1 /* bnx2.c: Broadcom NX2 network driver.
3 * Copyright (c) 2004-2009 Broadcom Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
9 * Written by: Michael Chan (mchan@broadcom.com)
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
16 #include <linux/kernel.h>
17 #include <linux/timer.h>
18 #include <linux/errno.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/interrupt.h>
23 #include <linux/pci.h>
24 #include <linux/init.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/bitops.h>
32 #include <linux/delay.h>
33 #include <asm/byteorder.h>
35 #include <linux/time.h>
36 #include <linux/ethtool.h>
37 #include <linux/mii.h>
38 #include <linux/if_vlan.h>
39 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
44 #include <net/checksum.h>
45 #include <linux/workqueue.h>
46 #include <linux/crc32.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/zlib.h>
50 #include <linux/log2.h>
56 #define FW_BUF_SIZE 0x10000
58 #define DRV_MODULE_NAME "bnx2"
59 #define PFX DRV_MODULE_NAME ": "
60 #define DRV_MODULE_VERSION "1.9.3"
61 #define DRV_MODULE_RELDATE "March 17, 2009"
63 #define RUN_AT(x) (jiffies + (x))
65 /* Time in jiffies before concluding the transmitter is hung. */
66 #define TX_TIMEOUT (5*HZ)
68 static char version
[] __devinitdata
=
69 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME
" v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
71 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
72 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
73 MODULE_LICENSE("GPL");
74 MODULE_VERSION(DRV_MODULE_VERSION
);
76 static int disable_msi
= 0;
78 module_param(disable_msi
, int, 0);
79 MODULE_PARM_DESC(disable_msi
, "Disable Message Signaled Interrupt (MSI)");
95 /* indexed by board_t, above */
98 } board_info
[] __devinitdata
= {
99 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
100 { "HP NC370T Multifunction Gigabit Server Adapter" },
101 { "HP NC370i Multifunction Gigabit Server Adapter" },
102 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
103 { "HP NC370F Multifunction Gigabit Server Adapter" },
104 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
105 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
106 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
107 { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
108 { "Broadcom NetXtreme II BCM5716 1000Base-T" },
109 { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
112 static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl
) = {
113 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
114 PCI_VENDOR_ID_HP
, 0x3101, 0, 0, NC370T
},
115 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
116 PCI_VENDOR_ID_HP
, 0x3106, 0, 0, NC370I
},
117 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
118 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706
},
119 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708
,
120 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708
},
121 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
122 PCI_VENDOR_ID_HP
, 0x3102, 0, 0, NC370F
},
123 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
124 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706S
},
125 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708S
,
126 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708S
},
127 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709
,
128 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709
},
129 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709S
,
130 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709S
},
131 { PCI_VENDOR_ID_BROADCOM
, 0x163b,
132 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5716
},
133 { PCI_VENDOR_ID_BROADCOM
, 0x163c,
134 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5716S
},
138 static struct flash_spec flash_table
[] =
140 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
141 #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
143 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
144 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
145 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
147 /* Expansion entry 0001 */
148 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
149 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
150 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
152 /* Saifun SA25F010 (non-buffered flash) */
153 /* strap, cfg1, & write1 need updates */
154 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
155 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
156 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*2,
157 "Non-buffered flash (128kB)"},
158 /* Saifun SA25F020 (non-buffered flash) */
159 /* strap, cfg1, & write1 need updates */
160 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
161 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
162 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*4,
163 "Non-buffered flash (256kB)"},
164 /* Expansion entry 0100 */
165 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
166 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
167 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
169 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
170 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
171 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
172 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*2,
173 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
174 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
175 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
176 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
177 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*4,
178 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
179 /* Saifun SA25F005 (non-buffered flash) */
180 /* strap, cfg1, & write1 need updates */
181 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
182 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
183 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
,
184 "Non-buffered flash (64kB)"},
186 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
187 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
188 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
190 /* Expansion entry 1001 */
191 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
192 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
193 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
195 /* Expansion entry 1010 */
196 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
197 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
198 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
200 /* ATMEL AT45DB011B (buffered flash) */
201 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
202 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
203 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
,
204 "Buffered flash (128kB)"},
205 /* Expansion entry 1100 */
206 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
207 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
208 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
210 /* Expansion entry 1101 */
211 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
212 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
213 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
215 /* Ateml Expansion entry 1110 */
216 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
217 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
218 BUFFERED_FLASH_BYTE_ADDR_MASK
, 0,
219 "Entry 1110 (Atmel)"},
220 /* ATMEL AT45DB021B (buffered flash) */
221 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
222 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
223 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
*2,
224 "Buffered flash (256kB)"},
227 static struct flash_spec flash_5709
= {
228 .flags
= BNX2_NV_BUFFERED
,
229 .page_bits
= BCM5709_FLASH_PAGE_BITS
,
230 .page_size
= BCM5709_FLASH_PAGE_SIZE
,
231 .addr_mask
= BCM5709_FLASH_BYTE_ADDR_MASK
,
232 .total_size
= BUFFERED_FLASH_TOTAL_SIZE
*2,
233 .name
= "5709 Buffered flash (256kB)",
236 MODULE_DEVICE_TABLE(pci
, bnx2_pci_tbl
);
238 static inline u32
bnx2_tx_avail(struct bnx2
*bp
, struct bnx2_tx_ring_info
*txr
)
244 /* The ring uses 256 indices for 255 entries, one of them
245 * needs to be skipped.
247 diff
= txr
->tx_prod
- txr
->tx_cons
;
248 if (unlikely(diff
>= TX_DESC_CNT
)) {
250 if (diff
== TX_DESC_CNT
)
251 diff
= MAX_TX_DESC_CNT
;
253 return (bp
->tx_ring_size
- diff
);
257 bnx2_reg_rd_ind(struct bnx2
*bp
, u32 offset
)
261 spin_lock_bh(&bp
->indirect_lock
);
262 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
263 val
= REG_RD(bp
, BNX2_PCICFG_REG_WINDOW
);
264 spin_unlock_bh(&bp
->indirect_lock
);
269 bnx2_reg_wr_ind(struct bnx2
*bp
, u32 offset
, u32 val
)
271 spin_lock_bh(&bp
->indirect_lock
);
272 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
273 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW
, val
);
274 spin_unlock_bh(&bp
->indirect_lock
);
278 bnx2_shmem_wr(struct bnx2
*bp
, u32 offset
, u32 val
)
280 bnx2_reg_wr_ind(bp
, bp
->shmem_base
+ offset
, val
);
284 bnx2_shmem_rd(struct bnx2
*bp
, u32 offset
)
286 return (bnx2_reg_rd_ind(bp
, bp
->shmem_base
+ offset
));
290 bnx2_ctx_wr(struct bnx2
*bp
, u32 cid_addr
, u32 offset
, u32 val
)
293 spin_lock_bh(&bp
->indirect_lock
);
294 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
297 REG_WR(bp
, BNX2_CTX_CTX_DATA
, val
);
298 REG_WR(bp
, BNX2_CTX_CTX_CTRL
,
299 offset
| BNX2_CTX_CTX_CTRL_WRITE_REQ
);
300 for (i
= 0; i
< 5; i
++) {
301 val
= REG_RD(bp
, BNX2_CTX_CTX_CTRL
);
302 if ((val
& BNX2_CTX_CTX_CTRL_WRITE_REQ
) == 0)
307 REG_WR(bp
, BNX2_CTX_DATA_ADR
, offset
);
308 REG_WR(bp
, BNX2_CTX_DATA
, val
);
310 spin_unlock_bh(&bp
->indirect_lock
);
314 bnx2_read_phy(struct bnx2
*bp
, u32 reg
, u32
*val
)
319 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
320 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
321 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
323 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
324 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
329 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) |
330 BNX2_EMAC_MDIO_COMM_COMMAND_READ
| BNX2_EMAC_MDIO_COMM_DISEXT
|
331 BNX2_EMAC_MDIO_COMM_START_BUSY
;
332 REG_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
334 for (i
= 0; i
< 50; i
++) {
337 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
338 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
341 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
342 val1
&= BNX2_EMAC_MDIO_COMM_DATA
;
348 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
) {
357 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
358 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
359 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
361 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
362 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
371 bnx2_write_phy(struct bnx2
*bp
, u32 reg
, u32 val
)
376 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
377 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
378 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
380 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
381 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
386 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) | val
|
387 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE
|
388 BNX2_EMAC_MDIO_COMM_START_BUSY
| BNX2_EMAC_MDIO_COMM_DISEXT
;
389 REG_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
391 for (i
= 0; i
< 50; i
++) {
394 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
395 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
401 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)
406 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
407 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
408 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
410 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
411 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
420 bnx2_disable_int(struct bnx2
*bp
)
423 struct bnx2_napi
*bnapi
;
425 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
426 bnapi
= &bp
->bnx2_napi
[i
];
427 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
428 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
430 REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
434 bnx2_enable_int(struct bnx2
*bp
)
437 struct bnx2_napi
*bnapi
;
439 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
440 bnapi
= &bp
->bnx2_napi
[i
];
442 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
443 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
444 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
445 bnapi
->last_status_idx
);
447 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
448 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
449 bnapi
->last_status_idx
);
451 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
455 bnx2_disable_int_sync(struct bnx2
*bp
)
459 atomic_inc(&bp
->intr_sem
);
460 bnx2_disable_int(bp
);
461 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
462 synchronize_irq(bp
->irq_tbl
[i
].vector
);
466 bnx2_napi_disable(struct bnx2
*bp
)
470 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
471 napi_disable(&bp
->bnx2_napi
[i
].napi
);
475 bnx2_napi_enable(struct bnx2
*bp
)
479 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
480 napi_enable(&bp
->bnx2_napi
[i
].napi
);
484 bnx2_netif_stop(struct bnx2
*bp
)
486 bnx2_disable_int_sync(bp
);
487 if (netif_running(bp
->dev
)) {
488 bnx2_napi_disable(bp
);
489 netif_tx_disable(bp
->dev
);
490 bp
->dev
->trans_start
= jiffies
; /* prevent tx timeout */
495 bnx2_netif_start(struct bnx2
*bp
)
497 if (atomic_dec_and_test(&bp
->intr_sem
)) {
498 if (netif_running(bp
->dev
)) {
499 netif_tx_wake_all_queues(bp
->dev
);
500 bnx2_napi_enable(bp
);
507 bnx2_free_tx_mem(struct bnx2
*bp
)
511 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
512 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
513 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
515 if (txr
->tx_desc_ring
) {
516 pci_free_consistent(bp
->pdev
, TXBD_RING_SIZE
,
518 txr
->tx_desc_mapping
);
519 txr
->tx_desc_ring
= NULL
;
521 kfree(txr
->tx_buf_ring
);
522 txr
->tx_buf_ring
= NULL
;
527 bnx2_free_rx_mem(struct bnx2
*bp
)
531 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
532 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
533 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
536 for (j
= 0; j
< bp
->rx_max_ring
; j
++) {
537 if (rxr
->rx_desc_ring
[j
])
538 pci_free_consistent(bp
->pdev
, RXBD_RING_SIZE
,
539 rxr
->rx_desc_ring
[j
],
540 rxr
->rx_desc_mapping
[j
]);
541 rxr
->rx_desc_ring
[j
] = NULL
;
543 if (rxr
->rx_buf_ring
)
544 vfree(rxr
->rx_buf_ring
);
545 rxr
->rx_buf_ring
= NULL
;
547 for (j
= 0; j
< bp
->rx_max_pg_ring
; j
++) {
548 if (rxr
->rx_pg_desc_ring
[j
])
549 pci_free_consistent(bp
->pdev
, RXBD_RING_SIZE
,
550 rxr
->rx_pg_desc_ring
[j
],
551 rxr
->rx_pg_desc_mapping
[j
]);
552 rxr
->rx_pg_desc_ring
[j
] = NULL
;
555 vfree(rxr
->rx_pg_ring
);
556 rxr
->rx_pg_ring
= NULL
;
561 bnx2_alloc_tx_mem(struct bnx2
*bp
)
565 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
566 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
567 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
569 txr
->tx_buf_ring
= kzalloc(SW_TXBD_RING_SIZE
, GFP_KERNEL
);
570 if (txr
->tx_buf_ring
== NULL
)
574 pci_alloc_consistent(bp
->pdev
, TXBD_RING_SIZE
,
575 &txr
->tx_desc_mapping
);
576 if (txr
->tx_desc_ring
== NULL
)
583 bnx2_alloc_rx_mem(struct bnx2
*bp
)
587 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
588 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
589 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
593 vmalloc(SW_RXBD_RING_SIZE
* bp
->rx_max_ring
);
594 if (rxr
->rx_buf_ring
== NULL
)
597 memset(rxr
->rx_buf_ring
, 0,
598 SW_RXBD_RING_SIZE
* bp
->rx_max_ring
);
600 for (j
= 0; j
< bp
->rx_max_ring
; j
++) {
601 rxr
->rx_desc_ring
[j
] =
602 pci_alloc_consistent(bp
->pdev
, RXBD_RING_SIZE
,
603 &rxr
->rx_desc_mapping
[j
]);
604 if (rxr
->rx_desc_ring
[j
] == NULL
)
609 if (bp
->rx_pg_ring_size
) {
610 rxr
->rx_pg_ring
= vmalloc(SW_RXPG_RING_SIZE
*
612 if (rxr
->rx_pg_ring
== NULL
)
615 memset(rxr
->rx_pg_ring
, 0, SW_RXPG_RING_SIZE
*
619 for (j
= 0; j
< bp
->rx_max_pg_ring
; j
++) {
620 rxr
->rx_pg_desc_ring
[j
] =
621 pci_alloc_consistent(bp
->pdev
, RXBD_RING_SIZE
,
622 &rxr
->rx_pg_desc_mapping
[j
]);
623 if (rxr
->rx_pg_desc_ring
[j
] == NULL
)
632 bnx2_free_mem(struct bnx2
*bp
)
635 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
637 bnx2_free_tx_mem(bp
);
638 bnx2_free_rx_mem(bp
);
640 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
641 if (bp
->ctx_blk
[i
]) {
642 pci_free_consistent(bp
->pdev
, BCM_PAGE_SIZE
,
644 bp
->ctx_blk_mapping
[i
]);
645 bp
->ctx_blk
[i
] = NULL
;
648 if (bnapi
->status_blk
.msi
) {
649 pci_free_consistent(bp
->pdev
, bp
->status_stats_size
,
650 bnapi
->status_blk
.msi
,
651 bp
->status_blk_mapping
);
652 bnapi
->status_blk
.msi
= NULL
;
653 bp
->stats_blk
= NULL
;
658 bnx2_alloc_mem(struct bnx2
*bp
)
660 int i
, status_blk_size
, err
;
661 struct bnx2_napi
*bnapi
;
664 /* Combine status and statistics blocks into one allocation. */
665 status_blk_size
= L1_CACHE_ALIGN(sizeof(struct status_block
));
666 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
)
667 status_blk_size
= L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC
*
668 BNX2_SBLK_MSIX_ALIGN_SIZE
);
669 bp
->status_stats_size
= status_blk_size
+
670 sizeof(struct statistics_block
);
672 status_blk
= pci_alloc_consistent(bp
->pdev
, bp
->status_stats_size
,
673 &bp
->status_blk_mapping
);
674 if (status_blk
== NULL
)
677 memset(status_blk
, 0, bp
->status_stats_size
);
679 bnapi
= &bp
->bnx2_napi
[0];
680 bnapi
->status_blk
.msi
= status_blk
;
681 bnapi
->hw_tx_cons_ptr
=
682 &bnapi
->status_blk
.msi
->status_tx_quick_consumer_index0
;
683 bnapi
->hw_rx_cons_ptr
=
684 &bnapi
->status_blk
.msi
->status_rx_quick_consumer_index0
;
685 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
) {
686 for (i
= 1; i
< BNX2_MAX_MSIX_VEC
; i
++) {
687 struct status_block_msix
*sblk
;
689 bnapi
= &bp
->bnx2_napi
[i
];
691 sblk
= (void *) (status_blk
+
692 BNX2_SBLK_MSIX_ALIGN_SIZE
* i
);
693 bnapi
->status_blk
.msix
= sblk
;
694 bnapi
->hw_tx_cons_ptr
=
695 &sblk
->status_tx_quick_consumer_index
;
696 bnapi
->hw_rx_cons_ptr
=
697 &sblk
->status_rx_quick_consumer_index
;
698 bnapi
->int_num
= i
<< 24;
702 bp
->stats_blk
= status_blk
+ status_blk_size
;
704 bp
->stats_blk_mapping
= bp
->status_blk_mapping
+ status_blk_size
;
706 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
707 bp
->ctx_pages
= 0x2000 / BCM_PAGE_SIZE
;
708 if (bp
->ctx_pages
== 0)
710 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
711 bp
->ctx_blk
[i
] = pci_alloc_consistent(bp
->pdev
,
713 &bp
->ctx_blk_mapping
[i
]);
714 if (bp
->ctx_blk
[i
] == NULL
)
719 err
= bnx2_alloc_rx_mem(bp
);
723 err
= bnx2_alloc_tx_mem(bp
);
735 bnx2_report_fw_link(struct bnx2
*bp
)
737 u32 fw_link_status
= 0;
739 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
745 switch (bp
->line_speed
) {
747 if (bp
->duplex
== DUPLEX_HALF
)
748 fw_link_status
= BNX2_LINK_STATUS_10HALF
;
750 fw_link_status
= BNX2_LINK_STATUS_10FULL
;
753 if (bp
->duplex
== DUPLEX_HALF
)
754 fw_link_status
= BNX2_LINK_STATUS_100HALF
;
756 fw_link_status
= BNX2_LINK_STATUS_100FULL
;
759 if (bp
->duplex
== DUPLEX_HALF
)
760 fw_link_status
= BNX2_LINK_STATUS_1000HALF
;
762 fw_link_status
= BNX2_LINK_STATUS_1000FULL
;
765 if (bp
->duplex
== DUPLEX_HALF
)
766 fw_link_status
= BNX2_LINK_STATUS_2500HALF
;
768 fw_link_status
= BNX2_LINK_STATUS_2500FULL
;
772 fw_link_status
|= BNX2_LINK_STATUS_LINK_UP
;
775 fw_link_status
|= BNX2_LINK_STATUS_AN_ENABLED
;
777 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
778 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
780 if (!(bmsr
& BMSR_ANEGCOMPLETE
) ||
781 bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)
782 fw_link_status
|= BNX2_LINK_STATUS_PARALLEL_DET
;
784 fw_link_status
|= BNX2_LINK_STATUS_AN_COMPLETE
;
788 fw_link_status
= BNX2_LINK_STATUS_LINK_DOWN
;
790 bnx2_shmem_wr(bp
, BNX2_LINK_STATUS
, fw_link_status
);
794 bnx2_xceiver_str(struct bnx2
*bp
)
796 return ((bp
->phy_port
== PORT_FIBRE
) ? "SerDes" :
797 ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) ? "Remote Copper" :
802 bnx2_report_link(struct bnx2
*bp
)
805 netif_carrier_on(bp
->dev
);
806 printk(KERN_INFO PFX
"%s NIC %s Link is Up, ", bp
->dev
->name
,
807 bnx2_xceiver_str(bp
));
809 printk("%d Mbps ", bp
->line_speed
);
811 if (bp
->duplex
== DUPLEX_FULL
)
812 printk("full duplex");
814 printk("half duplex");
817 if (bp
->flow_ctrl
& FLOW_CTRL_RX
) {
818 printk(", receive ");
819 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
820 printk("& transmit ");
823 printk(", transmit ");
825 printk("flow control ON");
830 netif_carrier_off(bp
->dev
);
831 printk(KERN_ERR PFX
"%s NIC %s Link is Down\n", bp
->dev
->name
,
832 bnx2_xceiver_str(bp
));
835 bnx2_report_fw_link(bp
);
839 bnx2_resolve_flow_ctrl(struct bnx2
*bp
)
841 u32 local_adv
, remote_adv
;
844 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
845 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
847 if (bp
->duplex
== DUPLEX_FULL
) {
848 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
853 if (bp
->duplex
!= DUPLEX_FULL
) {
857 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
858 (CHIP_NUM(bp
) == CHIP_NUM_5708
)) {
861 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
862 if (val
& BCM5708S_1000X_STAT1_TX_PAUSE
)
863 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
864 if (val
& BCM5708S_1000X_STAT1_RX_PAUSE
)
865 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
869 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
870 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
872 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
873 u32 new_local_adv
= 0;
874 u32 new_remote_adv
= 0;
876 if (local_adv
& ADVERTISE_1000XPAUSE
)
877 new_local_adv
|= ADVERTISE_PAUSE_CAP
;
878 if (local_adv
& ADVERTISE_1000XPSE_ASYM
)
879 new_local_adv
|= ADVERTISE_PAUSE_ASYM
;
880 if (remote_adv
& ADVERTISE_1000XPAUSE
)
881 new_remote_adv
|= ADVERTISE_PAUSE_CAP
;
882 if (remote_adv
& ADVERTISE_1000XPSE_ASYM
)
883 new_remote_adv
|= ADVERTISE_PAUSE_ASYM
;
885 local_adv
= new_local_adv
;
886 remote_adv
= new_remote_adv
;
889 /* See Table 28B-3 of 802.3ab-1999 spec. */
890 if (local_adv
& ADVERTISE_PAUSE_CAP
) {
891 if(local_adv
& ADVERTISE_PAUSE_ASYM
) {
892 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
893 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
895 else if (remote_adv
& ADVERTISE_PAUSE_ASYM
) {
896 bp
->flow_ctrl
= FLOW_CTRL_RX
;
900 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
901 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
905 else if (local_adv
& ADVERTISE_PAUSE_ASYM
) {
906 if ((remote_adv
& ADVERTISE_PAUSE_CAP
) &&
907 (remote_adv
& ADVERTISE_PAUSE_ASYM
)) {
909 bp
->flow_ctrl
= FLOW_CTRL_TX
;
915 bnx2_5709s_linkup(struct bnx2
*bp
)
921 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_GP_STATUS
);
922 bnx2_read_phy(bp
, MII_BNX2_GP_TOP_AN_STATUS1
, &val
);
923 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
925 if ((bp
->autoneg
& AUTONEG_SPEED
) == 0) {
926 bp
->line_speed
= bp
->req_line_speed
;
927 bp
->duplex
= bp
->req_duplex
;
930 speed
= val
& MII_BNX2_GP_TOP_AN_SPEED_MSK
;
932 case MII_BNX2_GP_TOP_AN_SPEED_10
:
933 bp
->line_speed
= SPEED_10
;
935 case MII_BNX2_GP_TOP_AN_SPEED_100
:
936 bp
->line_speed
= SPEED_100
;
938 case MII_BNX2_GP_TOP_AN_SPEED_1G
:
939 case MII_BNX2_GP_TOP_AN_SPEED_1GKV
:
940 bp
->line_speed
= SPEED_1000
;
942 case MII_BNX2_GP_TOP_AN_SPEED_2_5G
:
943 bp
->line_speed
= SPEED_2500
;
946 if (val
& MII_BNX2_GP_TOP_AN_FD
)
947 bp
->duplex
= DUPLEX_FULL
;
949 bp
->duplex
= DUPLEX_HALF
;
954 bnx2_5708s_linkup(struct bnx2
*bp
)
959 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
960 switch (val
& BCM5708S_1000X_STAT1_SPEED_MASK
) {
961 case BCM5708S_1000X_STAT1_SPEED_10
:
962 bp
->line_speed
= SPEED_10
;
964 case BCM5708S_1000X_STAT1_SPEED_100
:
965 bp
->line_speed
= SPEED_100
;
967 case BCM5708S_1000X_STAT1_SPEED_1G
:
968 bp
->line_speed
= SPEED_1000
;
970 case BCM5708S_1000X_STAT1_SPEED_2G5
:
971 bp
->line_speed
= SPEED_2500
;
974 if (val
& BCM5708S_1000X_STAT1_FD
)
975 bp
->duplex
= DUPLEX_FULL
;
977 bp
->duplex
= DUPLEX_HALF
;
983 bnx2_5706s_linkup(struct bnx2
*bp
)
985 u32 bmcr
, local_adv
, remote_adv
, common
;
988 bp
->line_speed
= SPEED_1000
;
990 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
991 if (bmcr
& BMCR_FULLDPLX
) {
992 bp
->duplex
= DUPLEX_FULL
;
995 bp
->duplex
= DUPLEX_HALF
;
998 if (!(bmcr
& BMCR_ANENABLE
)) {
1002 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1003 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1005 common
= local_adv
& remote_adv
;
1006 if (common
& (ADVERTISE_1000XHALF
| ADVERTISE_1000XFULL
)) {
1008 if (common
& ADVERTISE_1000XFULL
) {
1009 bp
->duplex
= DUPLEX_FULL
;
1012 bp
->duplex
= DUPLEX_HALF
;
1020 bnx2_copper_linkup(struct bnx2
*bp
)
1024 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1025 if (bmcr
& BMCR_ANENABLE
) {
1026 u32 local_adv
, remote_adv
, common
;
1028 bnx2_read_phy(bp
, MII_CTRL1000
, &local_adv
);
1029 bnx2_read_phy(bp
, MII_STAT1000
, &remote_adv
);
1031 common
= local_adv
& (remote_adv
>> 2);
1032 if (common
& ADVERTISE_1000FULL
) {
1033 bp
->line_speed
= SPEED_1000
;
1034 bp
->duplex
= DUPLEX_FULL
;
1036 else if (common
& ADVERTISE_1000HALF
) {
1037 bp
->line_speed
= SPEED_1000
;
1038 bp
->duplex
= DUPLEX_HALF
;
1041 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1042 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1044 common
= local_adv
& remote_adv
;
1045 if (common
& ADVERTISE_100FULL
) {
1046 bp
->line_speed
= SPEED_100
;
1047 bp
->duplex
= DUPLEX_FULL
;
1049 else if (common
& ADVERTISE_100HALF
) {
1050 bp
->line_speed
= SPEED_100
;
1051 bp
->duplex
= DUPLEX_HALF
;
1053 else if (common
& ADVERTISE_10FULL
) {
1054 bp
->line_speed
= SPEED_10
;
1055 bp
->duplex
= DUPLEX_FULL
;
1057 else if (common
& ADVERTISE_10HALF
) {
1058 bp
->line_speed
= SPEED_10
;
1059 bp
->duplex
= DUPLEX_HALF
;
1068 if (bmcr
& BMCR_SPEED100
) {
1069 bp
->line_speed
= SPEED_100
;
