staging: ft1000: Fix return values type.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / workqueue.c
blob11869faa6819767fba57f1e45789da7b56f15e74
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
4 * Copyright (C) 2002 Ingo Molnar
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
12 * Made to use alloc_percpu by Christoph Lameter.
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
23 * Please read Documentation/workqueue.txt for details.
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
45 #include "workqueue_sched.h"
47 enum {
48 /* global_cwq flags */
49 GCWQ_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
50 GCWQ_MANAGING_WORKERS = 1 << 1, /* managing workers */
51 GCWQ_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
52 GCWQ_FREEZING = 1 << 3, /* freeze in progress */
53 GCWQ_HIGHPRI_PENDING = 1 << 4, /* highpri works on queue */
55 /* worker flags */
56 WORKER_STARTED = 1 << 0, /* started */
57 WORKER_DIE = 1 << 1, /* die die die */
58 WORKER_IDLE = 1 << 2, /* is idle */
59 WORKER_PREP = 1 << 3, /* preparing to run works */
60 WORKER_ROGUE = 1 << 4, /* not bound to any cpu */
61 WORKER_REBIND = 1 << 5, /* mom is home, come back */
62 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
63 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
65 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_ROGUE | WORKER_REBIND |
66 WORKER_CPU_INTENSIVE | WORKER_UNBOUND,
68 /* gcwq->trustee_state */
69 TRUSTEE_START = 0, /* start */
70 TRUSTEE_IN_CHARGE = 1, /* trustee in charge of gcwq */
71 TRUSTEE_BUTCHER = 2, /* butcher workers */
72 TRUSTEE_RELEASE = 3, /* release workers */
73 TRUSTEE_DONE = 4, /* trustee is done */
75 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
76 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
77 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
79 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
80 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
82 MAYDAY_INITIAL_TIMEOUT = HZ / 100, /* call for help after 10ms */
83 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
84 CREATE_COOLDOWN = HZ, /* time to breath after fail */
85 TRUSTEE_COOLDOWN = HZ / 10, /* for trustee draining */
88 * Rescue workers are used only on emergencies and shared by
89 * all cpus. Give -20.
91 RESCUER_NICE_LEVEL = -20,
95 * Structure fields follow one of the following exclusion rules.
97 * I: Modifiable by initialization/destruction paths and read-only for
98 * everyone else.
100 * P: Preemption protected. Disabling preemption is enough and should
101 * only be modified and accessed from the local cpu.
103 * L: gcwq->lock protected. Access with gcwq->lock held.
105 * X: During normal operation, modification requires gcwq->lock and
106 * should be done only from local cpu. Either disabling preemption
107 * on local cpu or grabbing gcwq->lock is enough for read access.
108 * If GCWQ_DISASSOCIATED is set, it's identical to L.
110 * F: wq->flush_mutex protected.
112 * W: workqueue_lock protected.
115 struct global_cwq;
118 * The poor guys doing the actual heavy lifting. All on-duty workers
119 * are either serving the manager role, on idle list or on busy hash.
121 struct worker {
122 /* on idle list while idle, on busy hash table while busy */
123 union {
124 struct list_head entry; /* L: while idle */
125 struct hlist_node hentry; /* L: while busy */
128 struct work_struct *current_work; /* L: work being processed */
129 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
130 struct list_head scheduled; /* L: scheduled works */
131 struct task_struct *task; /* I: worker task */
132 struct global_cwq *gcwq; /* I: the associated gcwq */
133 /* 64 bytes boundary on 64bit, 32 on 32bit */
134 unsigned long last_active; /* L: last active timestamp */
135 unsigned int flags; /* X: flags */
136 int id; /* I: worker id */
137 struct work_struct rebind_work; /* L: rebind worker to cpu */
141 * Global per-cpu workqueue. There's one and only one for each cpu
142 * and all works are queued and processed here regardless of their
143 * target workqueues.
145 struct global_cwq {
146 spinlock_t lock; /* the gcwq lock */
147 struct list_head worklist; /* L: list of pending works */
148 unsigned int cpu; /* I: the associated cpu */
149 unsigned int flags; /* L: GCWQ_* flags */
151 int nr_workers; /* L: total number of workers */
152 int nr_idle; /* L: currently idle ones */
154 /* workers are chained either in the idle_list or busy_hash */
155 struct list_head idle_list; /* X: list of idle workers */
156 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
157 /* L: hash of busy workers */
159 struct timer_list idle_timer; /* L: worker idle timeout */
160 struct timer_list mayday_timer; /* L: SOS timer for dworkers */
162 struct ida worker_ida; /* L: for worker IDs */
164 struct task_struct *trustee; /* L: for gcwq shutdown */
165 unsigned int trustee_state; /* L: trustee state */
166 wait_queue_head_t trustee_wait; /* trustee wait */
167 struct worker *first_idle; /* L: first idle worker */
168 } ____cacheline_aligned_in_smp;
171 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
172 * work_struct->data are used for flags and thus cwqs need to be
173 * aligned at two's power of the number of flag bits.
175 struct cpu_workqueue_struct {
176 struct global_cwq *gcwq; /* I: the associated gcwq */
177 struct workqueue_struct *wq; /* I: the owning workqueue */
178 int work_color; /* L: current color */
179 int flush_color; /* L: flushing color */
180 int nr_in_flight[WORK_NR_COLORS];
181 /* L: nr of in_flight works */
182 int nr_active; /* L: nr of active works */
183 int max_active; /* L: max active works */
184 struct list_head delayed_works; /* L: delayed works */
188 * Structure used to wait for workqueue flush.
190 struct wq_flusher {
191 struct list_head list; /* F: list of flushers */
192 int flush_color; /* F: flush color waiting for */
193 struct completion done; /* flush completion */
197 * All cpumasks are assumed to be always set on UP and thus can't be
198 * used to determine whether there's something to be done.
200 #ifdef CONFIG_SMP
201 typedef cpumask_var_t mayday_mask_t;
202 #define mayday_test_and_set_cpu(cpu, mask) \
203 cpumask_test_and_set_cpu((cpu), (mask))
204 #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
205 #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
206 #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
207 #define free_mayday_mask(mask) free_cpumask_var((mask))
208 #else
209 typedef unsigned long mayday_mask_t;
210 #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
211 #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
212 #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
213 #define alloc_mayday_mask(maskp, gfp) true
214 #define free_mayday_mask(mask) do { } while (0)
215 #endif
218 * The externally visible workqueue abstraction is an array of
219 * per-CPU workqueues:
221 struct workqueue_struct {
222 unsigned int flags; /* I: WQ_* flags */
223 union {
224 struct cpu_workqueue_struct __percpu *pcpu;
225 struct cpu_workqueue_struct *single;
226 unsigned long v;
227 } cpu_wq; /* I: cwq's */
228 struct list_head list; /* W: list of all workqueues */
230 struct mutex flush_mutex; /* protects wq flushing */
231 int work_color; /* F: current work color */
232 int flush_color; /* F: current flush color */
233 atomic_t nr_cwqs_to_flush; /* flush in progress */
234 struct wq_flusher *first_flusher; /* F: first flusher */
235 struct list_head flusher_queue; /* F: flush waiters */
236 struct list_head flusher_overflow; /* F: flush overflow list */
238 mayday_mask_t mayday_mask; /* cpus requesting rescue */
239 struct worker *rescuer; /* I: rescue worker */
241 int saved_max_active; /* W: saved cwq max_active */
242 const char *name; /* I: workqueue name */
243 #ifdef CONFIG_LOCKDEP
244 struct lockdep_map lockdep_map;
245 #endif
248 struct workqueue_struct *system_wq __read_mostly;
249 struct workqueue_struct *system_long_wq __read_mostly;
250 struct workqueue_struct *system_nrt_wq __read_mostly;
251 struct workqueue_struct *system_unbound_wq __read_mostly;
252 EXPORT_SYMBOL_GPL(system_wq);
253 EXPORT_SYMBOL_GPL(system_long_wq);
254 EXPORT_SYMBOL_GPL(system_nrt_wq);
255 EXPORT_SYMBOL_GPL(system_unbound_wq);
257 #define CREATE_TRACE_POINTS
258 #include <trace/events/workqueue.h>
260 #define for_each_busy_worker(worker, i, pos, gcwq) \
261 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
262 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
264 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
265 unsigned int sw)
267 if (cpu < nr_cpu_ids) {
268 if (sw & 1) {
269 cpu = cpumask_next(cpu, mask);
270 if (cpu < nr_cpu_ids)
271 return cpu;
273 if (sw & 2)
274 return WORK_CPU_UNBOUND;
276 return WORK_CPU_NONE;
279 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
280 struct workqueue_struct *wq)
282 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
286 * CPU iterators
288 * An extra gcwq is defined for an invalid cpu number
289 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
290 * specific CPU. The following iterators are similar to
291 * for_each_*_cpu() iterators but also considers the unbound gcwq.
293 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
294 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
295 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
296 * WORK_CPU_UNBOUND for unbound workqueues
298 #define for_each_gcwq_cpu(cpu) \
299 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
300 (cpu) < WORK_CPU_NONE; \
301 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
303 #define for_each_online_gcwq_cpu(cpu) \
304 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
305 (cpu) < WORK_CPU_NONE; \
306 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
308 #define for_each_cwq_cpu(cpu, wq) \
309 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
310 (cpu) < WORK_CPU_NONE; \
311 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
313 #ifdef CONFIG_DEBUG_OBJECTS_WORK
315 static struct debug_obj_descr work_debug_descr;
318 * fixup_init is called when:
319 * - an active object is initialized
321 static int work_fixup_init(void *addr, enum debug_obj_state state)
323 struct work_struct *work = addr;
325 switch (state) {
326 case ODEBUG_STATE_ACTIVE:
327 cancel_work_sync(work);
328 debug_object_init(work, &work_debug_descr);
329 return 1;
330 default:
331 return 0;
336 * fixup_activate is called when:
337 * - an active object is activated
338 * - an unknown object is activated (might be a statically initialized object)
340 static int work_fixup_activate(void *addr, enum debug_obj_state state)
342 struct work_struct *work = addr;
344 switch (state) {
346 case ODEBUG_STATE_NOTAVAILABLE:
348 * This is not really a fixup. The work struct was
349 * statically initialized. We just make sure that it
350 * is tracked in the object tracker.
352 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
353 debug_object_init(work, &work_debug_descr);
354 debug_object_activate(work, &work_debug_descr);
355 return 0;
357 WARN_ON_ONCE(1);
358 return 0;
360 case ODEBUG_STATE_ACTIVE:
361 WARN_ON(1);
363 default:
364 return 0;
369 * fixup_free is called when:
370 * - an active object is freed
372 static int work_fixup_free(void *addr, enum debug_obj_state state)
374 struct work_struct *work = addr;
376 switch (state) {
377 case ODEBUG_STATE_ACTIVE:
378 cancel_work_sync(work);
379 debug_object_free(work, &work_debug_descr);
380 return 1;
381 default:
382 return 0;
386 static struct debug_obj_descr work_debug_descr = {
387 .name = "work_struct",
388 .fixup_init = work_fixup_init,
389 .fixup_activate = work_fixup_activate,
390 .fixup_free = work_fixup_free,
393 static inline void debug_work_activate(struct work_struct *work)
395 debug_object_activate(work, &work_debug_descr);
398 static inline void debug_work_deactivate(struct work_struct *work)
400 debug_object_deactivate(work, &work_debug_descr);
403 void __init_work(struct work_struct *work, int onstack)
405 if (onstack)
406 debug_object_init_on_stack(work, &work_debug_descr);
407 else
408 debug_object_init(work, &work_debug_descr);
410 EXPORT_SYMBOL_GPL(__init_work);
412 void destroy_work_on_stack(struct work_struct *work)
414 debug_object_free(work, &work_debug_descr);
416 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
418 #else
419 static inline void debug_work_activate(struct work_struct *work) { }
420 static inline void debug_work_deactivate(struct work_struct *work) { }
421 #endif
423 /* Serializes the accesses to the list of workqueues. */
424 static DEFINE_SPINLOCK(workqueue_lock);
425 static LIST_HEAD(workqueues);
426 static bool workqueue_freezing; /* W: have wqs started freezing? */
429 * The almighty global cpu workqueues. nr_running is the only field
430 * which is expected to be used frequently by other cpus via
431 * try_to_wake_up(). Put it in a separate cacheline.
433 static DEFINE_PER_CPU(struct global_cwq, global_cwq);
434 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running);
437 * Global cpu workqueue and nr_running counter for unbound gcwq. The
438 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
439 * workers have WORKER_UNBOUND set.
441 static struct global_cwq unbound_global_cwq;
442 static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0); /* always 0 */
444 static int worker_thread(void *__worker);
446 static struct global_cwq *get_gcwq(unsigned int cpu)
448 if (cpu != WORK_CPU_UNBOUND)
449 return &per_cpu(global_cwq, cpu);
450 else
451 return &unbound_global_cwq;
454 static atomic_t *get_gcwq_nr_running(unsigned int cpu)
456 if (cpu != WORK_CPU_UNBOUND)
457 return &per_cpu(gcwq_nr_running, cpu);
458 else
459 return &unbound_gcwq_nr_running;
462 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
463 struct workqueue_struct *wq)
465 if (!(wq->flags & WQ_UNBOUND)) {
466 if (likely(cpu < nr_cpu_ids)) {
467 #ifdef CONFIG_SMP
468 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
469 #else
470 return wq->cpu_wq.single;
471 #endif
473 } else if (likely(cpu == WORK_CPU_UNBOUND))
474 return wq->cpu_wq.single;
475 return NULL;
478 static unsigned int work_color_to_flags(int color)
480 return color << WORK_STRUCT_COLOR_SHIFT;
483 static int get_work_color(struct work_struct *work)
485 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
486 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
489 static int work_next_color(int color)
491 return (color + 1) % WORK_NR_COLORS;
495 * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
496 * work is on queue. Once execution starts, WORK_STRUCT_CWQ is
497 * cleared and the work data contains the cpu number it was last on.
