Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / e1000 / e1000_main.c
blob47da5fc1e9f41ffd2ce57ba364d5446d8f958fd3
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #define DRV_VERSION "7.3.21-k5-NAPI"
35 const char e1000_driver_version[] = DRV_VERSION;
36 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
38 /* e1000_pci_tbl - PCI Device ID Table
40 * Last entry must be all 0s
42 * Macro expands to...
43 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
45 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
46 INTEL_E1000_ETHERNET_DEVICE(0x1000),
47 INTEL_E1000_ETHERNET_DEVICE(0x1001),
48 INTEL_E1000_ETHERNET_DEVICE(0x1004),
49 INTEL_E1000_ETHERNET_DEVICE(0x1008),
50 INTEL_E1000_ETHERNET_DEVICE(0x1009),
51 INTEL_E1000_ETHERNET_DEVICE(0x100C),
52 INTEL_E1000_ETHERNET_DEVICE(0x100D),
53 INTEL_E1000_ETHERNET_DEVICE(0x100E),
54 INTEL_E1000_ETHERNET_DEVICE(0x100F),
55 INTEL_E1000_ETHERNET_DEVICE(0x1010),
56 INTEL_E1000_ETHERNET_DEVICE(0x1011),
57 INTEL_E1000_ETHERNET_DEVICE(0x1012),
58 INTEL_E1000_ETHERNET_DEVICE(0x1013),
59 INTEL_E1000_ETHERNET_DEVICE(0x1014),
60 INTEL_E1000_ETHERNET_DEVICE(0x1015),
61 INTEL_E1000_ETHERNET_DEVICE(0x1016),
62 INTEL_E1000_ETHERNET_DEVICE(0x1017),
63 INTEL_E1000_ETHERNET_DEVICE(0x1018),
64 INTEL_E1000_ETHERNET_DEVICE(0x1019),
65 INTEL_E1000_ETHERNET_DEVICE(0x101A),
66 INTEL_E1000_ETHERNET_DEVICE(0x101D),
67 INTEL_E1000_ETHERNET_DEVICE(0x101E),
68 INTEL_E1000_ETHERNET_DEVICE(0x1026),
69 INTEL_E1000_ETHERNET_DEVICE(0x1027),
70 INTEL_E1000_ETHERNET_DEVICE(0x1028),
71 INTEL_E1000_ETHERNET_DEVICE(0x1075),
72 INTEL_E1000_ETHERNET_DEVICE(0x1076),
73 INTEL_E1000_ETHERNET_DEVICE(0x1077),
74 INTEL_E1000_ETHERNET_DEVICE(0x1078),
75 INTEL_E1000_ETHERNET_DEVICE(0x1079),
76 INTEL_E1000_ETHERNET_DEVICE(0x107A),
77 INTEL_E1000_ETHERNET_DEVICE(0x107B),
78 INTEL_E1000_ETHERNET_DEVICE(0x107C),
79 INTEL_E1000_ETHERNET_DEVICE(0x108A),
80 INTEL_E1000_ETHERNET_DEVICE(0x1099),
81 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
82 /* required last entry */
83 {0,}
86 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
88 int e1000_up(struct e1000_adapter *adapter);
89 void e1000_down(struct e1000_adapter *adapter);
90 void e1000_reinit_locked(struct e1000_adapter *adapter);
91 void e1000_reset(struct e1000_adapter *adapter);
92 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
93 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
94 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
95 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
96 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
97 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
98 struct e1000_tx_ring *txdr);
99 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
100 struct e1000_rx_ring *rxdr);
101 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
102 struct e1000_tx_ring *tx_ring);
103 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
104 struct e1000_rx_ring *rx_ring);
105 void e1000_update_stats(struct e1000_adapter *adapter);
107 static int e1000_init_module(void);
108 static void e1000_exit_module(void);
109 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
110 static void __devexit e1000_remove(struct pci_dev *pdev);
111 static int e1000_alloc_queues(struct e1000_adapter *adapter);
112 static int e1000_sw_init(struct e1000_adapter *adapter);
113 static int e1000_open(struct net_device *netdev);
114 static int e1000_close(struct net_device *netdev);
115 static void e1000_configure_tx(struct e1000_adapter *adapter);
116 static void e1000_configure_rx(struct e1000_adapter *adapter);
117 static void e1000_setup_rctl(struct e1000_adapter *adapter);
118 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
120 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
121 struct e1000_tx_ring *tx_ring);
122 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
123 struct e1000_rx_ring *rx_ring);
124 static void e1000_set_rx_mode(struct net_device *netdev);
125 static void e1000_update_phy_info(unsigned long data);
126 static void e1000_watchdog(unsigned long data);
127 static void e1000_82547_tx_fifo_stall(unsigned long data);
128 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
129 struct net_device *netdev);
130 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
131 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
132 static int e1000_set_mac(struct net_device *netdev, void *p);
133 static irqreturn_t e1000_intr(int irq, void *data);
134 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
135 struct e1000_tx_ring *tx_ring);
136 static int e1000_clean(struct napi_struct *napi, int budget);
137 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
138 struct e1000_rx_ring *rx_ring,
139 int *work_done, int work_to_do);
140 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
141 struct e1000_rx_ring *rx_ring,
142 int *work_done, int work_to_do);
143 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
144 struct e1000_rx_ring *rx_ring,
145 int cleaned_count);
146 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
147 struct e1000_rx_ring *rx_ring,
148 int cleaned_count);
149 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
150 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
151 int cmd);
152 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
153 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
154 static void e1000_tx_timeout(struct net_device *dev);
155 static void e1000_reset_task(struct work_struct *work);
156 static void e1000_smartspeed(struct e1000_adapter *adapter);
157 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
158 struct sk_buff *skb);
160 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
161 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
162 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
163 static void e1000_restore_vlan(struct e1000_adapter *adapter);
165 #ifdef CONFIG_PM
166 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
167 static int e1000_resume(struct pci_dev *pdev);
168 #endif
169 static void e1000_shutdown(struct pci_dev *pdev);
171 #ifdef CONFIG_NET_POLL_CONTROLLER
172 /* for netdump / net console */
173 static void e1000_netpoll (struct net_device *netdev);
174 #endif
176 #define COPYBREAK_DEFAULT 256
177 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
178 module_param(copybreak, uint, 0644);
179 MODULE_PARM_DESC(copybreak,
180 "Maximum size of packet that is copied to a new buffer on receive");
182 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
183 pci_channel_state_t state);
184 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
185 static void e1000_io_resume(struct pci_dev *pdev);
187 static struct pci_error_handlers e1000_err_handler = {
188 .error_detected = e1000_io_error_detected,
189 .slot_reset = e1000_io_slot_reset,
190 .resume = e1000_io_resume,
193 static struct pci_driver e1000_driver = {
194 .name = e1000_driver_name,
195 .id_table = e1000_pci_tbl,
196 .probe = e1000_probe,
197 .remove = __devexit_p(e1000_remove),
198 #ifdef CONFIG_PM
199 /* Power Managment Hooks */
200 .suspend = e1000_suspend,
201 .resume = e1000_resume,
202 #endif
203 .shutdown = e1000_shutdown,
204 .err_handler = &e1000_err_handler
207 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
208 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
209 MODULE_LICENSE("GPL");
210 MODULE_VERSION(DRV_VERSION);
212 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
213 module_param(debug, int, 0);
214 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
217 * e1000_init_module - Driver Registration Routine
219 * e1000_init_module is the first routine called when the driver is
220 * loaded. All it does is register with the PCI subsystem.
223 static int __init e1000_init_module(void)
225 int ret;
226 printk(KERN_INFO "%s - version %s\n",
227 e1000_driver_string, e1000_driver_version);
229 printk(KERN_INFO "%s\n", e1000_copyright);
231 ret = pci_register_driver(&e1000_driver);
232 if (copybreak != COPYBREAK_DEFAULT) {
233 if (copybreak == 0)
234 printk(KERN_INFO "e1000: copybreak disabled\n");
235 else
236 printk(KERN_INFO "e1000: copybreak enabled for "
237 "packets <= %u bytes\n", copybreak);
239 return ret;
242 module_init(e1000_init_module);
245 * e1000_exit_module - Driver Exit Cleanup Routine
247 * e1000_exit_module is called just before the driver is removed
248 * from memory.