1072 bp
->line_speed
= SPEED_10
;
1074 if (bmcr
& BMCR_FULLDPLX
) {
1075 bp
->duplex
= DUPLEX_FULL
;
1078 bp
->duplex
= DUPLEX_HALF
;
1086 bnx2_init_rx_context(struct bnx2
*bp
, u32 cid
)
1088 u32 val
, rx_cid_addr
= GET_CID_ADDR(cid
);
1090 val
= BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE
;
1091 val
|= BNX2_L2CTX_CTX_TYPE_SIZE_L2
;
1094 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1095 u32 lo_water
, hi_water
;
1097 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1098 lo_water
= BNX2_L2CTX_LO_WATER_MARK_DEFAULT
;
1100 lo_water
= BNX2_L2CTX_LO_WATER_MARK_DIS
;
1101 if (lo_water
>= bp
->rx_ring_size
)
1104 hi_water
= bp
->rx_ring_size
/ 4;
1106 if (hi_water
<= lo_water
)
1109 hi_water
/= BNX2_L2CTX_HI_WATER_MARK_SCALE
;
1110 lo_water
/= BNX2_L2CTX_LO_WATER_MARK_SCALE
;
1114 else if (hi_water
== 0)
1116 val
|= lo_water
| (hi_water
<< BNX2_L2CTX_HI_WATER_MARK_SHIFT
);
1118 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_CTX_TYPE
, val
);
1122 bnx2_init_all_rx_contexts(struct bnx2
*bp
)
1127 for (i
= 0, cid
= RX_CID
; i
< bp
->num_rx_rings
; i
++, cid
++) {
1130 bnx2_init_rx_context(bp
, cid
);
1135 bnx2_set_mac_link(struct bnx2
*bp
)
1139 REG_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x2620);
1140 if (bp
->link_up
&& (bp
->line_speed
== SPEED_1000
) &&
1141 (bp
->duplex
== DUPLEX_HALF
)) {
1142 REG_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x26ff);
1145 /* Configure the EMAC mode register. */
1146 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
1148 val
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
1149 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
1150 BNX2_EMAC_MODE_25G_MODE
);
1153 switch (bp
->line_speed
) {
1155 if (CHIP_NUM(bp
) != CHIP_NUM_5706
) {
1156 val
|= BNX2_EMAC_MODE_PORT_MII_10M
;
1161 val
|= BNX2_EMAC_MODE_PORT_MII
;
1164 val
|= BNX2_EMAC_MODE_25G_MODE
;
1167 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1172 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1175 /* Set the MAC to operate in the appropriate duplex mode. */
1176 if (bp
->duplex
== DUPLEX_HALF
)
1177 val
|= BNX2_EMAC_MODE_HALF_DUPLEX
;
1178 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
1180 /* Enable/disable rx PAUSE. */
1181 bp
->rx_mode
&= ~BNX2_EMAC_RX_MODE_FLOW_EN
;
1183 if (bp
->flow_ctrl
& FLOW_CTRL_RX
)
1184 bp
->rx_mode
|= BNX2_EMAC_RX_MODE_FLOW_EN
;
1185 REG_WR(bp
, BNX2_EMAC_RX_MODE
, bp
->rx_mode
);
1187 /* Enable/disable tx PAUSE. */
1188 val
= REG_RD(bp
, BNX2_EMAC_TX_MODE
);
1189 val
&= ~BNX2_EMAC_TX_MODE_FLOW_EN
;
1191 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1192 val
|= BNX2_EMAC_TX_MODE_FLOW_EN
;
1193 REG_WR(bp
, BNX2_EMAC_TX_MODE
, val
);
1195 /* Acknowledge the interrupt. */
1196 REG_WR(bp
, BNX2_EMAC_STATUS
, BNX2_EMAC_STATUS_LINK_CHANGE
);
1198 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1199 bnx2_init_all_rx_contexts(bp
);
1203 bnx2_enable_bmsr1(struct bnx2
*bp
)
1205 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1206 (CHIP_NUM(bp
) == CHIP_NUM_5709
))
1207 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1208 MII_BNX2_BLK_ADDR_GP_STATUS
);
1212 bnx2_disable_bmsr1(struct bnx2
*bp
)
1214 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1215 (CHIP_NUM(bp
) == CHIP_NUM_5709
))
1216 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1217 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1221 bnx2_test_and_enable_2g5(struct bnx2
*bp
)
1226 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1229 if (bp
->autoneg
& AUTONEG_SPEED
)
1230 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1232 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1233 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1235 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1236 if (!(up1
& BCM5708S_UP1_2G5
)) {
1237 up1
|= BCM5708S_UP1_2G5
;
1238 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1242 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1243 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1244 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1250 bnx2_test_and_disable_2g5(struct bnx2
*bp
)
1255 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1258 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1259 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1261 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1262 if (up1
& BCM5708S_UP1_2G5
) {
1263 up1
&= ~BCM5708S_UP1_2G5
;
1264 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1268 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1269 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1270 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1276 bnx2_enable_forced_2g5(struct bnx2
*bp
)
1280 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1283 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1286 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1287 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1288 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
);
1289 val
&= ~MII_BNX2_SD_MISC1_FORCE_MSK
;
1290 val
|= MII_BNX2_SD_MISC1_FORCE
| MII_BNX2_SD_MISC1_FORCE_2_5G
;
1291 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1293 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1294 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1295 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1297 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1298 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1299 bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1302 if (bp
->autoneg
& AUTONEG_SPEED
) {
1303 bmcr
&= ~BMCR_ANENABLE
;
1304 if (bp
->req_duplex
== DUPLEX_FULL
)
1305 bmcr
|= BMCR_FULLDPLX
;
1307 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1311 bnx2_disable_forced_2g5(struct bnx2
*bp
)
1315 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1318 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1321 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1322 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1323 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
);
1324 val
&= ~MII_BNX2_SD_MISC1_FORCE
;
1325 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1327 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1328 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1329 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1331 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1332 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1333 bmcr
&= ~BCM5708S_BMCR_FORCE_2500
;
1336 if (bp
->autoneg
& AUTONEG_SPEED
)
1337 bmcr
|= BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_ANRESTART
;
1338 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1342 bnx2_5706s_force_link_dn(struct bnx2
*bp
, int start
)
1346 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_SERDES_CTL
);
1347 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
1349 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
& 0xff0f);
1351 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
| 0xc0);
1355 bnx2_set_link(struct bnx2
*bp
)
1360 if (bp
->loopback
== MAC_LOOPBACK
|| bp
->loopback
== PHY_LOOPBACK
) {
1365 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1368 link_up
= bp
->link_up
;
1370 bnx2_enable_bmsr1(bp
);
1371 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1372 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1373 bnx2_disable_bmsr1(bp
);
1375 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1376 (CHIP_NUM(bp
) == CHIP_NUM_5706
)) {
1379 if (bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
) {
1380 bnx2_5706s_force_link_dn(bp
, 0);
1381 bp
->phy_flags
&= ~BNX2_PHY_FLAG_FORCED_DOWN
;
1383 val
= REG_RD(bp
, BNX2_EMAC_STATUS
);
1385 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
1386 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
1387 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
1389 if ((val
& BNX2_EMAC_STATUS_LINK
) &&
1390 !(an_dbg
& MISC_SHDW_AN_DBG_NOSYNC
))
1391 bmsr
|= BMSR_LSTATUS
;
1393 bmsr
&= ~BMSR_LSTATUS
;
1396 if (bmsr
& BMSR_LSTATUS
) {
1399 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1400 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
1401 bnx2_5706s_linkup(bp
);
1402 else if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
1403 bnx2_5708s_linkup(bp
);
1404 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1405 bnx2_5709s_linkup(bp
);
1408 bnx2_copper_linkup(bp
);
1410 bnx2_resolve_flow_ctrl(bp
);
1413 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1414 (bp
->autoneg
& AUTONEG_SPEED
))
1415 bnx2_disable_forced_2g5(bp
);
1417 if (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
) {
1420 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1421 bmcr
|= BMCR_ANENABLE
;
1422 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1424 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
1429 if (bp
->link_up
!= link_up
) {
1430 bnx2_report_link(bp
);
1433 bnx2_set_mac_link(bp
);
1439 bnx2_reset_phy(struct bnx2
*bp
)
1444 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_RESET
);
1446 #define PHY_RESET_MAX_WAIT 100
1447 for (i
= 0; i
< PHY_RESET_MAX_WAIT
; i
++) {
1450 bnx2_read_phy(bp
, bp
->mii_bmcr
, ®
);
1451 if (!(reg
& BMCR_RESET
)) {
1456 if (i
== PHY_RESET_MAX_WAIT
) {
1463 bnx2_phy_get_pause_adv(struct bnx2
*bp
)
1467 if ((bp
->req_flow_ctrl
& (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) ==
1468 (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) {
1470 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1471 adv
= ADVERTISE_1000XPAUSE
;
1474 adv
= ADVERTISE_PAUSE_CAP
;
1477 else if (bp
->req_flow_ctrl
& FLOW_CTRL_TX
) {
1478 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1479 adv
= ADVERTISE_1000XPSE_ASYM
;
1482 adv
= ADVERTISE_PAUSE_ASYM
;
1485 else if (bp
->req_flow_ctrl
& FLOW_CTRL_RX
) {
1486 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1487 adv
= ADVERTISE_1000XPAUSE
| ADVERTISE_1000XPSE_ASYM
;
1490 adv
= ADVERTISE_PAUSE_CAP
| ADVERTISE_PAUSE_ASYM
;
1496 static int bnx2_fw_sync(struct bnx2
*, u32
, int, int);
1499 bnx2_setup_remote_phy(struct bnx2
*bp
, u8 port
)
1501 u32 speed_arg
= 0, pause_adv
;
1503 pause_adv
= bnx2_phy_get_pause_adv(bp
);
1505 if (bp
->autoneg
& AUTONEG_SPEED
) {
1506 speed_arg
|= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
;
1507 if (bp
->advertising
& ADVERTISED_10baseT_Half
)
1508 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1509 if (bp
->advertising
& ADVERTISED_10baseT_Full
)
1510 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1511 if (bp
->advertising
& ADVERTISED_100baseT_Half
)
1512 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1513 if (bp
->advertising
& ADVERTISED_100baseT_Full
)
1514 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1515 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1516 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1517 if (bp
->advertising
& ADVERTISED_2500baseX_Full
)
1518 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1520 if (bp
->req_line_speed
== SPEED_2500
)
1521 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1522 else if (bp
->req_line_speed
== SPEED_1000
)
1523 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1524 else if (bp
->req_line_speed
== SPEED_100
) {
1525 if (bp
->req_duplex
== DUPLEX_FULL
)
1526 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1528 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1529 } else if (bp
->req_line_speed
== SPEED_10
) {
1530 if (bp
->req_duplex
== DUPLEX_FULL
)
1531 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1533 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1537 if (pause_adv
& (ADVERTISE_1000XPAUSE
| ADVERTISE_PAUSE_CAP
))
1538 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE
;
1539 if (pause_adv
& (ADVERTISE_1000XPSE_ASYM
| ADVERTISE_PAUSE_ASYM
))
1540 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE
;
1542 if (port
== PORT_TP
)
1543 speed_arg
|= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE
|
1544 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED
;
1546 bnx2_shmem_wr(bp
, BNX2_DRV_MB_ARG0
, speed_arg
);
1548 spin_unlock_bh(&bp
->phy_lock
);
1549 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_CMD_SET_LINK
, 1, 0);
1550 spin_lock_bh(&bp
->phy_lock
);
1556 bnx2_setup_serdes_phy(struct bnx2
*bp
, u8 port
)
1561 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1562 return (bnx2_setup_remote_phy(bp
, port
));
1564 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
1566 int force_link_down
= 0;
1568 if (bp
->req_line_speed
== SPEED_2500
) {
1569 if (!bnx2_test_and_enable_2g5(bp
))
1570 force_link_down
= 1;
1571 } else if (bp
->req_line_speed
== SPEED_1000
) {
1572 if (bnx2_test_and_disable_2g5(bp
))
1573 force_link_down
= 1;
1575 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1576 adv
&= ~(ADVERTISE_1000XFULL
| ADVERTISE_1000XHALF
);
1578 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1579 new_bmcr
= bmcr
& ~BMCR_ANENABLE
;
1580 new_bmcr
|= BMCR_SPEED1000
;
1582 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1583 if (bp
->req_line_speed
== SPEED_2500
)
1584 bnx2_enable_forced_2g5(bp
);
1585 else if (bp
->req_line_speed
== SPEED_1000
) {
1586 bnx2_disable_forced_2g5(bp
);
1587 new_bmcr
&= ~0x2000;
1590 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1591 if (bp
->req_line_speed
== SPEED_2500
)
1592 new_bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1594 new_bmcr
= bmcr
& ~BCM5708S_BMCR_FORCE_2500
;
1597 if (bp
->req_duplex
== DUPLEX_FULL
) {
1598 adv
|= ADVERTISE_1000XFULL
;
1599 new_bmcr
|= BMCR_FULLDPLX
;
1602 adv
|= ADVERTISE_1000XHALF
;
1603 new_bmcr
&= ~BMCR_FULLDPLX
;
1605 if ((new_bmcr
!= bmcr
) || (force_link_down
)) {
1606 /* Force a link down visible on the other side */
1608 bnx2_write_phy(bp
, bp
->mii_adv
, adv
&
1609 ~(ADVERTISE_1000XFULL
|
1610 ADVERTISE_1000XHALF
));
1611 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
|
1612 BMCR_ANRESTART
| BMCR_ANENABLE
);
1615 netif_carrier_off(bp
->dev
);
1616 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1617 bnx2_report_link(bp
);
1619 bnx2_write_phy(bp
, bp
->mii_adv
, adv
);
1620 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1622 bnx2_resolve_flow_ctrl(bp
);
1623 bnx2_set_mac_link(bp
);
1628 bnx2_test_and_enable_2g5(bp
);
1630 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1631 new_adv
|= ADVERTISE_1000XFULL
;
1633 new_adv
|= bnx2_phy_get_pause_adv(bp
);
1635 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1636 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1638 bp
->serdes_an_pending
= 0;
1639 if ((adv
!= new_adv
) || ((bmcr
& BMCR_ANENABLE
) == 0)) {
1640 /* Force a link down visible on the other side */
1642 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
1643 spin_unlock_bh(&bp
->phy_lock
);
1645 spin_lock_bh(&bp
->phy_lock
);
1648 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv
);
1649 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
|
1651 /* Speed up link-up time when the link partner
1652 * does not autonegotiate which is very common
1653 * in blade servers. Some blade servers use
1654 * IPMI for kerboard input and it's important
1655 * to minimize link disruptions. Autoneg. involves
1656 * exchanging base pages plus 3 next pages and
1657 * normally completes in about 120 msec.
1659 bp
->current_interval
= BNX2_SERDES_AN_TIMEOUT
;
1660 bp
->serdes_an_pending
= 1;
1661 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
1663 bnx2_resolve_flow_ctrl(bp
);
1664 bnx2_set_mac_link(bp
);
1670 #define ETHTOOL_ALL_FIBRE_SPEED \
1671 (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
1672 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1673 (ADVERTISED_1000baseT_Full)
1675 #define ETHTOOL_ALL_COPPER_SPEED \
1676 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1677 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1678 ADVERTISED_1000baseT_Full)
1680 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1681 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1683 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1686 bnx2_set_default_remote_link(struct bnx2
*bp
)
1690 if (bp
->phy_port
== PORT_TP
)
1691 link
= bnx2_shmem_rd(bp
, BNX2_RPHY_COPPER_LINK
);
1693 link
= bnx2_shmem_rd(bp
, BNX2_RPHY_SERDES_LINK
);
1695 if (link
& BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
) {
1696 bp
->req_line_speed
= 0;
1697 bp
->autoneg
|= AUTONEG_SPEED
;
1698 bp
->advertising
= ADVERTISED_Autoneg
;
1699 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1700 bp
->advertising
|= ADVERTISED_10baseT_Half
;
1701 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10FULL
)
1702 bp
->advertising
|= ADVERTISED_10baseT_Full
;
1703 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1704 bp
->advertising
|= ADVERTISED_100baseT_Half
;
1705 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100FULL
)
1706 bp
->advertising
|= ADVERTISED_100baseT_Full
;
1707 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1708 bp
->advertising
|= ADVERTISED_1000baseT_Full
;
1709 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1710 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1713 bp
->advertising
= 0;
1714 bp
->req_duplex
= DUPLEX_FULL
;
1715 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10
) {
1716 bp
->req_line_speed
= SPEED_10
;
1717 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1718 bp
->req_duplex
= DUPLEX_HALF
;
1720 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100
) {
1721 bp
->req_line_speed
= SPEED_100
;
1722 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1723 bp
->req_duplex
= DUPLEX_HALF
;
1725 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1726 bp
->req_line_speed
= SPEED_1000
;
1727 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1728 bp
->req_line_speed
= SPEED_2500
;
1733 bnx2_set_default_link(struct bnx2
*bp
)
1735 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
1736 bnx2_set_default_remote_link(bp
);
1740 bp
->autoneg
= AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
;
1741 bp
->req_line_speed
= 0;
1742 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1745 bp
->advertising
= ETHTOOL_ALL_FIBRE_SPEED
| ADVERTISED_Autoneg
;
1747 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_CONFIG
);
1748 reg
&= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK
;
1749 if (reg
== BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G
) {
1751 bp
->req_line_speed
= bp
->line_speed
= SPEED_1000
;
1752 bp
->req_duplex
= DUPLEX_FULL
;
1755 bp
->advertising
= ETHTOOL_ALL_COPPER_SPEED
| ADVERTISED_Autoneg
;
1759 bnx2_send_heart_beat(struct bnx2
*bp
)
1764 spin_lock(&bp
->indirect_lock
);
1765 msg
= (u32
) (++bp
->fw_drv_pulse_wr_seq
& BNX2_DRV_PULSE_SEQ_MASK
);
1766 addr
= bp
->shmem_base
+ BNX2_DRV_PULSE_MB
;
1767 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, addr
);
1768 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW
, msg
);
1769 spin_unlock(&bp
->indirect_lock
);
1773 bnx2_remote_phy_event(struct bnx2
*bp
)
1776 u8 link_up
= bp
->link_up
;
1779 msg
= bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
);
1781 if (msg
& BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
)
1782 bnx2_send_heart_beat(bp
);
1784 msg
&= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
;
1786 if ((msg
& BNX2_LINK_STATUS_LINK_UP
) == BNX2_LINK_STATUS_LINK_DOWN
)
1792 speed
= msg
& BNX2_LINK_STATUS_SPEED_MASK
;
1793 bp
->duplex
= DUPLEX_FULL
;
1795 case BNX2_LINK_STATUS_10HALF
:
1796 bp
->duplex
= DUPLEX_HALF
;
1797 case BNX2_LINK_STATUS_10FULL
:
1798 bp
->line_speed
= SPEED_10
;
1800 case BNX2_LINK_STATUS_100HALF
:
1801 bp
->duplex
= DUPLEX_HALF
;
1802 case BNX2_LINK_STATUS_100BASE_T4
:
1803 case BNX2_LINK_STATUS_100FULL
:
1804 bp
->line_speed
= SPEED_100
;
1806 case BNX2_LINK_STATUS_1000HALF
:
1807 bp
->duplex
= DUPLEX_HALF
;
1808 case BNX2_LINK_STATUS_1000FULL
:
1809 bp
->line_speed
= SPEED_1000
;
1811 case BNX2_LINK_STATUS_2500HALF
:
1812 bp
->duplex
= DUPLEX_HALF
;
1813 case BNX2_LINK_STATUS_2500FULL
:
1814 bp
->line_speed
= SPEED_2500
;
1822 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
1823 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
1824 if (bp
->duplex
== DUPLEX_FULL
)
1825 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
1827 if (msg
& BNX2_LINK_STATUS_TX_FC_ENABLED
)
1828 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
1829 if (msg
& BNX2_LINK_STATUS_RX_FC_ENABLED
)
1830 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
1833 old_port
= bp
->phy_port
;
1834 if (msg
& BNX2_LINK_STATUS_SERDES_LINK
)
1835 bp
->phy_port
= PORT_FIBRE
;
1837 bp
->phy_port
= PORT_TP
;
1839 if (old_port
!= bp
->phy_port
)
1840 bnx2_set_default_link(bp
);
1843 if (bp
->link_up
!= link_up
)
1844 bnx2_report_link(bp
);
1846 bnx2_set_mac_link(bp
);
1850 bnx2_set_remote_link(struct bnx2
*bp
)
1854 evt_code
= bnx2_shmem_rd(bp
, BNX2_FW_EVT_CODE_MB
);
1856 case BNX2_FW_EVT_CODE_LINK_EVENT
:
1857 bnx2_remote_phy_event(bp
);
1859 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT
:
1861 bnx2_send_heart_beat(bp
);
1868 bnx2_setup_copper_phy(struct bnx2
*bp
)
1873 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1875 if (bp
->autoneg
& AUTONEG_SPEED
) {
1876 u32 adv_reg
, adv1000_reg
;
1877 u32 new_adv_reg
= 0;
1878 u32 new_adv1000_reg
= 0;
1880 bnx2_read_phy(bp
, bp
->mii_adv
, &adv_reg
);
1881 adv_reg
&= (PHY_ALL_10_100_SPEED
| ADVERTISE_PAUSE_CAP
|
1882 ADVERTISE_PAUSE_ASYM
);
1884 bnx2_read_phy(bp
, MII_CTRL1000
, &adv1000_reg
);
1885 adv1000_reg
&= PHY_ALL_1000_SPEED
;
1887 if (bp
->advertising
& ADVERTISED_10baseT_Half
)
1888 new_adv_reg
|= ADVERTISE_10HALF
;
1889 if (bp
->advertising
& ADVERTISED_10baseT_Full
)
1890 new_adv_reg
|= ADVERTISE_10FULL
;
1891 if (bp
->advertising
& ADVERTISED_100baseT_Half
)
1892 new_adv_reg
|= ADVERTISE_100HALF
;
1893 if (bp
->advertising
& ADVERTISED_100baseT_Full
)
1894 new_adv_reg
|= ADVERTISE_100FULL
;
1895 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1896 new_adv1000_reg
|= ADVERTISE_1000FULL
;
1898 new_adv_reg
|= ADVERTISE_CSMA
;
1900 new_adv_reg
|= bnx2_phy_get_pause_adv(bp
);
1902 if ((adv1000_reg
!= new_adv1000_reg
) ||
1903 (adv_reg
!= new_adv_reg
) ||
1904 ((bmcr
& BMCR_ANENABLE
) == 0)) {
1906 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv_reg
);
1907 bnx2_write_phy(bp
, MII_CTRL1000
, new_adv1000_reg
);
1908 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_ANRESTART
|
1911 else if (bp
->link_up
) {
1912 /* Flow ctrl may have changed from auto to forced */
1913 /* or vice-versa. */
1915 bnx2_resolve_flow_ctrl(bp
);
1916 bnx2_set_mac_link(bp
);
1922 if (bp
->req_line_speed
== SPEED_100
) {
1923 new_bmcr
|= BMCR_SPEED100
;
1925 if (bp
->req_duplex
== DUPLEX_FULL
) {
1926 new_bmcr
|= BMCR_FULLDPLX
;
1928 if (new_bmcr
!= bmcr
) {
1931 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
1932 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
1934 if (bmsr
& BMSR_LSTATUS
) {
1935 /* Force link down */
1936 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
1937 spin_unlock_bh(&bp
->phy_lock
);
1939 spin_lock_bh(&bp
->phy_lock
);
1941 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
1942 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
1945 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1947 /* Normally, the new speed is setup after the link has
1948 * gone down and up again. In some cases, link will not go
1949 * down so we need to set up the new speed here.
1951 if (bmsr
& BMSR_LSTATUS
) {
1952 bp
->line_speed
= bp
->req_line_speed
;
1953 bp
->duplex
= bp
->req_duplex
;
1954 bnx2_resolve_flow_ctrl(bp
);
1955 bnx2_set_mac_link(bp
);
1958 bnx2_resolve_flow_ctrl(bp
);
1959 bnx2_set_mac_link(bp
);
1965 bnx2_setup_phy(struct bnx2
*bp
, u8 port
)
1967 if (bp
->loopback
== MAC_LOOPBACK
)
1970 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1971 return (bnx2_setup_serdes_phy(bp
, port
));
1974 return (bnx2_setup_copper_phy(bp
));
1979 bnx2_init_5709s_phy(struct bnx2
*bp
, int reset_phy
)
1983 bp
->mii_bmcr
= MII_BMCR
+ 0x10;
1984 bp
->mii_bmsr
= MII_BMSR
+ 0x10;
1985 bp
->mii_bmsr1
= MII_BNX2_GP_TOP_AN_STATUS1
;
1986 bp
->mii_adv
= MII_ADVERTISE
+ 0x10;
1987 bp
->mii_lpa
= MII_LPA
+ 0x10;
1988 bp
->mii_up1
= MII_BNX2_OVER1G_UP1
;
1990 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_AER
);
1991 bnx2_write_phy(bp
, MII_BNX2_AER_AER
, MII_BNX2_AER_AER_AN_MMD
);
1993 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1997 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_SERDES_DIG
);
1999 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, &val
);
2000 val
&= ~MII_BNX2_SD_1000XCTL1_AUTODET
;
2001 val
|= MII_BNX2_SD_1000XCTL1_FIBER
;
2002 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, val
);
2004 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
2005 bnx2_read_phy(bp
, MII_BNX2_OVER1G_UP1
, &val
);
2006 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
2007 val
|= BCM5708S_UP1_2G5
;
2009 val
&= ~BCM5708S_UP1_2G5
;
2010 bnx2_write_phy(bp
, MII_BNX2_OVER1G_UP1
, val
);
2012 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_BAM_NXTPG
);
2013 bnx2_read_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, &val
);
2014 val
|= MII_BNX2_NXTPG_CTL_T2
| MII_BNX2_NXTPG_CTL_BAM
;
2015 bnx2_write_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, val
);
2017 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_CL73_USERB0
);
2019 val
= MII_BNX2_CL73_BAM_EN
| MII_BNX2_CL73_BAM_STA_MGR_EN
|
2020 MII_BNX2_CL73_BAM_NP_AFT_BP_EN
;
2021 bnx2_write_phy(bp
, MII_BNX2_CL73_BAM_CTL1
, val
);
2023 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
2029 bnx2_init_5708s_phy(struct bnx2
*bp
, int reset_phy
)
2036 bp
->mii_up1
= BCM5708S_UP1
;
2038 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG3
);
2039 bnx2_write_phy(bp
, BCM5708S_DIG_3_0
, BCM5708S_DIG_3_0_USE_IEEE
);
2040 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
2042 bnx2_read_phy(bp
, BCM5708S_1000X_CTL1
, &val
);
2043 val
|= BCM5708S_1000X_CTL1_FIBER_MODE
| BCM5708S_1000X_CTL1_AUTODET_EN
;
2044 bnx2_write_phy(bp
, BCM5708S_1000X_CTL1
, val
);
2046 bnx2_read_phy(bp
, BCM5708S_1000X_CTL2
, &val
);
2047 val
|= BCM5708S_1000X_CTL2_PLLEL_DET_EN
;
2048 bnx2_write_phy(bp
, BCM5708S_1000X_CTL2
, val
);
2050 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) {
2051 bnx2_read_phy(bp
, BCM5708S_UP1
, &val
);
2052 val
|= BCM5708S_UP1_2G5
;
2053 bnx2_write_phy(bp
, BCM5708S_UP1
, val
);
2056 if ((CHIP_ID(bp