499 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
500 * cwq, cpu or clear work->data. These functions should only be
501 * called while the work is owned - ie. while the PENDING bit is set.
503 * get_work_[g]cwq() can be used to obtain the gcwq or cwq
504 * corresponding to a work. gcwq is available once the work has been
505 * queued anywhere after initialization. cwq is available only from
506 * queueing until execution starts.
508 static inline void set_work_data(struct work_struct *work, unsigned long data,
509 unsigned long flags)
511 BUG_ON(!work_pending(work));
512 atomic_long_set(&work->data, data | flags | work_static(work));
515 static void set_work_cwq(struct work_struct *work,
516 struct cpu_workqueue_struct *cwq,
517 unsigned long extra_flags)
519 set_work_data(work, (unsigned long)cwq,
520 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
523 static void set_work_cpu(struct work_struct *work, unsigned int cpu)
525 set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
528 static void clear_work_data(struct work_struct *work)
530 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
533 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
535 unsigned long data = atomic_long_read(&work->data);
537 if (data & WORK_STRUCT_CWQ)
538 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
539 else
540 return NULL;
543 static struct global_cwq *get_work_gcwq(struct work_struct *work)
545 unsigned long data = atomic_long_read(&work->data);
546 unsigned int cpu;
548 if (data & WORK_STRUCT_CWQ)
549 return ((struct cpu_workqueue_struct *)
550 (data & WORK_STRUCT_WQ_DATA_MASK))->gcwq;
552 cpu = data >> WORK_STRUCT_FLAG_BITS;
553 if (cpu == WORK_CPU_NONE)
554 return NULL;
556 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
557 return get_gcwq(cpu);
561 * Policy functions. These define the policies on how the global
562 * worker pool is managed. Unless noted otherwise, these functions
563 * assume that they're being called with gcwq->lock held.
566 static bool __need_more_worker(struct global_cwq *gcwq)
568 return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) ||
569 gcwq->flags & GCWQ_HIGHPRI_PENDING;
573 * Need to wake up a worker? Called from anything but currently
574 * running workers.
576 static bool need_more_worker(struct global_cwq *gcwq)
578 return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq);
581 /* Can I start working? Called from busy but !running workers. */
582 static bool may_start_working(struct global_cwq *gcwq)
584 return gcwq->nr_idle;
587 /* Do I need to keep working? Called from currently running workers. */
588 static bool keep_working(struct global_cwq *gcwq)
590 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
592 return !list_empty(&gcwq->worklist) &&
593 (atomic_read(nr_running) <= 1 ||
594 gcwq->flags & GCWQ_HIGHPRI_PENDING);
597 /* Do we need a new worker? Called from manager. */
598 static bool need_to_create_worker(struct global_cwq *gcwq)
600 return need_more_worker(gcwq) && !may_start_working(gcwq);
603 /* Do I need to be the manager? */
604 static bool need_to_manage_workers(struct global_cwq *gcwq)
606 return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS;
609 /* Do we have too many workers and should some go away? */
610 static bool too_many_workers(struct global_cwq *gcwq)
612 bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS;
613 int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */
614 int nr_busy = gcwq->nr_workers - nr_idle;
616 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
620 * Wake up functions.
623 /* Return the first worker. Safe with preemption disabled */
624 static struct worker *first_worker(struct global_cwq *gcwq)
626 if (unlikely(list_empty(&gcwq->idle_list)))
627 return NULL;
629 return list_first_entry(&gcwq->idle_list, struct worker, entry);
633 * wake_up_worker - wake up an idle worker
634 * @gcwq: gcwq to wake worker for
636 * Wake up the first idle worker of @gcwq.
638 * CONTEXT:
639 * spin_lock_irq(gcwq->lock).
641 static void wake_up_worker(struct global_cwq *gcwq)
643 struct worker *worker = first_worker(gcwq);
645 if (likely(worker))
646 wake_up_process(worker->task);
650 * wq_worker_waking_up - a worker is waking up
651 * @task: task waking up
652 * @cpu: CPU @task is waking up to
654 * This function is called during try_to_wake_up() when a worker is
655 * being awoken.
657 * CONTEXT:
658 * spin_lock_irq(rq->lock)
660 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
662 struct worker *worker = kthread_data(task);
664 if (!(worker->flags & WORKER_NOT_RUNNING))
665 atomic_inc(get_gcwq_nr_running(cpu));
669 * wq_worker_sleeping - a worker is going to sleep
670 * @task: task going to sleep
671 * @cpu: CPU in question, must be the current CPU number
673 * This function is called during schedule() when a busy worker is
674 * going to sleep. Worker on the same cpu can be woken up by
675 * returning pointer to its task.
677 * CONTEXT:
678 * spin_lock_irq(rq->lock)
680 * RETURNS:
681 * Worker task on @cpu to wake up, %NULL if none.
683 struct task_struct *wq_worker_sleeping(struct task_struct *task,
684 unsigned int cpu)
686 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
687 struct global_cwq *gcwq = get_gcwq(cpu);
688 atomic_t *nr_running = get_gcwq_nr_running(cpu);
690 if (worker->flags & WORKER_NOT_RUNNING)
691 return NULL;
693 /* this can only happen on the local cpu */
694 BUG_ON(cpu != raw_smp_processor_id());
697 * The counterpart of the following dec_and_test, implied mb,
698 * worklist not empty test sequence is in insert_work().
699 * Please read comment there.
701 * NOT_RUNNING is clear. This means that trustee is not in
702 * charge and we're running on the local cpu w/ rq lock held
703 * and preemption disabled, which in turn means that none else
704 * could be manipulating idle_list, so dereferencing idle_list
705 * without gcwq lock is safe.
707 if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist))
708 to_wakeup = first_worker(gcwq);
709 return to_wakeup ? to_wakeup->task : NULL;
713 * worker_set_flags - set worker flags and adjust nr_running accordingly
714 * @worker: self
715 * @flags: flags to set
716 * @wakeup: wakeup an idle worker if necessary
718 * Set @flags in @worker->flags and adjust nr_running accordingly. If
719 * nr_running becomes zero and @wakeup is %true, an idle worker is
720 * woken up.
722 * CONTEXT:
723 * spin_lock_irq(gcwq->lock)
725 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
726 bool wakeup)
728 struct global_cwq *gcwq = worker->gcwq;
730 WARN_ON_ONCE(worker->task != current);
733 * If transitioning into NOT_RUNNING, adjust nr_running and
734 * wake up an idle worker as necessary if requested by
735 * @wakeup.
737 if ((flags & WORKER_NOT_RUNNING) &&
738 !(worker->flags & WORKER_NOT_RUNNING)) {
739 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
741 if (wakeup) {
742 if (atomic_dec_and_test(nr_running) &&
743 !list_empty(&gcwq->worklist))
744 wake_up_worker(gcwq);
745 } else
746 atomic_dec(nr_running);
749 worker->flags |= flags;
753 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
754 * @worker: self
755 * @flags: flags to clear
757 * Clear @flags in @worker->flags and adjust nr_running accordingly.
759 * CONTEXT:
760 * spin_lock_irq(gcwq->lock)
762 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
764 struct global_cwq *gcwq = worker->gcwq;
765 unsigned int oflags = worker->flags;
767 WARN_ON_ONCE(worker->task != current);
769 worker->flags &= ~flags;
772 * If transitioning out of NOT_RUNNING, increment nr_running. Note
773 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
774 * of multiple flags, not a single flag.
776 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
777 if (!(worker->flags & WORKER_NOT_RUNNING))
778 atomic_inc(get_gcwq_nr_running(gcwq->cpu));
782 * busy_worker_head - return the busy hash head for a work
783 * @gcwq: gcwq of interest
784 * @work: work to be hashed
786 * Return hash head of @gcwq for @work.
788 * CONTEXT:
789 * spin_lock_irq(gcwq->lock).
791 * RETURNS:
792 * Pointer to the hash head.
794 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
795 struct work_struct *work)
797 const int base_shift = ilog2(sizeof(struct work_struct));
798 unsigned long v = (unsigned long)work;
800 /* simple shift and fold hash, do we need something better? */
801 v >>= base_shift;
802 v += v >> BUSY_WORKER_HASH_ORDER;
803 v &= BUSY_WORKER_HASH_MASK;
805 return &gcwq->busy_hash[v];
809 * __find_worker_executing_work - find worker which is executing a work
810 * @gcwq: gcwq of interest
811 * @bwh: hash head as returned by busy_worker_head()
812 * @work: work to find worker for
814 * Find a worker which is executing @work on @gcwq. @bwh should be
815 * the hash head obtained by calling busy_worker_head() with the same
816 * work.
818 * CONTEXT:
819 * spin_lock_irq(gcwq->lock).
821 * RETURNS:
822 * Pointer to worker which is executing @work if found, NULL
823 * otherwise.
825 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
826 struct hlist_head *bwh,
827 struct work_struct *work)
829 struct worker *worker;
830 struct hlist_node *tmp;
832 hlist_for_each_entry(worker, tmp, bwh, hentry)
833 if (worker->current_work == work)
834 return worker;
835 return NULL;
839 * find_worker_executing_work - find worker which is executing a work
840 * @gcwq: gcwq of interest
841 * @work: work to find worker for
843 * Find a worker which is executing @work on @gcwq. This function is
844 * identical to __find_worker_executing_work() except that this
845 * function calculates @bwh itself.
847 * CONTEXT:
848 * spin_lock_irq(gcwq->lock).
850 * RETURNS:
851 * Pointer to worker which is executing @work if found, NULL
852 * otherwise.
854 static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
855 struct work_struct *work)
857 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
858 work);
862 * gcwq_determine_ins_pos - find insertion position
863 * @gcwq: gcwq of interest
864 * @cwq: cwq a work is being queued for
866 * A work for @cwq is about to be queued on @gcwq, determine insertion
867 * position for the work. If @cwq is for HIGHPRI wq, the work is
868 * queued at the head of the queue but in FIFO order with respect to
869 * other HIGHPRI works; otherwise, at the end of the queue. This
870 * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that
871 * there are HIGHPRI works pending.
873 * CONTEXT:
874 * spin_lock_irq(gcwq->lock).
876 * RETURNS:
877 * Pointer to inserstion position.
879 static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq,
880 struct cpu_workqueue_struct *cwq)
882 struct work_struct *twork;
884 if (likely(!(cwq->wq->flags & WQ_HIGHPRI)))
885 return &gcwq->worklist;
887 list_for_each_entry(twork, &gcwq->worklist, entry) {
888 struct cpu_workqueue_struct *tcwq = get_work_cwq(twork);
890 if (!(tcwq->wq->flags & WQ_HIGHPRI))
891 break;
894 gcwq->flags |= GCWQ_HIGHPRI_PENDING;
895 return &twork->entry;
899 * insert_work - insert a work into gcwq
900 * @cwq: cwq @work belongs to
901 * @work: work to insert
902 * @head: insertion point
903 * @extra_flags: extra WORK_STRUCT_* flags to set
905 * Insert @work which belongs to @cwq into @gcwq after @head.
906 * @extra_flags is or'd to work_struct flags.
908 * CONTEXT:
909 * spin_lock_irq(gcwq->lock).
911 static void insert_work(struct cpu_workqueue_struct *cwq,
912 struct work_struct *work, struct list_head *head,
913 unsigned int extra_flags)
915 struct global_cwq *gcwq = cwq->gcwq;
917 /* we own @work, set data and link */
918 set_work_cwq(work, cwq, extra_flags);
921 * Ensure that we get the right work->data if we see the
922 * result of list_add() below, see try_to_grab_pending().
924 smp_wmb();
926 list_add_tail(&work->entry, head);
929 * Ensure either worker_sched_deactivated() sees the above
930 * list_add_tail() or we see zero nr_running to avoid workers
931 * lying around lazily while there are works to be processed.
933 smp_mb();
935 if (__need_more_worker(gcwq))
936 wake_up_worker(gcwq);
940 * Test whether @work is being queued from another work executing on the
941 * same workqueue. This is rather expensive and should only be used from
942 * cold paths.
944 static bool is_chained_work(struct workqueue_struct *wq)
946 unsigned long flags;
947 unsigned int cpu;
949 for_each_gcwq_cpu(cpu) {
950 struct global_cwq *gcwq = get_gcwq(cpu);
951 struct worker *worker;
952 struct hlist_node *pos;
953 int i;
955 spin_lock_irqsave(&gcwq->lock, flags);
956 for_each_busy_worker(worker, i, pos, gcwq) {
957 if (worker->task != current)
958 continue;
959 spin_unlock_irqrestore(&gcwq->lock, flags);
961 * I'm @worker, no locking necessary. See if @work
962 * is headed to the same workqueue.
964 return worker->current_cwq->wq == wq;
966 spin_unlock_irqrestore(&gcwq->lock, flags);
968 return false;
971 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
972 struct work_struct *work)
974 struct global_cwq *gcwq;
975 struct cpu_workqueue_struct *cwq;
976 struct list_head *worklist;
977 unsigned int work_flags;
978 unsigned long flags;
980 debug_work_activate(work);
982 /* if dying, only works from the same workqueue are allowed */
983 if (unlikely(wq->flags & WQ_DYING) &&
984 WARN_ON_ONCE(!is_chained_work(wq)))
985 return;
987 /* determine gcwq to use */
988 if (!(wq->flags & WQ_UNBOUND)) {
989 struct global_cwq *last_gcwq;
991 if (unlikely(cpu == WORK_CPU_UNBOUND))
992 cpu = raw_smp_processor_id();
995 * It's multi cpu. If @wq is non-reentrant and @work
996 * was previously on a different cpu, it might still
997 * be running there, in which case the work needs to
998 * be queued on that cpu to guarantee non-reentrance.