251 static void __exit e1000_exit_module(void)
253 pci_unregister_driver(&e1000_driver);
256 module_exit(e1000_exit_module);
258 static int e1000_request_irq(struct e1000_adapter *adapter)
260 struct net_device *netdev = adapter->netdev;
261 irq_handler_t handler = e1000_intr;
262 int irq_flags = IRQF_SHARED;
263 int err;
265 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
266 netdev);
267 if (err) {
268 DPRINTK(PROBE, ERR,
269 "Unable to allocate interrupt Error: %d\n", err);
272 return err;
275 static void e1000_free_irq(struct e1000_adapter *adapter)
277 struct net_device *netdev = adapter->netdev;
279 free_irq(adapter->pdev->irq, netdev);
283 * e1000_irq_disable - Mask off interrupt generation on the NIC
284 * @adapter: board private structure
287 static void e1000_irq_disable(struct e1000_adapter *adapter)
289 struct e1000_hw *hw = &adapter->hw;
291 ew32(IMC, ~0);
292 E1000_WRITE_FLUSH();
293 synchronize_irq(adapter->pdev->irq);
297 * e1000_irq_enable - Enable default interrupt generation settings
298 * @adapter: board private structure
301 static void e1000_irq_enable(struct e1000_adapter *adapter)
303 struct e1000_hw *hw = &adapter->hw;
305 ew32(IMS, IMS_ENABLE_MASK);
306 E1000_WRITE_FLUSH();
309 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
311 struct e1000_hw *hw = &adapter->hw;
312 struct net_device *netdev = adapter->netdev;
313 u16 vid = hw->mng_cookie.vlan_id;
314 u16 old_vid = adapter->mng_vlan_id;
315 if (adapter->vlgrp) {
316 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
317 if (hw->mng_cookie.status &
318 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
319 e1000_vlan_rx_add_vid(netdev, vid);
320 adapter->mng_vlan_id = vid;
321 } else
322 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
324 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
325 (vid != old_vid) &&
326 !vlan_group_get_device(adapter->vlgrp, old_vid))
327 e1000_vlan_rx_kill_vid(netdev, old_vid);
328 } else
329 adapter->mng_vlan_id = vid;
333 static void e1000_init_manageability(struct e1000_adapter *adapter)
335 struct e1000_hw *hw = &adapter->hw;
337 if (adapter->en_mng_pt) {
338 u32 manc = er32(MANC);
340 /* disable hardware interception of ARP */
341 manc &= ~(E1000_MANC_ARP_EN);
343 ew32(MANC, manc);
347 static void e1000_release_manageability(struct e1000_adapter *adapter)
349 struct e1000_hw *hw = &adapter->hw;
351 if (adapter->en_mng_pt) {
352 u32 manc = er32(MANC);
354 /* re-enable hardware interception of ARP */
355 manc |= E1000_MANC_ARP_EN;
357 ew32(MANC, manc);
362 * e1000_configure - configure the hardware for RX and TX
363 * @adapter = private board structure
365 static void e1000_configure(struct e1000_adapter *adapter)
367 struct net_device *netdev = adapter->netdev;
368 int i;
370 e1000_set_rx_mode(netdev);
372 e1000_restore_vlan(adapter);
373 e1000_init_manageability(adapter);
375 e1000_configure_tx(adapter);
376 e1000_setup_rctl(adapter);
377 e1000_configure_rx(adapter);
378 /* call E1000_DESC_UNUSED which always leaves
379 * at least 1 descriptor unused to make sure
380 * next_to_use != next_to_clean */
381 for (i = 0; i < adapter->num_rx_queues; i++) {
382 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
383 adapter->alloc_rx_buf(adapter, ring,
384 E1000_DESC_UNUSED(ring));
388 int e1000_up(struct e1000_adapter *adapter)
390 struct e1000_hw *hw = &adapter->hw;
392 /* hardware has been reset, we need to reload some things */
393 e1000_configure(adapter);
395 clear_bit(__E1000_DOWN, &adapter->flags);
397 napi_enable(&adapter->napi);
399 e1000_irq_enable(adapter);
401 netif_wake_queue(adapter->netdev);
403 /* fire a link change interrupt to start the watchdog */
404 ew32(ICS, E1000_ICS_LSC);
405 return 0;
409 * e1000_power_up_phy - restore link in case the phy was powered down
410 * @adapter: address of board private structure
412 * The phy may be powered down to save power and turn off link when the
413 * driver is unloaded and wake on lan is not enabled (among others)
414 * *** this routine MUST be followed by a call to e1000_reset ***
418 void e1000_power_up_phy(struct e1000_adapter *adapter)
420 struct e1000_hw *hw = &adapter->hw;
421 u16 mii_reg = 0;
423 /* Just clear the power down bit to wake the phy back up */
424 if (hw->media_type == e1000_media_type_copper) {
425 /* according to the manual, the phy will retain its
426 * settings across a power-down/up cycle */
427 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
428 mii_reg &= ~MII_CR_POWER_DOWN;
429 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
433 static void e1000_power_down_phy(struct e1000_adapter *adapter)
435 struct e1000_hw *hw = &adapter->hw;
437 /* Power down the PHY so no link is implied when interface is down *
438 * The PHY cannot be powered down if any of the following is true *
439 * (a) WoL is enabled
440 * (b) AMT is active
441 * (c) SoL/IDER session is active */
442 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
443 hw->media_type == e1000_media_type_copper) {
444 u16 mii_reg = 0;
446 switch (hw->mac_type) {
447 case e1000_82540:
448 case e1000_82545:
449 case e1000_82545_rev_3:
450 case e1000_82546:
451 case e1000_82546_rev_3:
452 case e1000_82541:
453 case e1000_82541_rev_2:
454 case e1000_82547:
455 case e1000_82547_rev_2:
456 if (er32(MANC) & E1000_MANC_SMBUS_EN)
457 goto out;
458 break;
459 default:
460 goto out;
462 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
463 mii_reg |= MII_CR_POWER_DOWN;
464 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
465 mdelay(1);
467 out:
468 return;
471 void e1000_down(struct e1000_adapter *adapter)
473 struct e1000_hw *hw = &adapter->hw;
474 struct net_device *netdev = adapter->netdev;
475 u32 rctl, tctl;
477 /* signal that we're down so the interrupt handler does not
478 * reschedule our watchdog timer */
479 set_bit(__E1000_DOWN, &adapter->flags);
481 /* disable receives in the hardware */
482 rctl = er32(RCTL);
483 ew32(RCTL, rctl & ~E1000_RCTL_EN);
484 /* flush and sleep below */
486 netif_tx_disable(netdev);
488 /* disable transmits in the hardware */
489 tctl = er32(TCTL);
490 tctl &= ~E1000_TCTL_EN;
491 ew32(TCTL, tctl);
492 /* flush both disables and wait for them to finish */
493 E1000_WRITE_FLUSH();
494 msleep(10);
496 napi_disable(&adapter->napi);
498 e1000_irq_disable(adapter);
500 del_timer_sync(&adapter->tx_fifo_stall_timer);
501 del_timer_sync(&adapter->watchdog_timer);
502 del_timer_sync(&adapter->phy_info_timer);
504 adapter->link_speed = 0;
505 adapter->link_duplex = 0;
506 netif_carrier_off(netdev);
508 e1000_reset(adapter);
509 e1000_clean_all_tx_rings(adapter);
510 e1000_clean_all_rx_rings(adapter);
513 void e1000_reinit_locked(struct e1000_adapter *adapter)
515 WARN_ON(in_interrupt());
516 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
517 msleep(1);
518 e1000_down(adapter);
519 e1000_up(adapter);
520 clear_bit(__E1000_RESETTING, &adapter->flags);
523 void e1000_reset(struct e1000_adapter *adapter)
525 struct e1000_hw *hw = &adapter->hw;
526 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
527 bool legacy_pba_adjust = false;
528 u16 hwm;
530 /* Repartition Pba for greater than 9k mtu
531 * To take effect CTRL.RST is required.
534 switch (hw->mac_type) {
535 case e1000_82542_rev2_0:
536 case e1000_82542_rev2_1:
537 case e1000_82543:
538 case e1000_82544:
539 case e1000_82540:
540 case e1000_82541:
541 case e1000_82541_rev_2:
542 legacy_pba_adjust = true;
543 pba = E1000_PBA_48K;
544 break;
545 case e1000_82545:
546 case e1000_82545_rev_3:
547 case e1000_82546:
548 case e1000_82546_rev_3:
549 pba = E1000_PBA_48K;
550 break;
551 case e1000_82547:
552 case e1000_82547_rev_2:
553 legacy_pba_adjust = true;
554 pba = E1000_PBA_30K;
555 break;
556 case e1000_undefined:
557 case e1000_num_macs:
558 break;
561 if (legacy_pba_adjust) {
562 if (hw->max_frame_size > E1000_RXBUFFER_8192)
563 pba -= 8; /* allocate more FIFO for Tx */
565 if (hw->mac_type == e1000_82547) {
566 adapter->tx_fifo_head = 0;
567 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
568 adapter->tx_fifo_size =
569 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
570 atomic_set(&adapter->tx_fifo_stall, 0);
572 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
573 /* adjust PBA for jumbo frames */
574 ew32(PBA, pba);
576 /* To maintain wire speed transmits, the Tx FIFO should be
577 * large enough to accommodate two full transmit packets,
578 * rounded up to the next 1KB and expressed in KB. Likewise,
579 * the Rx FIFO should be large enough to accommodate at least
580 * one full receive packet and is similarly rounded up and
581 * expressed in KB. */
582 pba = er32(PBA);
583 /* upper 16 bits has Tx packet buffer allocation size in KB */
584 tx_space = pba >> 16;
585 /* lower 16 bits has Rx packet buffer allocation size in KB */
586 pba &= 0xffff;
588 * the tx fifo also stores 16 bytes of information about the tx
589 * but don't include ethernet FCS because hardware appends it
591 min_tx_space = (hw->max_frame_size +
592 sizeof(struct e1000_tx_desc) -
593 ETH_FCS_LEN) * 2;
594 min_tx_space = ALIGN(min_tx_space, 1024);
595 min_tx_space >>= 10;
596 /* software strips receive CRC, so leave room for it */
597 min_rx_space = hw->max_frame_size;
598 min_rx_space = ALIGN(min_rx_space, 1024);
599 min_rx_space >>= 10;
601 /* If current Tx allocation is less than the min Tx FIFO size,
602 * and the min Tx FIFO size is less than the current Rx FIFO
603 * allocation, take space away from current Rx allocation */
604 if (tx_space < min_tx_space &&
605 ((min_tx_space - tx_space) < pba)) {
606 pba = pba - (min_tx_space - tx_space);
608 /* PCI/PCIx hardware has PBA alignment constraints */
609 switch (hw->mac_type) {
610 case e1000_82545 ... e1000_82546_rev_3:
611 pba &= ~(E1000_PBA_8K - 1);
612 break;
613 default:
614 break;
617 /* if short on rx space, rx wins and must trump tx
618 * adjustment or use Early Receive if available */
619 if (pba < min_rx_space)
620 pba = min_rx_space;
624 ew32(PBA, pba);
627 * flow control settings:
628 * The high water mark must be low enough to fit one full frame
629 * (or the size used for early receive) above it in the Rx FIFO.
