KVM: MMU: More struct kvm_vcpu -> struct kvm cleanups
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / kvm / mmu.c
blobd046ba8077631b2cee91badfc4d19eac2a8a9fd2
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * MMU support
9 * Copyright (C) 2006 Qumranet, Inc.
11 * Authors:
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
20 #include "vmx.h"
21 #include "kvm.h"
23 #include <linux/types.h>
24 #include <linux/string.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/module.h>
29 #include <asm/page.h>
30 #include <asm/cmpxchg.h>
32 #undef MMU_DEBUG
34 #undef AUDIT
36 #ifdef AUDIT
37 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
38 #else
39 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
40 #endif
42 #ifdef MMU_DEBUG
44 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
45 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
47 #else
49 #define pgprintk(x...) do { } while (0)
50 #define rmap_printk(x...) do { } while (0)
52 #endif
54 #if defined(MMU_DEBUG) || defined(AUDIT)
55 static int dbg = 1;
56 #endif
58 #ifndef MMU_DEBUG
59 #define ASSERT(x) do { } while (0)
60 #else
61 #define ASSERT(x) \
62 if (!(x)) { \
63 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
64 __FILE__, __LINE__, #x); \
66 #endif
68 #define PT64_PT_BITS 9
69 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
70 #define PT32_PT_BITS 10
71 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
73 #define PT_WRITABLE_SHIFT 1
75 #define PT_PRESENT_MASK (1ULL << 0)
76 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
77 #define PT_USER_MASK (1ULL << 2)
78 #define PT_PWT_MASK (1ULL << 3)
79 #define PT_PCD_MASK (1ULL << 4)
80 #define PT_ACCESSED_MASK (1ULL << 5)
81 #define PT_DIRTY_MASK (1ULL << 6)
82 #define PT_PAGE_SIZE_MASK (1ULL << 7)
83 #define PT_PAT_MASK (1ULL << 7)
84 #define PT_GLOBAL_MASK (1ULL << 8)
85 #define PT64_NX_MASK (1ULL << 63)
87 #define PT_PAT_SHIFT 7
88 #define PT_DIR_PAT_SHIFT 12
89 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
91 #define PT32_DIR_PSE36_SIZE 4
92 #define PT32_DIR_PSE36_SHIFT 13
93 #define PT32_DIR_PSE36_MASK \
94 (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
97 #define PT_FIRST_AVAIL_BITS_SHIFT 9
98 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
100 #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
102 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
104 #define PT64_LEVEL_BITS 9
106 #define PT64_LEVEL_SHIFT(level) \
107 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
109 #define PT64_LEVEL_MASK(level) \
110 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
112 #define PT64_INDEX(address, level)\
113 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
116 #define PT32_LEVEL_BITS 10
118 #define PT32_LEVEL_SHIFT(level) \
119 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
121 #define PT32_LEVEL_MASK(level) \
122 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
124 #define PT32_INDEX(address, level)\
125 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
128 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
129 #define PT64_DIR_BASE_ADDR_MASK \
130 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
132 #define PT32_BASE_ADDR_MASK PAGE_MASK
133 #define PT32_DIR_BASE_ADDR_MASK \
134 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
137 #define PFERR_PRESENT_MASK (1U << 0)
138 #define PFERR_WRITE_MASK (1U << 1)
139 #define PFERR_USER_MASK (1U << 2)
140 #define PFERR_FETCH_MASK (1U << 4)
142 #define PT64_ROOT_LEVEL 4
143 #define PT32_ROOT_LEVEL 2
144 #define PT32E_ROOT_LEVEL 3
146 #define PT_DIRECTORY_LEVEL 2
147 #define PT_PAGE_TABLE_LEVEL 1
149 #define RMAP_EXT 4
151 struct kvm_rmap_desc {
152 u64 *shadow_ptes[RMAP_EXT];
153 struct kvm_rmap_desc *more;
156 static struct kmem_cache *pte_chain_cache;
157 static struct kmem_cache *rmap_desc_cache;
158 static struct kmem_cache *mmu_page_header_cache;
160 static u64 __read_mostly shadow_trap_nonpresent_pte;
161 static u64 __read_mostly shadow_notrap_nonpresent_pte;
163 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
165 shadow_trap_nonpresent_pte = trap_pte;
166 shadow_notrap_nonpresent_pte = notrap_pte;
168 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
170 static int is_write_protection(struct kvm_vcpu *vcpu)
172 return vcpu->cr0 & X86_CR0_WP;
175 static int is_cpuid_PSE36(void)
177 return 1;
180 static int is_nx(struct kvm_vcpu *vcpu)
182 return vcpu->shadow_efer & EFER_NX;
185 static int is_present_pte(unsigned long pte)
187 return pte & PT_PRESENT_MASK;
190 static int is_shadow_present_pte(u64 pte)
192 pte &= ~PT_SHADOW_IO_MARK;
193 return pte != shadow_trap_nonpresent_pte
194 && pte != shadow_notrap_nonpresent_pte;
197 static int is_writeble_pte(unsigned long pte)
199 return pte & PT_WRITABLE_MASK;
202 static int is_io_pte(unsigned long pte)
204 return pte & PT_SHADOW_IO_MARK;
207 static int is_rmap_pte(u64 pte)
209 return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
210 == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
213 static void set_shadow_pte(u64 *sptep, u64 spte)
215 #ifdef CONFIG_X86_64
216 set_64bit((unsigned long *)sptep, spte);
217 #else
218 set_64bit((unsigned long long *)sptep, spte);
219 #endif
222 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