1000 gcwq = get_gcwq(cpu);
1001 if (wq->flags & WQ_NON_REENTRANT &&
1002 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
1003 struct worker *worker;
1005 spin_lock_irqsave(&last_gcwq->lock, flags);
1007 worker = find_worker_executing_work(last_gcwq, work);
1009 if (worker && worker->current_cwq->wq == wq)
1010 gcwq = last_gcwq;
1011 else {
1012 /* meh... not running there, queue here */
1013 spin_unlock_irqrestore(&last_gcwq->lock, flags);
1014 spin_lock_irqsave(&gcwq->lock, flags);
1016 } else
1017 spin_lock_irqsave(&gcwq->lock, flags);
1018 } else {
1019 gcwq = get_gcwq(WORK_CPU_UNBOUND);
1020 spin_lock_irqsave(&gcwq->lock, flags);
1023 /* gcwq determined, get cwq and queue */
1024 cwq = get_cwq(gcwq->cpu, wq);
1025 trace_workqueue_queue_work(cpu, cwq, work);
1027 BUG_ON(!list_empty(&work->entry));
1029 cwq->nr_in_flight[cwq->work_color]++;
1030 work_flags = work_color_to_flags(cwq->work_color);
1032 if (likely(cwq->nr_active < cwq->max_active)) {
1033 trace_workqueue_activate_work(work);
1034 cwq->nr_active++;
1035 worklist = gcwq_determine_ins_pos(gcwq, cwq);
1036 } else {
1037 work_flags |= WORK_STRUCT_DELAYED;
1038 worklist = &cwq->delayed_works;
1041 insert_work(cwq, work, worklist, work_flags);
1043 spin_unlock_irqrestore(&gcwq->lock, flags);
1047 * queue_work - queue work on a workqueue
1048 * @wq: workqueue to use
1049 * @work: work to queue
1051 * Returns 0 if @work was already on a queue, non-zero otherwise.
1053 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1054 * it can be processed by another CPU.
1056 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
1058 int ret;
1060 ret = queue_work_on(get_cpu(), wq, work);
1061 put_cpu();
1063 return ret;
1065 EXPORT_SYMBOL_GPL(queue_work);
1068 * queue_work_on - queue work on specific cpu
1069 * @cpu: CPU number to execute work on
1070 * @wq: workqueue to use
1071 * @work: work to queue
1073 * Returns 0 if @work was already on a queue, non-zero otherwise.
1075 * We queue the work to a specific CPU, the caller must ensure it
1076 * can't go away.
1079 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
1081 int ret = 0;
1083 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1084 __queue_work(cpu, wq, work);
1085 ret = 1;
1087 return ret;
1089 EXPORT_SYMBOL_GPL(queue_work_on);
1091 static void delayed_work_timer_fn(unsigned long __data)
1093 struct delayed_work *dwork = (struct delayed_work *)__data;
1094 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1096 __queue_work(smp_processor_id(), cwq->wq, &dwork->work);
1100 * queue_delayed_work - queue work on a workqueue after delay
1101 * @wq: workqueue to use
1102 * @dwork: delayable work to queue
1103 * @delay: number of jiffies to wait before queueing
1105 * Returns 0 if @work was already on a queue, non-zero otherwise.
1107 int queue_delayed_work(struct workqueue_struct *wq,
1108 struct delayed_work *dwork, unsigned long delay)
1110 if (delay == 0)
1111 return queue_work(wq, &dwork->work);
1113 return queue_delayed_work_on(-1, wq, dwork, delay);
1115 EXPORT_SYMBOL_GPL(queue_delayed_work);
1118 * queue_delayed_work_on - queue work on specific CPU after delay
1119 * @cpu: CPU number to execute work on
1120 * @wq: workqueue to use
1121 * @dwork: work to queue
1122 * @delay: number of jiffies to wait before queueing
1124 * Returns 0 if @work was already on a queue, non-zero otherwise.
1126 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1127 struct delayed_work *dwork, unsigned long delay)
1129 int ret = 0;
1130 struct timer_list *timer = &dwork->timer;
1131 struct work_struct *work = &dwork->work;
1133 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1134 unsigned int lcpu;
1136 BUG_ON(timer_pending(timer));
1137 BUG_ON(!list_empty(&work->entry));
1139 timer_stats_timer_set_start_info(&dwork->timer);
1142 * This stores cwq for the moment, for the timer_fn.
1143 * Note that the work's gcwq is preserved to allow
1144 * reentrance detection for delayed works.
1146 if (!(wq->flags & WQ_UNBOUND)) {
1147 struct global_cwq *gcwq = get_work_gcwq(work);
1149 if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1150 lcpu = gcwq->cpu;
1151 else
1152 lcpu = raw_smp_processor_id();
1153 } else
1154 lcpu = WORK_CPU_UNBOUND;
1156 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1158 timer->expires = jiffies + delay;
1159 timer->data = (unsigned long)dwork;
1160 timer->function = delayed_work_timer_fn;
1162 if (unlikely(cpu >= 0))
1163 add_timer_on(timer, cpu);
1164 else
1165 add_timer(timer);
1166 ret = 1;
1168 return ret;
1170 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1173 * worker_enter_idle - enter idle state
1174 * @worker: worker which is entering idle state
1176 * @worker is entering idle state. Update stats and idle timer if
1177 * necessary.
1179 * LOCKING:
1180 * spin_lock_irq(gcwq->lock).
1182 static void worker_enter_idle(struct worker *worker)
1184 struct global_cwq *gcwq = worker->gcwq;
1186 BUG_ON(worker->flags & WORKER_IDLE);
1187 BUG_ON(!list_empty(&worker->entry) &&
1188 (worker->hentry.next || worker->hentry.pprev));
1190 /* can't use worker_set_flags(), also called from start_worker() */
1191 worker->flags |= WORKER_IDLE;
1192 gcwq->nr_idle++;
1193 worker->last_active = jiffies;
1195 /* idle_list is LIFO */
1196 list_add(&worker->entry, &gcwq->idle_list);
1198 if (likely(!(worker->flags & WORKER_ROGUE))) {
1199 if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer))
1200 mod_timer(&gcwq->idle_timer,
1201 jiffies + IDLE_WORKER_TIMEOUT);
1202 } else
1203 wake_up_all(&gcwq->trustee_wait);
1205 /* sanity check nr_running */
1206 WARN_ON_ONCE(gcwq->nr_workers == gcwq->nr_idle &&
1207 atomic_read(get_gcwq_nr_running(gcwq->cpu)));
1211 * worker_leave_idle - leave idle state
1212 * @worker: worker which is leaving idle state
1214 * @worker is leaving idle state. Update stats.
1216 * LOCKING:
1217 * spin_lock_irq(gcwq->lock).
1219 static void worker_leave_idle(struct worker *worker)
1221 struct global_cwq *gcwq = worker->gcwq;
1223 BUG_ON(!(worker->flags & WORKER_IDLE));
1224 worker_clr_flags(worker, WORKER_IDLE);
1225 gcwq->nr_idle--;
1226 list_del_init(&worker->entry);
1230 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1231 * @worker: self
1233 * Works which are scheduled while the cpu is online must at least be
1234 * scheduled to a worker which is bound to the cpu so that if they are
1235 * flushed from cpu callbacks while cpu is going down, they are
1236 * guaranteed to execute on the cpu.
1238 * This function is to be used by rogue workers and rescuers to bind
1239 * themselves to the target cpu and may race with cpu going down or
1240 * coming online. kthread_bind() can't be used because it may put the
1241 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1242 * verbatim as it's best effort and blocking and gcwq may be
1243 * [dis]associated in the meantime.
1245 * This function tries set_cpus_allowed() and locks gcwq and verifies
1246 * the binding against GCWQ_DISASSOCIATED which is set during
1247 * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters
1248 * idle state or fetches works without dropping lock, it can guarantee
1249 * the scheduling requirement described in the first paragraph.
1251 * CONTEXT:
1252 * Might sleep. Called without any lock but returns with gcwq->lock
1253 * held.
1255 * RETURNS:
1256 * %true if the associated gcwq is online (@worker is successfully
1257 * bound), %false if offline.
1259 static bool worker_maybe_bind_and_lock(struct worker *worker)
1260 __acquires(&gcwq->lock)
1262 struct global_cwq *gcwq = worker->gcwq;
1263 struct task_struct *task = worker->task;
1265 while (true) {
1267 * The following call may fail, succeed or succeed
1268 * without actually migrating the task to the cpu if
1269 * it races with cpu hotunplug operation. Verify
1270 * against GCWQ_DISASSOCIATED.
1272 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1273 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1275 spin_lock_irq(&gcwq->lock);
1276 if (gcwq->flags & GCWQ_DISASSOCIATED)
1277 return false;
1278 if (task_cpu(task) == gcwq->cpu &&
1279 cpumask_equal(&current->cpus_allowed,
1280 get_cpu_mask(gcwq->cpu)))
1281 return true;
1282 spin_unlock_irq(&gcwq->lock);
1284 /* CPU has come up inbetween, retry migration */
1285 cpu_relax();
1290 * Function for worker->rebind_work used to rebind rogue busy workers
1291 * to the associated cpu which is coming back online. This is
1292 * scheduled by cpu up but can race with other cpu hotplug operations
1293 * and may be executed twice without intervening cpu down.
1295 static void worker_rebind_fn(struct work_struct *work)
1297 struct worker *worker = container_of(work, struct worker, rebind_work);
1298 struct global_cwq *gcwq = worker->gcwq;
1300 if (worker_maybe_bind_and_lock(worker))
1301 worker_clr_flags(worker, WORKER_REBIND);
1303 spin_unlock_irq(&gcwq->lock);
1306 static struct worker *alloc_worker(void)
1308 struct worker *worker;
1310 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1311 if (worker) {
1312 INIT_LIST_HEAD(&worker->entry);
1313 INIT_LIST_HEAD(&worker->scheduled);
1314 INIT_WORK(&worker->rebind_work, worker_rebind_fn);
1315 /* on creation a worker is in !idle && prep state */
1316 worker->flags = WORKER_PREP;
1318 return worker;
1322 * create_worker - create a new workqueue worker
1323 * @gcwq: gcwq the new worker will belong to
1324 * @bind: whether to set affinity to @cpu or not
1326 * Create a new worker which is bound to @gcwq. The returned worker
1327 * can be started by calling start_worker() or destroyed using
1328 * destroy_worker().
1330 * CONTEXT:
1331 * Might sleep. Does GFP_KERNEL allocations.
1333 * RETURNS:
1334 * Pointer to the newly created worker.
1336 static struct worker *create_worker(struct global_cwq *gcwq, bool bind)
1338 bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND;
1339 struct worker *worker = NULL;
1340 int id = -1;
1342 spin_lock_irq(&gcwq->lock);
1343 while (ida_get_new(&gcwq->worker_ida, &id)) {
1344 spin_unlock_irq(&gcwq->lock);
1345 if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL))
1346 goto fail;
1347 spin_lock_irq(&gcwq->lock);
1349 spin_unlock_irq(&gcwq->lock);
1351 worker = alloc_worker();
1352 if (!worker)
1353 goto fail;
1355 worker->gcwq = gcwq;
1356 worker->id = id;
1358 if (!on_unbound_cpu)
1359 worker->task = kthread_create(worker_thread, worker,
1360 "kworker/%u:%d", gcwq->cpu, id);
1361 else
1362 worker->task = kthread_create(worker_thread, worker,
1363 "kworker/u:%d", id);
1364 if (IS_ERR(worker->task))
1365 goto fail;
1368 * A rogue worker will become a regular one if CPU comes
1369 * online later on. Make sure every worker has
1370 * PF_THREAD_BOUND set.
1372 if (bind && !on_unbound_cpu)
1373 kthread_bind(worker->task, gcwq->cpu);
1374 else {
1375 worker->task->flags |= PF_THREAD_BOUND;
1376 if (on_unbound_cpu)
1377 worker->flags |= WORKER_UNBOUND;
1380 return worker;
1381 fail:
1382 if (id >= 0) {
1383 spin_lock_irq(&gcwq->lock);
1384 ida_remove(&gcwq->worker_ida, id);
1385 spin_unlock_irq(&gcwq->lock);
1387 kfree(worker);
1388 return NULL;
1392 * start_worker - start a newly created worker
1393 * @worker: worker to start
1395 * Make the gcwq aware of @worker and start it.
1397 * CONTEXT:
1398 * spin_lock_irq(gcwq->lock).
1400 static void start_worker(struct worker *worker)
1402 worker->flags |= WORKER_STARTED;
1403 worker->gcwq->nr_workers++;
1404 worker_enter_idle(worker);
1405 wake_up_process(worker->task);
1409 * destroy_worker - destroy a workqueue worker
1410 * @worker: worker to be destroyed
1412 * Destroy @worker and adjust @gcwq stats accordingly.