630 * Set it to the lower of:
631 * - 90% of the Rx FIFO size, and
632 * - the full Rx FIFO size minus the early receive size (for parts
633 * with ERT support assuming ERT set to E1000_ERT_2048), or
634 * - the full Rx FIFO size minus one full frame
636 hwm = min(((pba << 10) * 9 / 10),
637 ((pba << 10) - hw->max_frame_size));
639 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
640 hw->fc_low_water = hw->fc_high_water - 8;
641 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
642 hw->fc_send_xon = 1;
643 hw->fc = hw->original_fc;
645 /* Allow time for pending master requests to run */
646 e1000_reset_hw(hw);
647 if (hw->mac_type >= e1000_82544)
648 ew32(WUC, 0);
650 if (e1000_init_hw(hw))
651 DPRINTK(PROBE, ERR, "Hardware Error\n");
652 e1000_update_mng_vlan(adapter);
654 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
655 if (hw->mac_type >= e1000_82544 &&
656 hw->autoneg == 1 &&
657 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
658 u32 ctrl = er32(CTRL);
659 /* clear phy power management bit if we are in gig only mode,
660 * which if enabled will attempt negotiation to 100Mb, which
661 * can cause a loss of link at power off or driver unload */
662 ctrl &= ~E1000_CTRL_SWDPIN3;
663 ew32(CTRL, ctrl);
666 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
667 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
669 e1000_reset_adaptive(hw);
670 e1000_phy_get_info(hw, &adapter->phy_info);
672 e1000_release_manageability(adapter);
676 * Dump the eeprom for users having checksum issues
678 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
680 struct net_device *netdev = adapter->netdev;
681 struct ethtool_eeprom eeprom;
682 const struct ethtool_ops *ops = netdev->ethtool_ops;
683 u8 *data;
684 int i;
685 u16 csum_old, csum_new = 0;
687 eeprom.len = ops->get_eeprom_len(netdev);
688 eeprom.offset = 0;
690 data = kmalloc(eeprom.len, GFP_KERNEL);
691 if (!data) {
692 printk(KERN_ERR "Unable to allocate memory to dump EEPROM"
693 " data\n");
694 return;
697 ops->get_eeprom(netdev, &eeprom, data);
699 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
700 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
701 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
702 csum_new += data[i] + (data[i + 1] << 8);
703 csum_new = EEPROM_SUM - csum_new;
705 printk(KERN_ERR "/*********************/\n");
706 printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old);
707 printk(KERN_ERR "Calculated : 0x%04x\n", csum_new);
709 printk(KERN_ERR "Offset Values\n");
710 printk(KERN_ERR "======== ======\n");
711 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
713 printk(KERN_ERR "Include this output when contacting your support "
714 "provider.\n");
715 printk(KERN_ERR "This is not a software error! Something bad "
716 "happened to your hardware or\n");
717 printk(KERN_ERR "EEPROM image. Ignoring this "
718 "problem could result in further problems,\n");
719 printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n");
720 printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, "
721 "which is invalid\n");
722 printk(KERN_ERR "and requires you to set the proper MAC "
723 "address manually before continuing\n");
724 printk(KERN_ERR "to enable this network device.\n");
725 printk(KERN_ERR "Please inspect the EEPROM dump and report the issue "
726 "to your hardware vendor\n");
727 printk(KERN_ERR "or Intel Customer Support.\n");
728 printk(KERN_ERR "/*********************/\n");
730 kfree(data);
734 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
735 * @pdev: PCI device information struct
737 * Return true if an adapter needs ioport resources
739 static int e1000_is_need_ioport(struct pci_dev *pdev)
741 switch (pdev->device) {
742 case E1000_DEV_ID_82540EM:
743 case E1000_DEV_ID_82540EM_LOM:
744 case E1000_DEV_ID_82540EP:
745 case E1000_DEV_ID_82540EP_LOM:
746 case E1000_DEV_ID_82540EP_LP:
747 case E1000_DEV_ID_82541EI:
748 case E1000_DEV_ID_82541EI_MOBILE:
749 case E1000_DEV_ID_82541ER:
750 case E1000_DEV_ID_82541ER_LOM:
751 case E1000_DEV_ID_82541GI:
752 case E1000_DEV_ID_82541GI_LF:
753 case E1000_DEV_ID_82541GI_MOBILE:
754 case E1000_DEV_ID_82544EI_COPPER:
755 case E1000_DEV_ID_82544EI_FIBER:
756 case E1000_DEV_ID_82544GC_COPPER:
757 case E1000_DEV_ID_82544GC_LOM:
758 case E1000_DEV_ID_82545EM_COPPER:
759 case E1000_DEV_ID_82545EM_FIBER:
760 case E1000_DEV_ID_82546EB_COPPER:
761 case E1000_DEV_ID_82546EB_FIBER:
762 case E1000_DEV_ID_82546EB_QUAD_COPPER:
763 return true;
764 default:
765 return false;
769 static const struct net_device_ops e1000_netdev_ops = {
770 .ndo_open = e1000_open,
771 .ndo_stop = e1000_close,
772 .ndo_start_xmit = e1000_xmit_frame,
773 .ndo_get_stats = e1000_get_stats,
774 .ndo_set_rx_mode = e1000_set_rx_mode,
775 .ndo_set_mac_address = e1000_set_mac,
776 .ndo_tx_timeout = e1000_tx_timeout,
777 .ndo_change_mtu = e1000_change_mtu,
778 .ndo_do_ioctl = e1000_ioctl,
779 .ndo_validate_addr = eth_validate_addr,
781 .ndo_vlan_rx_register = e1000_vlan_rx_register,
782 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
783 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
784 #ifdef CONFIG_NET_POLL_CONTROLLER
785 .ndo_poll_controller = e1000_netpoll,
786 #endif
790 * e1000_probe - Device Initialization Routine
791 * @pdev: PCI device information struct
792 * @ent: entry in e1000_pci_tbl
794 * Returns 0 on success, negative on failure
796 * e1000_probe initializes an adapter identified by a pci_dev structure.
797 * The OS initialization, configuring of the adapter private structure,
798 * and a hardware reset occur.
800 static int __devinit e1000_probe(struct pci_dev *pdev,
801 const struct pci_device_id *ent)
803 struct net_device *netdev;
804 struct e1000_adapter *adapter;
805 struct e1000_hw *hw;
807 static int cards_found = 0;
808 static int global_quad_port_a = 0; /* global ksp3 port a indication */
809 int i, err, pci_using_dac;
810 u16 eeprom_data = 0;
811 u16 eeprom_apme_mask = E1000_EEPROM_APME;
812 int bars, need_ioport;
814 /* do not allocate ioport bars when not needed */
815 need_ioport = e1000_is_need_ioport(pdev);
816 if (need_ioport) {
817 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
818 err = pci_enable_device(pdev);
819 } else {
820 bars = pci_select_bars(pdev, IORESOURCE_MEM);
821 err = pci_enable_device_mem(pdev);
823 if (err)
824 return err;
826 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
827 !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
828 pci_using_dac = 1;
829 } else {
830 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
831 if (err) {
832 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
833 if (err) {
834 E1000_ERR("No usable DMA configuration, "
835 "aborting\n");
836 goto err_dma;
839 pci_using_dac = 0;
842 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
843 if (err)
844 goto err_pci_reg;
846 pci_set_master(pdev);
847 err = pci_save_state(pdev);
848 if (err)
849 goto err_alloc_etherdev;
851 err = -ENOMEM;
852 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
853 if (!netdev)
854 goto err_alloc_etherdev;
856 SET_NETDEV_DEV(netdev, &pdev->dev);
858 pci_set_drvdata(pdev, netdev);
859 adapter = netdev_priv(netdev);
860 adapter->netdev = netdev;
861 adapter->pdev = pdev;
862 adapter->msg_enable = (1 << debug) - 1;
863 adapter->bars = bars;
864 adapter->need_ioport = need_ioport;
866 hw = &adapter->hw;
867 hw->back = adapter;
869 err = -EIO;
870 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
871 if (!hw->hw_addr)
872 goto err_ioremap;
874 if (adapter->need_ioport) {
875 for (i = BAR_1; i <= BAR_5; i++) {
876 if (pci_resource_len(pdev, i) == 0)
877 continue;
878 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
879 hw->io_base = pci_resource_start(pdev, i);
880 break;
885 netdev->netdev_ops = &e1000_netdev_ops;
886 e1000_set_ethtool_ops(netdev);
887 netdev->watchdog_timeo = 5 * HZ;
888 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
890 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
892 adapter->bd_number = cards_found;
894 /* setup the private structure */
896 err = e1000_sw_init(adapter);
897 if (err)
898 goto err_sw_init;
900 err = -EIO;
902 if (hw->mac_type >= e1000_82543) {
903 netdev->features = NETIF_F_SG |
904 NETIF_F_HW_CSUM |
905 NETIF_F_HW_VLAN_TX |
906 NETIF_F_HW_VLAN_RX |
907 NETIF_F_HW_VLAN_FILTER;
910 if ((hw->mac_type >= e1000_82544) &&
911 (hw->mac_type != e1000_82547))
912 netdev->features |= NETIF_F_TSO;
914 if (pci_using_dac)
915 netdev->features |= NETIF_F_HIGHDMA;
917 netdev->vlan_features |= NETIF_F_TSO;
918 netdev->vlan_features |= NETIF_F_HW_CSUM;
919 netdev->vlan_features |= NETIF_F_SG;
921 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
923 /* initialize eeprom parameters */
924 if (e1000_init_eeprom_params(hw)) {
925 E1000_ERR("EEPROM initialization failed\n");
926 goto err_eeprom;
929 /* before reading the EEPROM, reset the controller to
930 * put the device in a known good starting state */
932 e1000_reset_hw(hw);
934 /* make sure the EEPROM is good */
935 if (e1000_validate_eeprom_checksum(hw) < 0) {
936 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
937 e1000_dump_eeprom(adapter);
939 * set MAC address to all zeroes to invalidate and temporary
940 * disable this device for the user. This blocks regular
941 * traffic while still permitting ethtool ioctls from reaching
942 * the hardware as well as allowing the user to run the
943 * interface after manually setting a hw addr using
944 * `ip set address`
946 memset(hw->mac_addr, 0, netdev->addr_len);
947 } else {
948 /* copy the MAC address out of the EEPROM */
949 if (e1000_read_mac_addr(hw))
950 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
952 /* don't block initalization here due to bad MAC address */
953 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
954 memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
956 if (!is_valid_ether_addr(netdev->perm_addr))
957 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
959 e1000_get_bus_info(hw);
961 init_timer(&adapter->tx_fifo_stall_timer);
962 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
963 adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