223 struct kmem_cache *base_cache, int min)
225 void *obj;
227 if (cache->nobjs >= min)
228 return 0;
229 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
230 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
231 if (!obj)
232 return -ENOMEM;
233 cache->objects[cache->nobjs++] = obj;
235 return 0;
238 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
240 while (mc->nobjs)
241 kfree(mc->objects[--mc->nobjs]);
244 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
245 int min)
247 struct page *page;
249 if (cache->nobjs >= min)
250 return 0;
251 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
252 page = alloc_page(GFP_KERNEL);
253 if (!page)
254 return -ENOMEM;
255 set_page_private(page, 0);
256 cache->objects[cache->nobjs++] = page_address(page);
258 return 0;
261 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
263 while (mc->nobjs)
264 free_page((unsigned long)mc->objects[--mc->nobjs]);
267 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
269 int r;
271 kvm_mmu_free_some_pages(vcpu);
272 r = mmu_topup_memory_cache(&vcpu->mmu_pte_chain_cache,
273 pte_chain_cache, 4);
274 if (r)
275 goto out;
276 r = mmu_topup_memory_cache(&vcpu->mmu_rmap_desc_cache,
277 rmap_desc_cache, 1);
278 if (r)
279 goto out;
280 r = mmu_topup_memory_cache_page(&vcpu->mmu_page_cache, 8);
281 if (r)
282 goto out;
283 r = mmu_topup_memory_cache(&vcpu->mmu_page_header_cache,
284 mmu_page_header_cache, 4);
285 out:
286 return r;
289 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
291 mmu_free_memory_cache(&vcpu->mmu_pte_chain_cache);
292 mmu_free_memory_cache(&vcpu->mmu_rmap_desc_cache);
293 mmu_free_memory_cache_page(&vcpu->mmu_page_cache);
294 mmu_free_memory_cache(&vcpu->mmu_page_header_cache);
297 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
298 size_t size)
300 void *p;
302 BUG_ON(!mc->nobjs);
303 p = mc->objects[--mc->nobjs];
304 memset(p, 0, size);
305 return p;
308 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
310 return mmu_memory_cache_alloc(&vcpu->mmu_pte_chain_cache,
311 sizeof(struct kvm_pte_chain));
314 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
316 kfree(pc);
319 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
321 return mmu_memory_cache_alloc(&vcpu->mmu_rmap_desc_cache,
322 sizeof(struct kvm_rmap_desc));
325 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
327 kfree(rd);
331 * Take gfn and return the reverse mapping to it.
332 * Note: gfn must be unaliased before this function get called
335 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn)
337 struct kvm_memory_slot *slot;
339 slot = gfn_to_memslot(kvm, gfn);
340 return &slot->rmap[gfn - slot->base_gfn];
344 * Reverse mapping data structures:
346 * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
347 * that points to page_address(page).
349 * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
350 * containing more mappings.
352 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
354 struct kvm_mmu_page *page;
355 struct kvm_rmap_desc *desc;
356 unsigned long *rmapp;
357 int i;
359 if (!is_rmap_pte(*spte))
360 return;
361 gfn = unalias_gfn(vcpu->kvm, gfn);
362 page = page_header(__pa(spte));
363 page->gfns[spte - page->spt] = gfn;
364 rmapp = gfn_to_rmap(vcpu->kvm, gfn);
365 if (!*rmapp) {
366 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
367 *rmapp = (unsigned long)spte;
368 } else if (!(*rmapp & 1)) {
369 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
370 desc = mmu_alloc_rmap_desc(vcpu);
371 desc->shadow_ptes[0] = (u64 *)*rmapp;
372 desc->shadow_ptes[1] = spte;
373 *rmapp = (unsigned long)desc | 1;
374 } else {
375 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
376 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
377 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
378 desc = desc->more;
379 if (desc->shadow_ptes[RMAP_EXT-1]) {
380 desc->more = mmu_alloc_rmap_desc(vcpu);
381 desc = desc->more;
383 for (i = 0; desc->shadow_ptes[i]; ++i)
385 desc->shadow_ptes[i] = spte;
389 static void rmap_desc_remove_entry(unsigned long *rmapp,
390 struct kvm_rmap_desc *desc,
391 int i,
392 struct kvm_rmap_desc *prev_desc)
394 int j;
396 for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
398 desc->shadow_ptes[i] = desc->shadow_ptes[j];
399 desc->shadow_ptes[j] = NULL;
400 if (j != 0)
401 return;
402 if (!prev_desc && !desc->more)
403 *rmapp = (unsigned long)desc->shadow_ptes[0];
404 else
405 if (prev_desc)
406 prev_desc->more = desc->more;
407 else
408 *rmapp = (unsigned long)desc->more | 1;
409 mmu_free_rmap_desc(desc);
412 static void rmap_remove(struct kvm *kvm, u64 *spte)
414 struct kvm_rmap_desc *desc;
415 struct kvm_rmap_desc *prev_desc;
416 struct kvm_mmu_page *page;
417 unsigned long *rmapp;
418 int i;
420 if (!is_rmap_pte(*spte))
421 return;
422 page = page_header(__pa(spte));
423 rmapp = gfn_to_rmap(kvm, page->gfns[spte - page->spt]);
424 if (!*rmapp) {
425 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
426 BUG();
427 } else if (!(*rmapp & 1)) {
428 rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
429 if ((u64 *)*rmapp != spte) {
430 printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
431 spte, *spte);
432 BUG();
434 *rmapp = 0;
435 } else {
436 rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