) == CHIP_ID_5708_A0
) ||
2057 (CHIP_ID(bp
) == CHIP_ID_5708_B0
) ||
2058 (CHIP_ID(bp
) == CHIP_ID_5708_B1
)) {
2059 /* increase tx signal amplitude */
2060 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2061 BCM5708S_BLK_ADDR_TX_MISC
);
2062 bnx2_read_phy(bp
, BCM5708S_TX_ACTL1
, &val
);
2063 val
&= ~BCM5708S_TX_ACTL1_DRIVER_VCM
;
2064 bnx2_write_phy(bp
, BCM5708S_TX_ACTL1
, val
);
2065 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
2068 val
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_CONFIG
) &
2069 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK
;
2074 is_backplane
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG
);
2075 if (is_backplane
& BNX2_SHARED_HW_CFG_PHY_BACKPLANE
) {
2076 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2077 BCM5708S_BLK_ADDR_TX_MISC
);
2078 bnx2_write_phy(bp
, BCM5708S_TX_ACTL3
, val
);
2079 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2080 BCM5708S_BLK_ADDR_DIG
);
2087 bnx2_init_5706s_phy(struct bnx2
*bp
, int reset_phy
)
2092 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
2094 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
2095 REG_WR(bp
, BNX2_MISC_GP_HW_CTL0
, 0x300);
2097 if (bp
->dev
->mtu
> 1500) {
2100 /* Set extended packet length bit */
2101 bnx2_write_phy(bp
, 0x18, 0x7);
2102 bnx2_read_phy(bp
, 0x18, &val
);
2103 bnx2_write_phy(bp
, 0x18, (val
& 0xfff8) | 0x4000);
2105 bnx2_write_phy(bp
, 0x1c, 0x6c00);
2106 bnx2_read_phy(bp
, 0x1c, &val
);
2107 bnx2_write_phy(bp
, 0x1c, (val
& 0x3ff) | 0xec02);
2112 bnx2_write_phy(bp
, 0x18, 0x7);
2113 bnx2_read_phy(bp
, 0x18, &val
);
2114 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
2116 bnx2_write_phy(bp
, 0x1c, 0x6c00);
2117 bnx2_read_phy(bp
, 0x1c, &val
);
2118 bnx2_write_phy(bp
, 0x1c, (val
& 0x3fd) | 0xec00);
2125 bnx2_init_copper_phy(struct bnx2
*bp
, int reset_phy
)
2132 if (bp
->phy_flags
& BNX2_PHY_FLAG_CRC_FIX
) {
2133 bnx2_write_phy(bp
, 0x18, 0x0c00);
2134 bnx2_write_phy(bp
, 0x17, 0x000a);
2135 bnx2_write_phy(bp
, 0x15, 0x310b);
2136 bnx2_write_phy(bp
, 0x17, 0x201f);
2137 bnx2_write_phy(bp
, 0x15, 0x9506);
2138 bnx2_write_phy(bp
, 0x17, 0x401f);
2139 bnx2_write_phy(bp
, 0x15, 0x14e2);
2140 bnx2_write_phy(bp
, 0x18, 0x0400);
2143 if (bp
->phy_flags
& BNX2_PHY_FLAG_DIS_EARLY_DAC
) {
2144 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
,
2145 MII_BNX2_DSP_EXPAND_REG
| 0x8);
2146 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
2148 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
);
2151 if (bp
->dev
->mtu
> 1500) {
2152 /* Set extended packet length bit */
2153 bnx2_write_phy(bp
, 0x18, 0x7);
2154 bnx2_read_phy(bp
, 0x18, &val
);
2155 bnx2_write_phy(bp
, 0x18, val
| 0x4000);
2157 bnx2_read_phy(bp
, 0x10, &val
);
2158 bnx2_write_phy(bp
, 0x10, val
| 0x1);
2161 bnx2_write_phy(bp
, 0x18, 0x7);
2162 bnx2_read_phy(bp
, 0x18, &val
);
2163 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
2165 bnx2_read_phy(bp
, 0x10, &val
);
2166 bnx2_write_phy(bp
, 0x10, val
& ~0x1);
2169 /* ethernet@wirespeed */
2170 bnx2_write_phy(bp
, 0x18, 0x7007);
2171 bnx2_read_phy(bp
, 0x18, &val
);
2172 bnx2_write_phy(bp
, 0x18, val
| (1 << 15) | (1 << 4));
2178 bnx2_init_phy(struct bnx2
*bp
, int reset_phy
)
2183 bp
->phy_flags
&= ~BNX2_PHY_FLAG_INT_MODE_MASK
;
2184 bp
->phy_flags
|= BNX2_PHY_FLAG_INT_MODE_LINK_READY
;
2186 bp
->mii_bmcr
= MII_BMCR
;
2187 bp
->mii_bmsr
= MII_BMSR
;
2188 bp
->mii_bmsr1
= MII_BMSR
;
2189 bp
->mii_adv
= MII_ADVERTISE
;
2190 bp
->mii_lpa
= MII_LPA
;
2192 REG_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
2194 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
2197 bnx2_read_phy(bp
, MII_PHYSID1
, &val
);
2198 bp
->phy_id
= val
<< 16;
2199 bnx2_read_phy(bp
, MII_PHYSID2
, &val
);
2200 bp
->phy_id
|= val
& 0xffff;
2202 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
2203 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
2204 rc
= bnx2_init_5706s_phy(bp
, reset_phy
);
2205 else if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
2206 rc
= bnx2_init_5708s_phy(bp
, reset_phy
);
2207 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
2208 rc
= bnx2_init_5709s_phy(bp
, reset_phy
);
2211 rc
= bnx2_init_copper_phy(bp
, reset_phy
);
2216 rc
= bnx2_setup_phy(bp
, bp
->phy_port
);
2222 bnx2_set_mac_loopback(struct bnx2
*bp
)
2226 mac_mode
= REG_RD(bp
, BNX2_EMAC_MODE
);
2227 mac_mode
&= ~BNX2_EMAC_MODE_PORT
;
2228 mac_mode
|= BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
;
2229 REG_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2234 static int bnx2_test_link(struct bnx2
*);
2237 bnx2_set_phy_loopback(struct bnx2
*bp
)
2242 spin_lock_bh(&bp
->phy_lock
);
2243 rc
= bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
| BMCR_FULLDPLX
|
2245 spin_unlock_bh(&bp
->phy_lock
);
2249 for (i
= 0; i
< 10; i
++) {
2250 if (bnx2_test_link(bp
) == 0)
2255 mac_mode
= REG_RD(bp
, BNX2_EMAC_MODE
);
2256 mac_mode
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
2257 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
2258 BNX2_EMAC_MODE_25G_MODE
);
2260 mac_mode
|= BNX2_EMAC_MODE_PORT_GMII
;
2261 REG_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2267 bnx2_fw_sync(struct bnx2
*bp
, u32 msg_data
, int ack
, int silent
)
2273 msg_data
|= bp
->fw_wr_seq
;
2275 bnx2_shmem_wr(bp
, BNX2_DRV_MB
, msg_data
);
2280 /* wait for an acknowledgement. */
2281 for (i
= 0; i
< (BNX2_FW_ACK_TIME_OUT_MS
/ 10); i
++) {
2284 val
= bnx2_shmem_rd(bp
, BNX2_FW_MB
);
2286 if ((val
& BNX2_FW_MSG_ACK
) == (msg_data
& BNX2_DRV_MSG_SEQ
))
2289 if ((msg_data
& BNX2_DRV_MSG_DATA
) == BNX2_DRV_MSG_DATA_WAIT0
)
2292 /* If we timed out, inform the firmware that this is the case. */
2293 if ((val
& BNX2_FW_MSG_ACK
) != (msg_data
& BNX2_DRV_MSG_SEQ
)) {
2295 printk(KERN_ERR PFX
"fw sync timeout, reset code = "
2298 msg_data
&= ~BNX2_DRV_MSG_CODE
;
2299 msg_data
|= BNX2_DRV_MSG_CODE_FW_TIMEOUT
;
2301 bnx2_shmem_wr(bp
, BNX2_DRV_MB
, msg_data
);
2306 if ((val
& BNX2_FW_MSG_STATUS_MASK
) != BNX2_FW_MSG_STATUS_OK
)
2313 bnx2_init_5709_context(struct bnx2
*bp
)
2318 val
= BNX2_CTX_COMMAND_ENABLED
| BNX2_CTX_COMMAND_MEM_INIT
| (1 << 12);
2319 val
|= (BCM_PAGE_BITS
- 8) << 16;
2320 REG_WR(bp
, BNX2_CTX_COMMAND
, val
);
2321 for (i
= 0; i
< 10; i
++) {
2322 val
= REG_RD(bp
, BNX2_CTX_COMMAND
);
2323 if (!(val
& BNX2_CTX_COMMAND_MEM_INIT
))
2327 if (val
& BNX2_CTX_COMMAND_MEM_INIT
)
2330 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
2334 memset(bp
->ctx_blk
[i
], 0, BCM_PAGE_SIZE
);
2338 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA0
,
2339 (bp
->ctx_blk_mapping
[i
] & 0xffffffff) |
2340 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID
);
2341 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA1
,
2342 (u64
) bp
->ctx_blk_mapping
[i
] >> 32);
2343 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
, i
|
2344 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
);
2345 for (j
= 0; j
< 10; j
++) {
2347 val
= REG_RD(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
);
2348 if (!(val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
))
2352 if (val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
) {
2361 bnx2_init_context(struct bnx2
*bp
)
2367 u32 vcid_addr
, pcid_addr
, offset
;
2372 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
2375 vcid_addr
= GET_PCID_ADDR(vcid
);
2377 new_vcid
= 0x60 + (vcid
& 0xf0) + (vcid
& 0x7);
2382 pcid_addr
= GET_PCID_ADDR(new_vcid
);
2385 vcid_addr
= GET_CID_ADDR(vcid
);
2386 pcid_addr
= vcid_addr
;
2389 for (i
= 0; i
< (CTX_SIZE
/ PHY_CTX_SIZE
); i
++) {
2390 vcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2391 pcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2393 REG_WR(bp
, BNX2_CTX_VIRT_ADDR
, vcid_addr
);
2394 REG_WR(bp
, BNX2_CTX_PAGE_TBL
, pcid_addr
);
2396 /* Zero out the context. */
2397 for (offset
= 0; offset
< PHY_CTX_SIZE
; offset
+= 4)
2398 bnx2_ctx_wr(bp
, vcid_addr
, offset
, 0);
2404 bnx2_alloc_bad_rbuf(struct bnx2
*bp
)
2410 good_mbuf
= kmalloc(512 * sizeof(u16
), GFP_KERNEL
);
2411 if (good_mbuf
== NULL
) {
2412 printk(KERN_ERR PFX
"Failed to allocate memory in "
2413 "bnx2_alloc_bad_rbuf\n");
2417 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
2418 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE
);
2422 /* Allocate a bunch of mbufs and save the good ones in an array. */
2423 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_STATUS1
);
2424 while (val
& BNX2_RBUF_STATUS1_FREE_COUNT
) {
2425 bnx2_reg_wr_ind(bp
, BNX2_RBUF_COMMAND
,
2426 BNX2_RBUF_COMMAND_ALLOC_REQ
);
2428 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_FW_BUF_ALLOC
);
2430 val
&= BNX2_RBUF_FW_BUF_ALLOC_VALUE
;
2432 /* The addresses with Bit 9 set are bad memory blocks. */
2433 if (!(val
& (1 << 9))) {
2434 good_mbuf
[good_mbuf_cnt
] = (u16
) val
;
2438 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_STATUS1
);
2441 /* Free the good ones back to the mbuf pool thus discarding
2442 * all the bad ones. */
2443 while (good_mbuf_cnt
) {
2446 val
= good_mbuf
[good_mbuf_cnt
];
2447 val
= (val
<< 9) | val
| 1;
2449 bnx2_reg_wr_ind(bp
, BNX2_RBUF_FW_BUF_FREE
, val
);
2456 bnx2_set_mac_addr(struct bnx2
*bp
, u8
*mac_addr
, u32 pos
)
2460 val
= (mac_addr
[0] << 8) | mac_addr
[1];
2462 REG_WR(bp
, BNX2_EMAC_MAC_MATCH0
+ (pos
* 8), val
);
2464 val
= (mac_addr
[2] << 24) | (mac_addr
[3] << 16) |
2465 (mac_addr
[4] << 8) | mac_addr
[5];
2467 REG_WR(bp
, BNX2_EMAC_MAC_MATCH1
+ (pos
* 8), val
);
2471 bnx2_alloc_rx_page(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
)
2474 struct sw_pg
*rx_pg
= &rxr
->rx_pg_ring
[index
];
2475 struct rx_bd
*rxbd
=
2476 &rxr
->rx_pg_desc_ring
[RX_RING(index
)][RX_IDX(index
)];
2477 struct page
*page
= alloc_page(GFP_ATOMIC
);
2481 mapping
= pci_map_page(bp
->pdev
, page
, 0, PAGE_SIZE
,
2482 PCI_DMA_FROMDEVICE
);
2483 if (pci_dma_mapping_error(bp
->pdev
, mapping
)) {
2489 pci_unmap_addr_set(rx_pg
, mapping
, mapping
);
2490 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2491 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2496 bnx2_free_rx_page(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
)
2498 struct sw_pg
*rx_pg
= &rxr
->rx_pg_ring
[index
];
2499 struct page
*page
= rx_pg
->page
;
2504 pci_unmap_page(bp
->pdev
, pci_unmap_addr(rx_pg
, mapping
), PAGE_SIZE
,
2505 PCI_DMA_FROMDEVICE
);
2512 bnx2_alloc_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
)
2514 struct sk_buff
*skb
;
2515 struct sw_bd
*rx_buf
= &rxr
->rx_buf_ring
[index
];
2517 struct rx_bd
*rxbd
= &rxr
->rx_desc_ring
[RX_RING(index
)][RX_IDX(index
)];
2518 unsigned long align
;
2520 skb
= netdev_alloc_skb(bp
->dev
, bp
->rx_buf_size
);
2525 if (unlikely((align
= (unsigned long) skb
->data
& (BNX2_RX_ALIGN
- 1))))
2526 skb_reserve(skb
, BNX2_RX_ALIGN
- align
);
2528 mapping
= pci_map_single(bp
->pdev
, skb
->data
, bp
->rx_buf_use_size
,
2529 PCI_DMA_FROMDEVICE
);
2530 if (pci_dma_mapping_error(bp
->pdev
, mapping
)) {
2536 pci_unmap_addr_set(rx_buf
, mapping
, mapping
);
2538 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2539 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2541 rxr
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
2547 bnx2_phy_event_is_set(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, u32 event
)
2549 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
2550 u32 new_link_state
, old_link_state
;
2553 new_link_state
= sblk
->status_attn_bits
& event
;
2554 old_link_state
= sblk
->status_attn_bits_ack
& event
;
2555 if (new_link_state
!= old_link_state
) {
2557 REG_WR(bp
, BNX2_PCICFG_STATUS_BIT_SET_CMD
, event
);
2559 REG_WR(bp
, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD
, event
);
2567 bnx2_phy_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
2569 spin_lock(&bp
->phy_lock
);
2571 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_LINK_STATE
))
2573 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_TIMER_ABORT
))
2574 bnx2_set_remote_link(bp
);
2576 spin_unlock(&bp
->phy_lock
);
2581 bnx2_get_hw_tx_cons(struct bnx2_napi
*bnapi
)
2585 /* Tell compiler that status block fields can change. */
2587 cons
= *bnapi
->hw_tx_cons_ptr
;
2589 if (unlikely((cons
& MAX_TX_DESC_CNT
) == MAX_TX_DESC_CNT
))
2595 bnx2_tx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
2597 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
2598 u16 hw_cons
, sw_cons
, sw_ring_cons
;
2599 int tx_pkt
= 0, index
;
2600 struct netdev_queue
*txq
;
2602 index
= (bnapi
- bp
->bnx2_napi
);
2603 txq
= netdev_get_tx_queue(bp
->dev
, index
);
2605 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2606 sw_cons
= txr
->tx_cons
;
2608 while (sw_cons
!= hw_cons
) {
2609 struct sw_tx_bd
*tx_buf
;
2610 struct sk_buff
*skb
;
2613 sw_ring_cons
= TX_RING_IDX(sw_cons
);
2615 tx_buf
= &txr
->tx_buf_ring
[sw_ring_cons
];
2618 /* partial BD completions possible with TSO packets */
2619 if (skb_is_gso(skb
)) {
2620 u16 last_idx
, last_ring_idx
;
2622 last_idx
= sw_cons
+
2623 skb_shinfo(skb
)->nr_frags
+ 1;
2624 last_ring_idx
= sw_ring_cons
+
2625 skb_shinfo(skb
)->nr_frags
+ 1;
2626 if (unlikely(last_ring_idx
>= MAX_TX_DESC_CNT
)) {
2629 if (((s16
) ((s16
) last_idx
- (s16
) hw_cons
)) > 0) {
2634 skb_dma_unmap(&bp
->pdev
->dev
, skb
, DMA_TO_DEVICE
);
2637 last
= skb_shinfo(skb
)->nr_frags
;
2639 for (i
= 0; i
< last
; i
++) {
2640 sw_cons
= NEXT_TX_BD(sw_cons
);
2643 sw_cons
= NEXT_TX_BD(sw_cons
);
2647 if (tx_pkt
== budget
)
2650 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2653 txr
->hw_tx_cons
= hw_cons
;
2654 txr
->tx_cons
= sw_cons
;
2656 /* Need to make the tx_cons update visible to bnx2_start_xmit()
2657 * before checking for netif_tx_queue_stopped(). Without the
2658 * memory barrier, there is a small possibility that bnx2_start_xmit()
2659 * will miss it and cause the queue to be stopped forever.
2663 if (unlikely(netif_tx_queue_stopped(txq
)) &&
2664 (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)) {
2665 __netif_tx_lock(txq
, smp_processor_id());
2666 if ((netif_tx_queue_stopped(txq
)) &&
2667 (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
))
2668 netif_tx_wake_queue(txq
);
2669 __netif_tx_unlock(txq
);
2676 bnx2_reuse_rx_skb_pages(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
,
2677 struct sk_buff
*skb
, int count
)
2679 struct sw_pg
*cons_rx_pg
, *prod_rx_pg
;
2680 struct rx_bd
*cons_bd
, *prod_bd
;
2683 u16 cons
= rxr
->rx_pg_cons
;
2685 cons_rx_pg
= &rxr
->rx_pg_ring
[cons
];
2687 /* The caller was unable to allocate a new page to replace the
2688 * last one in the frags array, so we need to recycle that page
2689 * and then free the skb.
2693 struct skb_shared_info
*shinfo
;
2695 shinfo
= skb_shinfo(skb
);
2697 page
= shinfo
->frags
[shinfo
->nr_frags
].page
;
2698 shinfo
->frags
[shinfo
->nr_frags
].page
= NULL
;
2700 cons_rx_pg
->page
= page
;
2704 hw_prod
= rxr
->rx_pg_prod
;
2706 for (i
= 0; i
< count
; i
++) {
2707 prod
= RX_PG_RING_IDX(hw_prod
);
2709 prod_rx_pg
= &rxr
->rx_pg_ring
[prod
];
2710 cons_rx_pg
= &rxr
->rx_pg_ring
[cons
];
2711 cons_bd
= &rxr
->rx_pg_desc_ring
[RX_RING(cons
)][RX_IDX(cons
)];
2712 prod_bd
= &rxr
->rx_pg_desc_ring
[RX_RING(prod
)][RX_IDX(prod
)];
2715 prod_rx_pg
->page
= cons_rx_pg
->page
;
2716 cons_rx_pg
->page
= NULL
;
2717 pci_unmap_addr_set(prod_rx_pg
, mapping
,
2718 pci_unmap_addr(cons_rx_pg
, mapping
));
2720 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
2721 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
2724 cons
= RX_PG_RING_IDX(NEXT_RX_BD(cons
));
2725 hw_prod
= NEXT_RX_BD(hw_prod
);
2727 rxr
->rx_pg_prod
= hw_prod
;
2728 rxr
->rx_pg_cons
= cons
;
2732 bnx2_reuse_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
,
2733 struct sk_buff
*skb
, u16 cons
, u16 prod
)
2735 struct sw_bd
*cons_rx_buf
, *prod_rx_buf
;
2736 struct rx_bd
*cons_bd
, *prod_bd
;
2738 cons_rx_buf
= &rxr
->rx_buf_ring
[cons
];
2739 prod_rx_buf
= &rxr
->rx_buf_ring
[prod
];
2741 pci_dma_sync_single_for_device(bp
->pdev
,
2742 pci_unmap_addr(cons_rx_buf
, mapping
),
2743 BNX2_RX_OFFSET
+ BNX2_RX_COPY_THRESH
, PCI_DMA_FROMDEVICE
);
2745 rxr
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
2747 prod_rx_buf
->skb
= skb
;
2752 pci_unmap_addr_set(prod_rx_buf
, mapping
,
2753 pci_unmap_addr(cons_rx_buf
, mapping
));
2755 cons_bd
= &rxr
->rx_desc_ring
[RX_RING(cons
)][RX_IDX(cons
)];
2756 prod_bd
= &rxr
->rx_desc_ring
[RX_RING(prod
)][RX_IDX(prod
)];
2757 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
2758 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
2762 bnx2_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, struct sk_buff
*skb
,
2763 unsigned int len
, unsigned int hdr_len
, dma_addr_t dma_addr
,
2767 u16 prod
= ring_idx
& 0xffff;
2769 err
= bnx2_alloc_rx_skb(bp
, rxr
, prod
);
2770 if (unlikely(err
)) {
2771 bnx2_reuse_rx_skb(bp
, rxr
, skb
, (u16
) (ring_idx
>> 16), prod
);
2773 unsigned int raw_len
= len
+ 4;
2774 int pages
= PAGE_ALIGN(raw_len
- hdr_len
) >> PAGE_SHIFT
;
2776 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
, pages
);
2781 skb_reserve(skb
, BNX2_RX_OFFSET
);
2782 pci_unmap_single(bp
->pdev
, dma_addr
, bp
->rx_buf_use_size
,
2783 PCI_DMA_FROMDEVICE
);
2789 unsigned int i
, frag_len
, frag_size
, pages
;
2790 struct sw_pg
*rx_pg
;
2791 u16 pg_cons
= rxr
->rx_pg_cons
;
2792 u16 pg_prod
= rxr
->rx_pg_prod
;
2794 frag_size
= len
+ 4 - hdr_len
;
2795 pages
= PAGE_ALIGN(frag_size
) >> PAGE_SHIFT
;
2796 skb_put(skb
, hdr_len
);
2798 for (i
= 0; i
< pages
; i
++) {
2799 dma_addr_t mapping_old
;
2801 frag_len
= min(frag_size
, (unsigned int) PAGE_SIZE
);
2802 if (unlikely(frag_len
<= 4)) {
2803 unsigned int tail
= 4 - frag_len
;
2805 rxr
->rx_pg_cons
= pg_cons
;
2806 rxr
->rx_pg_prod
= pg_prod
;
2807 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
,
2814 &skb_shinfo(skb
)->frags
[i
- 1];
2816 skb
->data_len
-= tail
;
2817 skb
->truesize
-= tail
;
2821 rx_pg
= &rxr
->rx_pg_ring
[pg_cons
];
2823 /* Don't unmap yet. If we're unable to allocate a new
2824 * page, we need to recycle the page and the DMA addr.
2826 mapping_old
= pci_unmap_addr(rx_pg
, mapping
);
2830 skb_fill_page_desc(skb
, i
, rx_pg
->page
, 0, frag_len
);
2833 err
= bnx2_alloc_rx_page(bp
, rxr
,
2834 RX_PG_RING_IDX(pg_prod
));
2835 if (unlikely(err
)) {
2836 rxr
->rx_pg_cons
= pg_cons
;
2837 rxr
->rx_pg_prod
= pg_prod
;
2838 bnx2_reuse_rx_skb_pages(bp
, rxr
, skb
,
2843 pci_unmap_page(bp
->pdev
, mapping_old
,
2844 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
2846 frag_size
-= frag_len
;
2847 skb
->data_len
+= frag_len
;
2848 skb
->truesize
+= frag_len
;
2849 skb
->len
+= frag_len
;
2851 pg_prod
= NEXT_RX_BD(pg_prod
);
2852 pg_cons
= RX_PG_RING_IDX(NEXT_RX_BD(pg_cons
));
2854 rxr
->rx_pg_prod
= pg_prod
;
2855 rxr
->rx_pg_cons
= pg_cons
;
2861 bnx2_get_hw_rx_cons(struct bnx2_napi
*bnapi
)
2865 /* Tell compiler that status block fields can change. */
2867 cons
= *bnapi
->hw_rx_cons_ptr
;
2869 if (unlikely((cons
& MAX_RX_DESC_CNT
) == MAX_RX_DESC_CNT
))
2875 bnx2_rx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
2877 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
2878 u16 hw_cons
, sw_cons
, sw_ring_cons
, sw_prod
, sw_ring_prod
;
2879 struct l2_fhdr
*rx_hdr
;
2880 int rx_pkt
= 0, pg_ring_used
= 0;
2882 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
2883 sw_cons
= rxr
->rx_cons
;
2884 sw_prod
= rxr
->rx_prod
;
2886 /* Memory barrier necessary as speculative reads of the rx
2887 * buffer can be ahead of the index in the status block
2890 while (sw_cons
!= hw_cons
) {
2891 unsigned int len
, hdr_len
;
2893 struct sw_bd
*rx_buf
;
2894 struct sk_buff
*skb
;
2895 dma_addr_t dma_addr
;
2897 int hw_vlan __maybe_unused
= 0;
2899 sw_ring_cons
= RX_RING_IDX(sw_cons
);
2900 sw_ring_prod
= RX_RING_IDX(sw_prod
);
2902 rx_buf
= &rxr
->rx_buf_ring
[sw_ring_cons
];
2907 dma_addr
= pci_unmap_addr(rx_buf
, mapping
);
2909 pci_dma_sync_single_for_cpu(bp
->pdev
, dma_addr
,
2910 BNX2_RX_OFFSET
+ BNX2_RX_COPY_THRESH
,
2911 PCI_DMA_FROMDEVICE
);
2913 rx_hdr
= (struct l2_fhdr
*) skb
->data
;
2914 len
= rx_hdr
->l2_fhdr_pkt_len
;
2915 status
= rx_hdr
->l2_fhdr_status
;
2918 if (status
& L2_FHDR_STATUS_SPLIT
) {
2919 hdr_len
= rx_hdr
->l2_fhdr_ip_xsum
;
2921 } else if (len
> bp
->rx_jumbo_thresh
) {
2922 hdr_len
= bp
->rx_jumbo_thresh
;
2926 if (unlikely(status
& (L2_FHDR_ERRORS_BAD_CRC
|
2927 L2_FHDR_ERRORS_PHY_DECODE
|
2928 L2_FHDR_ERRORS_ALIGNMENT
|
2929 L2_FHDR_ERRORS_TOO_SHORT
|
2930 L2_FHDR_ERRORS_GIANT_FRAME
))) {
2932 bnx2_reuse_rx_skb(bp
, rxr
, skb
, sw_ring_cons
,
2937 pages
= PAGE_ALIGN(len
- hdr_len
) >> PAGE_SHIFT
;
2939 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
, pages
);
2946 if (len
<= bp
->rx_copy_thresh
) {
2947 struct sk_buff
*new_skb
;
2949 new_skb
= netdev_alloc_skb(bp
->dev
, len
+ 6);
2950 if (new_skb
== NULL
) {
2951 bnx2_reuse_rx_skb(bp
, rxr
, skb
, sw_ring_cons
,
2957 skb_copy_from_linear_data_offset(skb
,
2959 new_skb
->data
, len
+ 6);
2960 skb_reserve(new_skb
, 6);
2961 skb_put(new_skb
, len
);
2963 bnx2_reuse_rx_skb(bp
, rxr
, skb
,
2964 sw_ring_cons
, sw_ring_prod
);
2967 } else if (unlikely(bnx2_rx_skb(bp
, rxr
, skb
, len
, hdr_len
,
2968 dma_addr
, (sw_ring_cons
<< 16) | sw_ring_prod
)))
2971 if ((status
& L2_FHDR_STATUS_L2_VLAN_TAG
) &&
2972 !(bp
->rx_mode
& BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
)) {
2973 vtag
= rx_hdr
->l2_fhdr_vlan_tag
;
2980 struct vlan_ethhdr
*ve
= (struct vlan_ethhdr
*)
2983 memmove(ve
, skb
->data
+ 4, ETH_ALEN
* 2);
2984 ve
->h_vlan_proto
= htons(ETH_P_8021Q
);
2985 ve
->h_vlan_TCI
= htons(vtag
);
2990 skb
->protocol
= eth_type_trans(skb
, bp
->dev
);
2992 if ((len
> (bp
->dev
->mtu
+ ETH_HLEN
)) &&
2993 (ntohs(skb
->protocol
) != 0x8100)) {
3000 skb
->ip_summed
= CHECKSUM_NONE
;
3002 (status
& (L2_FHDR_STATUS_TCP_SEGMENT
|
3003 L2_FHDR_STATUS_UDP_DATAGRAM
))) {
3005 if (likely((status
& (L2_FHDR_ERRORS_TCP_XSUM
|
3006 L2_FHDR_ERRORS_UDP_XSUM
)) == 0))
3007 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3012 vlan_hwaccel_receive_skb(skb
, bp
->vlgrp
, vtag
);
3015 netif_receive_skb(skb
);
3020 sw_cons
= NEXT_RX_BD(sw_cons
);
3021 sw_prod
= NEXT_RX_BD(sw_prod
);
3023 if ((rx_pkt
== budget
))
3026 /* Refresh hw_cons to see if there is new work */
3027 if (sw_cons
== hw_cons
) {
3028 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
3032 rxr
->rx_cons
= sw_cons
;
3033 rxr
->rx_prod
= sw_prod
;
3036 REG_WR16(bp
, rxr
->rx_pg_bidx_addr
, rxr
->rx_pg_prod
);
3038 REG_WR16(bp
, rxr
->rx_bidx_addr
, sw_prod
);
3040 REG_WR(bp
, rxr
->rx_bseq_addr
, rxr
->rx_prod_bseq
);
3048 /* MSI ISR - The only difference between this and the INTx ISR
3049 * is that the MSI interrupt is always serviced.
3052 bnx2_msi(int irq
, void *dev_instance
)
3054 struct bnx2_napi
*bnapi
= dev_instance
;
3055 struct bnx2
*bp
= bnapi
->bp
;
3057 prefetch(bnapi
->status_blk
.msi
);
3058 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3059 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
3060 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3062 /* Return here if interrupt is disabled. */
3063 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3066 netif_rx_schedule(&bnapi
->napi
);
3072 bnx2_msi_1shot(int irq
, void *dev_instance
)
3074 struct bnx2_napi
*bnapi
= dev_instance
;
3075 struct bnx2
*bp
= bnapi
->bp
;
3077 prefetch(bnapi
->status_blk
.msi
);
3079 /* Return here if interrupt is disabled. */
3080 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3083 netif_rx_schedule(&bnapi
->napi
);
3089 bnx2_interrupt(int irq
, void *dev_instance
)
3091 struct bnx2_napi
*bnapi
= dev_instance
;
3092 struct bnx2
*bp
= bnapi
->bp
;
3093 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3095 /* When using INTx, it is possible for the interrupt to arrive
3096 * at the CPU before the status block posted prior to the
3097 * interrupt. Reading a register will flush the status block.
3098 * When using MSI, the MSI message will always complete after
3099 * the status block write.
3101 if ((sblk
->status_idx
== bnapi
->last_status_idx
) &&
3102 (REG_RD(bp
, BNX2_PCICFG_MISC_STATUS
) &
3103 BNX2_PCICFG_MISC_STATUS_INTA_VALUE
))
3106 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3107 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
3108 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3110 /* Read back to deassert IRQ immediately to avoid too many
3111 * spurious interrupts.
3113 REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
3115 /* Return here if interrupt is shared and is disabled. */
3116 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3119 if (netif_rx_schedule_prep(&bnapi
->napi
)) {
3120 bnapi
->last_status_idx
= sblk
->status_idx
;
3121 __netif_rx_schedule(&bnapi
->napi
);
3128 bnx2_has_fast_work(struct bnx2_napi
*bnapi
)
3130 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
3131 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3133 if ((bnx2_get_hw_rx_cons(bnapi
) != rxr
->rx_cons
) ||
3134 (bnx2_get_hw_tx_cons(bnapi
) != txr
->hw_tx_cons
))
3139 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
3140 STATUS_ATTN_BITS_TIMER_ABORT)
3143 bnx2_has_work(struct bnx2_napi
*bnapi
)
3145 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3147 if (bnx2_has_fast_work(bnapi
))
3150 if ((sblk
->status_attn_bits
& STATUS_ATTN_EVENTS
) !=
3151 (sblk
->status_attn_bits_ack
& STATUS_ATTN_EVENTS
))
3158 bnx2_chk_missed_msi(struct bnx2
*bp
)
3160 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
3163 if (bnx2_has_work(bnapi
)) {
3164 msi_ctrl
= REG_RD(bp
, BNX2_PCICFG_MSI_CONTROL
);
3165 if (!(msi_ctrl
& BNX2_PCICFG_MSI_CONTROL_ENABLE
))
3168 if (bnapi
->last_status_idx
== bp
->idle_chk_status_idx
) {
3169 REG_WR(bp
, BNX2_PCICFG_MSI_CONTROL
, msi_ctrl
&
3170 ~BNX2_PCICFG_MSI_CONTROL_ENABLE
);
3171 REG_WR(bp
, BNX2_PCICFG_MSI_CONTROL
, msi_ctrl
);
3172 bnx2_msi(bp
->irq_tbl
[0].vector
, bnapi
);
3176 bp
->idle_chk_status_idx
= bnapi
->last_status_idx
;
3179 static void bnx2_poll_link(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
3181 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3182 u32 status_attn_bits
= sblk
->status_attn_bits
;
3183 u32 status_attn_bits_ack
= sblk
->status_attn_bits_ack
;
3185 if ((status_attn_bits
& STATUS_ATTN_EVENTS
) !=
3186 (status_attn_bits_ack
& STATUS_ATTN_EVENTS
)) {
3188 bnx2_phy_int(bp
, bnapi
);
3190 /* This is needed to take care of transient status
3191 * during link changes.