965 init_timer(&adapter->watchdog_timer);
966 adapter->watchdog_timer.function = &e1000_watchdog;
967 adapter->watchdog_timer.data = (unsigned long) adapter;
969 init_timer(&adapter->phy_info_timer);
970 adapter->phy_info_timer.function = &e1000_update_phy_info;
971 adapter->phy_info_timer.data = (unsigned long)adapter;
973 INIT_WORK(&adapter->reset_task, e1000_reset_task);
975 e1000_check_options(adapter);
977 /* Initial Wake on LAN setting
978 * If APM wake is enabled in the EEPROM,
979 * enable the ACPI Magic Packet filter
982 switch (hw->mac_type) {
983 case e1000_82542_rev2_0:
984 case e1000_82542_rev2_1:
985 case e1000_82543:
986 break;
987 case e1000_82544:
988 e1000_read_eeprom(hw,
989 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
990 eeprom_apme_mask = E1000_EEPROM_82544_APM;
991 break;
992 case e1000_82546:
993 case e1000_82546_rev_3:
994 if (er32(STATUS) & E1000_STATUS_FUNC_1){
995 e1000_read_eeprom(hw,
996 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
997 break;
999 /* Fall Through */
1000 default:
1001 e1000_read_eeprom(hw,
1002 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1003 break;
1005 if (eeprom_data & eeprom_apme_mask)
1006 adapter->eeprom_wol |= E1000_WUFC_MAG;
1008 /* now that we have the eeprom settings, apply the special cases
1009 * where the eeprom may be wrong or the board simply won't support
1010 * wake on lan on a particular port */
1011 switch (pdev->device) {
1012 case E1000_DEV_ID_82546GB_PCIE:
1013 adapter->eeprom_wol = 0;
1014 break;
1015 case E1000_DEV_ID_82546EB_FIBER:
1016 case E1000_DEV_ID_82546GB_FIBER:
1017 /* Wake events only supported on port A for dual fiber
1018 * regardless of eeprom setting */
1019 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1020 adapter->eeprom_wol = 0;
1021 break;
1022 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1023 /* if quad port adapter, disable WoL on all but port A */
1024 if (global_quad_port_a != 0)
1025 adapter->eeprom_wol = 0;
1026 else
1027 adapter->quad_port_a = 1;
1028 /* Reset for multiple quad port adapters */
1029 if (++global_quad_port_a == 4)
1030 global_quad_port_a = 0;
1031 break;
1034 /* initialize the wol settings based on the eeprom settings */
1035 adapter->wol = adapter->eeprom_wol;
1036 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1038 /* print bus type/speed/width info */
1039 DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1040 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1041 ((hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1042 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1043 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1044 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1045 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" : "32-bit"));
1047 printk("%pM\n", netdev->dev_addr);
1049 /* reset the hardware with the new settings */
1050 e1000_reset(adapter);
1052 strcpy(netdev->name, "eth%d");
1053 err = register_netdev(netdev);
1054 if (err)
1055 goto err_register;
1057 /* carrier off reporting is important to ethtool even BEFORE open */
1058 netif_carrier_off(netdev);
1060 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1062 cards_found++;
1063 return 0;
1065 err_register:
1066 err_eeprom:
1067 e1000_phy_hw_reset(hw);
1069 if (hw->flash_address)
1070 iounmap(hw->flash_address);
1071 kfree(adapter->tx_ring);
1072 kfree(adapter->rx_ring);
1073 err_sw_init:
1074 iounmap(hw->hw_addr);
1075 err_ioremap:
1076 free_netdev(netdev);
1077 err_alloc_etherdev:
1078 pci_release_selected_regions(pdev, bars);
1079 err_pci_reg:
1080 err_dma:
1081 pci_disable_device(pdev);
1082 return err;
1086 * e1000_remove - Device Removal Routine
1087 * @pdev: PCI device information struct
1089 * e1000_remove is called by the PCI subsystem to alert the driver
1090 * that it should release a PCI device. The could be caused by a
1091 * Hot-Plug event, or because the driver is going to be removed from
1092 * memory.
1095 static void __devexit e1000_remove(struct pci_dev *pdev)
1097 struct net_device *netdev = pci_get_drvdata(pdev);
1098 struct e1000_adapter *adapter = netdev_priv(netdev);
1099 struct e1000_hw *hw = &adapter->hw;
1101 set_bit(__E1000_DOWN, &adapter->flags);
1102 del_timer_sync(&adapter->tx_fifo_stall_timer);
1103 del_timer_sync(&adapter->watchdog_timer);
1104 del_timer_sync(&adapter->phy_info_timer);
1106 cancel_work_sync(&adapter->reset_task);
1108 e1000_release_manageability(adapter);
1110 unregister_netdev(netdev);
1112 e1000_phy_hw_reset(hw);
1114 kfree(adapter->tx_ring);
1115 kfree(adapter->rx_ring);
1117 iounmap(hw->hw_addr);
1118 if (hw->flash_address)
1119 iounmap(hw->flash_address);
1120 pci_release_selected_regions(pdev, adapter->bars);
1122 free_netdev(netdev);
1124 pci_disable_device(pdev);
1128 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1129 * @adapter: board private structure to initialize
1131 * e1000_sw_init initializes the Adapter private data structure.
1132 * Fields are initialized based on PCI device information and
1133 * OS network device settings (MTU size).
1136 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1138 struct e1000_hw *hw = &adapter->hw;
1139 struct net_device *netdev = adapter->netdev;
1140 struct pci_dev *pdev = adapter->pdev;
1142 /* PCI config space info */
1144 hw->vendor_id = pdev->vendor;
1145 hw->device_id = pdev->device;
1146 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1147 hw->subsystem_id = pdev->subsystem_device;
1148 hw->revision_id = pdev->revision;
1150 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1152 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1153 hw->max_frame_size = netdev->mtu +
1154 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1155 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1157 /* identify the MAC */
1159 if (e1000_set_mac_type(hw)) {
1160 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1161 return -EIO;
1164 switch (hw->mac_type) {
1165 default:
1166 break;
1167 case e1000_82541:
1168 case e1000_82547:
1169 case e1000_82541_rev_2:
1170 case e1000_82547_rev_2:
1171 hw->phy_init_script = 1;
1172 break;
1175 e1000_set_media_type(hw);
1177 hw->wait_autoneg_complete = false;
1178 hw->tbi_compatibility_en = true;
1179 hw->adaptive_ifs = true;
1181 /* Copper options */
1183 if (hw->media_type == e1000_media_type_copper) {
1184 hw->mdix = AUTO_ALL_MODES;
1185 hw->disable_polarity_correction = false;
1186 hw->master_slave = E1000_MASTER_SLAVE;
1189 adapter->num_tx_queues = 1;
1190 adapter->num_rx_queues = 1;
1192 if (e1000_alloc_queues(adapter)) {
1193 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1194 return -ENOMEM;
1197 /* Explicitly disable IRQ since the NIC can be in any state. */
1198 e1000_irq_disable(adapter);
1200 spin_lock_init(&adapter->stats_lock);
1202 set_bit(__E1000_DOWN, &adapter->flags);
1204 return 0;
1208 * e1000_alloc_queues - Allocate memory for all rings
1209 * @adapter: board private structure to initialize
1211 * We allocate one ring per queue at run-time since we don't know the
1212 * number of queues at compile-time.
1215 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1217 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1218 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1219 if (!adapter->tx_ring)
1220 return -ENOMEM;
1222 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1223 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1224 if (!adapter->rx_ring) {
1225 kfree(adapter->tx_ring);
1226 return -ENOMEM;
1229 return E1000_SUCCESS;
1233 * e1000_open - Called when a network interface is made active
1234 * @netdev: network interface device structure
1236 * Returns 0 on success, negative value on failure
1238 * The open entry point is called when a network interface is made
1239 * active by the system (IFF_UP). At this point all resources needed
1240 * for transmit and receive operations are allocated, the interrupt
1241 * handler is registered with the OS, the watchdog timer is started,
1242 * and the stack is notified that the interface is ready.
1245 static int e1000_open(struct net_device *netdev)
1247 struct e1000_adapter *adapter = netdev_priv(netdev);
1248 struct e1000_hw *hw = &adapter->hw;
1249 int err;
1251 /* disallow open during test */
1252 if (test_bit(__E1000_TESTING, &adapter->flags))
1253 return -EBUSY;
1255 netif_carrier_off(netdev);
1257 /* allocate transmit descriptors */
1258 err = e1000_setup_all_tx_resources(adapter);
1259 if (err)
1260 goto err_setup_tx;
1262 /* allocate receive descriptors */
1263 err = e1000_setup_all_rx_resources(adapter);
1264 if (err)
1265 goto err_setup_rx;
1267 e1000_power_up_phy(adapter);
1269 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1270 if ((hw->mng_cookie.status &
1271 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1272 e1000_update_mng_vlan(adapter);
1275 /* before we allocate an interrupt, we must be ready to handle it.
1276 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1277 * as soon as we call pci_request_irq, so we have to setup our
1278 * clean_rx handler before we do so. */
1279 e1000_configure(adapter);
1281 err = e1000_request_irq(adapter);
1282 if (err)
1283 goto err_req_irq;
1285 /* From here on the code is the same as e1000_up() */
1286 clear_bit(__E1000_DOWN, &adapter->flags);
1288 napi_enable(&adapter->napi);
1290 e1000_irq_enable(adapter);
1292 netif_start_queue(netdev);
1294 /* fire a link status change interrupt to start the watchdog */
1295 ew32(ICS, E1000_ICS_LSC);
1297 return E1000_SUCCESS;
1299 err_req_irq:
1300 e1000_power_down_phy(adapter);
1301 e1000_free_all_rx_resources(adapter);
1302 err_setup_rx:
1303 e1000_free_all_tx_resources(adapter);
1304 err_setup_tx:
1305 e1000_reset(adapter);
1307 return err;
1311 * e1000_close - Disables a network interface
1312 * @netdev: network interface device structure
1314 * Returns 0, this is not allowed to fail
1316 * The close entry point is called when an interface is de-activated
1317 * by the OS. The hardware is still under the drivers control, but
1318 * needs to be disabled. A global MAC reset is issued to stop the
1319 * hardware, and all transmit and receive resources are freed.