437 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
438 prev_desc = NULL;
439 while (desc) {
440 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
441 if (desc->shadow_ptes[i] == spte) {
442 rmap_desc_remove_entry(rmapp,
443 desc, i,
444 prev_desc);
445 return;
447 prev_desc = desc;
448 desc = desc->more;
450 BUG();
454 static void rmap_write_protect(struct kvm *kvm, u64 gfn)
456 struct kvm_rmap_desc *desc;
457 unsigned long *rmapp;
458 u64 *spte;
460 gfn = unalias_gfn(kvm, gfn);
461 rmapp = gfn_to_rmap(kvm, gfn);
463 while (*rmapp) {
464 if (!(*rmapp & 1))
465 spte = (u64 *)*rmapp;
466 else {
467 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
468 spte = desc->shadow_ptes[0];
470 BUG_ON(!spte);
471 BUG_ON(!(*spte & PT_PRESENT_MASK));
472 BUG_ON(!(*spte & PT_WRITABLE_MASK));
473 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
474 rmap_remove(kvm, spte);
475 set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
476 kvm_flush_remote_tlbs(kvm);
480 #ifdef MMU_DEBUG
481 static int is_empty_shadow_page(u64 *spt)
483 u64 *pos;
484 u64 *end;
486 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
487 if ((*pos & ~PT_SHADOW_IO_MARK) != shadow_trap_nonpresent_pte) {
488 printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
489 pos, *pos);
490 return 0;
492 return 1;
494 #endif
496 static void kvm_mmu_free_page(struct kvm *kvm,
497 struct kvm_mmu_page *page_head)
499 ASSERT(is_empty_shadow_page(page_head->spt));
500 list_del(&page_head->link);
501 __free_page(virt_to_page(page_head->spt));
502 __free_page(virt_to_page(page_head->gfns));
503 kfree(page_head);
504 ++kvm->n_free_mmu_pages;
507 static unsigned kvm_page_table_hashfn(gfn_t gfn)
509 return gfn;
512 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
513 u64 *parent_pte)
515 struct kvm_mmu_page *page;
517 if (!vcpu->kvm->n_free_mmu_pages)
518 return NULL;
520 page = mmu_memory_cache_alloc(&vcpu->mmu_page_header_cache,
521 sizeof *page);
522 page->spt = mmu_memory_cache_alloc(&vcpu->mmu_page_cache, PAGE_SIZE);
523 page->gfns = mmu_memory_cache_alloc(&vcpu->mmu_page_cache, PAGE_SIZE);
524 set_page_private(virt_to_page(page->spt), (unsigned long)page);
525 list_add(&page->link, &vcpu->kvm->active_mmu_pages);
526 ASSERT(is_empty_shadow_page(page->spt));
527 page->slot_bitmap = 0;
528 page->multimapped = 0;
529 page->parent_pte = parent_pte;
530 --vcpu->kvm->n_free_mmu_pages;
531 return page;
534 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
535 struct kvm_mmu_page *page, u64 *parent_pte)
537 struct kvm_pte_chain *pte_chain;
538 struct hlist_node *node;
539 int i;
541 if (!parent_pte)
542 return;
543 if (!page->multimapped) {
544 u64 *old = page->parent_pte;
546 if (!old) {
547 page->parent_pte = parent_pte;
548 return;
550 page->multimapped = 1;
551 pte_chain = mmu_alloc_pte_chain(vcpu);
552 INIT_HLIST_HEAD(&page->parent_ptes);
553 hlist_add_head(&pte_chain->link, &page->parent_ptes);
554 pte_chain->parent_ptes[0] = old;
556 hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
557 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
558 continue;
559 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
560 if (!pte_chain->parent_ptes[i]) {
561 pte_chain->parent_ptes[i] = parent_pte;
562 return;
565 pte_chain = mmu_alloc_pte_chain(vcpu);
566 BUG_ON(!pte_chain);
567 hlist_add_head(&pte_chain->link, &page->parent_ptes);
568 pte_chain->parent_ptes[0] = parent_pte;
571 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *page,
572 u64 *parent_pte)
574 struct kvm_pte_chain *pte_chain;
575 struct hlist_node *node;
576 int i;
578 if (!page->multimapped) {
579 BUG_ON(page->parent_pte != parent_pte);
580 page->parent_pte = NULL;
581 return;
583 hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
584 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
585 if (!pte_chain->parent_ptes[i])
586 break;
587 if (pte_chain->parent_ptes[i] != parent_pte)
588 continue;
589 while (i + 1 < NR_PTE_CHAIN_ENTRIES
590 && pte_chain->parent_ptes[i + 1]) {
591 pte_chain->parent_ptes[i]
592 = pte_chain->parent_ptes[i + 1];
593 ++i;
595 pte_chain->parent_ptes[i] = NULL;
596 if (i == 0) {
597 hlist_del(&pte_chain->link);
598 mmu_free_pte_chain(pte_chain);
599 if (hlist_empty(&page->parent_ptes)) {
600 page->multimapped = 0;
601 page->parent_pte = NULL;
604 return;
606 BUG();
609 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm,
610 gfn_t gfn)
612 unsigned index;
613 struct hlist_head *bucket;
614 struct kvm_mmu_page *page;
615 struct hlist_node *node;
617 pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
618 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
619 bucket = &kvm->mmu_page_hash[index];
620 hlist_for_each_entry(page, node, bucket, hash_link)
621 if (page->gfn == gfn && !page->role.metaphysical) {
622 pgprintk("%s: found role %x\n",
623 __FUNCTION__, page->role.word);
624 return page;
626 return NULL;
629 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
630 gfn_t gfn,
631 gva_t gaddr,
632 unsigned level,
633 int metaphysical,
634 unsigned hugepage_access,
635 u64 *parent_pte)
637 union kvm_mmu_page_role role;
638 unsigned index;
639 unsigned quadrant;
640 struct hlist_head *bucket;
641 struct kvm_mmu_page *page;
642 struct hlist_node *node;