3193 REG_WR(bp
, BNX2_HC_COMMAND
,
3194 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
3195 REG_RD(bp
, BNX2_HC_COMMAND
);
3199 static int bnx2_poll_work(struct bnx2
*bp
, struct bnx2_napi
*bnapi
,
3200 int work_done
, int budget
)
3202 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
3203 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3205 if (bnx2_get_hw_tx_cons(bnapi
) != txr
->hw_tx_cons
)
3206 bnx2_tx_int(bp
, bnapi
, 0);
3208 if (bnx2_get_hw_rx_cons(bnapi
) != rxr
->rx_cons
)
3209 work_done
+= bnx2_rx_int(bp
, bnapi
, budget
- work_done
);
3214 static int bnx2_poll_msix(struct napi_struct
*napi
, int budget
)
3216 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
3217 struct bnx2
*bp
= bnapi
->bp
;
3219 struct status_block_msix
*sblk
= bnapi
->status_blk
.msix
;
3222 work_done
= bnx2_poll_work(bp
, bnapi
, work_done
, budget
);
3223 if (unlikely(work_done
>= budget
))
3226 bnapi
->last_status_idx
= sblk
->status_idx
;
3227 /* status idx must be read before checking for more work. */
3229 if (likely(!bnx2_has_fast_work(bnapi
))) {
3231 netif_rx_complete(napi
);
3232 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
3233 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3234 bnapi
->last_status_idx
);
3241 static int bnx2_poll(struct napi_struct
*napi
, int budget
)
3243 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
3244 struct bnx2
*bp
= bnapi
->bp
;
3246 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3249 bnx2_poll_link(bp
, bnapi
);
3251 work_done
= bnx2_poll_work(bp
, bnapi
, work_done
, budget
);
3253 /* bnapi->last_status_idx is used below to tell the hw how
3254 * much work has been processed, so we must read it before
3255 * checking for more work.
3257 bnapi
->last_status_idx
= sblk
->status_idx
;
3259 if (unlikely(work_done
>= budget
))
3263 if (likely(!bnx2_has_work(bnapi
))) {
3264 netif_rx_complete(napi
);
3265 if (likely(bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)) {
3266 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3267 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3268 bnapi
->last_status_idx
);
3271 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3272 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3273 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
3274 bnapi
->last_status_idx
);
3276 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3277 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3278 bnapi
->last_status_idx
);
3286 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
3287 * from set_multicast.
3290 bnx2_set_rx_mode(struct net_device
*dev
)
3292 struct bnx2
*bp
= netdev_priv(dev
);
3293 u32 rx_mode
, sort_mode
;
3294 struct dev_addr_list
*uc_ptr
;
3297 if (!netif_running(dev
))
3300 spin_lock_bh(&bp
->phy_lock
);
3302 rx_mode
= bp
->rx_mode
& ~(BNX2_EMAC_RX_MODE_PROMISCUOUS
|
3303 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
);
3304 sort_mode
= 1 | BNX2_RPM_SORT_USER0_BC_EN
;
3306 if (!bp
->vlgrp
&& (bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
))
3307 rx_mode
|= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
;
3309 if (bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
)
3310 rx_mode
|= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
;
3312 if (dev
->flags
& IFF_PROMISC
) {
3313 /* Promiscuous mode. */
3314 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
3315 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
3316 BNX2_RPM_SORT_USER0_PROM_VLAN
;
3318 else if (dev
->flags
& IFF_ALLMULTI
) {
3319 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3320 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3323 sort_mode
|= BNX2_RPM_SORT_USER0_MC_EN
;
3326 /* Accept one or more multicast(s). */
3327 struct dev_mc_list
*mclist
;
3328 u32 mc_filter
[NUM_MC_HASH_REGISTERS
];
3333 memset(mc_filter
, 0, 4 * NUM_MC_HASH_REGISTERS
);
3335 for (i
= 0, mclist
= dev
->mc_list
; mclist
&& i
< dev
->mc_count
;
3336 i
++, mclist
= mclist
->next
) {
3338 crc
= ether_crc_le(ETH_ALEN
, mclist
->dmi_addr
);
3340 regidx
= (bit
& 0xe0) >> 5;
3342 mc_filter
[regidx
] |= (1 << bit
);
3345 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3346 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3350 sort_mode
|= BNX2_RPM_SORT_USER0_MC_HSH_EN
;
3354 if (dev
->uc_count
> BNX2_MAX_UNICAST_ADDRESSES
) {
3355 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
3356 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
3357 BNX2_RPM_SORT_USER0_PROM_VLAN
;
3358 } else if (!(dev
->flags
& IFF_PROMISC
)) {
3359 uc_ptr
= dev
->uc_list
;
3361 /* Add all entries into to the match filter list */
3362 for (i
= 0; i
< dev
->uc_count
; i
++) {
3363 bnx2_set_mac_addr(bp
, uc_ptr
->da_addr
,
3364 i
+ BNX2_START_UNICAST_ADDRESS_INDEX
);
3366 (i
+ BNX2_START_UNICAST_ADDRESS_INDEX
));
3367 uc_ptr
= uc_ptr
->next
;
3372 if (rx_mode
!= bp
->rx_mode
) {
3373 bp
->rx_mode
= rx_mode
;
3374 REG_WR(bp
, BNX2_EMAC_RX_MODE
, rx_mode
);
3377 REG_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
3378 REG_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
);
3379 REG_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
| BNX2_RPM_SORT_USER0_ENA
);
3381 spin_unlock_bh(&bp
->phy_lock
);
3385 load_rv2p_fw(struct bnx2
*bp
, __le32
*rv2p_code
, u32 rv2p_code_len
,
3391 if (rv2p_proc
== RV2P_PROC2
&& CHIP_NUM(bp
) == CHIP_NUM_5709
) {
3392 val
= le32_to_cpu(rv2p_code
[XI_RV2P_PROC2_MAX_BD_PAGE_LOC
]);
3393 val
&= ~XI_RV2P_PROC2_BD_PAGE_SIZE_MSK
;
3394 val
|= XI_RV2P_PROC2_BD_PAGE_SIZE
;
3395 rv2p_code
[XI_RV2P_PROC2_MAX_BD_PAGE_LOC
] = cpu_to_le32(val
);
3398 for (i
= 0; i
< rv2p_code_len
; i
+= 8) {
3399 REG_WR(bp
, BNX2_RV2P_INSTR_HIGH
, le32_to_cpu(*rv2p_code
));
3401 REG_WR(bp
, BNX2_RV2P_INSTR_LOW
, le32_to_cpu(*rv2p_code
));
3404 if (rv2p_proc
== RV2P_PROC1
) {
3405 val
= (i
/ 8) | BNX2_RV2P_PROC1_ADDR_CMD_RDWR
;
3406 REG_WR(bp
, BNX2_RV2P_PROC1_ADDR_CMD
, val
);
3409 val
= (i
/ 8) | BNX2_RV2P_PROC2_ADDR_CMD_RDWR
;
3410 REG_WR(bp
, BNX2_RV2P_PROC2_ADDR_CMD
, val
);
3414 /* Reset the processor, un-stall is done later. */
3415 if (rv2p_proc
== RV2P_PROC1
) {
3416 REG_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC1_RESET
);
3419 REG_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC2_RESET
);
3424 load_cpu_fw(struct bnx2
*bp
, const struct cpu_reg
*cpu_reg
, struct fw_info
*fw
)
3431 val
= bnx2_reg_rd_ind(bp
, cpu_reg
->mode
);
3432 val
|= cpu_reg
->mode_value_halt
;
3433 bnx2_reg_wr_ind(bp
, cpu_reg
->mode
, val
);
3434 bnx2_reg_wr_ind(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3436 /* Load the Text area. */
3437 offset
= cpu_reg
->spad_base
+ (fw
->text_addr
- cpu_reg
->mips_view_base
);
3441 rc
= zlib_inflate_blob(fw
->text
, FW_BUF_SIZE
, fw
->gz_text
,
3446 for (j
= 0; j
< (fw
->text_len
/ 4); j
++, offset
+= 4) {
3447 bnx2_reg_wr_ind(bp
, offset
, le32_to_cpu(fw
->text
[j
]));
3451 /* Load the Data area. */
3452 offset
= cpu_reg
->spad_base
+ (fw
->data_addr
- cpu_reg
->mips_view_base
);
3456 for (j
= 0; j
< (fw
->data_len
/ 4); j
++, offset
+= 4) {
3457 bnx2_reg_wr_ind(bp
, offset
, fw
->data
[j
]);
3461 /* Load the SBSS area. */
3462 offset
= cpu_reg
->spad_base
+ (fw
->sbss_addr
- cpu_reg
->mips_view_base
);
3466 for (j
= 0; j
< (fw
->sbss_len
/ 4); j
++, offset
+= 4) {
3467 bnx2_reg_wr_ind(bp
, offset
, 0);
3471 /* Load the BSS area. */
3472 offset
= cpu_reg
->spad_base
+ (fw
->bss_addr
- cpu_reg
->mips_view_base
);
3476 for (j
= 0; j
< (fw
->bss_len
/4); j
++, offset
+= 4) {
3477 bnx2_reg_wr_ind(bp
, offset
, 0);
3481 /* Load the Read-Only area. */
3482 offset
= cpu_reg
->spad_base
+
3483 (fw
->rodata_addr
- cpu_reg
->mips_view_base
);
3487 for (j
= 0; j
< (fw
->rodata_len
/ 4); j
++, offset
+= 4) {
3488 bnx2_reg_wr_ind(bp
, offset
, fw
->rodata
[j
]);
3492 /* Clear the pre-fetch instruction. */
3493 bnx2_reg_wr_ind(bp
, cpu_reg
->inst
, 0);
3494 bnx2_reg_wr_ind(bp
, cpu_reg
->pc
, fw
->start_addr
);
3496 /* Start the CPU. */
3497 val
= bnx2_reg_rd_ind(bp
, cpu_reg
->mode
);
3498 val
&= ~cpu_reg
->mode_value_halt
;
3499 bnx2_reg_wr_ind(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3500 bnx2_reg_wr_ind(bp
, cpu_reg
->mode
, val
);
3506 bnx2_init_cpus(struct bnx2
*bp
)
3512 /* Initialize the RV2P processor. */
3513 text
= vmalloc(FW_BUF_SIZE
);
3516 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
3517 rv2p
= bnx2_xi_rv2p_proc1
;
3518 rv2p_len
= sizeof(bnx2_xi_rv2p_proc1
);
3520 rv2p
= bnx2_rv2p_proc1
;
3521 rv2p_len
= sizeof(bnx2_rv2p_proc1
);
3523 rc
= zlib_inflate_blob(text
, FW_BUF_SIZE
, rv2p
, rv2p_len
);
3527 load_rv2p_fw(bp
, text
, rc
/* == len */, RV2P_PROC1
);
3529 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
3530 rv2p
= bnx2_xi_rv2p_proc2
;
3531 rv2p_len
= sizeof(bnx2_xi_rv2p_proc2
);
3533 rv2p
= bnx2_rv2p_proc2
;
3534 rv2p_len
= sizeof(bnx2_rv2p_proc2
);
3536 rc
= zlib_inflate_blob(text
, FW_BUF_SIZE
, rv2p
, rv2p_len
);
3540 load_rv2p_fw(bp
, text
, rc
/* == len */, RV2P_PROC2
);
3542 /* Initialize the RX Processor. */
3543 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
3544 fw
= &bnx2_rxp_fw_09
;
3546 fw
= &bnx2_rxp_fw_06
;
3549 rc
= load_cpu_fw(bp
, &cpu_reg_rxp
, fw
);
3553 /* Initialize the TX Processor. */
3554 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
3555 fw
= &bnx2_txp_fw_09
;
3557 fw
= &bnx2_txp_fw_06
;
3560 rc
= load_cpu_fw(bp
, &cpu_reg_txp
, fw
);
3564 /* Initialize the TX Patch-up Processor. */
3565 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
3566 fw
= &bnx2_tpat_fw_09
;
3568 fw
= &bnx2_tpat_fw_06
;
3571 rc
= load_cpu_fw(bp
, &cpu_reg_tpat
, fw
);
3575 /* Initialize the Completion Processor. */
3576 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
3577 fw
= &bnx2_com_fw_09
;
3579 fw
= &bnx2_com_fw_06
;
3582 rc
= load_cpu_fw(bp
, &cpu_reg_com
, fw
);
3586 /* Initialize the Command Processor. */
3587 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
3588 fw
= &bnx2_cp_fw_09
;
3590 fw
= &bnx2_cp_fw_06
;
3593 rc
= load_cpu_fw(bp
, &cpu_reg_cp
, fw
);
3601 bnx2_set_power_state(struct bnx2
*bp
, pci_power_t state
)
3605 pci_read_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
3611 pci_write_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
,
3612 (pmcsr
& ~PCI_PM_CTRL_STATE_MASK
) |
3613 PCI_PM_CTRL_PME_STATUS
);
3615 if (pmcsr
& PCI_PM_CTRL_STATE_MASK
)
3616 /* delay required during transition out of D3hot */
3619 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
3620 val
|= BNX2_EMAC_MODE_MPKT_RCVD
| BNX2_EMAC_MODE_ACPI_RCVD
;
3621 val
&= ~BNX2_EMAC_MODE_MPKT
;
3622 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
3624 val
= REG_RD(bp
, BNX2_RPM_CONFIG
);
3625 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
3626 REG_WR(bp
, BNX2_RPM_CONFIG
, val
);
3637 autoneg
= bp
->autoneg
;
3638 advertising
= bp
->advertising
;
3640 if (bp
->phy_port
== PORT_TP
) {
3641 bp
->autoneg
= AUTONEG_SPEED
;
3642 bp
->advertising
= ADVERTISED_10baseT_Half
|
3643 ADVERTISED_10baseT_Full
|
3644 ADVERTISED_100baseT_Half
|
3645 ADVERTISED_100baseT_Full
|
3649 spin_lock_bh(&bp
->phy_lock
);
3650 bnx2_setup_phy(bp
, bp
->phy_port
);
3651 spin_unlock_bh(&bp
->phy_lock
);
3653 bp
->autoneg
= autoneg
;
3654 bp
->advertising
= advertising
;
3656 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
3658 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
3660 /* Enable port mode. */
3661 val
&= ~BNX2_EMAC_MODE_PORT
;
3662 val
|= BNX2_EMAC_MODE_MPKT_RCVD
|
3663 BNX2_EMAC_MODE_ACPI_RCVD
|
3664 BNX2_EMAC_MODE_MPKT
;
3665 if (bp
->phy_port
== PORT_TP
)
3666 val
|= BNX2_EMAC_MODE_PORT_MII
;
3668 val
|= BNX2_EMAC_MODE_PORT_GMII
;
3669 if (bp
->line_speed
== SPEED_2500
)
3670 val
|= BNX2_EMAC_MODE_25G_MODE
;
3673 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
3675 /* receive all multicast */
3676 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3677 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3680 REG_WR(bp
, BNX2_EMAC_RX_MODE
,
3681 BNX2_EMAC_RX_MODE_SORT_MODE
);
3683 val
= 1 | BNX2_RPM_SORT_USER0_BC_EN
|
3684 BNX2_RPM_SORT_USER0_MC_EN
;
3685 REG_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
3686 REG_WR(bp
, BNX2_RPM_SORT_USER0
, val
);
3687 REG_WR(bp
, BNX2_RPM_SORT_USER0
, val
|
3688 BNX2_RPM_SORT_USER0_ENA
);
3690 /* Need to enable EMAC and RPM for WOL. */
3691 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
3692 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE
|
3693 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE
|
3694 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE
);
3696 val
= REG_RD(bp
, BNX2_RPM_CONFIG
);
3697 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
3698 REG_WR(bp
, BNX2_RPM_CONFIG
, val
);
3700 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
3703 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
3706 if (!(bp
->flags
& BNX2_FLAG_NO_WOL
))
3707 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT3
| wol_msg
,
3710 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
3711 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
3712 (CHIP_ID(bp
) == CHIP_ID_5706_A1
)) {
3721 pmcsr
|= PCI_PM_CTRL_PME_ENABLE
;
3723 pci_write_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
,
3726 /* No more memory access after this point until
3727 * device is brought back to D0.
3739 bnx2_acquire_nvram_lock(struct bnx2
*bp
)
3744 /* Request access to the flash interface. */
3745 REG_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_SET2
);
3746 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3747 val
= REG_RD(bp
, BNX2_NVM_SW_ARB
);
3748 if (val
& BNX2_NVM_SW_ARB_ARB_ARB2
)
3754 if (j
>= NVRAM_TIMEOUT_COUNT
)
3761 bnx2_release_nvram_lock(struct bnx2
*bp
)
3766 /* Relinquish nvram interface. */
3767 REG_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_CLR2
);
3769 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3770 val
= REG_RD(bp
, BNX2_NVM_SW_ARB
);
3771 if (!(val
& BNX2_NVM_SW_ARB_ARB_ARB2
))
3777 if (j
>= NVRAM_TIMEOUT_COUNT
)
3785 bnx2_enable_nvram_write(struct bnx2
*bp
)
3789 val
= REG_RD(bp
, BNX2_MISC_CFG
);
3790 REG_WR(bp
, BNX2_MISC_CFG
, val
| BNX2_MISC_CFG_NVM_WR_EN_PCI
);
3792 if (bp
->flash_info
->flags
& BNX2_NV_WREN
) {
3795 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
3796 REG_WR(bp
, BNX2_NVM_COMMAND
,
3797 BNX2_NVM_COMMAND_WREN
| BNX2_NVM_COMMAND_DOIT
);
3799 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3802 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
3803 if (val
& BNX2_NVM_COMMAND_DONE
)
3807 if (j
>= NVRAM_TIMEOUT_COUNT
)
3814 bnx2_disable_nvram_write(struct bnx2
*bp
)
3818 val
= REG_RD(bp
, BNX2_MISC_CFG
);
3819 REG_WR(bp
, BNX2_MISC_CFG
, val
& ~BNX2_MISC_CFG_NVM_WR_EN
);
3824 bnx2_enable_nvram_access(struct bnx2
*bp
)
3828 val
= REG_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
3829 /* Enable both bits, even on read. */
3830 REG_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
3831 val
| BNX2_NVM_ACCESS_ENABLE_EN
| BNX2_NVM_ACCESS_ENABLE_WR_EN
);
3835 bnx2_disable_nvram_access(struct bnx2
*bp
)
3839 val
= REG_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
3840 /* Disable both bits, even after read. */
3841 REG_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
3842 val
& ~(BNX2_NVM_ACCESS_ENABLE_EN
|
3843 BNX2_NVM_ACCESS_ENABLE_WR_EN
));
3847 bnx2_nvram_erase_page(struct bnx2
*bp
, u32 offset
)
3852 if (bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)
3853 /* Buffered flash, no erase needed */
3856 /* Build an erase command */
3857 cmd
= BNX2_NVM_COMMAND_ERASE
| BNX2_NVM_COMMAND_WR
|
3858 BNX2_NVM_COMMAND_DOIT
;
3860 /* Need to clear DONE bit separately. */
3861 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
3863 /* Address of the NVRAM to read from. */
3864 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
3866 /* Issue an erase command. */
3867 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
3869 /* Wait for completion. */
3870 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3875 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
3876 if (val
& BNX2_NVM_COMMAND_DONE
)
3880 if (j
>= NVRAM_TIMEOUT_COUNT
)
3887 bnx2_nvram_read_dword(struct bnx2
*bp
, u32 offset
, u8
*ret_val
, u32 cmd_flags
)
3892 /* Build the command word. */
3893 cmd
= BNX2_NVM_COMMAND_DOIT
| cmd_flags
;
3895 /* Calculate an offset of a buffered flash, not needed for 5709. */
3896 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
3897 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
3898 bp
->flash_info
->page_bits
) +
3899 (offset
% bp
->flash_info
->page_size
);
3902 /* Need to clear DONE bit separately. */
3903 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
3905 /* Address of the NVRAM to read from. */
3906 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
3908 /* Issue a read command. */
3909 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
3911 /* Wait for completion. */
3912 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3917 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
3918 if (val
& BNX2_NVM_COMMAND_DONE
) {
3919 __be32 v
= cpu_to_be32(REG_RD(bp
, BNX2_NVM_READ
));
3920 memcpy(ret_val
, &v
, 4);
3924 if (j
>= NVRAM_TIMEOUT_COUNT
)
3932 bnx2_nvram_write_dword(struct bnx2
*bp
, u32 offset
, u8
*val
, u32 cmd_flags
)
3938 /* Build the command word. */
3939 cmd
= BNX2_NVM_COMMAND_DOIT
| BNX2_NVM_COMMAND_WR
| cmd_flags
;
3941 /* Calculate an offset of a buffered flash, not needed for 5709. */
3942 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
3943 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
3944 bp
->flash_info
->page_bits
) +
3945 (offset
% bp
->flash_info
->page_size
);
3948 /* Need to clear DONE bit separately. */
3949 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
3951 memcpy(&val32
, val
, 4);
3953 /* Write the data. */
3954 REG_WR(bp
, BNX2_NVM_WRITE
, be32_to_cpu(val32
));
3956 /* Address of the NVRAM to write to. */
3957 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
3959 /* Issue the write command. */
3960 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
3962 /* Wait for completion. */
3963 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3966 if (REG_RD(bp
, BNX2_NVM_COMMAND
) & BNX2_NVM_COMMAND_DONE
)
3969 if (j
>= NVRAM_TIMEOUT_COUNT
)
3976 bnx2_init_nvram(struct bnx2
*bp
)
3979 int j
, entry_count
, rc
= 0;
3980 struct flash_spec
*flash
;
3982 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
3983 bp
->flash_info
= &flash_5709
;
3984 goto get_flash_size
;
3987 /* Determine the selected interface. */
3988 val
= REG_RD(bp
, BNX2_NVM_CFG1
);
3990 entry_count
= ARRAY_SIZE(flash_table
);
3992 if (val
& 0x40000000) {
3994 /* Flash interface has been reconfigured */
3995 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
3997 if ((val
& FLASH_BACKUP_STRAP_MASK
) ==
3998 (flash
->config1
& FLASH_BACKUP_STRAP_MASK
)) {
3999 bp
->flash_info
= flash
;
4006 /* Not yet been reconfigured */
4008 if (val
& (1 << 23))
4009 mask
= FLASH_BACKUP_STRAP_MASK
;
4011 mask
= FLASH_STRAP_MASK
;
4013 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
4016 if ((val
& mask
) == (flash
->strapping
& mask
)) {
4017 bp
->flash_info
= flash
;
4019 /* Request access to the flash interface. */
4020 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4023 /* Enable access to flash interface */
4024 bnx2_enable_nvram_access(bp
);
4026 /* Reconfigure the flash interface */
4027 REG_WR(bp
, BNX2_NVM_CFG1
, flash
->config1
);
4028 REG_WR(bp
, BNX2_NVM_CFG2
, flash
->config2
);
4029 REG_WR(bp
, BNX2_NVM_CFG3
, flash
->config3
);
4030 REG_WR(bp
, BNX2_NVM_WRITE1
, flash
->write1
);
4032 /* Disable access to flash interface */
4033 bnx2_disable_nvram_access(bp
);
4034 bnx2_release_nvram_lock(bp
);
4039 } /* if (val & 0x40000000) */
4041 if (j
== entry_count
) {
4042 bp
->flash_info
= NULL
;
4043 printk(KERN_ALERT PFX
"Unknown flash/EEPROM type.\n");
4048 val
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG2
);
4049 val
&= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK
;
4051 bp
->flash_size
= val
;
4053 bp
->flash_size
= bp
->flash_info
->total_size
;
4059 bnx2_nvram_read(struct bnx2
*bp
, u32 offset
, u8
*ret_buf
,
4063 u32 cmd_flags
, offset32
, len32
, extra
;
4068 /* Request access to the flash interface. */
4069 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4072 /* Enable access to flash interface */
4073 bnx2_enable_nvram_access(bp
);
4086 pre_len
= 4 - (offset
& 3);
4088 if (pre_len
>= len32
) {
4090 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
4091 BNX2_NVM_COMMAND_LAST
;
4094 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4097 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4102 memcpy(ret_buf
, buf
+ (offset
& 3), pre_len
);
4109 extra
= 4 - (len32
& 3);
4110 len32
= (len32
+ 4) & ~3;
4117 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4119 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
4120 BNX2_NVM_COMMAND_LAST
;
4122 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4124 memcpy(ret_buf
, buf
, 4 - extra
);
4126 else if (len32
> 0) {
4129 /* Read the first word. */
4133 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4135 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, cmd_flags
);
4137 /* Advance to the next dword. */
4142 while (len32
> 4 && rc
== 0) {
4143 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, 0);
4145 /* Advance to the next dword. */
4154 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4155 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4157 memcpy(ret_buf
, buf
, 4 - extra
);
4160 /* Disable access to flash interface */
4161 bnx2_disable_nvram_access(bp
);
4163 bnx2_release_nvram_lock(bp
);
4169 bnx2_nvram_write(struct bnx2
*bp
, u32 offset
, u8
*data_buf
,
4172 u32 written
, offset32
, len32
;
4173 u8
*buf
, start
[4], end
[4], *align_buf
= NULL
, *flash_buffer
= NULL
;
4175 int align_start
, align_end
;
4180 align_start
= align_end
= 0;
4182 if ((align_start
= (offset32
& 3))) {
4184 len32
+= align_start
;
4187 if ((rc
= bnx2_nvram_read(bp
, offset32
, start
, 4)))
4192 align_end
= 4 - (len32
& 3);
4194 if ((rc
= bnx2_nvram_read(bp
, offset32
+ len32
- 4, end
, 4)))
4198 if (align_start
|| align_end
) {
4199 align_buf
= kmalloc(len32
, GFP_KERNEL
);
4200 if (align_buf
== NULL
)
4203 memcpy(align_buf
, start
, 4);
4206 memcpy(align_buf
+ len32
- 4, end
, 4);
4208 memcpy(align_buf
+ align_start
, data_buf
, buf_size
);
4212 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4213 flash_buffer
= kmalloc(264, GFP_KERNEL
);
4214 if (flash_buffer
== NULL
) {
4216 goto nvram_write_end
;
4221 while ((written
< len32
) && (rc
== 0)) {
4222 u32 page_start
, page_end
, data_start
, data_end
;
4223 u32 addr
, cmd_flags
;
4226 /* Find the page_start addr */
4227 page_start
= offset32
+ written
;
4228 page_start
-= (page_start
% bp
->flash_info
->page_size
);
4229 /* Find the page_end addr */
4230 page_end
= page_start
+ bp
->flash_info
->page_size
;
4231 /* Find the data_start addr */
4232 data_start
= (written
== 0) ? offset32
: page_start
;
4233 /* Find the data_end addr */
4234 data_end
= (page_end
> offset32
+ len32
) ?
4235 (offset32
+ len32
) : page_end
;
4237 /* Request access to the flash interface. */
4238 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4239 goto nvram_write_end
;
4241 /* Enable access to flash interface */
4242 bnx2_enable_nvram_access(bp
);
4244 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4245 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4248 /* Read the whole page into the buffer
4249 * (non-buffer flash only) */
4250 for (j
= 0; j
< bp
->flash_info
->page_size
; j
+= 4) {
4251 if (j
== (bp
->flash_info
->page_size
- 4)) {
4252 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4254 rc
= bnx2_nvram_read_dword(bp
,
4260 goto nvram_write_end
;
4266 /* Enable writes to flash interface (unlock write-protect) */
4267 if ((rc
= bnx2_enable_nvram_write(bp
)) != 0)
4268 goto nvram_write_end
;
4270 /* Loop to write back the buffer data from page_start to
4273 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4274 /* Erase the page */
4275 if ((rc
= bnx2_nvram_erase_page(bp
, page_start
)) != 0)
4276 goto nvram_write_end
;
4278 /* Re-enable the write again for the actual write */
4279 bnx2_enable_nvram_write(bp
);
4281 for (addr
= page_start
; addr
< data_start
;
4282 addr
+= 4, i
+= 4) {
4284 rc
= bnx2_nvram_write_dword(bp
, addr
,
4285 &flash_buffer
[i
], cmd_flags
);
4288 goto nvram_write_end
;
4294 /* Loop to write the new data from data_start to data_end */
4295 for (addr
= data_start
; addr
< data_end
; addr
+= 4, i
+= 4) {
4296 if ((addr
== page_end
- 4) ||
4297 ((bp
->flash_info
->flags
& BNX2_NV_BUFFERED
) &&
4298 (addr
== data_end
- 4))) {
4300 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4302 rc
= bnx2_nvram_write_dword(bp
, addr
, buf
,
4306 goto nvram_write_end
;
4312 /* Loop to write back the buffer data from data_end
4314 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4315 for (addr
= data_end
; addr
< page_end
;
4316 addr
+= 4, i
+= 4) {
4318 if (addr
== page_end
-4) {
4319 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4321 rc
= bnx2_nvram_write_dword(bp
, addr
,
4322 &flash_buffer
[i
], cmd_flags
);
4325 goto nvram_write_end
;
4331 /* Disable writes to flash interface (lock write-protect) */
4332 bnx2_disable_nvram_write(bp
);
4334 /* Disable access to flash interface */
4335 bnx2_disable_nvram_access(bp
);
4336 bnx2_release_nvram_lock(bp
);
4338 /* Increment written */
4339 written
+= data_end
- data_start
;
4343 kfree(flash_buffer
);
4349 bnx2_init_fw_cap(struct bnx2
*bp
)
4353 bp
->phy_flags
&= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4354 bp
->flags
&= ~BNX2_FLAG_CAN_KEEP_VLAN
;
4356 if (!(bp
->flags
& BNX2_FLAG_ASF_ENABLE
))
4357 bp
->flags
|= BNX2_FLAG_CAN_KEEP_VLAN
;
4359 val
= bnx2_shmem_rd(bp
, BNX2_FW_CAP_MB
);
4360 if ((val
& BNX2_FW_CAP_SIGNATURE_MASK
) != BNX2_FW_CAP_SIGNATURE
)
4363 if ((val
& BNX2_FW_CAP_CAN_KEEP_VLAN
) == BNX2_FW_CAP_CAN_KEEP_VLAN
) {
4364 bp
->flags
|= BNX2_FLAG_CAN_KEEP_VLAN
;
4365 sig
|= BNX2_DRV_ACK_CAP_SIGNATURE
| BNX2_FW_CAP_CAN_KEEP_VLAN
;
4368 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
4369 (val
& BNX2_FW_CAP_REMOTE_PHY_CAPABLE
)) {
4372 bp
->phy_flags
|= BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4374 link
= bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
);
4375 if (link
& BNX2_LINK_STATUS_SERDES_LINK
)
4376 bp
->phy_port
= PORT_FIBRE
;
4378 bp
->phy_port
= PORT_TP
;
4380 sig
|= BNX2_DRV_ACK_CAP_SIGNATURE
|
4381 BNX2_FW_CAP_REMOTE_PHY_CAPABLE
;
4384 if (netif_running(bp
->dev
) && sig
)
4385 bnx2_shmem_wr(bp
, BNX2_DRV_ACK_CAP_MB
, sig
);
4389 bnx2_setup_msix_tbl(struct bnx2
*bp
)
4391 REG_WR(bp
, BNX2_PCI_GRC_WINDOW_ADDR
, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN
);
4393 REG_WR(bp
, BNX2_PCI_GRC_WINDOW2_ADDR
, BNX2_MSIX_TABLE_ADDR
);
4394 REG_WR(bp
, BNX2_PCI_GRC_WINDOW3_ADDR
, BNX2_MSIX_PBA_ADDR
);
4398 bnx2_reset_chip(struct bnx2
*bp
, u32 reset_code
)
4404 /* Wait for the current PCI transaction to complete before
4405 * issuing a reset. */
4406 REG_WR(bp
, BNX2_MISC_ENABLE_CLR_BITS
,
4407 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE
|
4408 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE
|
4409 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE
|
4410 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE
);
4411 val
= REG_RD(bp
, BNX2_MISC_ENABLE_CLR_BITS
);
4414 /* Wait for the firmware to tell us it is ok to issue a reset. */
4415 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT0
| reset_code
, 1, 1);
4417 /* Deposit a driver reset signature so the firmware knows that
4418 * this is a soft reset. */
4419 bnx2_shmem_wr(bp
, BNX2_DRV_RESET_SIGNATURE
,
4420 BNX2_DRV_RESET_SIGNATURE_MAGIC
);
4422 /* Do a dummy read to force the chip to complete all current transaction
4423 * before we issue a reset. */
4424 val
= REG_RD(bp
, BNX2_MISC_ID
);
4426 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4427 REG_WR(bp
, BNX2_MISC_COMMAND
, BNX2_MISC_COMMAND_SW_RESET
);
4428 REG_RD(bp
, BNX2_MISC_COMMAND
);
4431 val
= BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4432 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4434 pci_write_config_dword(bp
->pdev
, BNX2_PCICFG_MISC_CONFIG
, val
);
4437 val
= BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4438 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4439 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4442 REG_WR(bp
, BNX2_PCICFG_MISC_CONFIG
, val
);
4444 /* Reading back any register after chip reset will hang the
4445 * bus on 5706 A0 and A1. The msleep below provides plenty
4446 * of margin for write posting.