1322 static int e1000_close(struct net_device *netdev)
1324 struct e1000_adapter *adapter = netdev_priv(netdev);
1325 struct e1000_hw *hw = &adapter->hw;
1327 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1328 e1000_down(adapter);
1329 e1000_power_down_phy(adapter);
1330 e1000_free_irq(adapter);
1332 e1000_free_all_tx_resources(adapter);
1333 e1000_free_all_rx_resources(adapter);
1335 /* kill manageability vlan ID if supported, but not if a vlan with
1336 * the same ID is registered on the host OS (let 8021q kill it) */
1337 if ((hw->mng_cookie.status &
1338 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1339 !(adapter->vlgrp &&
1340 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1341 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1344 return 0;
1348 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1349 * @adapter: address of board private structure
1350 * @start: address of beginning of memory
1351 * @len: length of memory
1353 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1354 unsigned long len)
1356 struct e1000_hw *hw = &adapter->hw;
1357 unsigned long begin = (unsigned long)start;
1358 unsigned long end = begin + len;
1360 /* First rev 82545 and 82546 need to not allow any memory
1361 * write location to cross 64k boundary due to errata 23 */
1362 if (hw->mac_type == e1000_82545 ||
1363 hw->mac_type == e1000_82546) {
1364 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1367 return true;
1371 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1372 * @adapter: board private structure
1373 * @txdr: tx descriptor ring (for a specific queue) to setup
1375 * Return 0 on success, negative on failure
1378 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1379 struct e1000_tx_ring *txdr)
1381 struct pci_dev *pdev = adapter->pdev;
1382 int size;
1384 size = sizeof(struct e1000_buffer) * txdr->count;
1385 txdr->buffer_info = vmalloc(size);
1386 if (!txdr->buffer_info) {
1387 DPRINTK(PROBE, ERR,
1388 "Unable to allocate memory for the transmit descriptor ring\n");
1389 return -ENOMEM;
1391 memset(txdr->buffer_info, 0, size);
1393 /* round up to nearest 4K */
1395 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1396 txdr->size = ALIGN(txdr->size, 4096);
1398 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1399 if (!txdr->desc) {
1400 setup_tx_desc_die:
1401 vfree(txdr->buffer_info);
1402 DPRINTK(PROBE, ERR,
1403 "Unable to allocate memory for the transmit descriptor ring\n");
1404 return -ENOMEM;
1407 /* Fix for errata 23, can't cross 64kB boundary */
1408 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1409 void *olddesc = txdr->desc;
1410 dma_addr_t olddma = txdr->dma;
1411 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1412 "at %p\n", txdr->size, txdr->desc);
1413 /* Try again, without freeing the previous */
1414 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1415 /* Failed allocation, critical failure */
1416 if (!txdr->desc) {
1417 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1418 goto setup_tx_desc_die;
1421 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1422 /* give up */
1423 pci_free_consistent(pdev, txdr->size, txdr->desc,
1424 txdr->dma);
1425 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1426 DPRINTK(PROBE, ERR,
1427 "Unable to allocate aligned memory "
1428 "for the transmit descriptor ring\n");
1429 vfree(txdr->buffer_info);
1430 return -ENOMEM;
1431 } else {
1432 /* Free old allocation, new allocation was successful */
1433 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1436 memset(txdr->desc, 0, txdr->size);
1438 txdr->next_to_use = 0;
1439 txdr->next_to_clean = 0;
1441 return 0;
1445 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1446 * (Descriptors) for all queues
1447 * @adapter: board private structure
1449 * Return 0 on success, negative on failure
1452 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1454 int i, err = 0;
1456 for (i = 0; i < adapter->num_tx_queues; i++) {
1457 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1458 if (err) {
1459 DPRINTK(PROBE, ERR,
1460 "Allocation for Tx Queue %u failed\n", i);
1461 for (i-- ; i >= 0; i--)
1462 e1000_free_tx_resources(adapter,
1463 &adapter->tx_ring[i]);
1464 break;
1468 return err;
1472 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1473 * @adapter: board private structure
1475 * Configure the Tx unit of the MAC after a reset.
1478 static void e1000_configure_tx(struct e1000_adapter *adapter)
1480 u64 tdba;
1481 struct e1000_hw *hw = &adapter->hw;
1482 u32 tdlen, tctl, tipg;
1483 u32 ipgr1, ipgr2;
1485 /* Setup the HW Tx Head and Tail descriptor pointers */
1487 switch (adapter->num_tx_queues) {
1488 case 1:
1489 default:
1490 tdba = adapter->tx_ring[0].dma;
1491 tdlen = adapter->tx_ring[0].count *
1492 sizeof(struct e1000_tx_desc);
1493 ew32(TDLEN, tdlen);
1494 ew32(TDBAH, (tdba >> 32));
1495 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1496 ew32(TDT, 0);
1497 ew32(TDH, 0);
1498 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1499 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1500 break;
1503 /* Set the default values for the Tx Inter Packet Gap timer */
1504 if ((hw->media_type == e1000_media_type_fiber ||
1505 hw->media_type == e1000_media_type_internal_serdes))
1506 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1507 else
1508 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1510 switch (hw->mac_type) {
1511 case e1000_82542_rev2_0:
1512 case e1000_82542_rev2_1:
1513 tipg = DEFAULT_82542_TIPG_IPGT;
1514 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1515 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1516 break;
1517 default:
1518 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1519 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1520 break;
1522 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1523 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1524 ew32(TIPG, tipg);
1526 /* Set the Tx Interrupt Delay register */
1528 ew32(TIDV, adapter->tx_int_delay);
1529 if (hw->mac_type >= e1000_82540)
1530 ew32(TADV, adapter->tx_abs_int_delay);
1532 /* Program the Transmit Control Register */
1534 tctl = er32(TCTL);
1535 tctl &= ~E1000_TCTL_CT;
1536 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1537 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1539 e1000_config_collision_dist(hw);
1541 /* Setup Transmit Descriptor Settings for eop descriptor */
1542 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1544 /* only set IDE if we are delaying interrupts using the timers */
1545 if (adapter->tx_int_delay)
1546 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1548 if (hw->mac_type < e1000_82543)
1549 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1550 else
1551 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1553 /* Cache if we're 82544 running in PCI-X because we'll
1554 * need this to apply a workaround later in the send path. */
1555 if (hw->mac_type == e1000_82544 &&
1556 hw->bus_type == e1000_bus_type_pcix)
1557 adapter->pcix_82544 = 1;
1559 ew32(TCTL, tctl);
1564 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1565 * @adapter: board private structure
1566 * @rxdr: rx descriptor ring (for a specific queue) to setup
1568 * Returns 0 on success, negative on failure
1571 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1572 struct e1000_rx_ring *rxdr)
1574 struct pci_dev *pdev = adapter->pdev;
1575 int size, desc_len;
1577 size = sizeof(struct e1000_buffer) * rxdr->count;
1578 rxdr->buffer_info = vmalloc(size);
1579 if (!rxdr->buffer_info) {
1580 DPRINTK(PROBE, ERR,
1581 "Unable to allocate memory for the receive descriptor ring\n");
1582 return -ENOMEM;
1584 memset(rxdr->buffer_info, 0, size);
1586 desc_len = sizeof(struct e1000_rx_desc);
1588 /* Round up to nearest 4K */
1590 rxdr->size = rxdr->count * desc_len;
1591 rxdr->size = ALIGN(rxdr->size, 4096);
1593 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1595 if (!rxdr->desc) {
1596 DPRINTK(PROBE, ERR,
1597 "Unable to allocate memory for the receive descriptor ring\n");
1598 setup_rx_desc_die:
1599 vfree(rxdr->buffer_info);
1600 return -ENOMEM;
1603 /* Fix for errata 23, can't cross 64kB boundary */
1604 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1605 void *olddesc = rxdr->desc;
1606 dma_addr_t olddma = rxdr->dma;
1607 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1608 "at %p\n", rxdr->size, rxdr->desc);
1609 /* Try again, without freeing the previous */
1610 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1611 /* Failed allocation, critical failure */
1612 if (!rxdr->desc) {
1613 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1614 DPRINTK(PROBE, ERR,
1615 "Unable to allocate memory "
1616 "for the receive descriptor ring\n");
1617 goto setup_rx_desc_die;
1620 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1621 /* give up */
1622 pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1623 rxdr->dma);
1624 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1625 DPRINTK(PROBE, ERR,
1626 "Unable to allocate aligned memory "
1627 "for the receive descriptor ring\n");
1628 goto setup_rx_desc_die;
1629 } else {
1630 /* Free old allocation, new allocation was successful */
1631 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1634 memset(rxdr->desc, 0, rxdr->size);
1636 rxdr->next_to_clean = 0;
1637 rxdr->next_to_use = 0;
1638 rxdr->rx_skb_top = NULL;
1640 return 0;
1644 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1645 * (Descriptors) for all queues
1646 * @adapter: board private structure
1648 * Return 0 on success, negative on failure
1651 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1653 int i, err = 0;
1655 for (i = 0; i < adapter->num_rx_queues; i++) {
1656 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1657 if (err) {
1658 DPRINTK(PROBE, ERR,
1659 "Allocation for Rx Queue %u failed\n", i);
1660 for (i-- ; i >= 0; i--)
1661 e1000_free_rx_resources(adapter,
1662 &adapter->rx_ring[i]);
1663 break;
1667 return err;
1671 * e1000_setup_rctl - configure the receive control registers
1672 * @adapter: Board private structure
1674 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1676 struct e1000_hw *hw = &adapter->hw;
1677 u32 rctl;
1679 rctl = er32(RCTL);
1681 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1683 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1684 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1685 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1687 if (hw->tbi_compatibility_on == 1)
1688 rctl |= E1000_RCTL_SBP;
1689 else
1690 rctl &= ~E1000_RCTL_SBP;
1692 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1693 rctl &= ~E1000_RCTL_LPE;
1694 else
1695 rctl |= E1000_RCTL_LPE;
1697 /* Setup buffer sizes */
1698 rctl &= ~E1000_RCTL_SZ_4096;
1699 rctl |= E1000_RCTL_BSEX;
1700 switch (adapter->rx_buffer_len) {
1701 case E1000_RXBUFFER_2048:
1702 default:
1703 rctl |= E1000_RCTL_SZ_2048;
1704 rctl &= ~E1000_RCTL_BSEX;
1705 break;
1706 case E1000_RXBUFFER_4096:
1707 rctl |= E1000_RCTL_SZ_4096;
1708 break;
1709 case E1000_RXBUFFER_8192:
1710 rctl |= E1000_RCTL_SZ_8192;
1711 break;
1712 case E1000_RXBUFFER_16384:
1713 rctl |= E1000_RCTL_SZ_16384;
1714 break;
1717 ew32(RCTL, rctl);
1721 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1722 * @adapter: board private structure
1724 * Configure the Rx unit of the MAC after a reset.