1414 * CONTEXT:
1415 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1417 static void destroy_worker(struct worker *worker)
1419 struct global_cwq *gcwq = worker->gcwq;
1420 int id = worker->id;
1422 /* sanity check frenzy */
1423 BUG_ON(worker->current_work);
1424 BUG_ON(!list_empty(&worker->scheduled));
1426 if (worker->flags & WORKER_STARTED)
1427 gcwq->nr_workers--;
1428 if (worker->flags & WORKER_IDLE)
1429 gcwq->nr_idle--;
1431 list_del_init(&worker->entry);
1432 worker->flags |= WORKER_DIE;
1434 spin_unlock_irq(&gcwq->lock);
1436 kthread_stop(worker->task);
1437 kfree(worker);
1439 spin_lock_irq(&gcwq->lock);
1440 ida_remove(&gcwq->worker_ida, id);
1443 static void idle_worker_timeout(unsigned long __gcwq)
1445 struct global_cwq *gcwq = (void *)__gcwq;
1447 spin_lock_irq(&gcwq->lock);
1449 if (too_many_workers(gcwq)) {
1450 struct worker *worker;
1451 unsigned long expires;
1453 /* idle_list is kept in LIFO order, check the last one */
1454 worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1455 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1457 if (time_before(jiffies, expires))
1458 mod_timer(&gcwq->idle_timer, expires);
1459 else {
1460 /* it's been idle for too long, wake up manager */
1461 gcwq->flags |= GCWQ_MANAGE_WORKERS;
1462 wake_up_worker(gcwq);
1466 spin_unlock_irq(&gcwq->lock);
1469 static bool send_mayday(struct work_struct *work)
1471 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1472 struct workqueue_struct *wq = cwq->wq;
1473 unsigned int cpu;
1475 if (!(wq->flags & WQ_RESCUER))
1476 return false;
1478 /* mayday mayday mayday */
1479 cpu = cwq->gcwq->cpu;
1480 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1481 if (cpu == WORK_CPU_UNBOUND)
1482 cpu = 0;
1483 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1484 wake_up_process(wq->rescuer->task);
1485 return true;
1488 static void gcwq_mayday_timeout(unsigned long __gcwq)
1490 struct global_cwq *gcwq = (void *)__gcwq;
1491 struct work_struct *work;
1493 spin_lock_irq(&gcwq->lock);
1495 if (need_to_create_worker(gcwq)) {
1497 * We've been trying to create a new worker but
1498 * haven't been successful. We might be hitting an
1499 * allocation deadlock. Send distress signals to
1500 * rescuers.
1502 list_for_each_entry(work, &gcwq->worklist, entry)
1503 send_mayday(work);
1506 spin_unlock_irq(&gcwq->lock);
1508 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL);
1512 * maybe_create_worker - create a new worker if necessary
1513 * @gcwq: gcwq to create a new worker for
1515 * Create a new worker for @gcwq if necessary. @gcwq is guaranteed to
1516 * have at least one idle worker on return from this function. If
1517 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1518 * sent to all rescuers with works scheduled on @gcwq to resolve
1519 * possible allocation deadlock.
1521 * On return, need_to_create_worker() is guaranteed to be false and
1522 * may_start_working() true.
1524 * LOCKING:
1525 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1526 * multiple times. Does GFP_KERNEL allocations. Called only from
1527 * manager.
1529 * RETURNS:
1530 * false if no action was taken and gcwq->lock stayed locked, true
1531 * otherwise.
1533 static bool maybe_create_worker(struct global_cwq *gcwq)
1534 __releases(&gcwq->lock)
1535 __acquires(&gcwq->lock)
1537 if (!need_to_create_worker(gcwq))
1538 return false;
1539 restart:
1540 spin_unlock_irq(&gcwq->lock);
1542 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1543 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1545 while (true) {
1546 struct worker *worker;
1548 worker = create_worker(gcwq, true);
1549 if (worker) {
1550 del_timer_sync(&gcwq->mayday_timer);
1551 spin_lock_irq(&gcwq->lock);
1552 start_worker(worker);
1553 BUG_ON(need_to_create_worker(gcwq));
1554 return true;
1557 if (!need_to_create_worker(gcwq))
1558 break;
1560 __set_current_state(TASK_INTERRUPTIBLE);
1561 schedule_timeout(CREATE_COOLDOWN);
1563 if (!need_to_create_worker(gcwq))
1564 break;
1567 del_timer_sync(&gcwq->mayday_timer);
1568 spin_lock_irq(&gcwq->lock);
1569 if (need_to_create_worker(gcwq))
1570 goto restart;
1571 return true;
1575 * maybe_destroy_worker - destroy workers which have been idle for a while
1576 * @gcwq: gcwq to destroy workers for
1578 * Destroy @gcwq workers which have been idle for longer than
1579 * IDLE_WORKER_TIMEOUT.
1581 * LOCKING:
1582 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1583 * multiple times. Called only from manager.
1585 * RETURNS:
1586 * false if no action was taken and gcwq->lock stayed locked, true
1587 * otherwise.
1589 static bool maybe_destroy_workers(struct global_cwq *gcwq)
1591 bool ret = false;
1593 while (too_many_workers(gcwq)) {
1594 struct worker *worker;
1595 unsigned long expires;
1597 worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1598 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1600 if (time_before(jiffies, expires)) {
1601 mod_timer(&gcwq->idle_timer, expires);
1602 break;
1605 destroy_worker(worker);
1606 ret = true;
1609 return ret;
1613 * manage_workers - manage worker pool
1614 * @worker: self
1616 * Assume the manager role and manage gcwq worker pool @worker belongs
1617 * to. At any given time, there can be only zero or one manager per
1618 * gcwq. The exclusion is handled automatically by this function.
1620 * The caller can safely start processing works on false return. On
1621 * true return, it's guaranteed that need_to_create_worker() is false
1622 * and may_start_working() is true.
1624 * CONTEXT:
1625 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1626 * multiple times. Does GFP_KERNEL allocations.
1628 * RETURNS:
1629 * false if no action was taken and gcwq->lock stayed locked, true if
1630 * some action was taken.
1632 static bool manage_workers(struct worker *worker)
1634 struct global_cwq *gcwq = worker->gcwq;
1635 bool ret = false;
1637 if (gcwq->flags & GCWQ_MANAGING_WORKERS)
1638 return ret;
1640 gcwq->flags &= ~GCWQ_MANAGE_WORKERS;
1641 gcwq->flags |= GCWQ_MANAGING_WORKERS;
1644 * Destroy and then create so that may_start_working() is true
1645 * on return.
1647 ret |= maybe_destroy_workers(gcwq);
1648 ret |= maybe_create_worker(gcwq);
1650 gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
1653 * The trustee might be waiting to take over the manager
1654 * position, tell it we're done.
1656 if (unlikely(gcwq->trustee))
1657 wake_up_all(&gcwq->trustee_wait);
1659 return ret;
1663 * move_linked_works - move linked works to a list
1664 * @work: start of series of works to be scheduled
1665 * @head: target list to append @work to
1666 * @nextp: out paramter for nested worklist walking
1668 * Schedule linked works starting from @work to @head. Work series to
1669 * be scheduled starts at @work and includes any consecutive work with
1670 * WORK_STRUCT_LINKED set in its predecessor.
1672 * If @nextp is not NULL, it's updated to point to the next work of
1673 * the last scheduled work. This allows move_linked_works() to be
1674 * nested inside outer list_for_each_entry_safe().
1676 * CONTEXT:
1677 * spin_lock_irq(gcwq->lock).
1679 static void move_linked_works(struct work_struct *work, struct list_head *head,
1680 struct work_struct **nextp)
1682 struct work_struct *n;
1685 * Linked worklist will always end before the end of the list,
1686 * use NULL for list head.
1688 list_for_each_entry_safe_from(work, n, NULL, entry) {
1689 list_move_tail(&work->entry, head);
1690 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1691 break;
1695 * If we're already inside safe list traversal and have moved
1696 * multiple works to the scheduled queue, the next position
1697 * needs to be updated.
1699 if (nextp)
1700 *nextp = n;
1703 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1705 struct work_struct *work = list_first_entry(&cwq->delayed_works,
1706 struct work_struct, entry);
1707 struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq);
1709 trace_workqueue_activate_work(work);
1710 move_linked_works(work, pos, NULL);
1711 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1712 cwq->nr_active++;
1716 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1717 * @cwq: cwq of interest
1718 * @color: color of work which left the queue
1719 * @delayed: for a delayed work
1721 * A work either has completed or is removed from pending queue,
1722 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1724 * CONTEXT:
1725 * spin_lock_irq(gcwq->lock).
1727 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1728 bool delayed)
1730 /* ignore uncolored works */
1731 if (color == WORK_NO_COLOR)
1732 return;
1734 cwq->nr_in_flight[color]--;
1736 if (!delayed) {
1737 cwq->nr_active--;
1738 if (!list_empty(&cwq->delayed_works)) {
1739 /* one down, submit a delayed one */
1740 if (cwq->nr_active < cwq->max_active)
1741 cwq_activate_first_delayed(cwq);
1745 /* is flush in progress and are we at the flushing tip? */
1746 if (likely(cwq->flush_color != color))
1747 return;
1749 /* are there still in-flight works? */
1750 if (cwq->nr_in_flight[color])
1751 return;
1753 /* this cwq is done, clear flush_color */
1754 cwq->flush_color = -1;
1757 * If this was the last cwq, wake up the first flusher. It
1758 * will handle the rest.
1760 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1761 complete(&cwq->wq->first_flusher->done);
1765 * process_one_work - process single work
1766 * @worker: self
1767 * @work: work to process
1769 * Process @work. This function contains all the logics necessary to
1770 * process a single work including synchronization against and
1771 * interaction with other workers on the same cpu, queueing and
1772 * flushing. As long as context requirement is met, any worker can
1773 * call this function to process a work.
1775 * CONTEXT:
1776 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1778 static void process_one_work(struct worker *worker, struct work_struct *work)
1779 __releases(&gcwq->lock)
1780 __acquires(&gcwq->lock)
1782 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1783 struct global_cwq *gcwq = cwq->gcwq;
1784 struct hlist_head *bwh = busy_worker_head(gcwq, work);
1785 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
1786 work_func_t f = work->func;
1787 int work_color;
1788 struct worker *collision;
1789 #ifdef CONFIG_LOCKDEP
1791 * It is permissible to free the struct work_struct from
1792 * inside the function that is called from it, this we need to
1793 * take into account for lockdep too. To avoid bogus "held
1794 * lock freed" warnings as well as problems when looking into
1795 * work->lockdep_map, make a copy and use that here.
1797 struct lockdep_map lockdep_map = work->lockdep_map;
1798 #endif
1800 * A single work shouldn't be executed concurrently by
1801 * multiple workers on a single cpu. Check whether anyone is
1802 * already processing the work. If so, defer the work to the
1803 * currently executing one.
1805 collision = __find_worker_executing_work(gcwq, bwh, work);
1806 if (unlikely(collision)) {
1807 move_linked_works(work, &collision->scheduled, NULL);
1808 return;
1811 /* claim and process */
1812 debug_work_deactivate(work);
1813 hlist_add_head(&worker->hentry, bwh);
1814 worker->current_work = work;
1815 worker->current_cwq = cwq;
1816 work_color = get_work_color(work);
1818 /* record the current cpu number in the work data and dequeue */
1819 set_work_cpu(work, gcwq->cpu);
1820 list_del_init(&work->entry);
1823 * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI,
1824 * wake up another worker; otherwise, clear HIGHPRI_PENDING.
1826 if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) {
1827 struct work_struct *nwork = list_first_entry(&gcwq->worklist,
1828 struct work_struct, entry);
1830 if (!list_empty(&gcwq->worklist) &&
1831 get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI)
1832 wake_up_worker(gcwq);
1833 else
1834 gcwq->flags &= ~GCWQ_HIGHPRI_PENDING;
1838 * CPU intensive works don't participate in concurrency
1839 * management. They're the scheduler's responsibility.
1841 if (unlikely(cpu_intensive))
1842 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
1844 spin_unlock_irq(&gcwq->lock);
1846 work_clear_pending(work);
1847 lock_map_acquire_read(&cwq->wq->lockdep_map);
1848 lock_map_acquire(&lockdep_map);
1849 trace_workqueue_execute_start(work);
1850 f(work);
1852 * While we must be careful to not use "work" after this, the trace
1853 * point will only record its address.
1855 trace_workqueue_execute_end(work);
1856 lock_map_release(&lockdep_map);
1857 lock_map_release(&cwq->wq->lockdep_map);
1859 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
1860 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
1861 "%s/0x%08x/%d\n",
1862 current->comm, preempt_count(), task_pid_nr(current));
1863 printk(KERN_ERR " last function: ");
1864 print_symbol("%s\n", (unsigned long)f);
1865 debug_show_held_locks(current);
1866 dump_stack();
1869 spin_lock_irq(&gcwq->lock);
1871 /* clear cpu intensive status */
1872 if (unlikely(cpu_intensive))
1873 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
1875 /* we're done with it, release */
1876 hlist_del_init(&worker->hentry);
1877 worker->current_work = NULL;
1878 worker->current_cwq = NULL;
1879 cwq_dec_nr_in_flight(cwq, work_color, false);
1883 * process_scheduled_works - process scheduled works
1884 * @worker: self
1886 * Process all scheduled works. Please note that the scheduled list
1887 * may change while processing a work, so this function repeatedly
1888 * fetches a work from the top and executes it.
1890 * CONTEXT:
1891 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1892 * multiple times.
1894 static void process_scheduled_works(struct worker *worker)
1896 while (!list_empty(&worker->scheduled)) {
1897 struct work_struct *work = list_first_entry(&worker->scheduled,
1898 struct work_struct, entry);
1899 process_one_work(worker, work);
1904 * worker_thread - the worker thread function
1905 * @__worker: self
1907 * The gcwq worker thread function. There's a single dynamic pool of
1908 * these per each cpu. These workers process all works regardless of
1909 * their specific target workqueue. The only exception is works which
1910 * belong to workqueues with a rescuer which will be explained in
1911 * rescuer_thread().