4448 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
4449 (CHIP_ID(bp
) == CHIP_ID_5706_A1
))
4452 /* Reset takes approximate 30 usec */
4453 for (i
= 0; i
< 10; i
++) {
4454 val
= REG_RD(bp
, BNX2_PCICFG_MISC_CONFIG
);
4455 if ((val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4456 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) == 0)
4461 if (val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4462 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) {
4463 printk(KERN_ERR PFX
"Chip reset did not complete\n");
4468 /* Make sure byte swapping is properly configured. */
4469 val
= REG_RD(bp
, BNX2_PCI_SWAP_DIAG0
);
4470 if (val
!= 0x01020304) {
4471 printk(KERN_ERR PFX
"Chip not in correct endian mode\n");
4475 /* Wait for the firmware to finish its initialization. */
4476 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT1
| reset_code
, 1, 0);
4480 spin_lock_bh(&bp
->phy_lock
);
4481 old_port
= bp
->phy_port
;
4482 bnx2_init_fw_cap(bp
);
4483 if ((bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) &&
4484 old_port
!= bp
->phy_port
)
4485 bnx2_set_default_remote_link(bp
);
4486 spin_unlock_bh(&bp
->phy_lock
);
4488 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
4489 /* Adjust the voltage regular to two steps lower. The default
4490 * of this register is 0x0000000e. */
4491 REG_WR(bp
, BNX2_MISC_VREG_CONTROL
, 0x000000fa);
4493 /* Remove bad rbuf memory from the free pool. */
4494 rc
= bnx2_alloc_bad_rbuf(bp
);
4497 if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
4498 bnx2_setup_msix_tbl(bp
);
4504 bnx2_init_chip(struct bnx2
*bp
)
4509 /* Make sure the interrupt is not active. */
4510 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
4512 val
= BNX2_DMA_CONFIG_DATA_BYTE_SWAP
|
4513 BNX2_DMA_CONFIG_DATA_WORD_SWAP
|
4515 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP
|
4517 BNX2_DMA_CONFIG_CNTL_WORD_SWAP
|
4518 DMA_READ_CHANS
<< 12 |
4519 DMA_WRITE_CHANS
<< 16;
4521 val
|= (0x2 << 20) | (1 << 11);
4523 if ((bp
->flags
& BNX2_FLAG_PCIX
) && (bp
->bus_speed_mhz
== 133))
4526 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) &&
4527 (CHIP_ID(bp
) != CHIP_ID_5706_A0
) && !(bp
->flags
& BNX2_FLAG_PCIX
))
4528 val
|= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA
;
4530 REG_WR(bp
, BNX2_DMA_CONFIG
, val
);
4532 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
4533 val
= REG_RD(bp
, BNX2_TDMA_CONFIG
);
4534 val
|= BNX2_TDMA_CONFIG_ONE_DMA
;
4535 REG_WR(bp
, BNX2_TDMA_CONFIG
, val
);
4538 if (bp
->flags
& BNX2_FLAG_PCIX
) {
4541 pci_read_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4543 pci_write_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4544 val16
& ~PCI_X_CMD_ERO
);
4547 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
4548 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE
|
4549 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE
|
4550 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE
);
4552 /* Initialize context mapping and zero out the quick contexts. The
4553 * context block must have already been enabled. */
4554 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4555 rc
= bnx2_init_5709_context(bp
);
4559 bnx2_init_context(bp
);
4561 if ((rc
= bnx2_init_cpus(bp
)) != 0)
4564 bnx2_init_nvram(bp
);
4566 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
4568 val
= REG_RD(bp
, BNX2_MQ_CONFIG
);
4569 val
&= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE
;
4570 val
|= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256
;
4571 if (CHIP_ID(bp
) == CHIP_ID_5709_A0
|| CHIP_ID(bp
) == CHIP_ID_5709_A1
)
4572 val
|= BNX2_MQ_CONFIG_HALT_DIS
;
4574 REG_WR(bp
, BNX2_MQ_CONFIG
, val
);
4576 val
= 0x10000 + (MAX_CID_CNT
* MB_KERNEL_CTX_SIZE
);
4577 REG_WR(bp
, BNX2_MQ_KNL_BYP_WIND_START
, val
);
4578 REG_WR(bp
, BNX2_MQ_KNL_WIND_END
, val
);
4580 val
= (BCM_PAGE_BITS
- 8) << 24;
4581 REG_WR(bp
, BNX2_RV2P_CONFIG
, val
);
4583 /* Configure page size. */
4584 val
= REG_RD(bp
, BNX2_TBDR_CONFIG
);
4585 val
&= ~BNX2_TBDR_CONFIG_PAGE_SIZE
;
4586 val
|= (BCM_PAGE_BITS
- 8) << 24 | 0x40;
4587 REG_WR(bp
, BNX2_TBDR_CONFIG
, val
);
4589 val
= bp
->mac_addr
[0] +
4590 (bp
->mac_addr
[1] << 8) +
4591 (bp
->mac_addr
[2] << 16) +
4593 (bp
->mac_addr
[4] << 8) +
4594 (bp
->mac_addr
[5] << 16);
4595 REG_WR(bp
, BNX2_EMAC_BACKOFF_SEED
, val
);
4597 /* Program the MTU. Also include 4 bytes for CRC32. */
4599 val
= mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
4600 if (val
> (MAX_ETHERNET_PACKET_SIZE
+ 4))
4601 val
|= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA
;
4602 REG_WR(bp
, BNX2_EMAC_RX_MTU_SIZE
, val
);
4607 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG
, BNX2_RBUF_CONFIG_VAL(mtu
));
4608 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG2
, BNX2_RBUF_CONFIG2_VAL(mtu
));
4609 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG3
, BNX2_RBUF_CONFIG3_VAL(mtu
));
4611 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++)
4612 bp
->bnx2_napi
[i
].last_status_idx
= 0;
4614 bp
->idle_chk_status_idx
= 0xffff;
4616 bp
->rx_mode
= BNX2_EMAC_RX_MODE_SORT_MODE
;
4618 /* Set up how to generate a link change interrupt. */
4619 REG_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
4621 REG_WR(bp
, BNX2_HC_STATUS_ADDR_L
,
4622 (u64
) bp
->status_blk_mapping
& 0xffffffff);
4623 REG_WR(bp
, BNX2_HC_STATUS_ADDR_H
, (u64
) bp
->status_blk_mapping
>> 32);
4625 REG_WR(bp
, BNX2_HC_STATISTICS_ADDR_L
,
4626 (u64
) bp
->stats_blk_mapping
& 0xffffffff);
4627 REG_WR(bp
, BNX2_HC_STATISTICS_ADDR_H
,
4628 (u64
) bp
->stats_blk_mapping
>> 32);
4630 REG_WR(bp
, BNX2_HC_TX_QUICK_CONS_TRIP
,
4631 (bp
->tx_quick_cons_trip_int
<< 16) | bp
->tx_quick_cons_trip
);
4633 REG_WR(bp
, BNX2_HC_RX_QUICK_CONS_TRIP
,
4634 (bp
->rx_quick_cons_trip_int
<< 16) | bp
->rx_quick_cons_trip
);
4636 REG_WR(bp
, BNX2_HC_COMP_PROD_TRIP
,
4637 (bp
->comp_prod_trip_int
<< 16) | bp
->comp_prod_trip
);
4639 REG_WR(bp
, BNX2_HC_TX_TICKS
, (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
4641 REG_WR(bp
, BNX2_HC_RX_TICKS
, (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
4643 REG_WR(bp
, BNX2_HC_COM_TICKS
,
4644 (bp
->com_ticks_int
<< 16) | bp
->com_ticks
);
4646 REG_WR(bp
, BNX2_HC_CMD_TICKS
,
4647 (bp
->cmd_ticks_int
<< 16) | bp
->cmd_ticks
);
4649 if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
4650 REG_WR(bp
, BNX2_HC_STATS_TICKS
, 0);
4652 REG_WR(bp
, BNX2_HC_STATS_TICKS
, bp
->stats_ticks
);
4653 REG_WR(bp
, BNX2_HC_STAT_COLLECT_TICKS
, 0xbb8); /* 3ms */
4655 if (CHIP_ID(bp
) == CHIP_ID_5706_A1
)
4656 val
= BNX2_HC_CONFIG_COLLECT_STATS
;
4658 val
= BNX2_HC_CONFIG_RX_TMR_MODE
| BNX2_HC_CONFIG_TX_TMR_MODE
|
4659 BNX2_HC_CONFIG_COLLECT_STATS
;
4662 if (bp
->irq_nvecs
> 1) {
4663 REG_WR(bp
, BNX2_HC_MSIX_BIT_VECTOR
,
4664 BNX2_HC_MSIX_BIT_VECTOR_VAL
);
4666 val
|= BNX2_HC_CONFIG_SB_ADDR_INC_128B
;
4669 if (bp
->flags
& BNX2_FLAG_ONE_SHOT_MSI
)
4670 val
|= BNX2_HC_CONFIG_ONE_SHOT
;
4672 REG_WR(bp
, BNX2_HC_CONFIG
, val
);
4674 for (i
= 1; i
< bp
->irq_nvecs
; i
++) {
4675 u32 base
= ((i
- 1) * BNX2_HC_SB_CONFIG_SIZE
) +
4676 BNX2_HC_SB_CONFIG_1
;
4679 BNX2_HC_SB_CONFIG_1_TX_TMR_MODE
|
4680 BNX2_HC_SB_CONFIG_1_RX_TMR_MODE
|
4681 BNX2_HC_SB_CONFIG_1_ONE_SHOT
);
4683 REG_WR(bp
, base
+ BNX2_HC_TX_QUICK_CONS_TRIP_OFF
,
4684 (bp
->tx_quick_cons_trip_int
<< 16) |
4685 bp
->tx_quick_cons_trip
);
4687 REG_WR(bp
, base
+ BNX2_HC_TX_TICKS_OFF
,
4688 (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
4690 REG_WR(bp
, base
+ BNX2_HC_RX_QUICK_CONS_TRIP_OFF
,
4691 (bp
->rx_quick_cons_trip_int
<< 16) |
4692 bp
->rx_quick_cons_trip
);
4694 REG_WR(bp
, base
+ BNX2_HC_RX_TICKS_OFF
,
4695 (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
4698 /* Clear internal stats counters. */
4699 REG_WR(bp
, BNX2_HC_COMMAND
, BNX2_HC_COMMAND_CLR_STAT_NOW
);
4701 REG_WR(bp
, BNX2_HC_ATTN_BITS_ENABLE
, STATUS_ATTN_EVENTS
);
4703 /* Initialize the receive filter. */
4704 bnx2_set_rx_mode(bp
->dev
);
4706 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4707 val
= REG_RD(bp
, BNX2_MISC_NEW_CORE_CTL
);
4708 val
|= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE
;
4709 REG_WR(bp
, BNX2_MISC_NEW_CORE_CTL
, val
);
4711 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT2
| BNX2_DRV_MSG_CODE_RESET
,
4714 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
, BNX2_MISC_ENABLE_DEFAULT
);
4715 REG_RD(bp
, BNX2_MISC_ENABLE_SET_BITS
);
4719 bp
->hc_cmd
= REG_RD(bp
, BNX2_HC_COMMAND
);
4725 bnx2_clear_ring_states(struct bnx2
*bp
)
4727 struct bnx2_napi
*bnapi
;
4728 struct bnx2_tx_ring_info
*txr
;
4729 struct bnx2_rx_ring_info
*rxr
;
4732 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
4733 bnapi
= &bp
->bnx2_napi
[i
];
4734 txr
= &bnapi
->tx_ring
;
4735 rxr
= &bnapi
->rx_ring
;
4738 txr
->hw_tx_cons
= 0;
4739 rxr
->rx_prod_bseq
= 0;
4742 rxr
->rx_pg_prod
= 0;
4743 rxr
->rx_pg_cons
= 0;
4748 bnx2_init_tx_context(struct bnx2
*bp
, u32 cid
, struct bnx2_tx_ring_info
*txr
)
4750 u32 val
, offset0
, offset1
, offset2
, offset3
;
4751 u32 cid_addr
= GET_CID_ADDR(cid
);
4753 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4754 offset0
= BNX2_L2CTX_TYPE_XI
;
4755 offset1
= BNX2_L2CTX_CMD_TYPE_XI
;
4756 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI_XI
;
4757 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO_XI
;
4759 offset0
= BNX2_L2CTX_TYPE
;
4760 offset1
= BNX2_L2CTX_CMD_TYPE
;
4761 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI
;
4762 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO
;
4764 val
= BNX2_L2CTX_TYPE_TYPE_L2
| BNX2_L2CTX_TYPE_SIZE_L2
;
4765 bnx2_ctx_wr(bp
, cid_addr
, offset0
, val
);
4767 val
= BNX2_L2CTX_CMD_TYPE_TYPE_L2
| (8 << 16);
4768 bnx2_ctx_wr(bp
, cid_addr
, offset1
, val
);
4770 val
= (u64
) txr
->tx_desc_mapping
>> 32;
4771 bnx2_ctx_wr(bp
, cid_addr
, offset2
, val
);
4773 val
= (u64
) txr
->tx_desc_mapping
& 0xffffffff;
4774 bnx2_ctx_wr(bp
, cid_addr
, offset3
, val
);
4778 bnx2_init_tx_ring(struct bnx2
*bp
, int ring_num
)
4782 struct bnx2_napi
*bnapi
;
4783 struct bnx2_tx_ring_info
*txr
;
4785 bnapi
= &bp
->bnx2_napi
[ring_num
];
4786 txr
= &bnapi
->tx_ring
;
4791 cid
= TX_TSS_CID
+ ring_num
- 1;
4793 bp
->tx_wake_thresh
= bp
->tx_ring_size
/ 2;
4795 txbd
= &txr
->tx_desc_ring
[MAX_TX_DESC_CNT
];
4797 txbd
->tx_bd_haddr_hi
= (u64
) txr
->tx_desc_mapping
>> 32;
4798 txbd
->tx_bd_haddr_lo
= (u64
) txr
->tx_desc_mapping
& 0xffffffff;
4801 txr
->tx_prod_bseq
= 0;
4803 txr
->tx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BIDX
;
4804 txr
->tx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BSEQ
;
4806 bnx2_init_tx_context(bp
, cid
, txr
);
4810 bnx2_init_rxbd_rings(struct rx_bd
*rx_ring
[], dma_addr_t dma
[], u32 buf_size
,
4816 for (i
= 0; i
< num_rings
; i
++) {
4819 rxbd
= &rx_ring
[i
][0];
4820 for (j
= 0; j
< MAX_RX_DESC_CNT
; j
++, rxbd
++) {
4821 rxbd
->rx_bd_len
= buf_size
;
4822 rxbd
->rx_bd_flags
= RX_BD_FLAGS_START
| RX_BD_FLAGS_END
;
4824 if (i
== (num_rings
- 1))
4828 rxbd
->rx_bd_haddr_hi
= (u64
) dma
[j
] >> 32;
4829 rxbd
->rx_bd_haddr_lo
= (u64
) dma
[j
] & 0xffffffff;
4834 bnx2_init_rx_ring(struct bnx2
*bp
, int ring_num
)
4837 u16 prod
, ring_prod
;
4838 u32 cid
, rx_cid_addr
, val
;
4839 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[ring_num
];
4840 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
4845 cid
= RX_RSS_CID
+ ring_num
- 1;
4847 rx_cid_addr
= GET_CID_ADDR(cid
);
4849 bnx2_init_rxbd_rings(rxr
->rx_desc_ring
, rxr
->rx_desc_mapping
,
4850 bp
->rx_buf_use_size
, bp
->rx_max_ring
);
4852 bnx2_init_rx_context(bp
, cid
);
4854 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4855 val
= REG_RD(bp
, BNX2_MQ_MAP_L2_5
);
4856 REG_WR(bp
, BNX2_MQ_MAP_L2_5
, val
| BNX2_MQ_MAP_L2_5_ARM
);
4859 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, 0);
4860 if (bp
->rx_pg_ring_size
) {
4861 bnx2_init_rxbd_rings(rxr
->rx_pg_desc_ring
,
4862 rxr
->rx_pg_desc_mapping
,
4863 PAGE_SIZE
, bp
->rx_max_pg_ring
);
4864 val
= (bp
->rx_buf_use_size
<< 16) | PAGE_SIZE
;
4865 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, val
);
4866 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_RBDC_KEY
,
4867 BNX2_L2CTX_RBDC_JUMBO_KEY
- ring_num
);
4869 val
= (u64
) rxr
->rx_pg_desc_mapping
[0] >> 32;
4870 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_HI
, val
);
4872 val
= (u64
) rxr
->rx_pg_desc_mapping
[0] & 0xffffffff;
4873 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_LO
, val
);
4875 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
4876 REG_WR(bp
, BNX2_MQ_MAP_L2_3
, BNX2_MQ_MAP_L2_3_DEFAULT
);
4879 val
= (u64
) rxr
->rx_desc_mapping
[0] >> 32;
4880 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_HI
, val
);
4882 val
= (u64
) rxr
->rx_desc_mapping
[0] & 0xffffffff;
4883 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_LO
, val
);
4885 ring_prod
= prod
= rxr
->rx_pg_prod
;
4886 for (i
= 0; i
< bp
->rx_pg_ring_size
; i
++) {
4887 if (bnx2_alloc_rx_page(bp
, rxr
, ring_prod
) < 0)
4889 prod
= NEXT_RX_BD(prod
);
4890 ring_prod
= RX_PG_RING_IDX(prod
);
4892 rxr
->rx_pg_prod
= prod
;
4894 ring_prod
= prod
= rxr
->rx_prod
;
4895 for (i
= 0; i
< bp
->rx_ring_size
; i
++) {
4896 if (bnx2_alloc_rx_skb(bp
, rxr
, ring_prod
) < 0)
4898 prod
= NEXT_RX_BD(prod
);
4899 ring_prod
= RX_RING_IDX(prod
);
4901 rxr
->rx_prod
= prod
;
4903 rxr
->rx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_BDIDX
;
4904 rxr
->rx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_BSEQ
;
4905 rxr
->rx_pg_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_PG_BDIDX
;
4907 REG_WR16(bp
, rxr
->rx_pg_bidx_addr
, rxr
->rx_pg_prod
);
4908 REG_WR16(bp
, rxr
->rx_bidx_addr
, prod
);
4910 REG_WR(bp
, rxr
->rx_bseq_addr
, rxr
->rx_prod_bseq
);
4914 bnx2_init_all_rings(struct bnx2
*bp
)
4919 bnx2_clear_ring_states(bp
);
4921 REG_WR(bp
, BNX2_TSCH_TSS_CFG
, 0);
4922 for (i
= 0; i
< bp
->num_tx_rings
; i
++)
4923 bnx2_init_tx_ring(bp
, i
);
4925 if (bp
->num_tx_rings
> 1)
4926 REG_WR(bp
, BNX2_TSCH_TSS_CFG
, ((bp
->num_tx_rings
- 1) << 24) |
4929 REG_WR(bp
, BNX2_RLUP_RSS_CONFIG
, 0);
4930 bnx2_reg_wr_ind(bp
, BNX2_RXP_SCRATCH_RSS_TBL_SZ
, 0);
4932 for (i
= 0; i
< bp
->num_rx_rings
; i
++)
4933 bnx2_init_rx_ring(bp
, i
);
4935 if (bp
->num_rx_rings
> 1) {
4937 u8
*tbl
= (u8
*) &tbl_32
;
4939 bnx2_reg_wr_ind(bp
, BNX2_RXP_SCRATCH_RSS_TBL_SZ
,
4940 BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES
);
4942 for (i
= 0; i
< BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES
; i
++) {
4943 tbl
[i
% 4] = i
% (bp
->num_rx_rings
- 1);
4946 BNX2_RXP_SCRATCH_RSS_TBL
+ i
,
4947 cpu_to_be32(tbl_32
));
4950 val
= BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI
|
4951 BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI
;
4953 REG_WR(bp
, BNX2_RLUP_RSS_CONFIG
, val
);
4958 static u32
bnx2_find_max_ring(u32 ring_size
, u32 max_size
)
4960 u32 max
, num_rings
= 1;
4962 while (ring_size
> MAX_RX_DESC_CNT
) {
4963 ring_size
-= MAX_RX_DESC_CNT
;
4966 /* round to next power of 2 */
4968 while ((max
& num_rings
) == 0)
4971 if (num_rings
!= max
)
4978 bnx2_set_rx_ring_size(struct bnx2
*bp
, u32 size
)
4980 u32 rx_size
, rx_space
, jumbo_size
;
4982 /* 8 for CRC and VLAN */
4983 rx_size
= bp
->dev
->mtu
+ ETH_HLEN
+ BNX2_RX_OFFSET
+ 8;
4985 rx_space
= SKB_DATA_ALIGN(rx_size
+ BNX2_RX_ALIGN
) + NET_SKB_PAD
+
4986 sizeof(struct skb_shared_info
);
4988 bp
->rx_copy_thresh
= BNX2_RX_COPY_THRESH
;
4989 bp
->rx_pg_ring_size
= 0;
4990 bp
->rx_max_pg_ring
= 0;
4991 bp
->rx_max_pg_ring_idx
= 0;
4992 if ((rx_space
> PAGE_SIZE
) && !(bp
->flags
& BNX2_FLAG_JUMBO_BROKEN
)) {
4993 int pages
= PAGE_ALIGN(bp
->dev
->mtu
- 40) >> PAGE_SHIFT
;
4995 jumbo_size
= size
* pages
;
4996 if (jumbo_size
> MAX_TOTAL_RX_PG_DESC_CNT
)
4997 jumbo_size
= MAX_TOTAL_RX_PG_DESC_CNT
;
4999 bp
->rx_pg_ring_size
= jumbo_size
;
5000 bp
->rx_max_pg_ring
= bnx2_find_max_ring(jumbo_size
,
5002 bp
->rx_max_pg_ring_idx
= (bp
->rx_max_pg_ring
* RX_DESC_CNT
) - 1;
5003 rx_size
= BNX2_RX_COPY_THRESH
+ BNX2_RX_OFFSET
;
5004 bp
->rx_copy_thresh
= 0;
5007 bp
->rx_buf_use_size
= rx_size
;
5009 bp
->rx_buf_size
= bp
->rx_buf_use_size
+ BNX2_RX_ALIGN
;
5010 bp
->rx_jumbo_thresh
= rx_size
- BNX2_RX_OFFSET
;
5011 bp
->rx_ring_size
= size
;
5012 bp
->rx_max_ring
= bnx2_find_max_ring(size
, MAX_RX_RINGS
);
5013 bp
->rx_max_ring_idx
= (bp
->rx_max_ring
* RX_DESC_CNT
) - 1;
5017 bnx2_free_tx_skbs(struct bnx2
*bp
)
5021 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
5022 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
5023 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
5026 if (txr
->tx_buf_ring
== NULL
)
5029 for (j
= 0; j
< TX_DESC_CNT
; ) {
5030 struct sw_tx_bd
*tx_buf
= &txr
->tx_buf_ring
[j
];
5031 struct sk_buff
*skb
= tx_buf
->skb
;
5038 skb_dma_unmap(&bp
->pdev
->dev
, skb
, DMA_TO_DEVICE
);
5042 j
+= skb_shinfo(skb
)->nr_frags
+ 1;
5049 bnx2_free_rx_skbs(struct bnx2
*bp
)
5053 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
5054 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
5055 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5058 if (rxr
->rx_buf_ring
== NULL
)
5061 for (j
= 0; j
< bp
->rx_max_ring_idx
; j
++) {
5062 struct sw_bd
*rx_buf
= &rxr
->rx_buf_ring
[j
];
5063 struct sk_buff
*skb
= rx_buf
->skb
;
5068 pci_unmap_single(bp
->pdev
,
5069 pci_unmap_addr(rx_buf
, mapping
),
5070 bp
->rx_buf_use_size
,
5071 PCI_DMA_FROMDEVICE
);
5077 for (j
= 0; j
< bp
->rx_max_pg_ring_idx
; j
++)
5078 bnx2_free_rx_page(bp
, rxr
, j
);
5083 bnx2_free_skbs(struct bnx2
*bp
)
5085 bnx2_free_tx_skbs(bp
);
5086 bnx2_free_rx_skbs(bp
);
5090 bnx2_reset_nic(struct bnx2
*bp
, u32 reset_code
)
5094 rc
= bnx2_reset_chip(bp
, reset_code
);
5099 if ((rc
= bnx2_init_chip(bp
)) != 0)
5102 bnx2_init_all_rings(bp
);
5107 bnx2_init_nic(struct bnx2
*bp
, int reset_phy
)
5111 if ((rc
= bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
)) != 0)
5114 spin_lock_bh(&bp
->phy_lock
);
5115 bnx2_init_phy(bp
, reset_phy
);
5117 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5118 bnx2_remote_phy_event(bp
);
5119 spin_unlock_bh(&bp
->phy_lock
);
5124 bnx2_shutdown_chip(struct bnx2
*bp
)
5128 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
5129 reset_code
= BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN
;
5131 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
5133 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
5135 return bnx2_reset_chip(bp
, reset_code
);
5139 bnx2_test_registers(struct bnx2
*bp
)
5143 static const struct {
5146 #define BNX2_FL_NOT_5709 1
5150 { 0x006c, 0, 0x00000000, 0x0000003f },
5151 { 0x0090, 0, 0xffffffff, 0x00000000 },
5152 { 0x0094, 0, 0x00000000, 0x00000000 },
5154 { 0x0404, BNX2_FL_NOT_5709
, 0x00003f00, 0x00000000 },
5155 { 0x0418, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5156 { 0x041c, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5157 { 0x0420, BNX2_FL_NOT_5709
, 0x00000000, 0x80ffffff },
5158 { 0x0424, BNX2_FL_NOT_5709
, 0x00000000, 0x00000000 },
5159 { 0x0428, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
5160 { 0x0450, BNX2_FL_NOT_5709
, 0x00000000, 0x0000ffff },
5161 { 0x0454, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5162 { 0x0458, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5164 { 0x0808, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5165 { 0x0854, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5166 { 0x0868, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5167 { 0x086c, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5168 { 0x0870, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5169 { 0x0874, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5171 { 0x0c00, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
5172 { 0x0c04, BNX2_FL_NOT_5709
, 0x00000000, 0x03ff0001 },
5173 { 0x0c08, BNX2_FL_NOT_5709
, 0x0f0ff073, 0x00000000 },
5175 { 0x1000, 0, 0x00000000, 0x00000001 },
5176 { 0x1004, BNX2_FL_NOT_5709
, 0x00000000, 0x000f0001 },
5178 { 0x1408, 0, 0x01c00800, 0x00000000 },
5179 { 0x149c, 0, 0x8000ffff, 0x00000000 },