644 role.word = 0;
645 role.glevels = vcpu->mmu.root_level;
646 role.level = level;
647 role.metaphysical = metaphysical;
648 role.hugepage_access = hugepage_access;
649 if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
650 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
651 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
652 role.quadrant = quadrant;
654 pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
655 gfn, role.word);
656 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
657 bucket = &vcpu->kvm->mmu_page_hash[index];
658 hlist_for_each_entry(page, node, bucket, hash_link)
659 if (page->gfn == gfn && page->role.word == role.word) {
660 mmu_page_add_parent_pte(vcpu, page, parent_pte);
661 pgprintk("%s: found\n", __FUNCTION__);
662 return page;
664 page = kvm_mmu_alloc_page(vcpu, parent_pte);
665 if (!page)
666 return page;
667 pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
668 page->gfn = gfn;
669 page->role = role;
670 hlist_add_head(&page->hash_link, bucket);
671 vcpu->mmu.prefetch_page(vcpu, page);
672 if (!metaphysical)
673 rmap_write_protect(vcpu->kvm, gfn);
674 return page;
677 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
678 struct kvm_mmu_page *page)
680 unsigned i;
681 u64 *pt;
682 u64 ent;
684 pt = page->spt;
686 if (page->role.level == PT_PAGE_TABLE_LEVEL) {
687 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
688 if (is_shadow_present_pte(pt[i]))
689 rmap_remove(kvm, &pt[i]);
690 pt[i] = shadow_trap_nonpresent_pte;
692 kvm_flush_remote_tlbs(kvm);
693 return;
696 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
697 ent = pt[i];
699 pt[i] = shadow_trap_nonpresent_pte;
700 if (!is_shadow_present_pte(ent))
701 continue;
702 ent &= PT64_BASE_ADDR_MASK;
703 mmu_page_remove_parent_pte(page_header(ent), &pt[i]);
705 kvm_flush_remote_tlbs(kvm);
708 static void kvm_mmu_put_page(struct kvm_mmu_page *page,
709 u64 *parent_pte)
711 mmu_page_remove_parent_pte(page, parent_pte);
714 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
716 int i;
718 for (i = 0; i < KVM_MAX_VCPUS; ++i)
719 if (kvm->vcpus[i])
720 kvm->vcpus[i]->last_pte_updated = NULL;
723 static void kvm_mmu_zap_page(struct kvm *kvm,
724 struct kvm_mmu_page *page)
726 u64 *parent_pte;
728 while (page->multimapped || page->parent_pte) {
729 if (!page->multimapped)
730 parent_pte = page->parent_pte;
731 else {
732 struct kvm_pte_chain *chain;
734 chain = container_of(page->parent_ptes.first,
735 struct kvm_pte_chain, link);
736 parent_pte = chain->parent_ptes[0];
738 BUG_ON(!parent_pte);
739 kvm_mmu_put_page(page, parent_pte);
740 set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
742 kvm_mmu_page_unlink_children(kvm, page);
743 if (!page->root_count) {
744 hlist_del(&page->hash_link);
745 kvm_mmu_free_page(kvm, page);
746 } else
747 list_move(&page->link, &kvm->active_mmu_pages);
748 kvm_mmu_reset_last_pte_updated(kvm);
752 * Changing the number of mmu pages allocated to the vm
753 * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
755 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
758 * If we set the number of mmu pages to be smaller be than the
759 * number of actived pages , we must to free some mmu pages before we
760 * change the value
763 if ((kvm->n_alloc_mmu_pages - kvm->n_free_mmu_pages) >
764 kvm_nr_mmu_pages) {
765 int n_used_mmu_pages = kvm->n_alloc_mmu_pages
766 - kvm->n_free_mmu_pages;
768 while (n_used_mmu_pages > kvm_nr_mmu_pages) {
769 struct kvm_mmu_page *page;
771 page = container_of(kvm->active_mmu_pages.prev,
772 struct kvm_mmu_page, link);
773 kvm_mmu_zap_page(kvm, page);
774 n_used_mmu_pages--;
776 kvm->n_free_mmu_pages = 0;
778 else
779 kvm->n_free_mmu_pages += kvm_nr_mmu_pages
780 - kvm->n_alloc_mmu_pages;
782 kvm->n_alloc_mmu_pages = kvm_nr_mmu_pages;
785 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
787 unsigned index;
788 struct hlist_head *bucket;
789 struct kvm_mmu_page *page;
790 struct hlist_node *node, *n;
791 int r;
793 pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
794 r = 0;
795 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
796 bucket = &kvm->mmu_page_hash[index];
797 hlist_for_each_entry_safe(page, node, n, bucket, hash_link)
798 if (page->gfn == gfn && !page->role.metaphysical) {
799 pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
800 page->role.word);
801 kvm_mmu_zap_page(kvm, page);
802 r = 1;
804 return r;
807 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
809 struct kvm_mmu_page *page;
811 while ((page = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
812 pgprintk("%s: zap %lx %x\n",
813 __FUNCTION__, gfn, page->role.word);
814 kvm_mmu_zap_page(kvm, page);
818 static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
820 int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
821 struct kvm_mmu_page *page_head = page_header(__pa(pte));
823 __set_bit(slot, &page_head->slot_bitmap);
826 hpa_t safe_gpa_to_hpa(struct kvm *kvm, gpa_t gpa)
828 hpa_t hpa = gpa_to_hpa(kvm, gpa);
830 return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
833 hpa_t gpa_to_hpa(struct kvm *kvm, gpa_t gpa)
835 struct page *page;
837 ASSERT((gpa & HPA_ERR_MASK) == 0);
838 page = gfn_to_page(kvm, gpa >> PAGE_SHIFT);
839 if (!page)
840 return gpa | HPA_ERR_MASK;