1913 static int worker_thread(void *__worker)
1915 struct worker *worker = __worker;
1916 struct global_cwq *gcwq = worker->gcwq;
1918 /* tell the scheduler that this is a workqueue worker */
1919 worker->task->flags |= PF_WQ_WORKER;
1920 woke_up:
1921 spin_lock_irq(&gcwq->lock);
1923 /* DIE can be set only while we're idle, checking here is enough */
1924 if (worker->flags & WORKER_DIE) {
1925 spin_unlock_irq(&gcwq->lock);
1926 worker->task->flags &= ~PF_WQ_WORKER;
1927 return 0;
1930 worker_leave_idle(worker);
1931 recheck:
1932 /* no more worker necessary? */
1933 if (!need_more_worker(gcwq))
1934 goto sleep;
1936 /* do we need to manage? */
1937 if (unlikely(!may_start_working(gcwq)) && manage_workers(worker))
1938 goto recheck;
1941 * ->scheduled list can only be filled while a worker is
1942 * preparing to process a work or actually processing it.
1943 * Make sure nobody diddled with it while I was sleeping.
1945 BUG_ON(!list_empty(&worker->scheduled));
1948 * When control reaches this point, we're guaranteed to have
1949 * at least one idle worker or that someone else has already
1950 * assumed the manager role.
1952 worker_clr_flags(worker, WORKER_PREP);
1954 do {
1955 struct work_struct *work =
1956 list_first_entry(&gcwq->worklist,
1957 struct work_struct, entry);
1959 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
1960 /* optimization path, not strictly necessary */
1961 process_one_work(worker, work);
1962 if (unlikely(!list_empty(&worker->scheduled)))
1963 process_scheduled_works(worker);
1964 } else {
1965 move_linked_works(work, &worker->scheduled, NULL);
1966 process_scheduled_works(worker);
1968 } while (keep_working(gcwq));
1970 worker_set_flags(worker, WORKER_PREP, false);
1971 sleep:
1972 if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker))
1973 goto recheck;
1976 * gcwq->lock is held and there's no work to process and no
1977 * need to manage, sleep. Workers are woken up only while
1978 * holding gcwq->lock or from local cpu, so setting the
1979 * current state before releasing gcwq->lock is enough to
1980 * prevent losing any event.
1982 worker_enter_idle(worker);
1983 __set_current_state(TASK_INTERRUPTIBLE);
1984 spin_unlock_irq(&gcwq->lock);
1985 schedule();
1986 goto woke_up;
1990 * rescuer_thread - the rescuer thread function
1991 * @__wq: the associated workqueue
1993 * Workqueue rescuer thread function. There's one rescuer for each
1994 * workqueue which has WQ_RESCUER set.
1996 * Regular work processing on a gcwq may block trying to create a new
1997 * worker which uses GFP_KERNEL allocation which has slight chance of
1998 * developing into deadlock if some works currently on the same queue
1999 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2000 * the problem rescuer solves.
2002 * When such condition is possible, the gcwq summons rescuers of all
2003 * workqueues which have works queued on the gcwq and let them process
2004 * those works so that forward progress can be guaranteed.
2006 * This should happen rarely.
2008 static int rescuer_thread(void *__wq)
2010 struct workqueue_struct *wq = __wq;
2011 struct worker *rescuer = wq->rescuer;
2012 struct list_head *scheduled = &rescuer->scheduled;
2013 bool is_unbound = wq->flags & WQ_UNBOUND;
2014 unsigned int cpu;
2016 set_user_nice(current, RESCUER_NICE_LEVEL);
2017 repeat:
2018 set_current_state(TASK_INTERRUPTIBLE);
2020 if (kthread_should_stop())
2021 return 0;
2024 * See whether any cpu is asking for help. Unbounded
2025 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2027 for_each_mayday_cpu(cpu, wq->mayday_mask) {
2028 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2029 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2030 struct global_cwq *gcwq = cwq->gcwq;
2031 struct work_struct *work, *n;
2033 __set_current_state(TASK_RUNNING);
2034 mayday_clear_cpu(cpu, wq->mayday_mask);
2036 /* migrate to the target cpu if possible */
2037 rescuer->gcwq = gcwq;
2038 worker_maybe_bind_and_lock(rescuer);
2041 * Slurp in all works issued via this workqueue and
2042 * process'em.
2044 BUG_ON(!list_empty(&rescuer->scheduled));
2045 list_for_each_entry_safe(work, n, &gcwq->worklist, entry)
2046 if (get_work_cwq(work) == cwq)
2047 move_linked_works(work, scheduled, &n);
2049 process_scheduled_works(rescuer);
2050 spin_unlock_irq(&gcwq->lock);
2053 schedule();
2054 goto repeat;
2057 struct wq_barrier {
2058 struct work_struct work;
2059 struct completion done;
2062 static void wq_barrier_func(struct work_struct *work)
2064 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2065 complete(&barr->done);
2069 * insert_wq_barrier - insert a barrier work
2070 * @cwq: cwq to insert barrier into
2071 * @barr: wq_barrier to insert
2072 * @target: target work to attach @barr to
2073 * @worker: worker currently executing @target, NULL if @target is not executing
2075 * @barr is linked to @target such that @barr is completed only after
2076 * @target finishes execution. Please note that the ordering
2077 * guarantee is observed only with respect to @target and on the local
2078 * cpu.
2080 * Currently, a queued barrier can't be canceled. This is because
2081 * try_to_grab_pending() can't determine whether the work to be
2082 * grabbed is at the head of the queue and thus can't clear LINKED
2083 * flag of the previous work while there must be a valid next work
2084 * after a work with LINKED flag set.
2086 * Note that when @worker is non-NULL, @target may be modified
2087 * underneath us, so we can't reliably determine cwq from @target.
2089 * CONTEXT:
2090 * spin_lock_irq(gcwq->lock).
2092 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2093 struct wq_barrier *barr,
2094 struct work_struct *target, struct worker *worker)
2096 struct list_head *head;
2097 unsigned int linked = 0;
2100 * debugobject calls are safe here even with gcwq->lock locked
2101 * as we know for sure that this will not trigger any of the
2102 * checks and call back into the fixup functions where we
2103 * might deadlock.
2105 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2106 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2107 init_completion(&barr->done);
2110 * If @target is currently being executed, schedule the
2111 * barrier to the worker; otherwise, put it after @target.
2113 if (worker)
2114 head = worker->scheduled.next;
2115 else {
2116 unsigned long *bits = work_data_bits(target);
2118 head = target->entry.next;
2119 /* there can already be other linked works, inherit and set */
2120 linked = *bits & WORK_STRUCT_LINKED;
2121 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2124 debug_work_activate(&barr->work);
2125 insert_work(cwq, &barr->work, head,
2126 work_color_to_flags(WORK_NO_COLOR) | linked);
2130 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2131 * @wq: workqueue being flushed
2132 * @flush_color: new flush color, < 0 for no-op
2133 * @work_color: new work color, < 0 for no-op
2135 * Prepare cwqs for workqueue flushing.
2137 * If @flush_color is non-negative, flush_color on all cwqs should be
2138 * -1. If no cwq has in-flight commands at the specified color, all
2139 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2140 * has in flight commands, its cwq->flush_color is set to
2141 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2142 * wakeup logic is armed and %true is returned.
2144 * The caller should have initialized @wq->first_flusher prior to
2145 * calling this function with non-negative @flush_color. If
2146 * @flush_color is negative, no flush color update is done and %false
2147 * is returned.
2149 * If @work_color is non-negative, all cwqs should have the same
2150 * work_color which is previous to @work_color and all will be
2151 * advanced to @work_color.
2153 * CONTEXT:
2154 * mutex_lock(wq->flush_mutex).
2156 * RETURNS:
2157 * %true if @flush_color >= 0 and there's something to flush. %false
2158 * otherwise.
2160 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2161 int flush_color, int work_color)
2163 bool wait = false;
2164 unsigned int cpu;
2166 if (flush_color >= 0) {
2167 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2168 atomic_set(&wq->nr_cwqs_to_flush, 1);
2171 for_each_cwq_cpu(cpu, wq) {
2172 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2173 struct global_cwq *gcwq = cwq->gcwq;
2175 spin_lock_irq(&gcwq->lock);
2177 if (flush_color >= 0) {
2178 BUG_ON(cwq->flush_color != -1);
2180 if (cwq->nr_in_flight[flush_color]) {
2181 cwq->flush_color = flush_color;
2182 atomic_inc(&wq->nr_cwqs_to_flush);
2183 wait = true;
2187 if (work_color >= 0) {
2188 BUG_ON(work_color != work_next_color(cwq->work_color));
2189 cwq->work_color = work_color;
2192 spin_unlock_irq(&gcwq->lock);
2195 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2196 complete(&wq->first_flusher->done);
2198 return wait;
2202 * flush_workqueue - ensure that any scheduled work has run to completion.
2203 * @wq: workqueue to flush
2205 * Forces execution of the workqueue and blocks until its completion.
2206 * This is typically used in driver shutdown handlers.
2208 * We sleep until all works which were queued on entry have been handled,
2209 * but we are not livelocked by new incoming ones.
2211 void flush_workqueue(struct workqueue_struct *wq)
2213 struct wq_flusher this_flusher = {
2214 .list = LIST_HEAD_INIT(this_flusher.list),
2215 .flush_color = -1,
2216 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2218 int next_color;
2220 lock_map_acquire(&wq->lockdep_map);
2221 lock_map_release(&wq->lockdep_map);
2223 mutex_lock(&wq->flush_mutex);
2226 * Start-to-wait phase
2228 next_color = work_next_color(wq->work_color);
2230 if (next_color != wq->flush_color) {
2232 * Color space is not full. The current work_color
2233 * becomes our flush_color and work_color is advanced
2234 * by one.
2236 BUG_ON(!list_empty(&wq->flusher_overflow));
2237 this_flusher.flush_color = wq->work_color;
2238 wq->work_color = next_color;
2240 if (!wq->first_flusher) {
2241 /* no flush in progress, become the first flusher */
2242 BUG_ON(wq->flush_color != this_flusher.flush_color);
2244 wq->first_flusher = &this_flusher;
2246 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2247 wq->work_color)) {
2248 /* nothing to flush, done */
2249 wq->flush_color = next_color;
2250 wq->first_flusher = NULL;
2251 goto out_unlock;
2253 } else {
2254 /* wait in queue */
2255 BUG_ON(wq->flush_color == this_flusher.flush_color);
2256 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2257 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2259 } else {
2261 * Oops, color space is full, wait on overflow queue.
2262 * The next flush completion will assign us
2263 * flush_color and transfer to flusher_queue.
2265 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2268 mutex_unlock(&wq->flush_mutex);
2270 wait_for_completion(&this_flusher.done);
2273 * Wake-up-and-cascade phase
2275 * First flushers are responsible for cascading flushes and
2276 * handling overflow. Non-first flushers can simply return.
2278 if (wq->first_flusher != &this_flusher)
2279 return;
2281 mutex_lock(&wq->flush_mutex);
2283 /* we might have raced, check again with mutex held */
2284 if (wq->first_flusher != &this_flusher)
2285 goto out_unlock;
2287 wq->first_flusher = NULL;
2289 BUG_ON(!list_empty(&this_flusher.list));
2290 BUG_ON(wq->flush_color != this_flusher.flush_color);
2292 while (true) {
2293 struct wq_flusher *next, *tmp;
2295 /* complete all the flushers sharing the current flush color */
2296 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2297 if (next->flush_color != wq->flush_color)
2298 break;
2299 list_del_init(&next->list);
2300 complete(&next->done);
2303 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2304 wq->flush_color != work_next_color(wq->work_color));
2306 /* this flush_color is finished, advance by one */
2307 wq->flush_color = work_next_color(wq->flush_color);
2309 /* one color has been freed, handle overflow queue */
2310 if (!list_empty(&wq->flusher_overflow)) {
2312 * Assign the same color to all overflowed
2313 * flushers, advance work_color and append to
2314 * flusher_queue. This is the start-to-wait
2315 * phase for these overflowed flushers.
2317 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2318 tmp->flush_color = wq->work_color;
2320 wq->work_color = work_next_color(wq->work_color);
2322 list_splice_tail_init(&wq->flusher_overflow,
2323 &wq->flusher_queue);
2324 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2327 if (list_empty(&wq->flusher_queue)) {
2328 BUG_ON(wq->flush_color != wq->work_color);
2329 break;
2333 * Need to flush more colors. Make the next flusher
2334 * the new first flusher and arm cwqs.
2336 BUG_ON(wq->flush_color == wq->work_color);
2337 BUG_ON(wq->flush_color != next->flush_color);
2339 list_del_init(&next->list);
2340 wq->first_flusher = next;
2342 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2343 break;
2346 * Meh... this color is already done, clear first
2347 * flusher and repeat cascading.
2349 wq->first_flusher = NULL;
2352 out_unlock:
2353 mutex_unlock(&wq->flush_mutex);
2355 EXPORT_SYMBOL_GPL(flush_workqueue);
2357 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2358 bool wait_executing)
2360 struct worker *worker = NULL;
2361 struct global_cwq *gcwq;
2362 struct cpu_workqueue_struct *cwq;
2364 might_sleep();
2365 gcwq = get_work_gcwq(work);
2366 if (!gcwq)
2367 return false;
2369 spin_lock_irq(&gcwq->lock);
2370 if (!list_empty(&work->entry)) {
2372 * See the comment near try_to_grab_pending()->smp_rmb().
2373 * If it was re-queued to a different gcwq under us, we
2374 * are not going to wait.
2376 smp_rmb();
2377 cwq = get_work_cwq(work);
2378 if (unlikely(!cwq || gcwq != cwq->gcwq))
2379 goto already_gone;
2380 } else if (wait_executing) {
2381 worker = find_worker_executing_work(gcwq, work);
2382 if (!worker)
2383 goto already_gone;
2384 cwq = worker->current_cwq;
2385 } else
2386 goto already_gone;
2388 insert_wq_barrier(cwq, barr, work, worker);
2389 spin_unlock_irq(&gcwq->lock);
2392 * If @max_active is 1 or rescuer is in use, flushing another work
2393 * item on the same workqueue may lead to deadlock. Make sure the
2394 * flusher is not running on the same workqueue by verifying write
2395 * access.