5180 { 0x14a8, 0, 0x00000000, 0x000001ff },
5181 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
5182 { 0x14b0, 0, 0x00000002, 0x00000001 },
5183 { 0x14b8, 0, 0x00000000, 0x00000000 },
5184 { 0x14c0, 0, 0x00000000, 0x00000009 },
5185 { 0x14c4, 0, 0x00003fff, 0x00000000 },
5186 { 0x14cc, 0, 0x00000000, 0x00000001 },
5187 { 0x14d0, 0, 0xffffffff, 0x00000000 },
5189 { 0x1800, 0, 0x00000000, 0x00000001 },
5190 { 0x1804, 0, 0x00000000, 0x00000003 },
5192 { 0x2800, 0, 0x00000000, 0x00000001 },
5193 { 0x2804, 0, 0x00000000, 0x00003f01 },
5194 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
5195 { 0x2810, 0, 0xffff0000, 0x00000000 },
5196 { 0x2814, 0, 0xffff0000, 0x00000000 },
5197 { 0x2818, 0, 0xffff0000, 0x00000000 },
5198 { 0x281c, 0, 0xffff0000, 0x00000000 },
5199 { 0x2834, 0, 0xffffffff, 0x00000000 },
5200 { 0x2840, 0, 0x00000000, 0xffffffff },
5201 { 0x2844, 0, 0x00000000, 0xffffffff },
5202 { 0x2848, 0, 0xffffffff, 0x00000000 },
5203 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
5205 { 0x2c00, 0, 0x00000000, 0x00000011 },
5206 { 0x2c04, 0, 0x00000000, 0x00030007 },
5208 { 0x3c00, 0, 0x00000000, 0x00000001 },
5209 { 0x3c04, 0, 0x00000000, 0x00070000 },
5210 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
5211 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
5212 { 0x3c10, 0, 0xffffffff, 0x00000000 },
5213 { 0x3c14, 0, 0x00000000, 0xffffffff },
5214 { 0x3c18, 0, 0x00000000, 0xffffffff },
5215 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
5216 { 0x3c20, 0, 0xffffff00, 0x00000000 },
5218 { 0x5004, 0, 0x00000000, 0x0000007f },
5219 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
5221 { 0x5c00, 0, 0x00000000, 0x00000001 },
5222 { 0x5c04, 0, 0x00000000, 0x0003000f },
5223 { 0x5c08, 0, 0x00000003, 0x00000000 },
5224 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
5225 { 0x5c10, 0, 0x00000000, 0xffffffff },
5226 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
5227 { 0x5c84, 0, 0x00000000, 0x0000f333 },
5228 { 0x5c88, 0, 0x00000000, 0x00077373 },
5229 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
5231 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
5232 { 0x680c, 0, 0xffffffff, 0x00000000 },
5233 { 0x6810, 0, 0xffffffff, 0x00000000 },
5234 { 0x6814, 0, 0xffffffff, 0x00000000 },
5235 { 0x6818, 0, 0xffffffff, 0x00000000 },
5236 { 0x681c, 0, 0xffffffff, 0x00000000 },
5237 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
5238 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
5239 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
5240 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
5241 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
5242 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
5243 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
5244 { 0x683c, 0, 0x0000ffff, 0x00000000 },
5245 { 0x6840, 0, 0x00000ff0, 0x00000000 },
5246 { 0x6844, 0, 0x00ffff00, 0x00000000 },
5247 { 0x684c, 0, 0xffffffff, 0x00000000 },
5248 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
5249 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
5250 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
5251 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
5252 { 0x6908, 0, 0x00000000, 0x0001ff0f },
5253 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
5255 { 0xffff, 0, 0x00000000, 0x00000000 },
5260 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5263 for (i
= 0; reg_tbl
[i
].offset
!= 0xffff; i
++) {
5264 u32 offset
, rw_mask
, ro_mask
, save_val
, val
;
5265 u16 flags
= reg_tbl
[i
].flags
;
5267 if (is_5709
&& (flags
& BNX2_FL_NOT_5709
))
5270 offset
= (u32
) reg_tbl
[i
].offset
;
5271 rw_mask
= reg_tbl
[i
].rw_mask
;
5272 ro_mask
= reg_tbl
[i
].ro_mask
;
5274 save_val
= readl(bp
->regview
+ offset
);
5276 writel(0, bp
->regview
+ offset
);
5278 val
= readl(bp
->regview
+ offset
);
5279 if ((val
& rw_mask
) != 0) {
5283 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
5287 writel(0xffffffff, bp
->regview
+ offset
);
5289 val
= readl(bp
->regview
+ offset
);
5290 if ((val
& rw_mask
) != rw_mask
) {
5294 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
5298 writel(save_val
, bp
->regview
+ offset
);
5302 writel(save_val
, bp
->regview
+ offset
);
5310 bnx2_do_mem_test(struct bnx2
*bp
, u32 start
, u32 size
)
5312 static const u32 test_pattern
[] = { 0x00000000, 0xffffffff, 0x55555555,
5313 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
5316 for (i
= 0; i
< sizeof(test_pattern
) / 4; i
++) {
5319 for (offset
= 0; offset
< size
; offset
+= 4) {
5321 bnx2_reg_wr_ind(bp
, start
+ offset
, test_pattern
[i
]);
5323 if (bnx2_reg_rd_ind(bp
, start
+ offset
) !=
5333 bnx2_test_memory(struct bnx2
*bp
)
5337 static struct mem_entry
{
5340 } mem_tbl_5706
[] = {
5341 { 0x60000, 0x4000 },
5342 { 0xa0000, 0x3000 },
5343 { 0xe0000, 0x4000 },
5344 { 0x120000, 0x4000 },
5345 { 0x1a0000, 0x4000 },
5346 { 0x160000, 0x4000 },
5350 { 0x60000, 0x4000 },
5351 { 0xa0000, 0x3000 },
5352 { 0xe0000, 0x4000 },
5353 { 0x120000, 0x4000 },
5354 { 0x1a0000, 0x4000 },
5357 struct mem_entry
*mem_tbl
;
5359 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5360 mem_tbl
= mem_tbl_5709
;
5362 mem_tbl
= mem_tbl_5706
;
5364 for (i
= 0; mem_tbl
[i
].offset
!= 0xffffffff; i
++) {
5365 if ((ret
= bnx2_do_mem_test(bp
, mem_tbl
[i
].offset
,
5366 mem_tbl
[i
].len
)) != 0) {
5374 #define BNX2_MAC_LOOPBACK 0
5375 #define BNX2_PHY_LOOPBACK 1
5378 bnx2_run_loopback(struct bnx2
*bp
, int loopback_mode
)
5380 unsigned int pkt_size
, num_pkts
, i
;
5381 struct sk_buff
*skb
, *rx_skb
;
5382 unsigned char *packet
;
5383 u16 rx_start_idx
, rx_idx
;
5386 struct sw_bd
*rx_buf
;
5387 struct l2_fhdr
*rx_hdr
;
5389 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0], *tx_napi
;
5390 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
5391 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5395 txr
= &tx_napi
->tx_ring
;
5396 rxr
= &bnapi
->rx_ring
;
5397 if (loopback_mode
== BNX2_MAC_LOOPBACK
) {
5398 bp
->loopback
= MAC_LOOPBACK
;
5399 bnx2_set_mac_loopback(bp
);
5401 else if (loopback_mode
== BNX2_PHY_LOOPBACK
) {
5402 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5405 bp
->loopback
= PHY_LOOPBACK
;
5406 bnx2_set_phy_loopback(bp
);
5411 pkt_size
= min(bp
->dev
->mtu
+ ETH_HLEN
, bp
->rx_jumbo_thresh
- 4);
5412 skb
= netdev_alloc_skb(bp
->dev
, pkt_size
);
5415 packet
= skb_put(skb
, pkt_size
);
5416 memcpy(packet
, bp
->dev
->dev_addr
, 6);
5417 memset(packet
+ 6, 0x0, 8);
5418 for (i
= 14; i
< pkt_size
; i
++)
5419 packet
[i
] = (unsigned char) (i
& 0xff);
5421 if (skb_dma_map(&bp
->pdev
->dev
, skb
, DMA_TO_DEVICE
)) {
5425 map
= skb_shinfo(skb
)->dma_maps
[0];
5427 REG_WR(bp
, BNX2_HC_COMMAND
,
5428 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5430 REG_RD(bp
, BNX2_HC_COMMAND
);
5433 rx_start_idx
= bnx2_get_hw_rx_cons(bnapi
);
5437 txbd
= &txr
->tx_desc_ring
[TX_RING_IDX(txr
->tx_prod
)];
5439 txbd
->tx_bd_haddr_hi
= (u64
) map
>> 32;
5440 txbd
->tx_bd_haddr_lo
= (u64
) map
& 0xffffffff;
5441 txbd
->tx_bd_mss_nbytes
= pkt_size
;
5442 txbd
->tx_bd_vlan_tag_flags
= TX_BD_FLAGS_START
| TX_BD_FLAGS_END
;
5445 txr
->tx_prod
= NEXT_TX_BD(txr
->tx_prod
);
5446 txr
->tx_prod_bseq
+= pkt_size
;
5448 REG_WR16(bp
, txr
->tx_bidx_addr
, txr
->tx_prod
);
5449 REG_WR(bp
, txr
->tx_bseq_addr
, txr
->tx_prod_bseq
);
5453 REG_WR(bp
, BNX2_HC_COMMAND
,
5454 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5456 REG_RD(bp
, BNX2_HC_COMMAND
);
5460 skb_dma_unmap(&bp
->pdev
->dev
, skb
, DMA_TO_DEVICE
);
5463 if (bnx2_get_hw_tx_cons(tx_napi
) != txr
->tx_prod
)
5464 goto loopback_test_done
;
5466 rx_idx
= bnx2_get_hw_rx_cons(bnapi
);
5467 if (rx_idx
!= rx_start_idx
+ num_pkts
) {
5468 goto loopback_test_done
;
5471 rx_buf
= &rxr
->rx_buf_ring
[rx_start_idx
];
5472 rx_skb
= rx_buf
->skb
;
5474 rx_hdr
= (struct l2_fhdr
*) rx_skb
->data
;
5475 skb_reserve(rx_skb
, BNX2_RX_OFFSET
);
5477 pci_dma_sync_single_for_cpu(bp
->pdev
,
5478 pci_unmap_addr(rx_buf
, mapping
),
5479 bp
->rx_buf_size
, PCI_DMA_FROMDEVICE
);
5481 if (rx_hdr
->l2_fhdr_status
&
5482 (L2_FHDR_ERRORS_BAD_CRC
|
5483 L2_FHDR_ERRORS_PHY_DECODE
|
5484 L2_FHDR_ERRORS_ALIGNMENT
|
5485 L2_FHDR_ERRORS_TOO_SHORT
|
5486 L2_FHDR_ERRORS_GIANT_FRAME
)) {
5488 goto loopback_test_done
;
5491 if ((rx_hdr
->l2_fhdr_pkt_len
- 4) != pkt_size
) {
5492 goto loopback_test_done
;
5495 for (i
= 14; i
< pkt_size
; i
++) {
5496 if (*(rx_skb
->data
+ i
) != (unsigned char) (i
& 0xff)) {
5497 goto loopback_test_done
;
5508 #define BNX2_MAC_LOOPBACK_FAILED 1
5509 #define BNX2_PHY_LOOPBACK_FAILED 2
5510 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
5511 BNX2_PHY_LOOPBACK_FAILED)
5514 bnx2_test_loopback(struct bnx2
*bp
)
5518 if (!netif_running(bp
->dev
))
5519 return BNX2_LOOPBACK_FAILED
;
5521 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
5522 spin_lock_bh(&bp
->phy_lock
);
5523 bnx2_init_phy(bp
, 1);
5524 spin_unlock_bh(&bp
->phy_lock
);
5525 if (bnx2_run_loopback(bp
, BNX2_MAC_LOOPBACK
))
5526 rc
|= BNX2_MAC_LOOPBACK_FAILED
;
5527 if (bnx2_run_loopback(bp
, BNX2_PHY_LOOPBACK
))
5528 rc
|= BNX2_PHY_LOOPBACK_FAILED
;
5532 #define NVRAM_SIZE 0x200
5533 #define CRC32_RESIDUAL 0xdebb20e3
5536 bnx2_test_nvram(struct bnx2
*bp
)
5538 __be32 buf
[NVRAM_SIZE
/ 4];
5539 u8
*data
= (u8
*) buf
;
5543 if ((rc
= bnx2_nvram_read(bp
, 0, data
, 4)) != 0)
5544 goto test_nvram_done
;
5546 magic
= be32_to_cpu(buf
[0]);
5547 if (magic
!= 0x669955aa) {
5549 goto test_nvram_done
;
5552 if ((rc
= bnx2_nvram_read(bp
, 0x100, data
, NVRAM_SIZE
)) != 0)
5553 goto test_nvram_done
;
5555 csum
= ether_crc_le(0x100, data
);
5556 if (csum
!= CRC32_RESIDUAL
) {
5558 goto test_nvram_done
;
5561 csum
= ether_crc_le(0x100, data
+ 0x100);
5562 if (csum
!= CRC32_RESIDUAL
) {
5571 bnx2_test_link(struct bnx2
*bp
)
5575 if (!netif_running(bp
->dev
))
5578 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
5583 spin_lock_bh(&bp
->phy_lock
);
5584 bnx2_enable_bmsr1(bp
);
5585 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
5586 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
5587 bnx2_disable_bmsr1(bp
);
5588 spin_unlock_bh(&bp
->phy_lock
);
5590 if (bmsr
& BMSR_LSTATUS
) {
5597 bnx2_test_intr(struct bnx2
*bp
)
5602 if (!netif_running(bp
->dev
))
5605 status_idx
= REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff;
5607 /* This register is not touched during run-time. */
5608 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
5609 REG_RD(bp
, BNX2_HC_COMMAND
);
5611 for (i
= 0; i
< 10; i
++) {
5612 if ((REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff) !=
5618 msleep_interruptible(10);
5626 /* Determining link for parallel detection. */
5628 bnx2_5706_serdes_has_link(struct bnx2
*bp
)
5630 u32 mode_ctl
, an_dbg
, exp
;
5632 if (bp
->phy_flags
& BNX2_PHY_FLAG_NO_PARALLEL
)
5635 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_MODE_CTL
);
5636 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &mode_ctl
);
5638 if (!(mode_ctl
& MISC_SHDW_MODE_CTL_SIG_DET
))
5641 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
5642 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
5643 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
5645 if (an_dbg
& (MISC_SHDW_AN_DBG_NOSYNC
| MISC_SHDW_AN_DBG_RUDI_INVALID
))
5648 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_REG1
);
5649 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
5650 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
5652 if (exp
& MII_EXPAND_REG1_RUDI_C
) /* receiving CONFIG */
5659 bnx2_5706_serdes_timer(struct bnx2
*bp
)
5663 spin_lock(&bp
->phy_lock
);
5664 if (bp
->serdes_an_pending
) {
5665 bp
->serdes_an_pending
--;
5667 } else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
5670 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
5672 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
5674 if (bmcr
& BMCR_ANENABLE
) {
5675 if (bnx2_5706_serdes_has_link(bp
)) {
5676 bmcr
&= ~BMCR_ANENABLE
;
5677 bmcr
|= BMCR_SPEED1000
| BMCR_FULLDPLX
;
5678 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
5679 bp
->phy_flags
|= BNX2_PHY_FLAG_PARALLEL_DETECT
;
5683 else if ((bp
->link_up
) && (bp
->autoneg
& AUTONEG_SPEED
) &&
5684 (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)) {
5687 bnx2_write_phy(bp
, 0x17, 0x0f01);
5688 bnx2_read_phy(bp
, 0x15, &phy2
);
5692 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
5693 bmcr
|= BMCR_ANENABLE
;
5694 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
5696 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
5699 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
5704 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
5705 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
5706 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
5708 if (bp
->link_up
&& (val
& MISC_SHDW_AN_DBG_NOSYNC
)) {
5709 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
)) {
5710 bnx2_5706s_force_link_dn(bp
, 1);
5711 bp
->phy_flags
|= BNX2_PHY_FLAG_FORCED_DOWN
;
5714 } else if (!bp
->link_up
&& !(val
& MISC_SHDW_AN_DBG_NOSYNC
))
5717 spin_unlock(&bp
->phy_lock
);
5721 bnx2_5708_serdes_timer(struct bnx2
*bp
)
5723 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5726 if ((bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) == 0) {
5727 bp
->serdes_an_pending
= 0;
5731 spin_lock(&bp
->phy_lock
);
5732 if (bp
->serdes_an_pending
)
5733 bp
->serdes_an_pending
--;
5734 else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
5737 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
5738 if (bmcr
& BMCR_ANENABLE
) {
5739 bnx2_enable_forced_2g5(bp
);
5740 bp
->current_interval
= BNX2_SERDES_FORCED_TIMEOUT
;
5742 bnx2_disable_forced_2g5(bp
);
5743 bp
->serdes_an_pending
= 2;
5744 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
5748 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
5750 spin_unlock(&bp
->phy_lock
);
5754 bnx2_timer(unsigned long data
)
5756 struct bnx2
*bp
= (struct bnx2
*) data
;
5758 if (!netif_running(bp
->dev
))
5761 if (atomic_read(&bp
->intr_sem
) != 0)
5762 goto bnx2_restart_timer
;
5764 if ((bp
->flags
& (BNX2_FLAG_USING_MSI
| BNX2_FLAG_ONE_SHOT_MSI
)) ==
5765 BNX2_FLAG_USING_MSI
)
5766 bnx2_chk_missed_msi(bp
);
5768 bnx2_send_heart_beat(bp
);
5770 bp
->stats_blk
->stat_FwRxDrop
=
5771 bnx2_reg_rd_ind(bp
, BNX2_FW_RX_DROP_COUNT
);
5773 /* workaround occasional corrupted counters */
5774 if (CHIP_NUM(bp
) == CHIP_NUM_5708
&& bp
->stats_ticks
)
5775 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
|
5776 BNX2_HC_COMMAND_STATS_NOW
);
5778 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
5779 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
5780 bnx2_5706_serdes_timer(bp
);
5782 bnx2_5708_serdes_timer(bp
);
5786 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
5790 bnx2_request_irq(struct bnx2
*bp
)
5792 unsigned long flags
;
5793 struct bnx2_irq
*irq
;
5796 if (bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)
5799 flags
= IRQF_SHARED
;
5801 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
5802 irq
= &bp
->irq_tbl
[i
];
5803 rc
= request_irq(irq
->vector
, irq
->handler
, flags
, irq
->name
,
5813 bnx2_free_irq(struct bnx2
*bp
)
5815 struct bnx2_irq
*irq
;
5818 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
5819 irq
= &bp
->irq_tbl
[i
];
5821 free_irq(irq
->vector
, &bp
->bnx2_napi
[i
]);
5824 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
5825 pci_disable_msi(bp
->pdev
);
5826 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
5827 pci_disable_msix(bp
->pdev
);
5829 bp
->flags
&= ~(BNX2_FLAG_USING_MSI_OR_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
);
5833 bnx2_enable_msix(struct bnx2
*bp
, int msix_vecs
)
5836 struct msix_entry msix_ent
[BNX2_MAX_MSIX_VEC
];
5837 struct net_device
*dev
= bp
->dev
;
5838 const int len
= sizeof(bp
->irq_tbl
[0].name
);
5840 bnx2_setup_msix_tbl(bp
);
5841 REG_WR(bp
, BNX2_PCI_MSIX_CONTROL
, BNX2_MAX_MSIX_HW_VEC
- 1);
5842 REG_WR(bp
, BNX2_PCI_MSIX_TBL_OFF_BIR
, BNX2_PCI_GRC_WINDOW2_BASE
);
5843 REG_WR(bp
, BNX2_PCI_MSIX_PBA_OFF_BIT
, BNX2_PCI_GRC_WINDOW3_BASE
);
5845 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
5846 msix_ent
[i
].entry
= i
;
5847 msix_ent
[i
].vector
= 0;
5850 rc
= pci_enable_msix(bp
->pdev
, msix_ent
, BNX2_MAX_MSIX_VEC
);
5854 bp
->irq_nvecs
= msix_vecs
;
5855 bp
->flags
|= BNX2_FLAG_USING_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
;
5856 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
5857 bp
->irq_tbl
[i
].vector
= msix_ent
[i
].vector
;
5858 snprintf(bp
->irq_tbl
[i
].name
, len
, "%s-%d", dev
->name
, i
);
5859 bp
->irq_tbl
[i
].handler
= bnx2_msi_1shot
;
5864 bnx2_setup_int_mode(struct bnx2
*bp
, int dis_msi
)
5866 int cpus
= num_online_cpus();
5867 int msix_vecs
= min(cpus
+ 1, RX_MAX_RINGS
);
5869 bp
->irq_tbl
[0].handler
= bnx2_interrupt
;
5870 strcpy(bp
->irq_tbl
[0].name
, bp
->dev
->name
);
5872 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
5874 if ((bp
->flags
& BNX2_FLAG_MSIX_CAP
) && !dis_msi
&& cpus
> 1)
5875 bnx2_enable_msix(bp
, msix_vecs
);
5877 if ((bp
->flags
& BNX2_FLAG_MSI_CAP
) && !dis_msi
&&
5878 !(bp
->flags
& BNX2_FLAG_USING_MSIX
)) {
5879 if (pci_enable_msi(bp
->pdev
) == 0) {
5880 bp
->flags
|= BNX2_FLAG_USING_MSI
;
5881 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
5882 bp
->flags
|= BNX2_FLAG_ONE_SHOT_MSI
;
5883 bp
->irq_tbl
[0].handler
= bnx2_msi_1shot
;
5885 bp
->irq_tbl
[0].handler
= bnx2_msi
;
5887 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
5891 bp
->num_tx_rings
= rounddown_pow_of_two(bp
->irq_nvecs
);
5892 bp
->dev
->real_num_tx_queues
= bp
->num_tx_rings
;
5894 bp
->num_rx_rings
= bp
->irq_nvecs
;
5897 /* Called with rtnl_lock */
5899 bnx2_open(struct net_device
*dev
)
5901 struct bnx2
*bp
= netdev_priv(dev
);
5904 netif_carrier_off(dev
);
5906 bnx2_set_power_state(bp
, PCI_D0
);
5907 bnx2_disable_int(bp
);
5909 bnx2_setup_int_mode(bp
, disable_msi
);
5910 bnx2_napi_enable(bp
);
5911 rc
= bnx2_alloc_mem(bp
);
5915 rc
= bnx2_request_irq(bp
);
5919 rc
= bnx2_init_nic(bp
, 1);
5923 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
5925 atomic_set(&bp
->intr_sem
, 0);
5927 bnx2_enable_int(bp
);
5929 if (bp
->flags
& BNX2_FLAG_USING_MSI
) {
5930 /* Test MSI to make sure it is working
5931 * If MSI test fails, go back to INTx mode
5933 if (bnx2_test_intr(bp
) != 0) {
5934 printk(KERN_WARNING PFX
"%s: No interrupt was generated"
5935 " using MSI, switching to INTx mode. Please"
5936 " report this failure to the PCI maintainer"
5937 " and include system chipset information.\n",
5940 bnx2_disable_int(bp
);
5943 bnx2_setup_int_mode(bp
, 1);
5945 rc
= bnx2_init_nic(bp
, 0);
5948 rc
= bnx2_request_irq(bp
);
5951 del_timer_sync(&bp
->timer
);
5954 bnx2_enable_int(bp
);
5957 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
5958 printk(KERN_INFO PFX
"%s: using MSI\n", dev
->name
);
5959 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
5960 printk(KERN_INFO PFX
"%s: using MSIX\n", dev
->name
);
5962 netif_tx_start_all_queues(dev
);
5967 bnx2_napi_disable(bp
);
5975 bnx2_reset_task(struct work_struct
*work
)
5977 struct bnx2
*bp
= container_of(work
, struct bnx2
, reset_task
);
5979 if (!netif_running(bp
->dev
))
5982 bnx2_netif_stop(bp
);
5984 bnx2_init_nic(bp
, 1);
5986 atomic_set(&bp
->intr_sem
, 1);
5987 bnx2_netif_start(bp
);
5991 bnx2_tx_timeout(struct net_device
*dev
)
5993 struct bnx2
*bp
= netdev_priv(dev
);
5995 /* This allows the netif to be shutdown gracefully before resetting */
5996 schedule_work(&bp
->reset_task
);
6000 /* Called with rtnl_lock */
6002 bnx2_vlan_rx_register(struct net_device
*dev
, struct vlan_group
*vlgrp
)
6004 struct bnx2
*bp
= netdev_priv(dev
);
6006 bnx2_netif_stop(bp
);
6009 bnx2_set_rx_mode(dev
);
6010 if (bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
)
6011 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE
, 0, 1);
6013 bnx2_netif_start(bp
);
6017 /* Called with netif_tx_lock.
6018 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
6019 * netif_wake_queue().