841 return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
842 | (gpa & (PAGE_SIZE-1));
845 hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
847 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
849 if (gpa == UNMAPPED_GVA)
850 return UNMAPPED_GVA;
851 return gpa_to_hpa(vcpu->kvm, gpa);
854 struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
856 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
858 if (gpa == UNMAPPED_GVA)
859 return NULL;
860 return pfn_to_page(gpa_to_hpa(vcpu->kvm, gpa) >> PAGE_SHIFT);
863 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
867 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
869 int level = PT32E_ROOT_LEVEL;
870 hpa_t table_addr = vcpu->mmu.root_hpa;
872 for (; ; level--) {
873 u32 index = PT64_INDEX(v, level);
874 u64 *table;
875 u64 pte;
877 ASSERT(VALID_PAGE(table_addr));
878 table = __va(table_addr);
880 if (level == 1) {
881 pte = table[index];
882 if (is_shadow_present_pte(pte) && is_writeble_pte(pte))
883 return 0;
884 mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
885 page_header_update_slot(vcpu->kvm, table, v);
886 table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
887 PT_USER_MASK;
888 rmap_add(vcpu, &table[index], v >> PAGE_SHIFT);
889 return 0;
892 if (table[index] == shadow_trap_nonpresent_pte) {
893 struct kvm_mmu_page *new_table;
894 gfn_t pseudo_gfn;
896 pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
897 >> PAGE_SHIFT;
898 new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
899 v, level - 1,
900 1, 0, &table[index]);
901 if (!new_table) {
902 pgprintk("nonpaging_map: ENOMEM\n");
903 return -ENOMEM;
906 table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
907 | PT_WRITABLE_MASK | PT_USER_MASK;
909 table_addr = table[index] & PT64_BASE_ADDR_MASK;
913 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
914 struct kvm_mmu_page *sp)
916 int i;
918 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
919 sp->spt[i] = shadow_trap_nonpresent_pte;
922 static void mmu_free_roots(struct kvm_vcpu *vcpu)
924 int i;
925 struct kvm_mmu_page *page;
927 if (!VALID_PAGE(vcpu->mmu.root_hpa))
928 return;
929 #ifdef CONFIG_X86_64
930 if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
931 hpa_t root = vcpu->mmu.root_hpa;
933 page = page_header(root);
934 --page->root_count;
935 vcpu->mmu.root_hpa = INVALID_PAGE;
936 return;
938 #endif
939 for (i = 0; i < 4; ++i) {
940 hpa_t root = vcpu->mmu.pae_root[i];
942 if (root) {
943 root &= PT64_BASE_ADDR_MASK;
944 page = page_header(root);
945 --page->root_count;
947 vcpu->mmu.pae_root[i] = INVALID_PAGE;
949 vcpu->mmu.root_hpa = INVALID_PAGE;
952 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
954 int i;
955 gfn_t root_gfn;
956 struct kvm_mmu_page *page;
958 root_gfn = vcpu->cr3 >> PAGE_SHIFT;
960 #ifdef CONFIG_X86_64
961 if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
962 hpa_t root = vcpu->mmu.root_hpa;
964 ASSERT(!VALID_PAGE(root));
965 page = kvm_mmu_get_page(vcpu, root_gfn, 0,
966 PT64_ROOT_LEVEL, 0, 0, NULL);
967 root = __pa(page->spt);
968 ++page->root_count;
969 vcpu->mmu.root_hpa = root;
970 return;
972 #endif
973 for (i = 0; i < 4; ++i) {
974 hpa_t root = vcpu->mmu.pae_root[i];
976 ASSERT(!VALID_PAGE(root));
977 if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL) {
978 if (!is_present_pte(vcpu->pdptrs[i])) {
979 vcpu->mmu.pae_root[i] = 0;
980 continue;
982 root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
983 } else if (vcpu->mmu.root_level == 0)
984 root_gfn = 0;
985 page = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
986 PT32_ROOT_LEVEL, !is_paging(vcpu),
987 0, NULL);
988 root = __pa(page->spt);
989 ++page->root_count;
990 vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
992 vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
995 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
997 return vaddr;
1000 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
1001 u32 error_code)
1003 gpa_t addr = gva;
1004 hpa_t paddr;
1005 int r;
1007 r = mmu_topup_memory_caches(vcpu);
1008 if (r)
1009 return r;
1011 ASSERT(vcpu);
1012 ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
1015 paddr = gpa_to_hpa(vcpu->kvm, addr & PT64_BASE_ADDR_MASK);
1017 if (is_error_hpa(paddr))
1018 return 1;
1020 return nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
1023 static void nonpaging_free(struct kvm_vcpu *vcpu)
1025 mmu_free_roots(vcpu);
1028 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
1030 struct kvm_mmu *context = &vcpu->mmu;
1032 context->new_cr3 = nonpaging_new_cr3;
1033 context->page_fault = nonpaging_page_fault;
1034 context->gva_to_gpa = nonpaging_gva_to_gpa;
1035 context->free = nonpaging_free;
1036 context->prefetch_page = nonpaging_prefetch_page;
1037 context->root_level = 0;
1038 context->shadow_root_level = PT32E_ROOT_LEVEL;
1039 context->root_hpa = INVALID_PAGE;
1040 return 0;
1043 static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
1045 ++vcpu->stat.tlb_flush;
1046 kvm_x86_ops->tlb_flush(vcpu);
1049 static void paging_new_cr3(struct kvm_vcpu *vcpu)
1051 pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
1052 mmu_free_roots(vcpu);
1055 static void inject_page_fault(struct kvm_vcpu *vcpu,
1056 u64 addr,
1057 u32 err_code)