1727 static void e1000_configure_rx(struct e1000_adapter *adapter)
1729 u64 rdba;
1730 struct e1000_hw *hw = &adapter->hw;
1731 u32 rdlen, rctl, rxcsum;
1733 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1734 rdlen = adapter->rx_ring[0].count *
1735 sizeof(struct e1000_rx_desc);
1736 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1737 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1738 } else {
1739 rdlen = adapter->rx_ring[0].count *
1740 sizeof(struct e1000_rx_desc);
1741 adapter->clean_rx = e1000_clean_rx_irq;
1742 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1745 /* disable receives while setting up the descriptors */
1746 rctl = er32(RCTL);
1747 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1749 /* set the Receive Delay Timer Register */
1750 ew32(RDTR, adapter->rx_int_delay);
1752 if (hw->mac_type >= e1000_82540) {
1753 ew32(RADV, adapter->rx_abs_int_delay);
1754 if (adapter->itr_setting != 0)
1755 ew32(ITR, 1000000000 / (adapter->itr * 256));
1758 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1759 * the Base and Length of the Rx Descriptor Ring */
1760 switch (adapter->num_rx_queues) {
1761 case 1:
1762 default:
1763 rdba = adapter->rx_ring[0].dma;
1764 ew32(RDLEN, rdlen);
1765 ew32(RDBAH, (rdba >> 32));
1766 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1767 ew32(RDT, 0);
1768 ew32(RDH, 0);
1769 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1770 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1771 break;
1774 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1775 if (hw->mac_type >= e1000_82543) {
1776 rxcsum = er32(RXCSUM);
1777 if (adapter->rx_csum)
1778 rxcsum |= E1000_RXCSUM_TUOFL;
1779 else
1780 /* don't need to clear IPPCSE as it defaults to 0 */
1781 rxcsum &= ~E1000_RXCSUM_TUOFL;
1782 ew32(RXCSUM, rxcsum);
1785 /* Enable Receives */
1786 ew32(RCTL, rctl);
1790 * e1000_free_tx_resources - Free Tx Resources per Queue
1791 * @adapter: board private structure
1792 * @tx_ring: Tx descriptor ring for a specific queue
1794 * Free all transmit software resources
1797 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1798 struct e1000_tx_ring *tx_ring)
1800 struct pci_dev *pdev = adapter->pdev;
1802 e1000_clean_tx_ring(adapter, tx_ring);
1804 vfree(tx_ring->buffer_info);
1805 tx_ring->buffer_info = NULL;
1807 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1809 tx_ring->desc = NULL;
1813 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1814 * @adapter: board private structure
1816 * Free all transmit software resources
1819 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1821 int i;
1823 for (i = 0; i < adapter->num_tx_queues; i++)
1824 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1827 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1828 struct e1000_buffer *buffer_info)
1830 if (buffer_info->dma) {
1831 if (buffer_info->mapped_as_page)
1832 pci_unmap_page(adapter->pdev, buffer_info->dma,
1833 buffer_info->length, PCI_DMA_TODEVICE);
1834 else
1835 pci_unmap_single(adapter->pdev, buffer_info->dma,
1836 buffer_info->length,
1837 PCI_DMA_TODEVICE);
1838 buffer_info->dma = 0;
1840 if (buffer_info->skb) {
1841 dev_kfree_skb_any(buffer_info->skb);
1842 buffer_info->skb = NULL;
1844 buffer_info->time_stamp = 0;
1845 /* buffer_info must be completely set up in the transmit path */
1849 * e1000_clean_tx_ring - Free Tx Buffers
1850 * @adapter: board private structure
1851 * @tx_ring: ring to be cleaned
1854 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1855 struct e1000_tx_ring *tx_ring)
1857 struct e1000_hw *hw = &adapter->hw;
1858 struct e1000_buffer *buffer_info;
1859 unsigned long size;
1860 unsigned int i;
1862 /* Free all the Tx ring sk_buffs */
1864 for (i = 0; i < tx_ring->count; i++) {
1865 buffer_info = &tx_ring->buffer_info[i];
1866 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1869 size = sizeof(struct e1000_buffer) * tx_ring->count;
1870 memset(tx_ring->buffer_info, 0, size);
1872 /* Zero out the descriptor ring */
1874 memset(tx_ring->desc, 0, tx_ring->size);
1876 tx_ring->next_to_use = 0;
1877 tx_ring->next_to_clean = 0;
1878 tx_ring->last_tx_tso = 0;
1880 writel(0, hw->hw_addr + tx_ring->tdh);
1881 writel(0, hw->hw_addr + tx_ring->tdt);
1885 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1886 * @adapter: board private structure
1889 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1891 int i;
1893 for (i = 0; i < adapter->num_tx_queues; i++)
1894 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1898 * e1000_free_rx_resources - Free Rx Resources
1899 * @adapter: board private structure
1900 * @rx_ring: ring to clean the resources from
1902 * Free all receive software resources
1905 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
1906 struct e1000_rx_ring *rx_ring)
1908 struct pci_dev *pdev = adapter->pdev;
1910 e1000_clean_rx_ring(adapter, rx_ring);
1912 vfree(rx_ring->buffer_info);
1913 rx_ring->buffer_info = NULL;
1915 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1917 rx_ring->desc = NULL;
1921 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1922 * @adapter: board private structure
1924 * Free all receive software resources
1927 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
1929 int i;
1931 for (i = 0; i < adapter->num_rx_queues; i++)
1932 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
1936 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1937 * @adapter: board private structure
1938 * @rx_ring: ring to free buffers from
1941 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
1942 struct e1000_rx_ring *rx_ring)
1944 struct e1000_hw *hw = &adapter->hw;
1945 struct e1000_buffer *buffer_info;
1946 struct pci_dev *pdev = adapter->pdev;
1947 unsigned long size;
1948 unsigned int i;
1950 /* Free all the Rx ring sk_buffs */
1951 for (i = 0; i < rx_ring->count; i++) {
1952 buffer_info = &rx_ring->buffer_info[i];
1953 if (buffer_info->dma &&
1954 adapter->clean_rx == e1000_clean_rx_irq) {
1955 pci_unmap_single(pdev, buffer_info->dma,
1956 buffer_info->length,
1957 PCI_DMA_FROMDEVICE);
1958 } else if (buffer_info->dma &&
1959 adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
1960 pci_unmap_page(pdev, buffer_info->dma,
1961 buffer_info->length,
1962 PCI_DMA_FROMDEVICE);
1965 buffer_info->dma = 0;
1966 if (buffer_info->page) {
1967 put_page(buffer_info->page);
1968 buffer_info->page = NULL;
1970 if (buffer_info->skb) {
1971 dev_kfree_skb(buffer_info->skb);
1972 buffer_info->skb = NULL;
1976 /* there also may be some cached data from a chained receive */
1977 if (rx_ring->rx_skb_top) {
1978 dev_kfree_skb(rx_ring->rx_skb_top);
1979 rx_ring->rx_skb_top = NULL;
1982 size = sizeof(struct e1000_buffer) * rx_ring->count;
1983 memset(rx_ring->buffer_info, 0, size);
1985 /* Zero out the descriptor ring */
1986 memset(rx_ring->desc, 0, rx_ring->size);
1988 rx_ring->next_to_clean = 0;
1989 rx_ring->next_to_use = 0;
1991 writel(0, hw->hw_addr + rx_ring->rdh);
1992 writel(0, hw->hw_addr + rx_ring->rdt);
1996 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
1997 * @adapter: board private structure
2000 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2002 int i;
2004 for (i = 0; i < adapter->num_rx_queues; i++)
2005 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2008 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2009 * and memory write and invalidate disabled for certain operations
2011 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2013 struct e1000_hw *hw = &adapter->hw;
2014 struct net_device *netdev = adapter->netdev;
2015 u32 rctl;
2017 e1000_pci_clear_mwi(hw);
2019 rctl = er32(RCTL);
2020 rctl |= E1000_RCTL_RST;
2021 ew32(RCTL, rctl);
2022 E1000_WRITE_FLUSH();
2023 mdelay(5);
2025 if (netif_running(netdev))
2026 e1000_clean_all_rx_rings(adapter);
2029 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2031 struct e1000_hw *hw = &adapter->hw;
2032 struct net_device *netdev = adapter->netdev;
2033 u32 rctl;
2035 rctl = er32(RCTL);
2036 rctl &= ~E1000_RCTL_RST;
2037 ew32(RCTL, rctl);
2038 E1000_WRITE_FLUSH();
2039 mdelay(5);
2041 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2042 e1000_pci_set_mwi(hw);
2044 if (netif_running(netdev)) {
2045 /* No need to loop, because 82542 supports only 1 queue */
2046 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2047 e1000_configure_rx(adapter);
2048 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2053 * e1000_set_mac - Change the Ethernet Address of the NIC
2054 * @netdev: network interface device structure
2055 * @p: pointer to an address structure
2057 * Returns 0 on success, negative on failure
2060 static int e1000_set_mac(struct net_device *netdev, void *p)
2062 struct e1000_adapter *adapter = netdev_priv(netdev);
2063 struct e1000_hw *hw = &adapter->hw;
2064 struct sockaddr *addr = p;
2066 if (!is_valid_ether_addr(addr->sa_data))
2067 return -EADDRNOTAVAIL;
2069 /* 82542 2.0 needs to be in reset to write receive address registers */
2071 if (hw->mac_type == e1000_82542_rev2_0)
2072 e1000_enter_82542_rst(adapter);
2074 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2075 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2077 e1000_rar_set(hw, hw->mac_addr, 0);
2079 if (hw->mac_type == e1000_82542_rev2_0)
2080 e1000_leave_82542_rst(adapter);
2082 return 0;
2086 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2087 * @netdev: network interface device structure
2089 * The set_rx_mode entry point is called whenever the unicast or multicast
2090 * address lists or the network interface flags are updated. This routine is
2091 * responsible for configuring the hardware for proper unicast, multicast,
2092 * promiscuous mode, and all-multi behavior.