6022 bnx2_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
6024 struct bnx2
*bp
= netdev_priv(dev
);
6027 struct sw_tx_bd
*tx_buf
;
6028 u32 len
, vlan_tag_flags
, last_frag
, mss
;
6029 u16 prod
, ring_prod
;
6031 struct bnx2_napi
*bnapi
;
6032 struct bnx2_tx_ring_info
*txr
;
6033 struct netdev_queue
*txq
;
6034 struct skb_shared_info
*sp
;
6036 /* Determine which tx ring we will be placed on */
6037 i
= skb_get_queue_mapping(skb
);
6038 bnapi
= &bp
->bnx2_napi
[i
];
6039 txr
= &bnapi
->tx_ring
;
6040 txq
= netdev_get_tx_queue(dev
, i
);
6042 if (unlikely(bnx2_tx_avail(bp
, txr
) <
6043 (skb_shinfo(skb
)->nr_frags
+ 1))) {
6044 netif_tx_stop_queue(txq
);
6045 printk(KERN_ERR PFX
"%s: BUG! Tx ring full when queue awake!\n",
6048 return NETDEV_TX_BUSY
;
6050 len
= skb_headlen(skb
);
6051 prod
= txr
->tx_prod
;
6052 ring_prod
= TX_RING_IDX(prod
);
6055 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
6056 vlan_tag_flags
|= TX_BD_FLAGS_TCP_UDP_CKSUM
;
6060 if (bp
->vlgrp
&& vlan_tx_tag_present(skb
)) {
6062 (TX_BD_FLAGS_VLAN_TAG
| (vlan_tx_tag_get(skb
) << 16));
6065 if ((mss
= skb_shinfo(skb
)->gso_size
)) {
6069 vlan_tag_flags
|= TX_BD_FLAGS_SW_LSO
;
6071 tcp_opt_len
= tcp_optlen(skb
);
6073 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV6
) {
6074 u32 tcp_off
= skb_transport_offset(skb
) -
6075 sizeof(struct ipv6hdr
) - ETH_HLEN
;
6077 vlan_tag_flags
|= ((tcp_opt_len
>> 2) << 8) |
6078 TX_BD_FLAGS_SW_FLAGS
;
6079 if (likely(tcp_off
== 0))
6080 vlan_tag_flags
&= ~TX_BD_FLAGS_TCP6_OFF0_MSK
;
6083 vlan_tag_flags
|= ((tcp_off
& 0x3) <<
6084 TX_BD_FLAGS_TCP6_OFF0_SHL
) |
6085 ((tcp_off
& 0x10) <<
6086 TX_BD_FLAGS_TCP6_OFF4_SHL
);
6087 mss
|= (tcp_off
& 0xc) << TX_BD_TCP6_OFF2_SHL
;
6091 if (tcp_opt_len
|| (iph
->ihl
> 5)) {
6092 vlan_tag_flags
|= ((iph
->ihl
- 5) +
6093 (tcp_opt_len
>> 2)) << 8;
6099 if (skb_dma_map(&bp
->pdev
->dev
, skb
, DMA_TO_DEVICE
)) {
6101 return NETDEV_TX_OK
;
6104 sp
= skb_shinfo(skb
);
6105 mapping
= sp
->dma_maps
[0];
6107 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6110 txbd
= &txr
->tx_desc_ring
[ring_prod
];
6112 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
6113 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
6114 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
6115 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
| TX_BD_FLAGS_START
;
6117 last_frag
= skb_shinfo(skb
)->nr_frags
;
6119 for (i
= 0; i
< last_frag
; i
++) {
6120 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
6122 prod
= NEXT_TX_BD(prod
);
6123 ring_prod
= TX_RING_IDX(prod
);
6124 txbd
= &txr
->tx_desc_ring
[ring_prod
];
6127 mapping
= sp
->dma_maps
[i
+ 1];
6129 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
6130 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
6131 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
6132 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
;
6135 txbd
->tx_bd_vlan_tag_flags
|= TX_BD_FLAGS_END
;
6137 prod
= NEXT_TX_BD(prod
);
6138 txr
->tx_prod_bseq
+= skb
->len
;
6140 REG_WR16(bp
, txr
->tx_bidx_addr
, prod
);
6141 REG_WR(bp
, txr
->tx_bseq_addr
, txr
->tx_prod_bseq
);
6145 txr
->tx_prod
= prod
;
6146 dev
->trans_start
= jiffies
;
6148 if (unlikely(bnx2_tx_avail(bp
, txr
) <= MAX_SKB_FRAGS
)) {
6149 netif_tx_stop_queue(txq
);
6150 if (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)
6151 netif_tx_wake_queue(txq
);
6154 return NETDEV_TX_OK
;
6157 /* Called with rtnl_lock */
6159 bnx2_close(struct net_device
*dev
)
6161 struct bnx2
*bp
= netdev_priv(dev
);
6163 cancel_work_sync(&bp
->reset_task
);
6165 bnx2_disable_int_sync(bp
);
6166 bnx2_napi_disable(bp
);
6167 del_timer_sync(&bp
->timer
);
6168 bnx2_shutdown_chip(bp
);
6173 netif_carrier_off(bp
->dev
);
6174 bnx2_set_power_state(bp
, PCI_D3hot
);
6178 #define GET_NET_STATS64(ctr) \
6179 (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
6180 (unsigned long) (ctr##_lo)
6182 #define GET_NET_STATS32(ctr) \
6185 #if (BITS_PER_LONG == 64)
6186 #define GET_NET_STATS GET_NET_STATS64
6188 #define GET_NET_STATS GET_NET_STATS32
6191 static struct net_device_stats
*
6192 bnx2_get_stats(struct net_device
*dev
)
6194 struct bnx2
*bp
= netdev_priv(dev
);
6195 struct statistics_block
*stats_blk
= bp
->stats_blk
;
6196 struct net_device_stats
*net_stats
= &dev
->stats
;
6198 if (bp
->stats_blk
== NULL
) {
6201 net_stats
->rx_packets
=
6202 GET_NET_STATS(stats_blk
->stat_IfHCInUcastPkts
) +
6203 GET_NET_STATS(stats_blk
->stat_IfHCInMulticastPkts
) +
6204 GET_NET_STATS(stats_blk
->stat_IfHCInBroadcastPkts
);
6206 net_stats
->tx_packets
=
6207 GET_NET_STATS(stats_blk
->stat_IfHCOutUcastPkts
) +
6208 GET_NET_STATS(stats_blk
->stat_IfHCOutMulticastPkts
) +
6209 GET_NET_STATS(stats_blk
->stat_IfHCOutBroadcastPkts
);
6211 net_stats
->rx_bytes
=
6212 GET_NET_STATS(stats_blk
->stat_IfHCInOctets
);
6214 net_stats
->tx_bytes
=
6215 GET_NET_STATS(stats_blk
->stat_IfHCOutOctets
);
6217 net_stats
->multicast
=
6218 GET_NET_STATS(stats_blk
->stat_IfHCOutMulticastPkts
);
6220 net_stats
->collisions
=
6221 (unsigned long) stats_blk
->stat_EtherStatsCollisions
;
6223 net_stats
->rx_length_errors
=
6224 (unsigned long) (stats_blk
->stat_EtherStatsUndersizePkts
+
6225 stats_blk
->stat_EtherStatsOverrsizePkts
);
6227 net_stats
->rx_over_errors
=
6228 (unsigned long) stats_blk
->stat_IfInMBUFDiscards
;
6230 net_stats
->rx_frame_errors
=
6231 (unsigned long) stats_blk
->stat_Dot3StatsAlignmentErrors
;
6233 net_stats
->rx_crc_errors
=
6234 (unsigned long) stats_blk
->stat_Dot3StatsFCSErrors
;
6236 net_stats
->rx_errors
= net_stats
->rx_length_errors
+
6237 net_stats
->rx_over_errors
+ net_stats
->rx_frame_errors
+
6238 net_stats
->rx_crc_errors
;
6240 net_stats
->tx_aborted_errors
=
6241 (unsigned long) (stats_blk
->stat_Dot3StatsExcessiveCollisions
+
6242 stats_blk
->stat_Dot3StatsLateCollisions
);
6244 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) ||
6245 (CHIP_ID(bp
) == CHIP_ID_5708_A0
))
6246 net_stats
->tx_carrier_errors
= 0;
6248 net_stats
->tx_carrier_errors
=
6250 stats_blk
->stat_Dot3StatsCarrierSenseErrors
;
6253 net_stats
->tx_errors
=
6255 stats_blk
->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
6257 net_stats
->tx_aborted_errors
+
6258 net_stats
->tx_carrier_errors
;
6260 net_stats
->rx_missed_errors
=
6261 (unsigned long) (stats_blk
->stat_IfInMBUFDiscards
+
6262 stats_blk
->stat_FwRxDrop
);
6267 /* All ethtool functions called with rtnl_lock */
6270 bnx2_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
6272 struct bnx2
*bp
= netdev_priv(dev
);
6273 int support_serdes
= 0, support_copper
= 0;
6275 cmd
->supported
= SUPPORTED_Autoneg
;
6276 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
6279 } else if (bp
->phy_port
== PORT_FIBRE
)
6284 if (support_serdes
) {
6285 cmd
->supported
|= SUPPORTED_1000baseT_Full
|
6287 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
6288 cmd
->supported
|= SUPPORTED_2500baseX_Full
;
6291 if (support_copper
) {
6292 cmd
->supported
|= SUPPORTED_10baseT_Half
|
6293 SUPPORTED_10baseT_Full
|
6294 SUPPORTED_100baseT_Half
|
6295 SUPPORTED_100baseT_Full
|
6296 SUPPORTED_1000baseT_Full
|
6301 spin_lock_bh(&bp
->phy_lock
);
6302 cmd
->port
= bp
->phy_port
;
6303 cmd
->advertising
= bp
->advertising
;
6305 if (bp
->autoneg
& AUTONEG_SPEED
) {
6306 cmd
->autoneg
= AUTONEG_ENABLE
;
6309 cmd
->autoneg
= AUTONEG_DISABLE
;
6312 if (netif_carrier_ok(dev
)) {
6313 cmd
->speed
= bp
->line_speed
;
6314 cmd
->duplex
= bp
->duplex
;
6320 spin_unlock_bh(&bp
->phy_lock
);
6322 cmd
->transceiver
= XCVR_INTERNAL
;
6323 cmd
->phy_address
= bp
->phy_addr
;
6329 bnx2_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
6331 struct bnx2
*bp
= netdev_priv(dev
);
6332 u8 autoneg
= bp
->autoneg
;
6333 u8 req_duplex
= bp
->req_duplex
;
6334 u16 req_line_speed
= bp
->req_line_speed
;
6335 u32 advertising
= bp
->advertising
;
6338 spin_lock_bh(&bp
->phy_lock
);
6340 if (cmd
->port
!= PORT_TP
&& cmd
->port
!= PORT_FIBRE
)
6341 goto err_out_unlock
;
6343 if (cmd
->port
!= bp
->phy_port
&&
6344 !(bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
))
6345 goto err_out_unlock
;
6347 /* If device is down, we can store the settings only if the user
6348 * is setting the currently active port.
6350 if (!netif_running(dev
) && cmd
->port
!= bp
->phy_port
)
6351 goto err_out_unlock
;
6353 if (cmd
->autoneg
== AUTONEG_ENABLE
) {
6354 autoneg
|= AUTONEG_SPEED
;
6356 cmd
->advertising
&= ETHTOOL_ALL_COPPER_SPEED
;
6358 /* allow advertising 1 speed */
6359 if ((cmd
->advertising
== ADVERTISED_10baseT_Half
) ||
6360 (cmd
->advertising
== ADVERTISED_10baseT_Full
) ||
6361 (cmd
->advertising
== ADVERTISED_100baseT_Half
) ||
6362 (cmd
->advertising
== ADVERTISED_100baseT_Full
)) {
6364 if (cmd
->port
== PORT_FIBRE
)
6365 goto err_out_unlock
;
6367 advertising
= cmd
->advertising
;
6369 } else if (cmd
->advertising
== ADVERTISED_2500baseX_Full
) {
6370 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) ||
6371 (cmd
->port
== PORT_TP
))
6372 goto err_out_unlock
;
6373 } else if (cmd
->advertising
== ADVERTISED_1000baseT_Full
)
6374 advertising
= cmd
->advertising
;
6375 else if (cmd
->advertising
== ADVERTISED_1000baseT_Half
)
6376 goto err_out_unlock
;
6378 if (cmd
->port
== PORT_FIBRE
)
6379 advertising
= ETHTOOL_ALL_FIBRE_SPEED
;
6381 advertising
= ETHTOOL_ALL_COPPER_SPEED
;
6383 advertising
|= ADVERTISED_Autoneg
;
6386 if (cmd
->port
== PORT_FIBRE
) {
6387 if ((cmd
->speed
!= SPEED_1000
&&
6388 cmd
->speed
!= SPEED_2500
) ||
6389 (cmd
->duplex
!= DUPLEX_FULL
))
6390 goto err_out_unlock
;
6392 if (cmd
->speed
== SPEED_2500
&&
6393 !(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
6394 goto err_out_unlock
;
6396 else if (cmd
->speed
== SPEED_1000
|| cmd
->speed
== SPEED_2500
)
6397 goto err_out_unlock
;
6399 autoneg
&= ~AUTONEG_SPEED
;
6400 req_line_speed
= cmd
->speed
;
6401 req_duplex
= cmd
->duplex
;
6405 bp
->autoneg
= autoneg
;
6406 bp
->advertising
= advertising
;
6407 bp
->req_line_speed
= req_line_speed
;
6408 bp
->req_duplex
= req_duplex
;
6411 /* If device is down, the new settings will be picked up when it is
6414 if (netif_running(dev
))
6415 err
= bnx2_setup_phy(bp
, cmd
->port
);
6418 spin_unlock_bh(&bp
->phy_lock
);
6424 bnx2_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
6426 struct bnx2
*bp
= netdev_priv(dev
);
6428 strcpy(info
->driver
, DRV_MODULE_NAME
);
6429 strcpy(info
->version
, DRV_MODULE_VERSION
);
6430 strcpy(info
->bus_info
, pci_name(bp
->pdev
));
6431 strcpy(info
->fw_version
, bp
->fw_version
);
6434 #define BNX2_REGDUMP_LEN (32 * 1024)
6437 bnx2_get_regs_len(struct net_device
*dev
)
6439 return BNX2_REGDUMP_LEN
;
6443 bnx2_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
, void *_p
)
6445 u32
*p
= _p
, i
, offset
;
6447 struct bnx2
*bp
= netdev_priv(dev
);
6448 u32 reg_boundaries
[] = { 0x0000, 0x0098, 0x0400, 0x045c,
6449 0x0800, 0x0880, 0x0c00, 0x0c10,
6450 0x0c30, 0x0d08, 0x1000, 0x101c,
6451 0x1040, 0x1048, 0x1080, 0x10a4,
6452 0x1400, 0x1490, 0x1498, 0x14f0,
6453 0x1500, 0x155c, 0x1580, 0x15dc,
6454 0x1600, 0x1658, 0x1680, 0x16d8,
6455 0x1800, 0x1820, 0x1840, 0x1854,
6456 0x1880, 0x1894, 0x1900, 0x1984,
6457 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
6458 0x1c80, 0x1c94, 0x1d00, 0x1d84,
6459 0x2000, 0x2030, 0x23c0, 0x2400,
6460 0x2800, 0x2820, 0x2830, 0x2850,
6461 0x2b40, 0x2c10, 0x2fc0, 0x3058,
6462 0x3c00, 0x3c94, 0x4000, 0x4010,
6463 0x4080, 0x4090, 0x43c0, 0x4458,
6464 0x4c00, 0x4c18, 0x4c40, 0x4c54,
6465 0x4fc0, 0x5010, 0x53c0, 0x5444,
6466 0x5c00, 0x5c18, 0x5c80, 0x5c90,
6467 0x5fc0, 0x6000, 0x6400, 0x6428,
6468 0x6800, 0x6848, 0x684c, 0x6860,
6469 0x6888, 0x6910, 0x8000 };
6473 memset(p
, 0, BNX2_REGDUMP_LEN
);
6475 if (!netif_running(bp
->dev
))
6479 offset
= reg_boundaries
[0];
6481 while (offset
< BNX2_REGDUMP_LEN
) {
6482 *p
++ = REG_RD(bp
, offset
);
6484 if (offset
== reg_boundaries
[i
+ 1]) {
6485 offset
= reg_boundaries
[i
+ 2];
6486 p
= (u32
*) (orig_p
+ offset
);
6493 bnx2_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
6495 struct bnx2
*bp
= netdev_priv(dev
);
6497 if (bp
->flags
& BNX2_FLAG_NO_WOL
) {
6502 wol
->supported
= WAKE_MAGIC
;
6504 wol
->wolopts
= WAKE_MAGIC
;
6508 memset(&wol
->sopass
, 0, sizeof(wol
->sopass
));
6512 bnx2_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
6514 struct bnx2
*bp
= netdev_priv(dev
);
6516 if (wol
->wolopts
& ~WAKE_MAGIC
)
6519 if (wol
->wolopts
& WAKE_MAGIC
) {
6520 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
6532 bnx2_nway_reset(struct net_device
*dev
)
6534 struct bnx2
*bp
= netdev_priv(dev
);
6537 if (!netif_running(dev
))
6540 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
6544 spin_lock_bh(&bp
->phy_lock
);
6546 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
6549 rc
= bnx2_setup_remote_phy(bp
, bp
->phy_port
);
6550 spin_unlock_bh(&bp
->phy_lock
);
6554 /* Force a link down visible on the other side */
6555 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
6556 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
6557 spin_unlock_bh(&bp
->phy_lock
);
6561 spin_lock_bh(&bp
->phy_lock
);
6563 bp
->current_interval
= BNX2_SERDES_AN_TIMEOUT
;
6564 bp
->serdes_an_pending
= 1;
6565 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6568 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6569 bmcr
&= ~BMCR_LOOPBACK
;
6570 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
| BMCR_ANENABLE
);
6572 spin_unlock_bh(&bp
->phy_lock
);
6578 bnx2_get_eeprom_len(struct net_device
*dev
)
6580 struct bnx2
*bp
= netdev_priv(dev
);
6582 if (bp
->flash_info
== NULL
)
6585 return (int) bp
->flash_size
;
6589 bnx2_get_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
6592 struct bnx2
*bp
= netdev_priv(dev
);
6595 if (!netif_running(dev
))
6598 /* parameters already validated in ethtool_get_eeprom */
6600 rc
= bnx2_nvram_read(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
6606 bnx2_set_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
6609 struct bnx2
*bp
= netdev_priv(dev
);
6612 if (!netif_running(dev
))
6615 /* parameters already validated in ethtool_set_eeprom */
6617 rc
= bnx2_nvram_write(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
6623 bnx2_get_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
6625 struct bnx2
*bp
= netdev_priv(dev
);
6627 memset(coal
, 0, sizeof(struct ethtool_coalesce
));
6629 coal
->rx_coalesce_usecs
= bp
->rx_ticks
;
6630 coal
->rx_max_coalesced_frames
= bp
->rx_quick_cons_trip
;
6631 coal
->rx_coalesce_usecs_irq
= bp
->rx_ticks_int
;
6632 coal
->rx_max_coalesced_frames_irq
= bp
->rx_quick_cons_trip_int
;
6634 coal
->tx_coalesce_usecs
= bp
->tx_ticks
;
6635 coal
->tx_max_coalesced_frames
= bp
->tx_quick_cons_trip
;
6636 coal
->tx_coalesce_usecs_irq
= bp
->tx_ticks_int
;
6637 coal
->tx_max_coalesced_frames_irq
= bp
->tx_quick_cons_trip_int
;
6639 coal
->stats_block_coalesce_usecs
= bp
->stats_ticks
;
6645 bnx2_set_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
6647 struct bnx2
*bp
= netdev_priv(dev
);
6649 bp
->rx_ticks
= (u16
) coal
->rx_coalesce_usecs
;
6650 if (bp
->rx_ticks
> 0x3ff) bp
->rx_ticks
= 0x3ff;
6652 bp
->rx_quick_cons_trip
= (u16
) coal
->rx_max_coalesced_frames
;
6653 if (bp
->rx_quick_cons_trip
> 0xff) bp
->rx_quick_cons_trip
= 0xff;
6655 bp
->rx_ticks_int
= (u16
) coal
->rx_coalesce_usecs_irq
;
6656 if (bp
->rx_ticks_int
> 0x3ff) bp
->rx_ticks_int
= 0x3ff;
6658 bp
->rx_quick_cons_trip_int
= (u16
) coal
->rx_max_coalesced_frames_irq
;
6659 if (bp
->rx_quick_cons_trip_int
> 0xff)
6660 bp
->rx_quick_cons_trip_int
= 0xff;
6662 bp
->tx_ticks
= (u16
) coal
->tx_coalesce_usecs
;
6663 if (bp
->tx_ticks
> 0x3ff) bp
->tx_ticks
= 0x3ff;
6665 bp
->tx_quick_cons_trip
= (u16
) coal
->tx_max_coalesced_frames
;
6666 if (bp
->tx_quick_cons_trip
> 0xff) bp
->tx_quick_cons_trip
= 0xff;
6668 bp
->tx_ticks_int
= (u16
) coal
->tx_coalesce_usecs_irq
;
6669 if (bp
->tx_ticks_int
> 0x3ff) bp
->tx_ticks_int
= 0x3ff;
6671 bp
->tx_quick_cons_trip_int
= (u16
) coal
->tx_max_coalesced_frames_irq
;
6672 if (bp
->tx_quick_cons_trip_int
> 0xff) bp
->tx_quick_cons_trip_int
=
6675 bp
->stats_ticks
= coal
->stats_block_coalesce_usecs
;
6676 if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
6677 if (bp
->stats_ticks
!= 0 && bp
->stats_ticks
!= USEC_PER_SEC
)
6678 bp
->stats_ticks
= USEC_PER_SEC
;
6680 if (bp
->stats_ticks
> BNX2_HC_STATS_TICKS_HC_STAT_TICKS
)
6681 bp
->stats_ticks
= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
6682 bp
->stats_ticks
&= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
6684 if (netif_running(bp
->dev
)) {
6685 bnx2_netif_stop(bp
);
6686 bnx2_init_nic(bp
, 0);
6687 bnx2_netif_start(bp
);
6694 bnx2_get_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
6696 struct bnx2
*bp
= netdev_priv(dev
);
6698 ering
->rx_max_pending
= MAX_TOTAL_RX_DESC_CNT
;
6699 ering
->rx_mini_max_pending
= 0;
6700 ering
->rx_jumbo_max_pending
= MAX_TOTAL_RX_PG_DESC_CNT
;
6702 ering
->rx_pending
= bp
->rx_ring_size
;
6703 ering
->rx_mini_pending
= 0;
6704 ering
->rx_jumbo_pending
= bp
->rx_pg_ring_size
;
6706 ering
->tx_max_pending
= MAX_TX_DESC_CNT
;
6707 ering
->tx_pending
= bp
->tx_ring_size
;
6711 bnx2_change_ring_size(struct bnx2
*bp
, u32 rx
, u32 tx
)
6713 if (netif_running(bp
->dev
)) {
6714 bnx2_netif_stop(bp
);
6715 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_RESET
);
6720 bnx2_set_rx_ring_size(bp
, rx
);
6721 bp
->tx_ring_size
= tx
;
6723 if (netif_running(bp
->dev
)) {
6726 rc
= bnx2_alloc_mem(bp
);
6729 bnx2_init_nic(bp
, 0);
6730 bnx2_netif_start(bp
);
6736 bnx2_set_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
6738 struct bnx2
*bp
= netdev_priv(dev
);
6741 if ((ering
->rx_pending
> MAX_TOTAL_RX_DESC_CNT
) ||
6742 (ering
->tx_pending
> MAX_TX_DESC_CNT
) ||
6743 (ering
->tx_pending
<= MAX_SKB_FRAGS
)) {
6747 rc
= bnx2_change_ring_size(bp
, ering
->rx_pending
, ering
->tx_pending
);
6752 bnx2_get_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
6754 struct bnx2
*bp
= netdev_priv(dev
);
6756 epause
->autoneg
= ((bp
->autoneg
& AUTONEG_FLOW_CTRL
) != 0);
6757 epause
->rx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_RX
) != 0);
6758 epause
->tx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_TX
) != 0);
6762 bnx2_set_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
6764 struct bnx2
*bp
= netdev_priv(dev
);
6766 bp
->req_flow_ctrl
= 0;
6767 if (epause
->rx_pause
)
6768 bp
->req_flow_ctrl
|= FLOW_CTRL_RX
;
6769 if (epause
->tx_pause
)
6770 bp
->req_flow_ctrl
|= FLOW_CTRL_TX
;
6772 if (epause
->autoneg
) {
6773 bp
->autoneg
|= AUTONEG_FLOW_CTRL
;
6776 bp
->autoneg
&= ~AUTONEG_FLOW_CTRL
;
6779 if (netif_running(dev
)) {
6780 spin_lock_bh(&bp
->phy_lock
);
6781 bnx2_setup_phy(bp
, bp
->phy_port
);
6782 spin_unlock_bh(&bp
->phy_lock
);
6789 bnx2_get_rx_csum(struct net_device
*dev
)
6791 struct bnx2
*bp
= netdev_priv(dev
);
6797 bnx2_set_rx_csum(struct net_device
*dev
, u32 data
)
6799 struct bnx2
*bp
= netdev_priv(dev
);
6806 bnx2_set_tso(struct net_device
*dev
, u32 data
)
6808 struct bnx2
*bp
= netdev_priv(dev
);
6811 dev
->features
|= NETIF_F_TSO
| NETIF_F_TSO_ECN
;
6812 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
6813 dev
->features
|= NETIF_F_TSO6
;
6815 dev
->features
&= ~(NETIF_F_TSO
| NETIF_F_TSO6
|
6820 #define BNX2_NUM_STATS 46
6823 char string
[ETH_GSTRING_LEN
];
6824 } bnx2_stats_str_arr
[BNX2_NUM_STATS
] = {
6826 { "rx_error_bytes" },
6828 { "tx_error_bytes" },
6829 { "rx_ucast_packets" },
6830 { "rx_mcast_packets" },
6831 { "rx_bcast_packets" },
6832 { "tx_ucast_packets" },
6833 { "tx_mcast_packets" },
6834 { "tx_bcast_packets" },
6835 { "tx_mac_errors" },
6836 { "tx_carrier_errors" },
6837 { "rx_crc_errors" },
6838 { "rx_align_errors" },
6839 { "tx_single_collisions" },
6840 { "tx_multi_collisions" },
6842 { "tx_excess_collisions" },
6843 { "tx_late_collisions" },
6844 { "tx_total_collisions" },
6847 { "rx_undersize_packets" },
6848 { "rx_oversize_packets" },
6849 { "rx_64_byte_packets" },
6850 { "rx_65_to_127_byte_packets" },
6851 { "rx_128_to_255_byte_packets" },
6852 { "rx_256_to_511_byte_packets" },
6853 { "rx_512_to_1023_byte_packets" },
6854 { "rx_1024_to_1522_byte_packets" },
6855 { "rx_1523_to_9022_byte_packets" },
6856 { "tx_64_byte_packets" },
6857 { "tx_65_to_127_byte_packets" },
6858 { "tx_128_to_255_byte_packets" },
6859 { "tx_256_to_511_byte_packets" },
6860 { "tx_512_to_1023_byte_packets" },
6861 { "tx_1024_to_1522_byte_packets" },
6862 { "tx_1523_to_9022_byte_packets" },
6863 { "rx_xon_frames" },
6864 { "rx_xoff_frames" },
6865 { "tx_xon_frames" },
6866 { "tx_xoff_frames" },
6867 { "rx_mac_ctrl_frames" },
6868 { "rx_filtered_packets" },
6870 { "rx_fw_discards" },
6873 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
6875 static const unsigned long bnx2_stats_offset_arr
[BNX2_NUM_STATS
] = {
6876 STATS_OFFSET32(stat_IfHCInOctets_hi
),
6877 STATS_OFFSET32(stat_IfHCInBadOctets_hi
),
6878 STATS_OFFSET32(stat_IfHCOutOctets_hi
),
6879 STATS_OFFSET32(stat_IfHCOutBadOctets_hi
),
6880 STATS_OFFSET32(stat_IfHCInUcastPkts_hi
),
6881 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi
),
6882 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi
),
6883 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi
),
6884 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi
),
6885 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi
),
6886 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors
),
6887 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors
),
6888 STATS_OFFSET32(stat_Dot3StatsFCSErrors
),
6889 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors
),
6890 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames
),
6891 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames
),
6892 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions
),
6893 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions
),
6894 STATS_OFFSET32(stat_Dot3StatsLateCollisions
),
6895 STATS_OFFSET32(stat_EtherStatsCollisions
),
6896 STATS_OFFSET32(stat_EtherStatsFragments
),
6897 STATS_OFFSET32(stat_EtherStatsJabbers
),
6898 STATS_OFFSET32(stat_EtherStatsUndersizePkts
),
6899 STATS_OFFSET32(stat_EtherStatsOverrsizePkts
),
6900 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets
),
6901 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets
),
6902 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets
),
6903 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets
),
6904 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets
),
6905 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets
),
6906 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets
),
6907 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets
),
6908 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets
),
6909 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets
),
6910 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets
),
6911 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets
),
6912 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets
),
6913 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets
),
6914 STATS_OFFSET32(stat_XonPauseFramesReceived
),
6915 STATS_OFFSET32(stat_XoffPauseFramesReceived
),
6916 STATS_OFFSET32(stat_OutXonSent
),
6917 STATS_OFFSET32(stat_OutXoffSent
),
6918 STATS_OFFSET32(stat_MacControlFramesReceived
),
6919 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards
),
6920 STATS_OFFSET32(stat_IfInMBUFDiscards
),
6921 STATS_OFFSET32(stat_FwRxDrop
),
6924 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
6925 * skipped because of errata.