1059 kvm_x86_ops->inject_page_fault(vcpu, addr, err_code);
1062 static void paging_free(struct kvm_vcpu *vcpu)
1064 nonpaging_free(vcpu);
1067 #define PTTYPE 64
1068 #include "paging_tmpl.h"
1069 #undef PTTYPE
1071 #define PTTYPE 32
1072 #include "paging_tmpl.h"
1073 #undef PTTYPE
1075 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
1077 struct kvm_mmu *context = &vcpu->mmu;
1079 ASSERT(is_pae(vcpu));
1080 context->new_cr3 = paging_new_cr3;
1081 context->page_fault = paging64_page_fault;
1082 context->gva_to_gpa = paging64_gva_to_gpa;
1083 context->prefetch_page = paging64_prefetch_page;
1084 context->free = paging_free;
1085 context->root_level = level;
1086 context->shadow_root_level = level;
1087 context->root_hpa = INVALID_PAGE;
1088 return 0;
1091 static int paging64_init_context(struct kvm_vcpu *vcpu)
1093 return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
1096 static int paging32_init_context(struct kvm_vcpu *vcpu)
1098 struct kvm_mmu *context = &vcpu->mmu;
1100 context->new_cr3 = paging_new_cr3;
1101 context->page_fault = paging32_page_fault;
1102 context->gva_to_gpa = paging32_gva_to_gpa;
1103 context->free = paging_free;
1104 context->prefetch_page = paging32_prefetch_page;
1105 context->root_level = PT32_ROOT_LEVEL;
1106 context->shadow_root_level = PT32E_ROOT_LEVEL;
1107 context->root_hpa = INVALID_PAGE;
1108 return 0;
1111 static int paging32E_init_context(struct kvm_vcpu *vcpu)
1113 return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
1116 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
1118 ASSERT(vcpu);
1119 ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1121 if (!is_paging(vcpu))
1122 return nonpaging_init_context(vcpu);
1123 else if (is_long_mode(vcpu))
1124 return paging64_init_context(vcpu);
1125 else if (is_pae(vcpu))
1126 return paging32E_init_context(vcpu);
1127 else
1128 return paging32_init_context(vcpu);
1131 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
1133 ASSERT(vcpu);
1134 if (VALID_PAGE(vcpu->mmu.root_hpa)) {
1135 vcpu->mmu.free(vcpu);
1136 vcpu->mmu.root_hpa = INVALID_PAGE;
1140 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
1142 destroy_kvm_mmu(vcpu);
1143 return init_kvm_mmu(vcpu);
1145 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
1147 int kvm_mmu_load(struct kvm_vcpu *vcpu)
1149 int r;
1151 mutex_lock(&vcpu->kvm->lock);
1152 r = mmu_topup_memory_caches(vcpu);
1153 if (r)
1154 goto out;
1155 mmu_alloc_roots(vcpu);
1156 kvm_x86_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
1157 kvm_mmu_flush_tlb(vcpu);
1158 out:
1159 mutex_unlock(&vcpu->kvm->lock);
1160 return r;
1162 EXPORT_SYMBOL_GPL(kvm_mmu_load);
1164 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
1166 mmu_free_roots(vcpu);
1169 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
1170 struct kvm_mmu_page *page,
1171 u64 *spte)
1173 u64 pte;
1174 struct kvm_mmu_page *child;
1176 pte = *spte;
1177 if (is_shadow_present_pte(pte)) {
1178 if (page->role.level == PT_PAGE_TABLE_LEVEL)
1179 rmap_remove(vcpu->kvm, spte);
1180 else {
1181 child = page_header(pte & PT64_BASE_ADDR_MASK);
1182 mmu_page_remove_parent_pte(child, spte);
1185 set_shadow_pte(spte, shadow_trap_nonpresent_pte);
1186 kvm_flush_remote_tlbs(vcpu->kvm);
1189 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
1190 struct kvm_mmu_page *page,
1191 u64 *spte,
1192 const void *new, int bytes,
1193 int offset_in_pte)
1195 if (page->role.level != PT_PAGE_TABLE_LEVEL)
1196 return;
1198 if (page->role.glevels == PT32_ROOT_LEVEL)
1199 paging32_update_pte(vcpu, page, spte, new, bytes,
1200 offset_in_pte);
1201 else
1202 paging64_update_pte(vcpu, page, spte, new, bytes,
1203 offset_in_pte);
1206 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
1208 u64 *spte = vcpu->last_pte_updated;
1210 return !!(spte && (*spte & PT_ACCESSED_MASK));
1213 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1214 const u8 *new, int bytes)
1216 gfn_t gfn = gpa >> PAGE_SHIFT;
1217 struct kvm_mmu_page *page;
1218 struct hlist_node *node, *n;
1219 struct hlist_head *bucket;
1220 unsigned index;
1221 u64 *spte;
1222 unsigned offset = offset_in_page(gpa);
1223 unsigned pte_size;
1224 unsigned page_offset;
1225 unsigned misaligned;
1226 unsigned quadrant;
1227 int level;
1228 int flooded = 0;
1229 int npte;
1231 pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
1232 kvm_mmu_audit(vcpu, "pre pte write");
1233 if (gfn == vcpu->last_pt_write_gfn
1234 && !last_updated_pte_accessed(vcpu)) {
1235 ++vcpu->last_pt_write_count;
1236 if (vcpu->last_pt_write_count >= 3)
1237 flooded = 1;
1238 } else {
1239 vcpu->last_pt_write_gfn = gfn;
1240 vcpu->last_pt_write_count = 1;
1241 vcpu->last_pte_updated = NULL;
1243 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
1244 bucket = &vcpu->kvm->mmu_page_hash[index];
1245 hlist_for_each_entry_safe(page, node, n, bucket, hash_link) {
1246 if (page->gfn != gfn || page->role.metaphysical)
1247 continue;
1248 pte_size = page->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
1249 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
1250 misaligned |= bytes < 4;
1251 if (misaligned || flooded) {
1253 * Misaligned accesses are too much trouble to fix
1254 * up; also, they usually indicate a page is not used
1255 * as a page table.