2397 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2398 lock_map_acquire(&cwq->wq->lockdep_map);
2399 else
2400 lock_map_acquire_read(&cwq->wq->lockdep_map);
2401 lock_map_release(&cwq->wq->lockdep_map);
2403 return true;
2404 already_gone:
2405 spin_unlock_irq(&gcwq->lock);
2406 return false;
2410 * flush_work - wait for a work to finish executing the last queueing instance
2411 * @work: the work to flush
2413 * Wait until @work has finished execution. This function considers
2414 * only the last queueing instance of @work. If @work has been
2415 * enqueued across different CPUs on a non-reentrant workqueue or on
2416 * multiple workqueues, @work might still be executing on return on
2417 * some of the CPUs from earlier queueing.
2419 * If @work was queued only on a non-reentrant, ordered or unbound
2420 * workqueue, @work is guaranteed to be idle on return if it hasn't
2421 * been requeued since flush started.
2423 * RETURNS:
2424 * %true if flush_work() waited for the work to finish execution,
2425 * %false if it was already idle.
2427 bool flush_work(struct work_struct *work)
2429 struct wq_barrier barr;
2431 if (start_flush_work(work, &barr, true)) {
2432 wait_for_completion(&barr.done);
2433 destroy_work_on_stack(&barr.work);
2434 return true;
2435 } else
2436 return false;
2438 EXPORT_SYMBOL_GPL(flush_work);
2440 static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2442 struct wq_barrier barr;
2443 struct worker *worker;
2445 spin_lock_irq(&gcwq->lock);
2447 worker = find_worker_executing_work(gcwq, work);
2448 if (unlikely(worker))
2449 insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2451 spin_unlock_irq(&gcwq->lock);
2453 if (unlikely(worker)) {
2454 wait_for_completion(&barr.done);
2455 destroy_work_on_stack(&barr.work);
2456 return true;
2457 } else
2458 return false;
2461 static bool wait_on_work(struct work_struct *work)
2463 bool ret = false;
2464 int cpu;
2466 might_sleep();
2468 lock_map_acquire(&work->lockdep_map);
2469 lock_map_release(&work->lockdep_map);
2471 for_each_gcwq_cpu(cpu)
2472 ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2473 return ret;
2477 * flush_work_sync - wait until a work has finished execution
2478 * @work: the work to flush
2480 * Wait until @work has finished execution. On return, it's
2481 * guaranteed that all queueing instances of @work which happened
2482 * before this function is called are finished. In other words, if
2483 * @work hasn't been requeued since this function was called, @work is
2484 * guaranteed to be idle on return.
2486 * RETURNS:
2487 * %true if flush_work_sync() waited for the work to finish execution,
2488 * %false if it was already idle.
2490 bool flush_work_sync(struct work_struct *work)
2492 struct wq_barrier barr;
2493 bool pending, waited;
2495 /* we'll wait for executions separately, queue barr only if pending */
2496 pending = start_flush_work(work, &barr, false);
2498 /* wait for executions to finish */
2499 waited = wait_on_work(work);
2501 /* wait for the pending one */
2502 if (pending) {
2503 wait_for_completion(&barr.done);
2504 destroy_work_on_stack(&barr.work);
2507 return pending || waited;
2509 EXPORT_SYMBOL_GPL(flush_work_sync);
2512 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
2513 * so this work can't be re-armed in any way.
2515 static int try_to_grab_pending(struct work_struct *work)
2517 struct global_cwq *gcwq;
2518 int ret = -1;
2520 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2521 return 0;
2524 * The queueing is in progress, or it is already queued. Try to
2525 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2527 gcwq = get_work_gcwq(work);
2528 if (!gcwq)
2529 return ret;
2531 spin_lock_irq(&gcwq->lock);
2532 if (!list_empty(&work->entry)) {
2534 * This work is queued, but perhaps we locked the wrong gcwq.
2535 * In that case we must see the new value after rmb(), see
2536 * insert_work()->wmb().
2538 smp_rmb();
2539 if (gcwq == get_work_gcwq(work)) {
2540 debug_work_deactivate(work);
2541 list_del_init(&work->entry);
2542 cwq_dec_nr_in_flight(get_work_cwq(work),
2543 get_work_color(work),
2544 *work_data_bits(work) & WORK_STRUCT_DELAYED);
2545 ret = 1;
2548 spin_unlock_irq(&gcwq->lock);
2550 return ret;
2553 static bool __cancel_work_timer(struct work_struct *work,
2554 struct timer_list* timer)
2556 int ret;
2558 do {
2559 ret = (timer && likely(del_timer(timer)));
2560 if (!ret)
2561 ret = try_to_grab_pending(work);
2562 wait_on_work(work);
2563 } while (unlikely(ret < 0));
2565 clear_work_data(work);
2566 return ret;
2570 * cancel_work_sync - cancel a work and wait for it to finish
2571 * @work: the work to cancel
2573 * Cancel @work and wait for its execution to finish. This function
2574 * can be used even if the work re-queues itself or migrates to
2575 * another workqueue. On return from this function, @work is
2576 * guaranteed to be not pending or executing on any CPU.
2578 * cancel_work_sync(&delayed_work->work) must not be used for
2579 * delayed_work's. Use cancel_delayed_work_sync() instead.
2581 * The caller must ensure that the workqueue on which @work was last
2582 * queued can't be destroyed before this function returns.
2584 * RETURNS:
2585 * %true if @work was pending, %false otherwise.
2587 bool cancel_work_sync(struct work_struct *work)
2589 return __cancel_work_timer(work, NULL);
2591 EXPORT_SYMBOL_GPL(cancel_work_sync);
2594 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2595 * @dwork: the delayed work to flush
2597 * Delayed timer is cancelled and the pending work is queued for
2598 * immediate execution. Like flush_work(), this function only
2599 * considers the last queueing instance of @dwork.
2601 * RETURNS:
2602 * %true if flush_work() waited for the work to finish execution,
2603 * %false if it was already idle.
2605 bool flush_delayed_work(struct delayed_work *dwork)
2607 if (del_timer_sync(&dwork->timer))
2608 __queue_work(raw_smp_processor_id(),
2609 get_work_cwq(&dwork->work)->wq, &dwork->work);
2610 return flush_work(&dwork->work);
2612 EXPORT_SYMBOL(flush_delayed_work);
2615 * flush_delayed_work_sync - wait for a dwork to finish
2616 * @dwork: the delayed work to flush
2618 * Delayed timer is cancelled and the pending work is queued for
2619 * execution immediately. Other than timer handling, its behavior
2620 * is identical to flush_work_sync().
2622 * RETURNS:
2623 * %true if flush_work_sync() waited for the work to finish execution,
2624 * %false if it was already idle.
2626 bool flush_delayed_work_sync(struct delayed_work *dwork)
2628 if (del_timer_sync(&dwork->timer))
2629 __queue_work(raw_smp_processor_id(),
2630 get_work_cwq(&dwork->work)->wq, &dwork->work);
2631 return flush_work_sync(&dwork->work);
2633 EXPORT_SYMBOL(flush_delayed_work_sync);
2636 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2637 * @dwork: the delayed work cancel
2639 * This is cancel_work_sync() for delayed works.
2641 * RETURNS:
2642 * %true if @dwork was pending, %false otherwise.
2644 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2646 return __cancel_work_timer(&dwork->work, &dwork->timer);
2648 EXPORT_SYMBOL(cancel_delayed_work_sync);
2651 * schedule_work - put work task in global workqueue
2652 * @work: job to be done
2654 * Returns zero if @work was already on the kernel-global workqueue and
2655 * non-zero otherwise.
2657 * This puts a job in the kernel-global workqueue if it was not already
2658 * queued and leaves it in the same position on the kernel-global
2659 * workqueue otherwise.
2661 int schedule_work(struct work_struct *work)
2663 return queue_work(system_wq, work);
2665 EXPORT_SYMBOL(schedule_work);
2668 * schedule_work_on - put work task on a specific cpu
2669 * @cpu: cpu to put the work task on
2670 * @work: job to be done
2672 * This puts a job on a specific cpu
2674 int schedule_work_on(int cpu, struct work_struct *work)
2676 return queue_work_on(cpu, system_wq, work);
2678 EXPORT_SYMBOL(schedule_work_on);
2681 * schedule_delayed_work - put work task in global workqueue after delay
2682 * @dwork: job to be done
2683 * @delay: number of jiffies to wait or 0 for immediate execution
2685 * After waiting for a given time this puts a job in the kernel-global
2686 * workqueue.
2688 int schedule_delayed_work(struct delayed_work *dwork,
2689 unsigned long delay)
2691 return queue_delayed_work(system_wq, dwork, delay);
2693 EXPORT_SYMBOL(schedule_delayed_work);
2696 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2697 * @cpu: cpu to use
2698 * @dwork: job to be done
2699 * @delay: number of jiffies to wait
2701 * After waiting for a given time this puts a job in the kernel-global
2702 * workqueue on the specified CPU.
2704 int schedule_delayed_work_on(int cpu,
2705 struct delayed_work *dwork, unsigned long delay)
2707 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
2709 EXPORT_SYMBOL(schedule_delayed_work_on);
2712 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2713 * @func: the function to call
2715 * schedule_on_each_cpu() executes @func on each online CPU using the
2716 * system workqueue and blocks until all CPUs have completed.
2717 * schedule_on_each_cpu() is very slow.
2719 * RETURNS:
2720 * 0 on success, -errno on failure.
2722 int schedule_on_each_cpu(work_func_t func)
2724 int cpu;
2725 struct work_struct __percpu *works;
2727 works = alloc_percpu(struct work_struct);
2728 if (!works)
2729 return -ENOMEM;
2731 get_online_cpus();
2733 for_each_online_cpu(cpu) {
2734 struct work_struct *work = per_cpu_ptr(works, cpu);
2736 INIT_WORK(work, func);
2737 schedule_work_on(cpu, work);
2740 for_each_online_cpu(cpu)
2741 flush_work(per_cpu_ptr(works, cpu));
2743 put_online_cpus();
2744 free_percpu(works);
2745 return 0;
2749 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2751 * Forces execution of the kernel-global workqueue and blocks until its
2752 * completion.
2754 * Think twice before calling this function! It's very easy to get into
2755 * trouble if you don't take great care. Either of the following situations
2756 * will lead to deadlock:
2758 * One of the work items currently on the workqueue needs to acquire
2759 * a lock held by your code or its caller.
2761 * Your code is running in the context of a work routine.
2763 * They will be detected by lockdep when they occur, but the first might not
2764 * occur very often. It depends on what work items are on the workqueue and
2765 * what locks they need, which you have no control over.
2767 * In most situations flushing the entire workqueue is overkill; you merely
2768 * need to know that a particular work item isn't queued and isn't running.
2769 * In such cases you should use cancel_delayed_work_sync() or
2770 * cancel_work_sync() instead.
2772 void flush_scheduled_work(void)
2774 flush_workqueue(system_wq);
2776 EXPORT_SYMBOL(flush_scheduled_work);
2779 * execute_in_process_context - reliably execute the routine with user context
2780 * @fn: the function to execute
2781 * @ew: guaranteed storage for the execute work structure (must
2782 * be available when the work executes)
2784 * Executes the function immediately if process context is available,
2785 * otherwise schedules the function for delayed execution.
2787 * Returns: 0 - function was executed
2788 * 1 - function was scheduled for execution
2790 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2792 if (!in_interrupt()) {
2793 fn(&ew->work);
2794 return 0;
2797 INIT_WORK(&ew->work, fn);
2798 schedule_work(&ew->work);
2800 return 1;
2802 EXPORT_SYMBOL_GPL(execute_in_process_context);
2804 int keventd_up(void)
2806 return system_wq != NULL;
2809 static int alloc_cwqs(struct workqueue_struct *wq)
2812 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
2813 * Make sure that the alignment isn't lower than that of
2814 * unsigned long long.
2816 const size_t size = sizeof(struct cpu_workqueue_struct);
2817 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
2818 __alignof__(unsigned long long));
2819 #ifdef CONFIG_SMP
2820 bool percpu = !(wq->flags & WQ_UNBOUND);
2821 #else
2822 bool percpu = false;
2823 #endif
2825 if (percpu)
2826 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
2827 else {
2828 void *ptr;
2831 * Allocate enough room to align cwq and put an extra
2832 * pointer at the end pointing back to the originally
2833 * allocated pointer which will be used for free.
2835 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
2836 if (ptr) {
2837 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
2838 *(void **)(wq->cpu_wq.single + 1) = ptr;
2842 /* just in case, make sure it's actually aligned
2843 * - this is affected by PERCPU() alignment in vmlinux.lds.S
2845 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
2846 return wq->cpu_wq.v ? 0 : -ENOMEM;
2849 static void free_cwqs(struct workqueue_struct *wq)
2851 #ifdef CONFIG_SMP
2852 bool percpu = !(wq->flags & WQ_UNBOUND);
2853 #else
2854 bool percpu = false;
2855 #endif
2857 if (percpu)
2858 free_percpu(wq->cpu_wq.pcpu);
2859 else if (wq->cpu_wq.single) {
2860 /* the pointer to free is stored right after the cwq */
2861 kfree(*(void **)(wq->cpu_wq.single + 1));
2865 static int wq_clamp_max_active(int max_active, unsigned int flags,
2866 const char *name)
2868 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
2870 if (max_active < 1 || max_active > lim)
2871 printk(KERN_WARNING "workqueue: max_active %d requested for %s "
2872 "is out of range, clamping between %d and %d\n",
2873 max_active, name, 1, lim);
2875 return clamp_val(max_active, 1, lim);
2878 struct workqueue_struct *__alloc_workqueue_key(const char *name,
2879 unsigned int flags,
2880 int max_active,
2881 struct lock_class_key *key,
2882 const char *lock_name)
2884 struct workqueue_struct *wq;
2885 unsigned int cpu;
2888 * Workqueues which may be used during memory reclaim should
2889 * have a rescuer to guarantee forward progress.