2095 static void e1000_set_rx_mode(struct net_device *netdev)
2097 struct e1000_adapter *adapter = netdev_priv(netdev);
2098 struct e1000_hw *hw = &adapter->hw;
2099 struct netdev_hw_addr *ha;
2100 bool use_uc = false;
2101 u32 rctl;
2102 u32 hash_value;
2103 int i, rar_entries = E1000_RAR_ENTRIES;
2104 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2105 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2107 if (!mcarray) {
2108 DPRINTK(PROBE, ERR, "memory allocation failed\n");
2109 return;
2112 /* Check for Promiscuous and All Multicast modes */
2114 rctl = er32(RCTL);
2116 if (netdev->flags & IFF_PROMISC) {
2117 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2118 rctl &= ~E1000_RCTL_VFE;
2119 } else {
2120 if (netdev->flags & IFF_ALLMULTI)
2121 rctl |= E1000_RCTL_MPE;
2122 else
2123 rctl &= ~E1000_RCTL_MPE;
2124 /* Enable VLAN filter if there is a VLAN */
2125 if (adapter->vlgrp)
2126 rctl |= E1000_RCTL_VFE;
2129 if (netdev_uc_count(netdev) > rar_entries - 1) {
2130 rctl |= E1000_RCTL_UPE;
2131 } else if (!(netdev->flags & IFF_PROMISC)) {
2132 rctl &= ~E1000_RCTL_UPE;
2133 use_uc = true;
2136 ew32(RCTL, rctl);
2138 /* 82542 2.0 needs to be in reset to write receive address registers */
2140 if (hw->mac_type == e1000_82542_rev2_0)
2141 e1000_enter_82542_rst(adapter);
2143 /* load the first 14 addresses into the exact filters 1-14. Unicast
2144 * addresses take precedence to avoid disabling unicast filtering
2145 * when possible.
2147 * RAR 0 is used for the station MAC adddress
2148 * if there are not 14 addresses, go ahead and clear the filters
2150 i = 1;
2151 if (use_uc)
2152 netdev_for_each_uc_addr(ha, netdev) {
2153 if (i == rar_entries)
2154 break;
2155 e1000_rar_set(hw, ha->addr, i++);
2158 WARN_ON(i == rar_entries);
2160 netdev_for_each_mc_addr(ha, netdev) {
2161 if (i == rar_entries) {
2162 /* load any remaining addresses into the hash table */
2163 u32 hash_reg, hash_bit, mta;
2164 hash_value = e1000_hash_mc_addr(hw, ha->addr);
2165 hash_reg = (hash_value >> 5) & 0x7F;
2166 hash_bit = hash_value & 0x1F;
2167 mta = (1 << hash_bit);
2168 mcarray[hash_reg] |= mta;
2169 } else {
2170 e1000_rar_set(hw, ha->addr, i++);
2174 for (; i < rar_entries; i++) {
2175 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2176 E1000_WRITE_FLUSH();
2177 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2178 E1000_WRITE_FLUSH();
2181 /* write the hash table completely, write from bottom to avoid
2182 * both stupid write combining chipsets, and flushing each write */
2183 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2185 * If we are on an 82544 has an errata where writing odd
2186 * offsets overwrites the previous even offset, but writing
2187 * backwards over the range solves the issue by always
2188 * writing the odd offset first
2190 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2192 E1000_WRITE_FLUSH();
2194 if (hw->mac_type == e1000_82542_rev2_0)
2195 e1000_leave_82542_rst(adapter);
2197 kfree(mcarray);
2200 /* Need to wait a few seconds after link up to get diagnostic information from
2201 * the phy */
2203 static void e1000_update_phy_info(unsigned long data)
2205 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2206 struct e1000_hw *hw = &adapter->hw;
2207 e1000_phy_get_info(hw, &adapter->phy_info);
2211 * e1000_82547_tx_fifo_stall - Timer Call-back
2212 * @data: pointer to adapter cast into an unsigned long
2215 static void e1000_82547_tx_fifo_stall(unsigned long data)
2217 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2218 struct e1000_hw *hw = &adapter->hw;
2219 struct net_device *netdev = adapter->netdev;
2220 u32 tctl;
2222 if (atomic_read(&adapter->tx_fifo_stall)) {
2223 if ((er32(TDT) == er32(TDH)) &&
2224 (er32(TDFT) == er32(TDFH)) &&
2225 (er32(TDFTS) == er32(TDFHS))) {
2226 tctl = er32(TCTL);
2227 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2228 ew32(TDFT, adapter->tx_head_addr);
2229 ew32(TDFH, adapter->tx_head_addr);
2230 ew32(TDFTS, adapter->tx_head_addr);
2231 ew32(TDFHS, adapter->tx_head_addr);
2232 ew32(TCTL, tctl);
2233 E1000_WRITE_FLUSH();
2235 adapter->tx_fifo_head = 0;
2236 atomic_set(&adapter->tx_fifo_stall, 0);
2237 netif_wake_queue(netdev);
2238 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2239 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2244 bool e1000_has_link(struct e1000_adapter *adapter)
2246 struct e1000_hw *hw = &adapter->hw;
2247 bool link_active = false;
2249 /* get_link_status is set on LSC (link status) interrupt or
2250 * rx sequence error interrupt. get_link_status will stay
2251 * false until the e1000_check_for_link establishes link
2252 * for copper adapters ONLY
2254 switch (hw->media_type) {
2255 case e1000_media_type_copper:
2256 if (hw->get_link_status) {
2257 e1000_check_for_link(hw);
2258 link_active = !hw->get_link_status;
2259 } else {
2260 link_active = true;
2262 break;
2263 case e1000_media_type_fiber:
2264 e1000_check_for_link(hw);
2265 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2266 break;
2267 case e1000_media_type_internal_serdes:
2268 e1000_check_for_link(hw);
2269 link_active = hw->serdes_has_link;
2270 break;
2271 default:
2272 break;
2275 return link_active;
2279 * e1000_watchdog - Timer Call-back
2280 * @data: pointer to adapter cast into an unsigned long
2282 static void e1000_watchdog(unsigned long data)
2284 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2285 struct e1000_hw *hw = &adapter->hw;
2286 struct net_device *netdev = adapter->netdev;
2287 struct e1000_tx_ring *txdr = adapter->tx_ring;
2288 u32 link, tctl;
2290 link = e1000_has_link(adapter);
2291 if ((netif_carrier_ok(netdev)) && link)
2292 goto link_up;
2294 if (link) {
2295 if (!netif_carrier_ok(netdev)) {
2296 u32 ctrl;
2297 bool txb2b = true;
2298 /* update snapshot of PHY registers on LSC */
2299 e1000_get_speed_and_duplex(hw,
2300 &adapter->link_speed,
2301 &adapter->link_duplex);
2303 ctrl = er32(CTRL);
2304 printk(KERN_INFO "e1000: %s NIC Link is Up %d Mbps %s, "
2305 "Flow Control: %s\n",
2306 netdev->name,
2307 adapter->link_speed,
2308 adapter->link_duplex == FULL_DUPLEX ?
2309 "Full Duplex" : "Half Duplex",
2310 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2311 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2312 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2313 E1000_CTRL_TFCE) ? "TX" : "None" )));
2315 /* adjust timeout factor according to speed/duplex */
2316 adapter->tx_timeout_factor = 1;
2317 switch (adapter->link_speed) {
2318 case SPEED_10:
2319 txb2b = false;
2320 adapter->tx_timeout_factor = 16;
2321 break;
2322 case SPEED_100:
2323 txb2b = false;
2324 /* maybe add some timeout factor ? */
2325 break;
2328 /* enable transmits in the hardware */
2329 tctl = er32(TCTL);
2330 tctl |= E1000_TCTL_EN;
2331 ew32(TCTL, tctl);
2333 netif_carrier_on(netdev);
2334 if (!test_bit(__E1000_DOWN, &adapter->flags))
2335 mod_timer(&adapter->phy_info_timer,
2336 round_jiffies(jiffies + 2 * HZ));
2337 adapter->smartspeed = 0;
2339 } else {
2340 if (netif_carrier_ok(netdev)) {
2341 adapter->link_speed = 0;
2342 adapter->link_duplex = 0;
2343 printk(KERN_INFO "e1000: %s NIC Link is Down\n",
2344 netdev->name);
2345 netif_carrier_off(netdev);
2347 if (!test_bit(__E1000_DOWN, &adapter->flags))
2348 mod_timer(&adapter->phy_info_timer,
2349 round_jiffies(jiffies + 2 * HZ));
2352 e1000_smartspeed(adapter);
2355 link_up:
2356 e1000_update_stats(adapter);
2358 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2359 adapter->tpt_old = adapter->stats.tpt;
2360 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2361 adapter->colc_old = adapter->stats.colc;
2363 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2364 adapter->gorcl_old = adapter->stats.gorcl;
2365 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2366 adapter->gotcl_old = adapter->stats.gotcl;
2368 e1000_update_adaptive(hw);
2370 if (!netif_carrier_ok(netdev)) {
2371 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2372 /* We've lost link, so the controller stops DMA,
2373 * but we've got queued Tx work that's never going
2374 * to get done, so reset controller to flush Tx.
