core_pattern;
1429 int ispipe = (*pat_ptr == '|');
1430 char *out_ptr = corename;
1431 char *const out_end = corename + CORENAME_MAX_SIZE;
1432 int rc;
1433 int pid_in_pattern = 0;
1435 /* Repeat as long as we have more pattern to process and more output
1436 space */
1437 while (*pat_ptr) {
1438 if (*pat_ptr != '%') {
1439 if (out_ptr == out_end)
1440 goto out;
1441 *out_ptr++ = *pat_ptr++;
1442 } else {
1443 switch (*++pat_ptr) {
1444 case 0:
1445 goto out;
1446 /* Double percent, output one percent */
1447 case '%':
1448 if (out_ptr == out_end)
1449 goto out;
1450 *out_ptr++ = '%';
1451 break;
1452 /* pid */
1453 case 'p':
1454 pid_in_pattern = 1;
1455 rc = snprintf(out_ptr, out_end - out_ptr,
1456 "%d", task_tgid_vnr(current));
1457 if (rc > out_end - out_ptr)
1458 goto out;
1459 out_ptr += rc;
1460 break;
1461 /* uid */
1462 case 'u':
1463 rc = snprintf(out_ptr, out_end - out_ptr,
1464 "%d", cred->uid);
1465 if (rc > out_end - out_ptr)
1466 goto out;
1467 out_ptr += rc;
1468 break;
1469 /* gid */
1470 case 'g':
1471 rc = snprintf(out_ptr, out_end - out_ptr,
1472 "%d", cred->gid);
1473 if (rc > out_end - out_ptr)
1474 goto out;
1475 out_ptr += rc;
1476 break;
1477 /* signal that caused the coredump */
1478 case 's':
1479 rc = snprintf(out_ptr, out_end - out_ptr,
1480 "%ld", signr);
1481 if (rc > out_end - out_ptr)
1482 goto out;
1483 out_ptr += rc;
1484 break;
1485 /* UNIX time of coredump */
1486 case 't': {
1487 struct timeval tv;
1488 do_gettimeofday(&tv);
1489 rc = snprintf(out_ptr, out_end - out_ptr,
1490 "%lu", tv.tv_sec);
1491 if (rc > out_end - out_ptr)
1492 goto out;
1493 out_ptr += rc;
1494 break;
1496 /* hostname */
1497 case 'h':
1498 down_read(&uts_sem);
1499 rc = snprintf(out_ptr, out_end - out_ptr,
1500 "%s", utsname()->nodename);
1501 up_read(&uts_sem);
1502 if (rc > out_end - out_ptr)
1503 goto out;
1504 out_ptr += rc;
1505 break;
1506 /* executable */
1507 case 'e':
1508 rc = snprintf(out_ptr, out_end - out_ptr,
1509 "%s", current->comm);
1510 if (rc > out_end - out_ptr)
1511 goto out;
1512 out_ptr += rc;
1513 break;
1514 /* core limit size */
1515 case 'c':
1516 rc = snprintf(out_ptr, out_end - out_ptr,
1517 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1518 if (rc > out_end - out_ptr)
1519 goto out;
1520 out_ptr += rc;
1521 break;
1522 default:
1523 break;
1525 ++pat_ptr;
1528 /* Backward compatibility with core_uses_pid:
1530 * If core_pattern does not include a %p (as is the default)
1531 * and core_uses_pid is set, then .%pid will be appended to
1532 * the filename. Do not do this for piped commands. */
1533 if (!ispipe && !pid_in_pattern && core_uses_pid) {
1534 rc = snprintf(out_ptr, out_end - out_ptr,
1535 ".%d", task_tgid_vnr(current));
1536 if (rc > out_end - out_ptr)
1537 goto out;
1538 out_ptr += rc;
1540 out:
1541 *out_ptr = 0;
1542 return ispipe;
1545 static int zap_process(struct task_struct *start)
1547 struct task_struct *t;
1548 int nr = 0;
1550 start->signal->flags = SIGNAL_GROUP_EXIT;
1551 start->signal->group_stop_count = 0;
1553 t = start;
1554 do {
1555 if (t != current && t->mm) {
1556 sigaddset(&t->pending.signal, SIGKILL);
1557 signal_wake_up(t, 1);
1558 nr++;
1560 } while_each_thread(start, t);
1562 return nr;
1565 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1566 struct core_state *core_state, int exit_code)
1568 struct task_struct *g, *p;
1569 unsigned long flags;
1570 int nr = -EAGAIN;
1572 spin_lock_irq(&tsk->sighand->siglock);
1573 if (!signal_group_exit(tsk->signal)) {
1574 mm->core_state = core_state;
1575 tsk->signal->group_exit_code = exit_code;
1576 nr = zap_process(tsk);
1578 spin_unlock_irq(&tsk->sighand->siglock);
1579 if (unlikely(nr < 0))
1580 return nr;
1582 if (atomic_read(&mm->mm_users) == nr + 1)
1583 goto done;
1585 * We should find and kill all tasks which use this mm, and we should
1586 * count them correctly into ->nr_threads. We don't take tasklist
1587 * lock, but this is safe wrt:
1589 * fork:
1590 * None of sub-threads can fork after zap_process(leader). All
1591 * processes which were created before this point should be
1592 * visible to zap_threads() because copy_process() adds the new
1593 * process to the tail of init_task.tasks list, and lock/unlock
1594 * of ->siglock provides a memory barrier.