2891 if (flags & WQ_MEM_RECLAIM)
2892 flags |= WQ_RESCUER;
2895 * Unbound workqueues aren't concurrency managed and should be
2896 * dispatched to workers immediately.
2898 if (flags & WQ_UNBOUND)
2899 flags |= WQ_HIGHPRI;
2901 max_active = max_active ?: WQ_DFL_ACTIVE;
2902 max_active = wq_clamp_max_active(max_active, flags, name);
2904 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
2905 if (!wq)
2906 goto err;
2908 wq->flags = flags;
2909 wq->saved_max_active = max_active;
2910 mutex_init(&wq->flush_mutex);
2911 atomic_set(&wq->nr_cwqs_to_flush, 0);
2912 INIT_LIST_HEAD(&wq->flusher_queue);
2913 INIT_LIST_HEAD(&wq->flusher_overflow);
2915 wq->name = name;
2916 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
2917 INIT_LIST_HEAD(&wq->list);
2919 if (alloc_cwqs(wq) < 0)
2920 goto err;
2922 for_each_cwq_cpu(cpu, wq) {
2923 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2924 struct global_cwq *gcwq = get_gcwq(cpu);
2926 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
2927 cwq->gcwq = gcwq;
2928 cwq->wq = wq;
2929 cwq->flush_color = -1;
2930 cwq->max_active = max_active;
2931 INIT_LIST_HEAD(&cwq->delayed_works);
2934 if (flags & WQ_RESCUER) {
2935 struct worker *rescuer;
2937 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
2938 goto err;
2940 wq->rescuer = rescuer = alloc_worker();
2941 if (!rescuer)
2942 goto err;
2944 rescuer->task = kthread_create(rescuer_thread, wq, "%s", name);
2945 if (IS_ERR(rescuer->task))
2946 goto err;
2948 rescuer->task->flags |= PF_THREAD_BOUND;
2949 wake_up_process(rescuer->task);
2953 * workqueue_lock protects global freeze state and workqueues
2954 * list. Grab it, set max_active accordingly and add the new
2955 * workqueue to workqueues list.
2957 spin_lock(&workqueue_lock);
2959 if (workqueue_freezing && wq->flags & WQ_FREEZEABLE)
2960 for_each_cwq_cpu(cpu, wq)
2961 get_cwq(cpu, wq)->max_active = 0;
2963 list_add(&wq->list, &workqueues);
2965 spin_unlock(&workqueue_lock);
2967 return wq;
2968 err:
2969 if (wq) {
2970 free_cwqs(wq);
2971 free_mayday_mask(wq->mayday_mask);
2972 kfree(wq->rescuer);
2973 kfree(wq);
2975 return NULL;
2977 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
2980 * destroy_workqueue - safely terminate a workqueue
2981 * @wq: target workqueue
2983 * Safely destroy a workqueue. All work currently pending will be done first.
2985 void destroy_workqueue(struct workqueue_struct *wq)
2987 unsigned int flush_cnt = 0;
2988 unsigned int cpu;
2991 * Mark @wq dying and drain all pending works. Once WQ_DYING is
2992 * set, only chain queueing is allowed. IOW, only currently
2993 * pending or running work items on @wq can queue further work
2994 * items on it. @wq is flushed repeatedly until it becomes empty.
2995 * The number of flushing is detemined by the depth of chaining and
2996 * should be relatively short. Whine if it takes too long.
2998 wq->flags |= WQ_DYING;
2999 reflush:
3000 flush_workqueue(wq);
3002 for_each_cwq_cpu(cpu, wq) {
3003 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3005 if (!cwq->nr_active && list_empty(&cwq->delayed_works))
3006 continue;
3008 if (++flush_cnt == 10 ||
3009 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
3010 printk(KERN_WARNING "workqueue %s: flush on "
3011 "destruction isn't complete after %u tries\n",
3012 wq->name, flush_cnt);
3013 goto reflush;
3017 * wq list is used to freeze wq, remove from list after
3018 * flushing is complete in case freeze races us.
3020 spin_lock(&workqueue_lock);
3021 list_del(&wq->list);
3022 spin_unlock(&workqueue_lock);
3024 /* sanity check */
3025 for_each_cwq_cpu(cpu, wq) {
3026 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3027 int i;
3029 for (i = 0; i < WORK_NR_COLORS; i++)
3030 BUG_ON(cwq->nr_in_flight[i]);
3031 BUG_ON(cwq->nr_active);
3032 BUG_ON(!list_empty(&cwq->delayed_works));
3035 if (wq->flags & WQ_RESCUER) {
3036 kthread_stop(wq->rescuer->task);
3037 free_mayday_mask(wq->mayday_mask);
3038 kfree(wq->rescuer);
3041 free_cwqs(wq);
3042 kfree(wq);
3044 EXPORT_SYMBOL_GPL(destroy_workqueue);
3047 * workqueue_set_max_active - adjust max_active of a workqueue
3048 * @wq: target workqueue
3049 * @max_active: new max_active value.
3051 * Set max_active of @wq to @max_active.
3053 * CONTEXT:
3054 * Don't call from IRQ context.
3056 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3058 unsigned int cpu;
3060 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3062 spin_lock(&workqueue_lock);
3064 wq->saved_max_active = max_active;
3066 for_each_cwq_cpu(cpu, wq) {
3067 struct global_cwq *gcwq = get_gcwq(cpu);
3069 spin_lock_irq(&gcwq->lock);
3071 if (!(wq->flags & WQ_FREEZEABLE) ||
3072 !(gcwq->flags & GCWQ_FREEZING))
3073 get_cwq(gcwq->cpu, wq)->max_active = max_active;
3075 spin_unlock_irq(&gcwq->lock);
3078 spin_unlock(&workqueue_lock);
3080 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3083 * workqueue_congested - test whether a workqueue is congested
3084 * @cpu: CPU in question
3085 * @wq: target workqueue
3087 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3088 * no synchronization around this function and the test result is
3089 * unreliable and only useful as advisory hints or for debugging.
3091 * RETURNS:
3092 * %true if congested, %false otherwise.
3094 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3096 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3098 return !list_empty(&cwq->delayed_works);
3100 EXPORT_SYMBOL_GPL(workqueue_congested);
3103 * work_cpu - return the last known associated cpu for @work
3104 * @work: the work of interest
3106 * RETURNS:
3107 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
3109 unsigned int work_cpu(struct work_struct *work)
3111 struct global_cwq *gcwq = get_work_gcwq(work);
3113 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3115 EXPORT_SYMBOL_GPL(work_cpu);
3118 * work_busy - test whether a work is currently pending or running
3119 * @work: the work to be tested
3121 * Test whether @work is currently pending or running. There is no
3122 * synchronization around this function and the test result is
3123 * unreliable and only useful as advisory hints or for debugging.
3124 * Especially for reentrant wqs, the pending state might hide the
3125 * running state.
3127 * RETURNS:
3128 * OR'd bitmask of WORK_BUSY_* bits.
3130 unsigned int work_busy(struct work_struct *work)
3132 struct global_cwq *gcwq = get_work_gcwq(work);
3133 unsigned long flags;
3134 unsigned int ret = 0;
3136 if (!gcwq)
3137 return false;
3139 spin_lock_irqsave(&gcwq->lock, flags);
3141 if (work_pending(work))
3142 ret |= WORK_BUSY_PENDING;
3143 if (find_worker_executing_work(gcwq, work))
3144 ret |= WORK_BUSY_RUNNING;
3146 spin_unlock_irqrestore(&gcwq->lock, flags);
3148 return ret;
3150 EXPORT_SYMBOL_GPL(work_busy);
3153 * CPU hotplug.
3155 * There are two challenges in supporting CPU hotplug. Firstly, there
3156 * are a lot of assumptions on strong associations among work, cwq and
3157 * gcwq which make migrating pending and scheduled works very
3158 * difficult to implement without impacting hot paths. Secondly,
3159 * gcwqs serve mix of short, long and very long running works making
3160 * blocked draining impractical.
3162 * This is solved by allowing a gcwq to be detached from CPU, running
3163 * it with unbound (rogue) workers and allowing it to be reattached
3164 * later if the cpu comes back online. A separate thread is created
3165 * to govern a gcwq in such state and is called the trustee of the
3166 * gcwq.
3168 * Trustee states and their descriptions.
3170 * START Command state used on startup. On CPU_DOWN_PREPARE, a
3171 * new trustee is started with this state.
3173 * IN_CHARGE Once started, trustee will enter this state after
3174 * assuming the manager role and making all existing
3175 * workers rogue. DOWN_PREPARE waits for trustee to
3176 * enter this state. After reaching IN_CHARGE, trustee
3177 * tries to execute the pending worklist until it's empty
3178 * and the state is set to BUTCHER, or the state is set
3179 * to RELEASE.
3181 * BUTCHER Command state which is set by the cpu callback after
3182 * the cpu has went down. Once this state is set trustee
3183 * knows that there will be no new works on the worklist
3184 * and once the worklist is empty it can proceed to
3185 * killing idle workers.
3187 * RELEASE Command state which is set by the cpu callback if the
3188 * cpu down has been canceled or it has come online
3189 * again. After recognizing this state, trustee stops
3190 * trying to drain or butcher and clears ROGUE, rebinds
3191 * all remaining workers back to the cpu and releases
3192 * manager role.
3194 * DONE Trustee will enter this state after BUTCHER or RELEASE
3195 * is complete.
3197 * trustee CPU draining
3198 * took over down complete
3199 * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE
3200 * | | ^
3201 * | CPU is back online v return workers |
3202 * ----------------> RELEASE --------------
3206 * trustee_wait_event_timeout - timed event wait for trustee
3207 * @cond: condition to wait for
3208 * @timeout: timeout in jiffies
3210 * wait_event_timeout() for trustee to use. Handles locking and
3211 * checks for RELEASE request.
3213 * CONTEXT:
3214 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3215 * multiple times. To be used by trustee.
3217 * RETURNS:
3218 * Positive indicating left time if @cond is satisfied, 0 if timed
3219 * out, -1 if canceled.
3221 #define trustee_wait_event_timeout(cond, timeout) ({ \
3222 long __ret = (timeout); \
3223 while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) && \
3224 __ret) { \
3225 spin_unlock_irq(&gcwq->lock); \
3226 __wait_event_timeout(gcwq->trustee_wait, (cond) || \
3227 (gcwq->trustee_state == TRUSTEE_RELEASE), \
3228 __ret); \
3229 spin_lock_irq(&gcwq->lock); \
3231 gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret); \
3235 * trustee_wait_event - event wait for trustee
3236 * @cond: condition to wait for
3238 * wait_event() for trustee to use. Automatically handles locking and
3239 * checks for CANCEL request.
3241 * CONTEXT:
3242 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3243 * multiple times. To be used by trustee.
3245 * RETURNS:
3246 * 0 if @cond is satisfied, -1 if canceled.
3248 #define trustee_wait_event(cond) ({ \
3249 long __ret1; \
3250 __ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\
3251 __ret1 < 0 ? -1 : 0; \
3254 static int __cpuinit trustee_thread(void *__gcwq)
3256 struct global_cwq *gcwq = __gcwq;
3257 struct worker *worker;
3258 struct work_struct *work;
3259 struct hlist_node *pos;
3260 long rc;
3261 int i;
3263 BUG_ON(gcwq->cpu != smp_processor_id());
3265 spin_lock_irq(&gcwq->lock);
3267 * Claim the manager position and make all workers rogue.
3268 * Trustee must be bound to the target cpu and can't be
3269 * cancelled.
3271 BUG_ON(gcwq->cpu != smp_processor_id());
3272 rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS));
3273 BUG_ON(rc < 0);
3275 gcwq->flags |= GCWQ_MANAGING_WORKERS;
3277 list_for_each_entry(worker, &gcwq->idle_list, entry)
3278 worker->flags |= WORKER_ROGUE;
3280 for_each_busy_worker(worker, i, pos, gcwq)
3281 worker->flags |= WORKER_ROGUE;
3284 * Call schedule() so that we cross rq->lock and thus can
3285 * guarantee sched callbacks see the rogue flag. This is
3286 * necessary as scheduler callbacks may be invoked from other
3287 * cpus.
3289 spin_unlock_irq(&gcwq->lock);
3290 schedule();
3291 spin_lock_irq(&gcwq->lock);
3294 * Sched callbacks are disabled now. Zap nr_running. After
3295 * this, nr_running stays zero and need_more_worker() and
3296 * keep_working() are always true as long as the worklist is
3297 * not empty.
3299 atomic_set(get_gcwq_nr_running(gcwq->cpu), 0);
3301 spin_unlock_irq(&gcwq->lock);
3302 del_timer_sync(&gcwq->idle_timer);
3303 spin_lock_irq(&gcwq->lock);
3306 * We're now in charge. Notify and proceed to drain. We need
3307 * to keep the gcwq running during the whole CPU down
3308 * procedure as other cpu hotunplug callbacks may need to
3309 * flush currently running tasks.
3311 gcwq->trustee_state = TRUSTEE_IN_CHARGE;
3312 wake_up_all(&gcwq->trustee_wait);
3315 * The original cpu is in the process of dying and may go away
3316 * anytime now. When that happens, we and all workers would
3317 * be migrated to other cpus. Try draining any left work. We
3318 * want to get it over with ASAP - spam rescuers, wake up as
3319 * many idlers as necessary and create new ones till the
3320 * worklist is empty. Note that if the gcwq is frozen, there
3321 * may be frozen works in freezeable cwqs. Don't declare
3322 * completion while frozen.