1257 * If we're seeing too many writes to a page,
1258 * it may no longer be a page table, or we may be
1259 * forking, in which case it is better to unmap the
1260 * page.
1262 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1263 gpa, bytes, page->role.word);
1264 kvm_mmu_zap_page(vcpu->kvm, page);
1265 continue;
1267 page_offset = offset;
1268 level = page->role.level;
1269 npte = 1;
1270 if (page->role.glevels == PT32_ROOT_LEVEL) {
1271 page_offset <<= 1; /* 32->64 */
1273 * A 32-bit pde maps 4MB while the shadow pdes map
1274 * only 2MB. So we need to double the offset again
1275 * and zap two pdes instead of one.
1277 if (level == PT32_ROOT_LEVEL) {
1278 page_offset &= ~7; /* kill rounding error */
1279 page_offset <<= 1;
1280 npte = 2;
1282 quadrant = page_offset >> PAGE_SHIFT;
1283 page_offset &= ~PAGE_MASK;
1284 if (quadrant != page->role.quadrant)
1285 continue;
1287 spte = &page->spt[page_offset / sizeof(*spte)];
1288 while (npte--) {
1289 mmu_pte_write_zap_pte(vcpu, page, spte);
1290 mmu_pte_write_new_pte(vcpu, page, spte, new, bytes,
1291 page_offset & (pte_size - 1));
1292 ++spte;
1295 kvm_mmu_audit(vcpu, "post pte write");
1298 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1300 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
1302 return kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1305 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
1307 while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) {
1308 struct kvm_mmu_page *page;
1310 page = container_of(vcpu->kvm->active_mmu_pages.prev,
1311 struct kvm_mmu_page, link);
1312 kvm_mmu_zap_page(vcpu->kvm, page);
1316 static void free_mmu_pages(struct kvm_vcpu *vcpu)
1318 struct kvm_mmu_page *page;
1320 while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
1321 page = container_of(vcpu->kvm->active_mmu_pages.next,
1322 struct kvm_mmu_page, link);
1323 kvm_mmu_zap_page(vcpu->kvm, page);
1325 free_page((unsigned long)vcpu->mmu.pae_root);
1328 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
1330 struct page *page;
1331 int i;
1333 ASSERT(vcpu);
1335 if (vcpu->kvm->n_requested_mmu_pages)
1336 vcpu->kvm->n_free_mmu_pages = vcpu->kvm->n_requested_mmu_pages;
1337 else
1338 vcpu->kvm->n_free_mmu_pages = vcpu->kvm->n_alloc_mmu_pages;
1340 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1341 * Therefore we need to allocate shadow page tables in the first
1342 * 4GB of memory, which happens to fit the DMA32 zone.
1344 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
1345 if (!page)
1346 goto error_1;
1347 vcpu->mmu.pae_root = page_address(page);
1348 for (i = 0; i < 4; ++i)
1349 vcpu->mmu.pae_root[i] = INVALID_PAGE;
1351 return 0;
1353 error_1:
1354 free_mmu_pages(vcpu);
1355 return -ENOMEM;
1358 int kvm_mmu_create(struct kvm_vcpu *vcpu)
1360 ASSERT(vcpu);
1361 ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1363 return alloc_mmu_pages(vcpu);
1366 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
1368 ASSERT(vcpu);
1369 ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1371 return init_kvm_mmu(vcpu);
1374 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
1376 ASSERT(vcpu);
1378 destroy_kvm_mmu(vcpu);
1379 free_mmu_pages(vcpu);
1380 mmu_free_memory_caches(vcpu);
1383 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
1385 struct kvm_mmu_page *page;
1387 list_for_each_entry(page, &kvm->active_mmu_pages, link) {
1388 int i;
1389 u64 *pt;
1391 if (!test_bit(slot, &page->slot_bitmap))
1392 continue;
1394 pt = page->spt;
1395 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1396 /* avoid RMW */
1397 if (pt[i] & PT_WRITABLE_MASK) {
1398 rmap_remove(kvm, &pt[i]);
1399 pt[i] &= ~PT_WRITABLE_MASK;
1404 void kvm_mmu_zap_all(struct kvm *kvm)
1406 struct kvm_mmu_page *page, *node;
1408 list_for_each_entry_safe(page, node, &kvm->active_mmu_pages, link)
1409 kvm_mmu_zap_page(kvm, page);
1411 kvm_flush_remote_tlbs(kvm);
1414 void kvm_mmu_module_exit(void)
1416 if (pte_chain_cache)
1417 kmem_cache_destroy(pte_chain_cache);
1418 if (rmap_desc_cache)
1419 kmem_cache_destroy(rmap_desc_cache);
1420 if (mmu_page_header_cache)
1421 kmem_cache_destroy(mmu_page_header_cache);
1424 int kvm_mmu_module_init(void)
1426 pte_chain_cache = kmem_cache_create("kvm_pte_chain",
1427 sizeof(struct kvm_pte_chain),
1428 0, 0, NULL);
1429 if (!pte_chain_cache)
1430 goto nomem;
1431 rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