1596 * do_exit:
1597 * The caller holds mm->mmap_sem. This means that the task which
1598 * uses this mm can't pass exit_mm(), so it can't exit or clear
1599 * its ->mm.
1601 * de_thread:
1602 * It does list_replace_rcu(&leader->tasks, &current->tasks),
1603 * we must see either old or new leader, this does not matter.
1604 * However, it can change p->sighand, so lock_task_sighand(p)
1605 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1606 * it can't fail.
1608 * Note also that "g" can be the old leader with ->mm == NULL
1609 * and already unhashed and thus removed from ->thread_group.
1610 * This is OK, __unhash_process()->list_del_rcu() does not
1611 * clear the ->next pointer, we will find the new leader via
1612 * next_thread().
1614 rcu_read_lock();
1615 for_each_process(g) {
1616 if (g == tsk->group_leader)
1617 continue;
1618 if (g->flags & PF_KTHREAD)
1619 continue;
1620 p = g;
1621 do {
1622 if (p->mm) {
1623 if (unlikely(p->mm == mm)) {
1624 lock_task_sighand(p, &flags);
1625 nr += zap_process(p);
1626 unlock_task_sighand(p, &flags);
1628 break;
1630 } while_each_thread(g, p);
1632 rcu_read_unlock();
1633 done:
1634 atomic_set(&core_state->nr_threads, nr);
1635 return nr;
1638 static int coredump_wait(int exit_code, struct core_state *core_state)
1640 struct task_struct *tsk = current;
1641 struct mm_struct *mm = tsk->mm;
1642 struct completion *vfork_done;
1643 int core_waiters;
1645 init_completion(&core_state->startup);
1646 core_state->dumper.task = tsk;
1647 core_state->dumper.next = NULL;
1648 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1649 up_write(&mm->mmap_sem);
1651 if (unlikely(core_waiters < 0))
1652 goto fail;
1655 * Make sure nobody is waiting for us to release the VM,
1656 * otherwise we can deadlock when we wait on each other
1658 vfork_done = tsk->vfork_done;
1659 if (vfork_done) {
1660 tsk->vfork_done = NULL;
1661 complete(vfork_done);
1664 if (core_waiters)
1665 wait_for_completion(&core_state->startup);
1666 fail:
1667 return core_waiters;
1670 static void coredump_finish(struct mm_struct *mm)
1672 struct core_thread *curr, *next;
1673 struct task_struct *task;
1675 next = mm->core_state->dumper.next;
1676 while ((curr = next) != NULL) {
1677 next = curr->next;
1678 task = curr->task;
1680 * see exit_mm(), curr->task must not see
1681 * ->task == NULL before we read ->next.
1683 smp_mb();
1684 curr->task = NULL;
1685 wake_up_process(task);
1688 mm->core_state = NULL;
1692 * set_dumpable converts traditional three-value dumpable to two flags and
1693 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1694 * these bits are not changed atomically. So get_dumpable can observe the
1695 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1696 * return either old dumpable or new one by paying attention to the order of
1697 * modifying the bits.
1699 * dumpable | mm->flags (binary)
1700 * old new | initial interim final
1701 * ---------+-----------------------
1702 * 0 1 | 00 01 01
1703 * 0 2 | 00 10(*) 11
1704 * 1 0 | 01 00 00
1705 * 1 2 | 01 11 11
1706 * 2 0 | 11 10(*) 00
1707 * 2 1 | 11 11 01
1709 * (*) get_dumpable regards interim value of 10 as 11.