3324 while (gcwq->nr_workers != gcwq->nr_idle ||
3325 gcwq->flags & GCWQ_FREEZING ||
3326 gcwq->trustee_state == TRUSTEE_IN_CHARGE) {
3327 int nr_works = 0;
3329 list_for_each_entry(work, &gcwq->worklist, entry) {
3330 send_mayday(work);
3331 nr_works++;
3334 list_for_each_entry(worker, &gcwq->idle_list, entry) {
3335 if (!nr_works--)
3336 break;
3337 wake_up_process(worker->task);
3340 if (need_to_create_worker(gcwq)) {
3341 spin_unlock_irq(&gcwq->lock);
3342 worker = create_worker(gcwq, false);
3343 spin_lock_irq(&gcwq->lock);
3344 if (worker) {
3345 worker->flags |= WORKER_ROGUE;
3346 start_worker(worker);
3350 /* give a breather */
3351 if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0)
3352 break;
3356 * Either all works have been scheduled and cpu is down, or
3357 * cpu down has already been canceled. Wait for and butcher
3358 * all workers till we're canceled.
3360 do {
3361 rc = trustee_wait_event(!list_empty(&gcwq->idle_list));
3362 while (!list_empty(&gcwq->idle_list))
3363 destroy_worker(list_first_entry(&gcwq->idle_list,
3364 struct worker, entry));
3365 } while (gcwq->nr_workers && rc >= 0);
3368 * At this point, either draining has completed and no worker
3369 * is left, or cpu down has been canceled or the cpu is being
3370 * brought back up. There shouldn't be any idle one left.
3371 * Tell the remaining busy ones to rebind once it finishes the
3372 * currently scheduled works by scheduling the rebind_work.
3374 WARN_ON(!list_empty(&gcwq->idle_list));
3376 for_each_busy_worker(worker, i, pos, gcwq) {
3377 struct work_struct *rebind_work = &worker->rebind_work;
3380 * Rebind_work may race with future cpu hotplug
3381 * operations. Use a separate flag to mark that
3382 * rebinding is scheduled.
3384 worker->flags |= WORKER_REBIND;
3385 worker->flags &= ~WORKER_ROGUE;
3387 /* queue rebind_work, wq doesn't matter, use the default one */
3388 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
3389 work_data_bits(rebind_work)))
3390 continue;
3392 debug_work_activate(rebind_work);
3393 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
3394 worker->scheduled.next,
3395 work_color_to_flags(WORK_NO_COLOR));
3398 /* relinquish manager role */
3399 gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
3401 /* notify completion */
3402 gcwq->trustee = NULL;
3403 gcwq->trustee_state = TRUSTEE_DONE;
3404 wake_up_all(&gcwq->trustee_wait);
3405 spin_unlock_irq(&gcwq->lock);
3406 return 0;
3410 * wait_trustee_state - wait for trustee to enter the specified state
3411 * @gcwq: gcwq the trustee of interest belongs to
3412 * @state: target state to wait for
3414 * Wait for the trustee to reach @state. DONE is already matched.
3416 * CONTEXT:
3417 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3418 * multiple times. To be used by cpu_callback.
3420 static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state)
3421 __releases(&gcwq->lock)
3422 __acquires(&gcwq->lock)
3424 if (!(gcwq->trustee_state == state ||
3425 gcwq->trustee_state == TRUSTEE_DONE)) {
3426 spin_unlock_irq(&gcwq->lock);
3427 __wait_event(gcwq->trustee_wait,
3428 gcwq->trustee_state == state ||
3429 gcwq->trustee_state == TRUSTEE_DONE);
3430 spin_lock_irq(&gcwq->lock);
3434 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
3435 unsigned long action,
3436 void *hcpu)
3438 unsigned int cpu = (unsigned long)hcpu;
3439 struct global_cwq *gcwq = get_gcwq(cpu);
3440 struct task_struct *new_trustee = NULL;
3441 struct worker *uninitialized_var(new_worker);
3442 unsigned long flags;
3444 action &= ~CPU_TASKS_FROZEN;
3446 switch (action) {
3447 case CPU_DOWN_PREPARE:
3448 new_trustee = kthread_create(trustee_thread, gcwq,
3449 "workqueue_trustee/%d\n", cpu);
3450 if (IS_ERR(new_trustee))
3451 return notifier_from_errno(PTR_ERR(new_trustee));
3452 kthread_bind(new_trustee, cpu);
3453 /* fall through */
3454 case CPU_UP_PREPARE:
3455 BUG_ON(gcwq->first_idle);
3456 new_worker = create_worker(gcwq, false);
3457 if (!new_worker) {
3458 if (new_trustee)
3459 kthread_stop(new_trustee);
3460 return NOTIFY_BAD;
3464 /* some are called w/ irq disabled, don't disturb irq status */
3465 spin_lock_irqsave(&gcwq->lock, flags);
3467 switch (action) {
3468 case CPU_DOWN_PREPARE:
3469 /* initialize trustee and tell it to acquire the gcwq */
3470 BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE);
3471 gcwq->trustee = new_trustee;
3472 gcwq->trustee_state = TRUSTEE_START;
3473 wake_up_process(gcwq->trustee);
3474 wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE);
3475 /* fall through */
3476 case CPU_UP_PREPARE:
3477 BUG_ON(gcwq->first_idle);
3478 gcwq->first_idle = new_worker;
3479 break;
3481 case CPU_DYING:
3483 * Before this, the trustee and all workers except for
3484 * the ones which are still executing works from
3485 * before the last CPU down must be on the cpu. After
3486 * this, they'll all be diasporas.
3488 gcwq->flags |= GCWQ_DISASSOCIATED;
3489 break;
3491 case CPU_POST_DEAD:
3492 gcwq->trustee_state = TRUSTEE_BUTCHER;
3493 /* fall through */
3494 case CPU_UP_CANCELED:
3495 destroy_worker(gcwq->first_idle);
3496 gcwq->first_idle = NULL;
3497 break;
3499 case CPU_DOWN_FAILED:
3500 case CPU_ONLINE:
3501 gcwq->flags &= ~GCWQ_DISASSOCIATED;
3502 if (gcwq->trustee_state != TRUSTEE_DONE) {
3503 gcwq->trustee_state = TRUSTEE_RELEASE;
3504 wake_up_process(gcwq->trustee);
3505 wait_trustee_state(gcwq, TRUSTEE_DONE);
3509 * Trustee is done and there might be no worker left.
3510 * Put the first_idle in and request a real manager to
3511 * take a look.
3513 spin_unlock_irq(&gcwq->lock);
3514 kthread_bind(gcwq->first_idle->task, cpu);
3515 spin_lock_irq(&gcwq->lock);
3516 gcwq->flags |= GCWQ_MANAGE_WORKERS;
3517 start_worker(gcwq->first_idle);
3518 gcwq->first_idle = NULL;
3519 break;
3522 spin_unlock_irqrestore(&gcwq->lock, flags);
3524 return notifier_from_errno(0);
3527 #ifdef CONFIG_SMP
3529 struct work_for_cpu {
3530 struct completion completion;
3531 long (*fn)(void *);
3532 void *arg;
3533 long ret;
3536 static int do_work_for_cpu(void *_wfc)
3538 struct work_for_cpu *wfc = _wfc;
3539 wfc->ret = wfc->fn(wfc->arg);
3540 complete(&wfc->completion);
3541 return 0;
3545 * work_on_cpu - run a function in user context on a particular cpu
3546 * @cpu: the cpu to run on
3547 * @fn: the function to run
3548 * @arg: the function arg
3550 * This will return the value @fn returns.
3551 * It is up to the caller to ensure that the cpu doesn't go offline.
3552 * The caller must not hold any locks which would prevent @fn from completing.
3554 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3556 struct task_struct *sub_thread;
3557 struct work_for_cpu wfc = {
3558 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3559 .fn = fn,
3560 .arg = arg,
3563 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3564 if (IS_ERR(sub_thread))
3565 return PTR_ERR(sub_thread);
3566 kthread_bind(sub_thread, cpu);
3567 wake_up_process(sub_thread);
3568 wait_for_completion(&wfc.completion);
3569 return wfc.ret;
3571 EXPORT_SYMBOL_GPL(work_on_cpu);
3572 #endif /* CONFIG_SMP */
3574 #ifdef CONFIG_FREEZER
3577 * freeze_workqueues_begin - begin freezing workqueues
3579 * Start freezing workqueues. After this function returns, all
3580 * freezeable workqueues will queue new works to their frozen_works
3581 * list instead of gcwq->worklist.
3583 * CONTEXT:
3584 * Grabs and releases workqueue_lock and gcwq->lock's.
3586 void freeze_workqueues_begin(void)
3588 unsigned int cpu;
3590 spin_lock(&workqueue_lock);
3592 BUG_ON(workqueue_freezing);
3593 workqueue_freezing = true;
3595 for_each_gcwq_cpu(cpu) {
3596 struct global_cwq *gcwq = get_gcwq(cpu);
3597 struct workqueue_struct *wq;
3599 spin_lock_irq(&gcwq->lock);
3601 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3602 gcwq->flags |= GCWQ_FREEZING;
3604 list_for_each_entry(wq, &workqueues, list) {
3605 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3607 if (cwq && wq->flags & WQ_FREEZEABLE)
3608 cwq->max_active = 0;
3611 spin_unlock_irq(&gcwq->lock);
3614 spin_unlock(&workqueue_lock);
3618 * freeze_workqueues_busy - are freezeable workqueues still busy?
3620 * Check whether freezing is complete. This function must be called
3621 * between freeze_workqueues_begin() and thaw_workqueues().
3623 * CONTEXT:
3624 * Grabs and releases workqueue_lock.
3626 * RETURNS:
3627 * %true if some freezeable workqueues are still busy. %false if
3628 * freezing is complete.
3630 bool freeze_workqueues_busy(void)
3632 unsigned int cpu;
3633 bool busy = false;
3635 spin_lock(&workqueue_lock);
3637 BUG_ON(!workqueue_freezing);
3639 for_each_gcwq_cpu(cpu) {
3640 struct workqueue_struct *wq;
3642 * nr_active is monotonically decreasing. It's safe
3643 * to peek without lock.
3645 list_for_each_entry(wq, &workqueues, list) {
3646 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3648 if (!cwq || !(wq->flags & WQ_FREEZEABLE))
3649 continue;
3651 BUG_ON(cwq->nr_active < 0);
3652 if (cwq->nr_active) {
3653 busy = true;
3654 goto out_unlock;
3658 out_unlock:
3659 spin_unlock(&workqueue_lock);
3660 return busy;
3664 * thaw_workqueues - thaw workqueues
3666 * Thaw workqueues. Normal queueing is restored and all collected
3667 * frozen works are transferred to their respective gcwq worklists.
3669 * CONTEXT:
3670 * Grabs and releases workqueue_lock and gcwq->lock's.
3672 void thaw_workqueues(void)
3674 unsigned int cpu;
3676 spin_lock(&workqueue_lock);
3678 if (!workqueue_freezing)
3679 goto out_unlock;
3681 for_each_gcwq_cpu(cpu) {
3682 struct global_cwq *gcwq = get_gcwq(cpu);
3683 struct workqueue_struct *wq;
3685 spin_lock_irq(&gcwq->lock);
3687 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3688 gcwq->flags &= ~GCWQ_FREEZING;
3690 list_for_each_entry(wq, &workqueues, list) {
3691 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3693 if (!cwq || !(wq->flags & WQ_FREEZEABLE))
3694 continue;
3696 /* restore max_active and repopulate worklist */
3697 cwq->max_active = wq->saved_max_active;
3699 while (!list_empty(&cwq->delayed_works) &&
3700 cwq->nr_active < cwq->max_active)
3701 cwq_activate_first_delayed(cwq);
3704 wake_up_worker(gcwq);
3706 spin_unlock_irq(&gcwq->lock);
3709 workqueue_freezing = false;
3710 out_unlock:
3711 spin_unlock(&workqueue_lock);
3713 #endif /* CONFIG_FREEZER */
3715 static int __init init_workqueues(void)
3717 unsigned int cpu;
3718 int i;
3720 cpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE);
3722 /* initialize gcwqs */
3723 for_each_gcwq_cpu(cpu) {
3724 struct global_cwq *gcwq = get_gcwq(cpu);
3726 spin_lock_init(&gcwq->lock);
3727 INIT_LIST_HEAD(&gcwq->worklist);
3728 gcwq->cpu = cpu;
3729 gcwq->flags |= GCWQ_DISASSOCIATED;
3731 INIT_LIST_HEAD(&gcwq->idle_list);
3732 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3733 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3735 init_timer_deferrable(&gcwq->idle_timer);
3736 gcwq->idle_timer.function = idle_worker_timeout;
3737 gcwq->idle_timer.data = (unsigned long)gcwq;
3739 setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout,
3740 (unsigned long)gcwq);
3742 ida_init(&gcwq->worker_ida);
3744 gcwq->trustee_state = TRUSTEE_DONE;
3745 init_waitqueue_head(&gcwq->trustee_wait);
3748 /* create the initial worker */
3749 for_each_online_gcwq_cpu(cpu) {
3750 struct global_cwq *gcwq = get_gcwq(cpu);
3751 struct worker *worker;
3753 if (cpu != WORK_CPU_UNBOUND)
3754 gcwq->flags &= ~GCWQ_DISASSOCIATED;
3755 worker = create_worker(gcwq, true);
3756 BUG_ON(!worker);
3757 spin_lock_irq(&gcwq->lock);
3758 start_worker(worker);
3759 spin_unlock_irq(&gcwq->lock);
3762 system_wq = alloc_workqueue("events", 0, 0);
3763 system_long_wq = alloc_workqueue("events_long", 0, 0);
3764 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
3765 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3766 WQ_UNBOUND_MAX_ACTIVE);
3767 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
3768 !system_unbound_wq);
3769 return 0;
3771 early_initcall(init_workqueues);