6927 static u8 bnx2_5706_stats_len_arr
[BNX2_NUM_STATS
] = {
6928 8,0,8,8,8,8,8,8,8,8,
6929 4,0,4,4,4,4,4,4,4,4,
6930 4,4,4,4,4,4,4,4,4,4,
6931 4,4,4,4,4,4,4,4,4,4,
6935 static u8 bnx2_5708_stats_len_arr
[BNX2_NUM_STATS
] = {
6936 8,0,8,8,8,8,8,8,8,8,
6937 4,4,4,4,4,4,4,4,4,4,
6938 4,4,4,4,4,4,4,4,4,4,
6939 4,4,4,4,4,4,4,4,4,4,
6943 #define BNX2_NUM_TESTS 6
6946 char string
[ETH_GSTRING_LEN
];
6947 } bnx2_tests_str_arr
[BNX2_NUM_TESTS
] = {
6948 { "register_test (offline)" },
6949 { "memory_test (offline)" },
6950 { "loopback_test (offline)" },
6951 { "nvram_test (online)" },
6952 { "interrupt_test (online)" },
6953 { "link_test (online)" },
6957 bnx2_get_sset_count(struct net_device
*dev
, int sset
)
6961 return BNX2_NUM_TESTS
;
6963 return BNX2_NUM_STATS
;
6970 bnx2_self_test(struct net_device
*dev
, struct ethtool_test
*etest
, u64
*buf
)
6972 struct bnx2
*bp
= netdev_priv(dev
);
6974 bnx2_set_power_state(bp
, PCI_D0
);
6976 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_TESTS
);
6977 if (etest
->flags
& ETH_TEST_FL_OFFLINE
) {
6980 bnx2_netif_stop(bp
);
6981 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_DIAG
);
6984 if (bnx2_test_registers(bp
) != 0) {
6986 etest
->flags
|= ETH_TEST_FL_FAILED
;
6988 if (bnx2_test_memory(bp
) != 0) {
6990 etest
->flags
|= ETH_TEST_FL_FAILED
;
6992 if ((buf
[2] = bnx2_test_loopback(bp
)) != 0)
6993 etest
->flags
|= ETH_TEST_FL_FAILED
;
6995 if (!netif_running(bp
->dev
))
6996 bnx2_shutdown_chip(bp
);
6998 bnx2_init_nic(bp
, 1);
6999 bnx2_netif_start(bp
);
7002 /* wait for link up */
7003 for (i
= 0; i
< 7; i
++) {
7006 msleep_interruptible(1000);
7010 if (bnx2_test_nvram(bp
) != 0) {
7012 etest
->flags
|= ETH_TEST_FL_FAILED
;
7014 if (bnx2_test_intr(bp
) != 0) {
7016 etest
->flags
|= ETH_TEST_FL_FAILED
;
7019 if (bnx2_test_link(bp
) != 0) {
7021 etest
->flags
|= ETH_TEST_FL_FAILED
;
7024 if (!netif_running(bp
->dev
))
7025 bnx2_set_power_state(bp
, PCI_D3hot
);
7029 bnx2_get_strings(struct net_device
*dev
, u32 stringset
, u8
*buf
)
7031 switch (stringset
) {
7033 memcpy(buf
, bnx2_stats_str_arr
,
7034 sizeof(bnx2_stats_str_arr
));
7037 memcpy(buf
, bnx2_tests_str_arr
,
7038 sizeof(bnx2_tests_str_arr
));
7044 bnx2_get_ethtool_stats(struct net_device
*dev
,
7045 struct ethtool_stats
*stats
, u64
*buf
)
7047 struct bnx2
*bp
= netdev_priv(dev
);
7049 u32
*hw_stats
= (u32
*) bp
->stats_blk
;
7050 u8
*stats_len_arr
= NULL
;
7052 if (hw_stats
== NULL
) {
7053 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_STATS
);
7057 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
7058 (CHIP_ID(bp
) == CHIP_ID_5706_A1
) ||
7059 (CHIP_ID(bp
) == CHIP_ID_5706_A2
) ||
7060 (CHIP_ID(bp
) == CHIP_ID_5708_A0
))
7061 stats_len_arr
= bnx2_5706_stats_len_arr
;
7063 stats_len_arr
= bnx2_5708_stats_len_arr
;
7065 for (i
= 0; i
< BNX2_NUM_STATS
; i
++) {
7066 if (stats_len_arr
[i
] == 0) {
7067 /* skip this counter */
7071 if (stats_len_arr
[i
] == 4) {
7072 /* 4-byte counter */
7074 *(hw_stats
+ bnx2_stats_offset_arr
[i
]);
7077 /* 8-byte counter */
7078 buf
[i
] = (((u64
) *(hw_stats
+
7079 bnx2_stats_offset_arr
[i
])) << 32) +
7080 *(hw_stats
+ bnx2_stats_offset_arr
[i
] + 1);
7085 bnx2_phys_id(struct net_device
*dev
, u32 data
)
7087 struct bnx2
*bp
= netdev_priv(dev
);
7091 bnx2_set_power_state(bp
, PCI_D0
);
7096 save
= REG_RD(bp
, BNX2_MISC_CFG
);
7097 REG_WR(bp
, BNX2_MISC_CFG
, BNX2_MISC_CFG_LEDMODE_MAC
);
7099 for (i
= 0; i
< (data
* 2); i
++) {
7101 REG_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
);
7104 REG_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
|
7105 BNX2_EMAC_LED_1000MB_OVERRIDE
|
7106 BNX2_EMAC_LED_100MB_OVERRIDE
|
7107 BNX2_EMAC_LED_10MB_OVERRIDE
|
7108 BNX2_EMAC_LED_TRAFFIC_OVERRIDE
|
7109 BNX2_EMAC_LED_TRAFFIC
);
7111 msleep_interruptible(500);
7112 if (signal_pending(current
))
7115 REG_WR(bp
, BNX2_EMAC_LED
, 0);
7116 REG_WR(bp
, BNX2_MISC_CFG
, save
);
7118 if (!netif_running(dev
))
7119 bnx2_set_power_state(bp
, PCI_D3hot
);
7125 bnx2_set_tx_csum(struct net_device
*dev
, u32 data
)
7127 struct bnx2
*bp
= netdev_priv(dev
);
7129 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
7130 return (ethtool_op_set_tx_ipv6_csum(dev
, data
));
7132 return (ethtool_op_set_tx_csum(dev
, data
));
7135 static const struct ethtool_ops bnx2_ethtool_ops
= {
7136 .get_settings
= bnx2_get_settings
,
7137 .set_settings
= bnx2_set_settings
,
7138 .get_drvinfo
= bnx2_get_drvinfo
,
7139 .get_regs_len
= bnx2_get_regs_len
,
7140 .get_regs
= bnx2_get_regs
,
7141 .get_wol
= bnx2_get_wol
,
7142 .set_wol
= bnx2_set_wol
,
7143 .nway_reset
= bnx2_nway_reset
,
7144 .get_link
= ethtool_op_get_link
,
7145 .get_eeprom_len
= bnx2_get_eeprom_len
,
7146 .get_eeprom
= bnx2_get_eeprom
,
7147 .set_eeprom
= bnx2_set_eeprom
,
7148 .get_coalesce
= bnx2_get_coalesce
,
7149 .set_coalesce
= bnx2_set_coalesce
,
7150 .get_ringparam
= bnx2_get_ringparam
,
7151 .set_ringparam
= bnx2_set_ringparam
,
7152 .get_pauseparam
= bnx2_get_pauseparam
,
7153 .set_pauseparam
= bnx2_set_pauseparam
,
7154 .get_rx_csum
= bnx2_get_rx_csum
,
7155 .set_rx_csum
= bnx2_set_rx_csum
,
7156 .set_tx_csum
= bnx2_set_tx_csum
,
7157 .set_sg
= ethtool_op_set_sg
,
7158 .set_tso
= bnx2_set_tso
,
7159 .self_test
= bnx2_self_test
,
7160 .get_strings
= bnx2_get_strings
,
7161 .phys_id
= bnx2_phys_id
,
7162 .get_ethtool_stats
= bnx2_get_ethtool_stats
,
7163 .get_sset_count
= bnx2_get_sset_count
,
7166 /* Called with rtnl_lock */
7168 bnx2_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
7170 struct mii_ioctl_data
*data
= if_mii(ifr
);
7171 struct bnx2
*bp
= netdev_priv(dev
);
7176 data
->phy_id
= bp
->phy_addr
;
7182 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
7185 if (!netif_running(dev
))
7188 spin_lock_bh(&bp
->phy_lock
);
7189 err
= bnx2_read_phy(bp
, data
->reg_num
& 0x1f, &mii_regval
);
7190 spin_unlock_bh(&bp
->phy_lock
);
7192 data
->val_out
= mii_regval
;
7198 if (!capable(CAP_NET_ADMIN
))
7201 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
7204 if (!netif_running(dev
))
7207 spin_lock_bh(&bp
->phy_lock
);
7208 err
= bnx2_write_phy(bp
, data
->reg_num
& 0x1f, data
->val_in
);
7209 spin_unlock_bh(&bp
->phy_lock
);
7220 /* Called with rtnl_lock */
7222 bnx2_change_mac_addr(struct net_device
*dev
, void *p
)
7224 struct sockaddr
*addr
= p
;
7225 struct bnx2
*bp
= netdev_priv(dev
);
7227 if (!is_valid_ether_addr(addr
->sa_data
))
7230 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
7231 if (netif_running(dev
))
7232 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
7237 /* Called with rtnl_lock */
7239 bnx2_change_mtu(struct net_device
*dev
, int new_mtu
)
7241 struct bnx2
*bp
= netdev_priv(dev
);
7243 if (((new_mtu
+ ETH_HLEN
) > MAX_ETHERNET_JUMBO_PACKET_SIZE
) ||
7244 ((new_mtu
+ ETH_HLEN
) < MIN_ETHERNET_PACKET_SIZE
))
7248 return (bnx2_change_ring_size(bp
, bp
->rx_ring_size
, bp
->tx_ring_size
));
7251 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
7253 poll_bnx2(struct net_device
*dev
)
7255 struct bnx2
*bp
= netdev_priv(dev
);
7258 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
7259 disable_irq(bp
->irq_tbl
[i
].vector
);
7260 bnx2_interrupt(bp
->irq_tbl
[i
].vector
, &bp
->bnx2_napi
[i
]);
7261 enable_irq(bp
->irq_tbl
[i
].vector
);
7266 static void __devinit
7267 bnx2_get_5709_media(struct bnx2
*bp
)
7269 u32 val
= REG_RD(bp
, BNX2_MISC_DUAL_MEDIA_CTRL
);
7270 u32 bond_id
= val
& BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID
;
7273 if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C
)
7275 else if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S
) {
7276 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7280 if (val
& BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE
)
7281 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL
) >> 21;
7283 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP
) >> 8;
7285 if (PCI_FUNC(bp
->pdev
->devfn
) == 0) {
7290 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7298 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7304 static void __devinit
7305 bnx2_get_pci_speed(struct bnx2
*bp
)
7309 reg
= REG_RD(bp
, BNX2_PCICFG_MISC_STATUS
);
7310 if (reg
& BNX2_PCICFG_MISC_STATUS_PCIX_DET
) {
7313 bp
->flags
|= BNX2_FLAG_PCIX
;
7315 clkreg
= REG_RD(bp
, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS
);
7317 clkreg
&= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET
;
7319 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ
:
7320 bp
->bus_speed_mhz
= 133;
7323 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ
:
7324 bp
->bus_speed_mhz
= 100;
7327 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ
:
7328 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ
:
7329 bp
->bus_speed_mhz
= 66;
7332 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ
:
7333 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ
:
7334 bp
->bus_speed_mhz
= 50;
7337 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW
:
7338 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ
:
7339 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ
:
7340 bp
->bus_speed_mhz
= 33;
7345 if (reg
& BNX2_PCICFG_MISC_STATUS_M66EN
)
7346 bp
->bus_speed_mhz
= 66;
7348 bp
->bus_speed_mhz
= 33;
7351 if (reg
& BNX2_PCICFG_MISC_STATUS_32BIT_DET
)
7352 bp
->flags
|= BNX2_FLAG_PCI_32BIT
;
7356 static int __devinit
7357 bnx2_init_board(struct pci_dev
*pdev
, struct net_device
*dev
)
7360 unsigned long mem_len
;
7363 u64 dma_mask
, persist_dma_mask
;
7365 SET_NETDEV_DEV(dev
, &pdev
->dev
);
7366 bp
= netdev_priv(dev
);
7371 /* enable device (incl. PCI PM wakeup), and bus-mastering */
7372 rc
= pci_enable_device(pdev
);
7374 dev_err(&pdev
->dev
, "Cannot enable PCI device, aborting.\n");
7378 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
7380 "Cannot find PCI device base address, aborting.\n");
7382 goto err_out_disable
;
7385 rc
= pci_request_regions(pdev
, DRV_MODULE_NAME
);
7387 dev_err(&pdev
->dev
, "Cannot obtain PCI resources, aborting.\n");
7388 goto err_out_disable
;
7391 pci_set_master(pdev
);
7392 pci_save_state(pdev
);
7394 bp
->pm_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PM
);
7395 if (bp
->pm_cap
== 0) {
7397 "Cannot find power management capability, aborting.\n");
7399 goto err_out_release
;
7405 spin_lock_init(&bp
->phy_lock
);
7406 spin_lock_init(&bp
->indirect_lock
);
7407 INIT_WORK(&bp
->reset_task
, bnx2_reset_task
);
7409 dev
->base_addr
= dev
->mem_start
= pci_resource_start(pdev
, 0);
7410 mem_len
= MB_GET_CID_ADDR(TX_TSS_CID
+ TX_MAX_TSS_RINGS
);
7411 dev
->mem_end
= dev
->mem_start
+ mem_len
;
7412 dev
->irq
= pdev
->irq
;
7414 bp
->regview
= ioremap_nocache(dev
->base_addr
, mem_len
);
7417 dev_err(&pdev
->dev
, "Cannot map register space, aborting.\n");
7419 goto err_out_release
;
7422 /* Configure byte swap and enable write to the reg_window registers.
7423 * Rely on CPU to do target byte swapping on big endian systems
7424 * The chip's target access swapping will not swap all accesses
7426 pci_write_config_dword(bp
->pdev
, BNX2_PCICFG_MISC_CONFIG
,
7427 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
7428 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
);
7430 bnx2_set_power_state(bp
, PCI_D0
);
7432 bp
->chip_id
= REG_RD(bp
, BNX2_MISC_ID
);
7434 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
7435 if (pci_find_capability(pdev
, PCI_CAP_ID_EXP
) == 0) {
7437 "Cannot find PCIE capability, aborting.\n");
7441 bp
->flags
|= BNX2_FLAG_PCIE
;
7442 if (CHIP_REV(bp
) == CHIP_REV_Ax
)
7443 bp
->flags
|= BNX2_FLAG_JUMBO_BROKEN
;
7445 bp
->pcix_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PCIX
);
7446 if (bp
->pcix_cap
== 0) {
7448 "Cannot find PCIX capability, aborting.\n");
7454 if (CHIP_NUM(bp
) == CHIP_NUM_5709
&& CHIP_REV(bp
) != CHIP_REV_Ax
) {
7455 if (pci_find_capability(pdev
, PCI_CAP_ID_MSIX
))
7456 bp
->flags
|= BNX2_FLAG_MSIX_CAP
;
7459 if (CHIP_ID(bp
) != CHIP_ID_5706_A0
&& CHIP_ID(bp
) != CHIP_ID_5706_A1
) {
7460 if (pci_find_capability(pdev
, PCI_CAP_ID_MSI
))
7461 bp
->flags
|= BNX2_FLAG_MSI_CAP
;
7464 /* 5708 cannot support DMA addresses > 40-bit. */
7465 if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
7466 persist_dma_mask
= dma_mask
= DMA_40BIT_MASK
;
7468 persist_dma_mask
= dma_mask
= DMA_64BIT_MASK
;
7470 /* Configure DMA attributes. */
7471 if (pci_set_dma_mask(pdev
, dma_mask
) == 0) {
7472 dev
->features
|= NETIF_F_HIGHDMA
;
7473 rc
= pci_set_consistent_dma_mask(pdev
, persist_dma_mask
);
7476 "pci_set_consistent_dma_mask failed, aborting.\n");
7479 } else if ((rc
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
)) != 0) {
7480 dev_err(&pdev
->dev
, "System does not support DMA, aborting.\n");
7484 if (!(bp
->flags
& BNX2_FLAG_PCIE
))
7485 bnx2_get_pci_speed(bp
);
7487 /* 5706A0 may falsely detect SERR and PERR. */
7488 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
7489 reg
= REG_RD(bp
, PCI_COMMAND
);
7490 reg
&= ~(PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
7491 REG_WR(bp
, PCI_COMMAND
, reg
);
7493 else if ((CHIP_ID(bp
) == CHIP_ID_5706_A1
) &&
7494 !(bp
->flags
& BNX2_FLAG_PCIX
)) {
7497 "5706 A1 can only be used in a PCIX bus, aborting.\n");
7501 bnx2_init_nvram(bp
);
7503 reg
= bnx2_reg_rd_ind(bp
, BNX2_SHM_HDR_SIGNATURE
);
7505 if ((reg
& BNX2_SHM_HDR_SIGNATURE_SIG_MASK
) ==
7506 BNX2_SHM_HDR_SIGNATURE_SIG
) {
7507 u32 off
= PCI_FUNC(pdev
->devfn
) << 2;
7509 bp
->shmem_base
= bnx2_reg_rd_ind(bp
, BNX2_SHM_HDR_ADDR_0
+ off
);
7511 bp
->shmem_base
= HOST_VIEW_SHMEM_BASE
;
7513 /* Get the permanent MAC address. First we need to make sure the
7514 * firmware is actually running.
7516 reg
= bnx2_shmem_rd(bp
, BNX2_DEV_INFO_SIGNATURE
);
7518 if ((reg
& BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK
) !=
7519 BNX2_DEV_INFO_SIGNATURE_MAGIC
) {
7520 dev_err(&pdev
->dev
, "Firmware not running, aborting.\n");
7525 reg
= bnx2_shmem_rd(bp
, BNX2_DEV_INFO_BC_REV
);
7526 for (i
= 0, j
= 0; i
< 3; i
++) {
7529 num
= (u8
) (reg
>> (24 - (i
* 8)));
7530 for (k
= 100, skip0
= 1; k
>= 1; num
%= k
, k
/= 10) {
7531 if (num
>= k
|| !skip0
|| k
== 1) {
7532 bp
->fw_version
[j
++] = (num
/ k
) + '0';
7537 bp
->fw_version
[j
++] = '.';
7539 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_FEATURE
);
7540 if (reg
& BNX2_PORT_FEATURE_WOL_ENABLED
)
7543 if (reg
& BNX2_PORT_FEATURE_ASF_ENABLED
) {
7544 bp
->flags
|= BNX2_FLAG_ASF_ENABLE
;
7546 for (i
= 0; i
< 30; i
++) {
7547 reg
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
7548 if (reg
& BNX2_CONDITION_MFW_RUN_MASK
)
7553 reg
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
7554 reg
&= BNX2_CONDITION_MFW_RUN_MASK
;
7555 if (reg
!= BNX2_CONDITION_MFW_RUN_UNKNOWN
&&
7556 reg
!= BNX2_CONDITION_MFW_RUN_NONE
) {
7557 u32 addr
= bnx2_shmem_rd(bp
, BNX2_MFW_VER_PTR
);
7559 bp
->fw_version
[j
++] = ' ';
7560 for (i
= 0; i
< 3; i
++) {
7561 reg
= bnx2_reg_rd_ind(bp
, addr
+ i
* 4);
7563 memcpy(&bp
->fw_version
[j
], ®
, 4);
7568 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_MAC_UPPER
);
7569 bp
->mac_addr
[0] = (u8
) (reg
>> 8);
7570 bp
->mac_addr
[1] = (u8
) reg
;
7572 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_MAC_LOWER
);
7573 bp
->mac_addr
[2] = (u8
) (reg
>> 24);
7574 bp
->mac_addr
[3] = (u8
) (reg
>> 16);
7575 bp
->mac_addr
[4] = (u8
) (reg
>> 8);
7576 bp
->mac_addr
[5] = (u8
) reg
;
7578 bp
->tx_ring_size
= MAX_TX_DESC_CNT
;
7579 bnx2_set_rx_ring_size(bp
, 255);
7583 bp
->tx_quick_cons_trip_int
= 20;
7584 bp
->tx_quick_cons_trip
= 20;
7585 bp
->tx_ticks_int
= 80;
7588 bp
->rx_quick_cons_trip_int
= 6;
7589 bp
->rx_quick_cons_trip
= 6;
7590 bp
->rx_ticks_int
= 18;
7593 bp
->stats_ticks
= USEC_PER_SEC
& BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
7595 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
7599 /* Disable WOL support if we are running on a SERDES chip. */
7600 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
7601 bnx2_get_5709_media(bp
);
7602 else if (CHIP_BOND_ID(bp
) & CHIP_BOND_ID_SERDES_BIT
)
7603 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7605 bp
->phy_port
= PORT_TP
;
7606 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
7607 bp
->phy_port
= PORT_FIBRE
;
7608 reg
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG
);
7609 if (!(reg
& BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX
)) {
7610 bp
->flags
|= BNX2_FLAG_NO_WOL
;
7613 if (CHIP_NUM(bp
) == CHIP_NUM_5706
) {
7614 /* Don't do parallel detect on this board because of
7615 * some board problems. The link will not go down
7616 * if we do parallel detect.
7618 if (pdev
->subsystem_vendor
== PCI_VENDOR_ID_HP
&&
7619 pdev
->subsystem_device
== 0x310c)
7620 bp
->phy_flags
|= BNX2_PHY_FLAG_NO_PARALLEL
;
7623 if (reg
& BNX2_SHARED_HW_CFG_PHY_2_5G
)
7624 bp
->phy_flags
|= BNX2_PHY_FLAG_2_5G_CAPABLE
;
7626 } else if (CHIP_NUM(bp
) == CHIP_NUM_5706
||
7627 CHIP_NUM(bp
) == CHIP_NUM_5708
)
7628 bp
->phy_flags
|= BNX2_PHY_FLAG_CRC_FIX
;
7629 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
&&
7630 (CHIP_REV(bp
) == CHIP_REV_Ax
||
7631 CHIP_REV(bp
) == CHIP_REV_Bx
))
7632 bp
->phy_flags
|= BNX2_PHY_FLAG_DIS_EARLY_DAC
;
7634 bnx2_init_fw_cap(bp
);
7636 if ((CHIP_ID(bp
) == CHIP_ID_5708_A0
) ||
7637 (CHIP_ID(bp
) == CHIP_ID_5708_B0
) ||
7638 (CHIP_ID(bp
) == CHIP_ID_5708_B1
) ||
7639 !(REG_RD(bp
, BNX2_PCI_CONFIG_3
) & BNX2_PCI_CONFIG_3_VAUX_PRESET
)) {
7640 bp
->flags
|= BNX2_FLAG_NO_WOL
;
7644 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
7645 bp
->tx_quick_cons_trip_int
=
7646 bp
->tx_quick_cons_trip
;
7647 bp
->tx_ticks_int
= bp
->tx_ticks
;
7648 bp
->rx_quick_cons_trip_int
=
7649 bp
->rx_quick_cons_trip
;
7650 bp
->rx_ticks_int
= bp
->rx_ticks
;
7651 bp
->comp_prod_trip_int
= bp
->comp_prod_trip
;
7652 bp
->com_ticks_int
= bp
->com_ticks
;
7653 bp
->cmd_ticks_int
= bp
->cmd_ticks
;
7656 /* Disable MSI on 5706 if AMD 8132 bridge is found.
7658 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
7659 * with byte enables disabled on the unused 32-bit word. This is legal
7660 * but causes problems on the AMD 8132 which will eventually stop
7661 * responding after a while.
7663 * AMD believes this incompatibility is unique to the 5706, and
7664 * prefers to locally disable MSI rather than globally disabling it.
7666 if (CHIP_NUM(bp
) == CHIP_NUM_5706
&& disable_msi
== 0) {
7667 struct pci_dev
*amd_8132
= NULL
;
7669 while ((amd_8132
= pci_get_device(PCI_VENDOR_ID_AMD
,
7670 PCI_DEVICE_ID_AMD_8132_BRIDGE
,
7673 if (amd_8132
->revision
>= 0x10 &&
7674 amd_8132
->revision
<= 0x13) {
7676 pci_dev_put(amd_8132
);
7682 bnx2_set_default_link(bp
);
7683 bp
->req_flow_ctrl
= FLOW_CTRL_RX
| FLOW_CTRL_TX
;
7685 init_timer(&bp
->timer
);
7686 bp
->timer
.expires
= RUN_AT(BNX2_TIMER_INTERVAL
);
7687 bp
->timer
.data
= (unsigned long) bp
;
7688 bp
->timer
.function
= bnx2_timer
;
7694 iounmap(bp
->regview
);
7699 pci_release_regions(pdev
);
7702 pci_disable_device(pdev
);
7703 pci_set_drvdata(pdev
, NULL
);
7709 static char * __devinit
7710 bnx2_bus_string(struct bnx2
*bp
, char *str
)
7714 if (bp
->flags
& BNX2_FLAG_PCIE
) {
7715 s
+= sprintf(s
, "PCI Express");
7717 s
+= sprintf(s
, "PCI");
7718 if (bp
->flags
& BNX2_FLAG_PCIX
)
7719 s
+= sprintf(s
, "-X");
7720 if (bp
->flags
& BNX2_FLAG_PCI_32BIT
)
7721 s
+= sprintf(s
, " 32-bit");
7723 s
+= sprintf(s
, " 64-bit");
7724 s
+= sprintf(s
, " %dMHz", bp
->bus_speed_mhz
);
7729 static void __devinit
7730 bnx2_init_napi(struct bnx2
*bp
)
7734 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
7735 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
7736 int (*poll
)(struct napi_struct
*, int);
7741 poll
= bnx2_poll_msix
;
7743 netif_napi_add(bp
->dev
, &bp
->bnx2_napi
[i
].napi
, poll
, 64);
7748 static const struct net_device_ops bnx2_netdev_ops
= {
7749 .ndo_open
= bnx2_open
,
7750 .ndo_start_xmit
= bnx2_start_xmit
,
7751 .ndo_stop
= bnx2_close
,
7752 .ndo_get_stats
= bnx2_get_stats
,
7753 .ndo_set_rx_mode
= bnx2_set_rx_mode
,
7754 .ndo_do_ioctl
= bnx2_ioctl
,
7755 .ndo_validate_addr
= eth_validate_addr
,
7756 .ndo_set_mac_address
= bnx2_change_mac_addr
,
7757 .ndo_change_mtu
= bnx2_change_mtu
,
7758 .ndo_tx_timeout
= bnx2_tx_timeout
,
7760 .ndo_vlan_rx_register
= bnx2_vlan_rx_register
,
7762 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
7763 .ndo_poll_controller
= poll_bnx2
,
7767 static int __devinit
7768 bnx2_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
7770 static int version_printed
= 0;
7771 struct net_device
*dev
= NULL
;
7776 if (version_printed
++ == 0)
7777 printk(KERN_INFO
"%s", version
);
7779 /* dev zeroed in init_etherdev */
7780 dev
= alloc_etherdev_mq(sizeof(*bp
), TX_MAX_RINGS
);
7785 rc
= bnx2_init_board(pdev
, dev
);
7791 dev
->netdev_ops
= &bnx2_netdev_ops
;
7792 dev
->watchdog_timeo
= TX_TIMEOUT
;
7793 dev
->ethtool_ops
= &bnx2_ethtool_ops
;
7795 bp
= netdev_priv(dev
);
7798 pci_set_drvdata(pdev
, dev
);
7800 memcpy(dev
->dev_addr
, bp
->mac_addr
, 6);
7801 memcpy(dev
->perm_addr
, bp
->mac_addr
, 6);
7803 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
;
7804 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
7805 dev
->features
|= NETIF_F_IPV6_CSUM
;
7808 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
7810 dev
->features
|= NETIF_F_TSO
| NETIF_F_TSO_ECN
;
7811 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
7812 dev
->features
|= NETIF_F_TSO6
;
7814 if ((rc
= register_netdev(dev
))) {
7815 dev_err(&pdev
->dev
, "Cannot register net device\n");
7817 iounmap(bp
->regview
);
7818 pci_release_regions(pdev
);
7819 pci_disable_device(pdev
);
7820 pci_set_drvdata(pdev
, NULL
);
7825 printk(KERN_INFO
"%s: %s (%c%d) %s found at mem %lx, "
7826 "IRQ %d, node addr %pM\n",
7828 board_info
[ent
->driver_data
].name
,
7829 ((CHIP_ID(bp
) & 0xf000) >> 12) + 'A',
7830 ((CHIP_ID(bp
) & 0x0ff0) >> 4),
7831 bnx2_bus_string(bp
, str
),
7833 bp
->pdev
->irq
, dev
->dev_addr
);
7838 static void __devexit
7839 bnx2_remove_one(struct pci_dev
*pdev
)
7841 struct net_device
*dev
= pci_get_drvdata(pdev
);
7842 struct bnx2
*bp
= netdev_priv(dev
);
7844 flush_scheduled_work();
7846 unregister_netdev(dev
);
7849 iounmap(bp
->regview
);
7852 pci_release_regions(pdev
);
7853 pci_disable_device(pdev
);
7854 pci_set_drvdata(pdev
, NULL
);
7858 bnx2_suspend(struct pci_dev
*pdev
, pm_message_t state
)
7860 struct net_device
*dev
= pci_get_drvdata(pdev
);
7861 struct bnx2
*bp
= netdev_priv(dev
);
7863 /* PCI register 4 needs to be saved whether netif_running() or not.
7864 * MSI address and data need to be saved if using MSI and
7867 pci_save_state(pdev
);
7868 if (!netif_running(dev
))
7871 flush_scheduled_work();
7872 bnx2_netif_stop(bp
);
7873 netif_device_detach(dev
);
7874 del_timer_sync(&bp
->timer
);
7875 bnx2_shutdown_chip(bp
);
7877 bnx2_set_power_state(bp
, pci_choose_state(pdev
, state
));
7882 bnx2_resume(struct pci_dev
*pdev
)
7884 struct net_device
*dev
= pci_get_drvdata(pdev
);
7885 struct bnx2
*bp
= netdev_priv(dev
);
7887 pci_restore_state(pdev
);
7888 if (!netif_running(dev
))
7891 bnx2_set_power_state(bp
, PCI_D0
);
7892 netif_device_attach(dev
);
7893 bnx2_init_nic(bp
, 1);
7894 bnx2_netif_start(bp
);
7899 * bnx2_io_error_detected - called when PCI error is detected
7900 * @pdev: Pointer to PCI device
7901 * @state: The current pci connection state
7903 * This function is called after a PCI bus error affecting
7904 * this device has been detected.
7906 static pci_ers_result_t
bnx2_io_error_detected(struct pci_dev
*pdev
,
7907 pci_channel_state_t state
)
7909 struct net_device
*dev
= pci_get_drvdata(pdev
);
7910 struct bnx2
*bp
= netdev_priv(dev
);
7913 netif_device_detach(dev
);
7915 if (netif_running(dev
)) {
7916 bnx2_netif_stop(bp
);
7917 del_timer_sync(&bp
->timer
);
7918 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
7921 pci_disable_device(pdev
);
7924 /* Request a slot slot reset. */
7925 return PCI_ERS_RESULT_NEED_RESET
;
7929 * bnx2_io_slot_reset - called after the pci bus has been reset.
7930 * @pdev: Pointer to PCI device
7932 * Restart the card from scratch, as if from a cold-boot.
7934 static pci_ers_result_t
bnx2_io_slot_reset(struct pci_dev
*pdev
)
7936 struct net_device
*dev
= pci_get_drvdata(pdev
);
7937 struct bnx2
*bp
= netdev_priv(dev
);
7940 if (pci_enable_device(pdev
)) {
7942 "Cannot re-enable PCI device after reset.\n");
7944 return PCI_ERS_RESULT_DISCONNECT
;
7946 pci_set_master(pdev
);
7947 pci_restore_state(pdev
);
7949 if (netif_running(dev
)) {
7950 bnx2_set_power_state(bp
, PCI_D0
);
7951 bnx2_init_nic(bp
, 1);
7955 return PCI_ERS_RESULT_RECOVERED
;
7959 * bnx2_io_resume - called when traffic can start flowing again.
7960 * @pdev: Pointer to PCI device
7962 * This callback is called when the error recovery driver tells us that
7963 * its OK to resume normal operation.
7965 static void bnx2_io_resume(struct pci_dev
*pdev
)
7967 struct net_device
*dev
= pci_get_drvdata(pdev
);
7968 struct bnx2
*bp
= netdev_priv(dev
);
7971 if (netif_running(dev
))
7972 bnx2_netif_start(bp
);
7974 netif_device_attach(dev
);
7978 static struct pci_error_handlers bnx2_err_handler
= {
7979 .error_detected
= bnx2_io_error_detected
,
7980 .slot_reset
= bnx2_io_slot_reset
,
7981 .resume
= bnx2_io_resume
,
7984 static struct pci_driver bnx2_pci_driver
= {
7985 .name
= DRV_MODULE_NAME
,
7986 .id_table
= bnx2_pci_tbl
,
7987 .probe
= bnx2_init_one
,
7988 .remove
= __devexit_p(bnx2_remove_one
),
7989 .suspend
= bnx2_suspend
,
7990 .resume
= bnx2_resume
,
7991 .err_handler
= &bnx2_err_handler
,
7994 static int __init
bnx2_init(void)
7996 return pci_register_driver(&bnx2_pci_driver
);
7999 static void __exit
bnx2_cleanup(void)
8001 pci_unregister_driver(&bnx2_pci_driver
);
8004 module_init(bnx2_init
);
8005 module_exit(bnx2_cleanup
);