1711 void set_dumpable(struct mm_struct *mm, int value)
1713 switch (value) {
1714 case 0:
1715 clear_bit(MMF_DUMPABLE, &mm->flags);
1716 smp_wmb();
1717 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1718 break;
1719 case 1:
1720 set_bit(MMF_DUMPABLE, &mm->flags);
1721 smp_wmb();
1722 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1723 break;
1724 case 2:
1725 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1726 smp_wmb();
1727 set_bit(MMF_DUMPABLE, &mm->flags);
1728 break;
1732 int get_dumpable(struct mm_struct *mm)
1734 int ret;
1736 ret = mm->flags & 0x3;
1737 return (ret >= 2) ? 2 : ret;
1740 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1742 struct core_state core_state;
1743 char corename[CORENAME_MAX_SIZE + 1];
1744 struct mm_struct *mm = current->mm;
1745 struct linux_binfmt * binfmt;
1746 struct inode * inode;
1747 struct file * file;
1748 const struct cred *old_cred;
1749 struct cred *cred;
1750 int retval = 0;
1751 int flag = 0;
1752 int ispipe = 0;
1753 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1754 char **helper_argv = NULL;
1755 int helper_argc = 0;
1756 char *delimit;
1758 audit_core_dumps(signr);
1760 binfmt = current->binfmt;
1761 if (!binfmt || !binfmt->core_dump)
1762 goto fail;
1764 cred = prepare_creds();
1765 if (!cred) {
1766 retval = -ENOMEM;
1767 goto fail;
1770 down_write(&mm->mmap_sem);
1772 * If another thread got here first, or we are not dumpable, bail out.
1774 if (mm->core_state || !get_dumpable(mm)) {
1775 up_write(&mm->mmap_sem);
1776 put_cred(cred);
1777 goto fail;
1781 * We cannot trust fsuid as being the "true" uid of the
1782 * process nor do we know its entire history. We only know it
1783 * was tainted so we dump it as root in mode 2.
1785 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */
1786 flag = O_EXCL; /* Stop rewrite attacks */
1787 cred->fsuid = 0; /* Dump root private */
1790 retval = coredump_wait(exit_code, &core_state);
1791 if (retval < 0) {
1792 put_cred(cred);
1793 goto fail;
1796 old_cred = override_creds(cred);
1799 * Clear any false indication of pending signals that might
1800 * be seen by the filesystem code called to write the core file.
1802 clear_thread_flag(TIF_SIGPENDING);
1805 * lock_kernel() because format_corename() is controlled by sysctl, which
1806 * uses lock_kernel()
1808 lock_kernel();
1809 ispipe = format_corename(corename, signr);
1810 unlock_kernel();
1812 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1813 * to a pipe. Since we're not writing directly to the filesystem
1814 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1815 * created unless the pipe reader choses to write out the core file
1816 * at which point file size limits and permissions will be imposed
1817 * as it does with any other process
1819 if ((!ispipe) && (core_limit < binfmt->min_coredump))
1820 goto fail_unlock;
1822 if (ispipe) {
1823 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1824 /* Terminate the string before the first option */
1825 delimit = strchr(corename, ' ');
1826 if (delimit)
1827 *delimit = '\0';
1828 delimit = strrchr(helper_argv[0], '/');
1829 if (delimit)
1830 delimit++;
1831 else
1832 delimit = helper_argv[0];
1833 if (!strcmp(delimit, current->comm)) {
1834 printk(KERN_NOTICE "Recursive core dump detected, "
1835 "aborting\n");
1836 goto fail_unlock;
1839 core_limit = RLIM_INFINITY;
1841 /* SIGPIPE can happen, but it's just never processed */
1842 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1843 &file)) {
1844 printk(KERN_INFO "Core dump to %s pipe failed\n",
1845 corename);
1846 goto fail_unlock;
1848 } else
1849 file = filp_open(corename,
1850 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1851 0600);
1852 if (IS_ERR(file))
1853 goto fail_unlock;
1854 inode = file->f_path.dentry->d_inode;
1855 if (inode->i_nlink > 1)
1856 goto close_fail; /* multiple links - don't dump */
1857 if (!ispipe && d_unhashed(file->f_path.dentry))
1858 goto close_fail;
1860 /* AK: actually i see no reason to not allow this for named pipes etc.,
1861 but keep the previous behaviour for now. */
1862 if (!ispipe && !S_ISREG(inode->i_mode))
1863 goto close_fail;
1865 * Dont allow local users get cute and trick others to coredump
1866 * into their pre-created files:
1868 if (inode->i_uid != current_fsuid())
1869 goto close_fail;
1870 if (!file->f_op)
1871 goto close_fail;
1872 if (!file->f_op->write)
1873 goto close_fail;
1874 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1875 goto close_fail;
1877 retval = binfmt->core_dump(signr, regs, file, core_limit);
1879 if (retval)
1880 current->signal->group_exit_code |= 0x80;
1881 close_fail:
1882 filp_close(file, NULL);
1883 fail_unlock:
1884 if (helper_argv)
1885 argv_free(helper_argv);
1887 revert_creds(old_cred);
1888 put_cred(cred);
1889 coredump_finish(mm);
1890 fail:
1891 return retval;