1432 sizeof(struct kvm_rmap_desc),
1433 0, 0, NULL);
1434 if (!rmap_desc_cache)
1435 goto nomem;
1437 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
1438 sizeof(struct kvm_mmu_page),
1439 0, 0, NULL);
1440 if (!mmu_page_header_cache)
1441 goto nomem;
1443 return 0;
1445 nomem:
1446 kvm_mmu_module_exit();
1447 return -ENOMEM;
1450 #ifdef AUDIT
1452 static const char *audit_msg;
1454 static gva_t canonicalize(gva_t gva)
1456 #ifdef CONFIG_X86_64
1457 gva = (long long)(gva << 16) >> 16;
1458 #endif
1459 return gva;
1462 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
1463 gva_t va, int level)
1465 u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
1466 int i;
1467 gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
1469 for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
1470 u64 ent = pt[i];
1472 if (ent == shadow_trap_nonpresent_pte)
1473 continue;
1475 va = canonicalize(va);
1476 if (level > 1) {
1477 if (ent == shadow_notrap_nonpresent_pte)
1478 printk(KERN_ERR "audit: (%s) nontrapping pte"
1479 " in nonleaf level: levels %d gva %lx"
1480 " level %d pte %llx\n", audit_msg,
1481 vcpu->mmu.root_level, va, level, ent);
1483 audit_mappings_page(vcpu, ent, va, level - 1);
1484 } else {
1485 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, va);
1486 hpa_t hpa = gpa_to_hpa(vcpu, gpa);
1488 if (is_shadow_present_pte(ent)
1489 && (ent & PT64_BASE_ADDR_MASK) != hpa)
1490 printk(KERN_ERR "xx audit error: (%s) levels %d"
1491 " gva %lx gpa %llx hpa %llx ent %llx %d\n",
1492 audit_msg, vcpu->mmu.root_level,
1493 va, gpa, hpa, ent,
1494 is_shadow_present_pte(ent));
1495 else if (ent == shadow_notrap_nonpresent_pte
1496 && !is_error_hpa(hpa))
1497 printk(KERN_ERR "audit: (%s) notrap shadow,"
1498 " valid guest gva %lx\n", audit_msg, va);
1504 static void audit_mappings(struct kvm_vcpu *vcpu)
1506 unsigned i;
1508 if (vcpu->mmu.root_level == 4)
1509 audit_mappings_page(vcpu, vcpu->mmu.root_hpa, 0, 4);
1510 else
1511 for (i = 0; i < 4; ++i)
1512 if (vcpu->mmu.pae_root[i] & PT_PRESENT_MASK)
1513 audit_mappings_page(vcpu,
1514 vcpu->mmu.pae_root[i],
1515 i << 30,
1519 static int count_rmaps(struct kvm_vcpu *vcpu)
1521 int nmaps = 0;
1522 int i, j, k;
1524 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1525 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
1526 struct kvm_rmap_desc *d;
1528 for (j = 0; j < m->npages; ++j) {
1529 unsigned long *rmapp = &m->rmap[j];
1531 if (!*rmapp)
1532 continue;
1533 if (!(*rmapp & 1)) {
1534 ++nmaps;
1535 continue;
1537 d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
1538 while (d) {
1539 for (k = 0; k < RMAP_EXT; ++k)
1540 if (d->shadow_ptes[k])
1541 ++nmaps;
1542 else
1543 break;
1544 d = d->more;
1548 return nmaps;
1551 static int count_writable_mappings(struct kvm_vcpu *vcpu)
1553 int nmaps = 0;
1554 struct kvm_mmu_page *page;
1555 int i;
1557 list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
1558 u64 *pt = page->spt;
1560 if (page->role.level != PT_PAGE_TABLE_LEVEL)
1561 continue;
1563 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1564 u64 ent = pt[i];
1566 if (!(ent & PT_PRESENT_MASK))
1567 continue;
1568 if (!(ent & PT_WRITABLE_MASK))
1569 continue;
1570 ++nmaps;
1573 return nmaps;
1576 static void audit_rmap(struct kvm_vcpu *vcpu)
1578 int n_rmap = count_rmaps(vcpu);
1579 int n_actual = count_writable_mappings(vcpu);
1581 if (n_rmap != n_actual)
1582 printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
1583 __FUNCTION__, audit_msg, n_rmap, n_actual);
1586 static void audit_write_protection(struct kvm_vcpu *vcpu)
1588 struct kvm_mmu_page *page;
1589 struct kvm_memory_slot *slot;
1590 unsigned long *rmapp;
1591 gfn_t gfn;
1593 list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
1594 if (page->role.metaphysical)
1595 continue;
1597 slot = gfn_to_memslot(vcpu->kvm, page->gfn);
1598 gfn = unalias_gfn(vcpu->kvm, page->gfn);
1599 rmapp = &slot->rmap[gfn - slot->base_gfn];
1600 if (*rmapp)
1601 printk(KERN_ERR "%s: (%s) shadow page has writable"
1602 " mappings: gfn %lx role %x\n",
1603 __FUNCTION__, audit_msg, page->gfn,
1604 page->role.word);
1608 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
1610 int olddbg = dbg;
1612 dbg = 0;
1613 audit_msg = msg;
1614 audit_rmap(vcpu);
1615 audit_write_protection(vcpu);
1616 audit_mappings(vcpu);
1617 dbg = olddbg;
1620 #endif