2375 * (Do the reset outside of interrupt context). */
2376 adapter->tx_timeout_count++;
2377 schedule_work(&adapter->reset_task);
2378 /* return immediately since reset is imminent */
2379 return;
2383 /* Cause software interrupt to ensure rx ring is cleaned */
2384 ew32(ICS, E1000_ICS_RXDMT0);
2386 /* Force detection of hung controller every watchdog period */
2387 adapter->detect_tx_hung = true;
2389 /* Reset the timer */
2390 if (!test_bit(__E1000_DOWN, &adapter->flags))
2391 mod_timer(&adapter->watchdog_timer,
2392 round_jiffies(jiffies + 2 * HZ));
2395 enum latency_range {
2396 lowest_latency = 0,
2397 low_latency = 1,
2398 bulk_latency = 2,
2399 latency_invalid = 255
2403 * e1000_update_itr - update the dynamic ITR value based on statistics
2404 * @adapter: pointer to adapter
2405 * @itr_setting: current adapter->itr
2406 * @packets: the number of packets during this measurement interval
2407 * @bytes: the number of bytes during this measurement interval
2409 * Stores a new ITR value based on packets and byte
2410 * counts during the last interrupt. The advantage of per interrupt
2411 * computation is faster updates and more accurate ITR for the current
2412 * traffic pattern. Constants in this function were computed
2413 * based on theoretical maximum wire speed and thresholds were set based
2414 * on testing data as well as attempting to minimize response time
2415 * while increasing bulk throughput.
2416 * this functionality is controlled by the InterruptThrottleRate module
2417 * parameter (see e1000_param.c)
2419 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2420 u16 itr_setting, int packets, int bytes)
2422 unsigned int retval = itr_setting;
2423 struct e1000_hw *hw = &adapter->hw;
2425 if (unlikely(hw->mac_type < e1000_82540))
2426 goto update_itr_done;
2428 if (packets == 0)
2429 goto update_itr_done;
2431 switch (itr_setting) {
2432 case lowest_latency:
2433 /* jumbo frames get bulk treatment*/
2434 if (bytes/packets > 8000)
2435 retval = bulk_latency;
2436 else if ((packets < 5) && (bytes > 512))
2437 retval = low_latency;
2438 break;
2439 case low_latency: /* 50 usec aka 20000 ints/s */
2440 if (bytes > 10000) {
2441 /* jumbo frames need bulk latency setting */
2442 if (bytes/packets > 8000)
2443 retval = bulk_latency;
2444 else if ((packets < 10) || ((bytes/packets) > 1200))
2445 retval = bulk_latency;
2446 else if ((packets > 35))
2447 retval = lowest_latency;
2448 } else if (bytes/packets > 2000)
2449 retval = bulk_latency;
2450 else if (packets <= 2 && bytes < 512)
2451 retval = lowest_latency;
2452 break;
2453 case bulk_latency: /* 250 usec aka 4000 ints/s */
2454 if (bytes > 25000) {
2455 if (packets > 35)
2456 retval = low_latency;
2457 } else if (bytes < 6000) {
2458 retval = low_latency;
2460 break;
2463 update_itr_done:
2464 return retval;
2467 static void e1000_set_itr(struct e1000_adapter *adapter)
2469 struct e1000_hw *hw = &adapter->hw;
2470 u16 current_itr;
2471 u32 new_itr = adapter->itr;
2473 if (unlikely(hw->mac_type < e1000_82540))
2474 return;
2476 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2477 if (unlikely(adapter->link_speed != SPEED_1000)) {
2478 current_itr = 0;
2479 new_itr = 4000;
2480 goto set_itr_now;
2483 adapter->tx_itr = e1000_update_itr(adapter,
2484 adapter->tx_itr,
2485 adapter->total_tx_packets,
2486 adapter->total_tx_bytes);
2487 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2488 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2489 adapter->tx_itr = low_latency;
2491 adapter->rx_itr = e1000_update_itr(adapter,
2492 adapter->rx_itr,
2493 adapter->total_rx_packets,
2494 adapter->total_rx_bytes);
2495 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2496 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2497 adapter->rx_itr = low_latency;
2499 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2501 switch (current_itr) {
2502 /* counts and packets in update_itr are dependent on these numbers */
2503 case lowest_latency:
2504 new_itr = 70000;
2505 break;
2506 case low_latency:
2507 new_itr = 20000; /* aka hwitr = ~200 */
2508 break;
2509 case bulk_latency:
2510 new_itr = 4000;
2511 break;
2512 default:
2513 break;
2516 set_itr_now:
2517 if (new_itr != adapter->itr) {
2518 /* this attempts to bias the interrupt rate towards Bulk
2519 * by adding intermediate steps when interrupt rate is
2520 * increasing */
2521 new_itr = new_itr > adapter->itr ?
2522 min(adapter->itr + (new_itr >> 2), new_itr) :
2523 new_itr;
2524 adapter->itr = new_itr;
2525 ew32(ITR, 1000000000 / (new_itr * 256));
2528 return;
2531 #define E1000_TX_FLAGS_CSUM 0x00000001
2532 #define E1000_TX_FLAGS_VLAN 0x00000002
2533 #define E1000_TX_FLAGS_TSO 0x00000004
2534 #define E1000_TX_FLAGS_IPV4 0x00000008
2535 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2536 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2538 static int e1000_tso(struct e1000_adapter *adapter,
2539 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2541 struct e1000_context_desc *context_desc;
2542 struct e1000_buffer *buffer_info;
2543 unsigned int i;
2544 u32 cmd_length = 0;
2545 u16 ipcse = 0, tucse, mss;
2546 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2547 int err;
2549 if (skb_is_gso(skb)) {
2550 if (skb_header_cloned(skb)) {
2551 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2552 if (err)
2553 return err;
2556 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2557 mss = skb_shinfo(skb)->gso_size;
2558 if (skb->protocol == htons(ETH_P_IP)) {
2559 struct iphdr *iph = ip_hdr(skb);
2560 iph->tot_len = 0;
2561 iph->check = 0;
2562 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2563 iph->daddr, 0,
2564 IPPROTO_TCP,
2566 cmd_length = E1000_TXD_CMD_IP;
2567 ipcse = skb_transport_offset(skb) - 1;
2568 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2569 ipv6_hdr(skb)->payload_len = 0;
2570 tcp_hdr(skb)->check =
2571 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2572 &ipv6_hdr(skb)->daddr,
2573 0, IPPROTO_TCP, 0);
2574 ipcse = 0;
2576 ipcss = skb_network_offset(skb);
2577 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2578 tucss = skb_transport_offset(skb);
2579 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2580 tucse = 0;
2582 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2583 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2585 i = tx_ring->next_to_use;
2586 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2587 buffer_info = &tx_ring->buffer_info[i];
2589 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2590 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2591 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2592 context_desc->upper_setup.tcp_fields.tucss = tucss;
2593 context_desc->upper_setup.tcp_fields.tucso = tucso;
2594 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2595 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2596 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2597 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2599 buffer_info->time_stamp = jiffies;
2600 buffer_info->next_to_watch = i;
2602 if (++i == tx_ring->count) i = 0;
2603 tx_ring->next_to_use = i;
2605 return true;
2607 return false;
2610 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2611 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2613 struct e1000_context_desc *context_desc;
2614 struct e1000_buffer *buffer_info;
2615 unsigned int i;
2616 u8 css;
2617 u32 cmd_len = E1000_TXD_CMD_DEXT;
2619 if (skb->ip_summed != CHECKSUM_PARTIAL)
2620 return false;
2622 switch (skb->protocol) {
2623 case cpu_to_be16(ETH_P_IP):
2624 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2625 cmd_len |= E1000_TXD_CMD_TCP;
2626 break;
2627 case cpu_to_be16(ETH_P_IPV6):
2628 /* XXX not handling all IPV6 headers */
2629 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2630 cmd_len |= E1000_TXD_CMD_TCP;
2631 break;
2632 default:
2633 if (unlikely(net_ratelimit()))
2634 DPRINTK(DRV, WARNING,
2635 "checksum_partial proto=%x!\n", skb->protocol);
2636 break;
2639 css = skb_transport_offset(skb);
2641 i = tx_ring->next_to_use;
2642 buffer_info = &tx_ring->buffer_info[i];
2643 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2645 context_desc->lower_setup.ip_config = 0;
2646 context_desc->upper_setup.tcp_fields.tucss = css;
2647 context_desc->upper_setup.tcp_fields.tucso =
2648 css + skb->csum_offset;
2649 context_desc->upper_setup.tcp_fields.tucse = 0;
2650 context_desc->tcp_seg_setup.data = 0;
2651 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2653 buffer_info->time_stamp = jiffies;
2654 buffer_info->next_to_watch = i;
2656 if (unlikely(++i == tx_ring->count)) i = 0;
2657 tx_ring->next_to_use = i;
2659 return true;
2662 #define E1000_MAX_TXD_PWR 12
2663 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2665 static int e1000_tx_map(struct e1000_adapter *adapter,
2666 struct e1000_tx_ring *tx_ring,
2667 struct sk_buff *skb, unsigned int first,
2668 unsigned int max_per_txd, unsigned int nr_frags,
2669 unsigned int mss)
2671 struct e1000_hw *hw = &adapter->hw;
2672 struct pci_dev *pdev = adapter->pdev;
2673 struct e1000_buffer *buffer_info;
2674 unsigned int len = skb_headlen(skb);
2675 unsigned int offset = 0, size, count = 0, i;
2676 unsigned int f;
2678 i = tx_ring->next_to_use;
2680 while (len) {
2681 buffer_info = &tx_ring->buffer_info[i];
2682 size = min(len, max_per_txd);
2683 /* Workaround for Controller erratum --
2684 * descriptor for non-tso packet in a linear SKB that follows a
2685 * tso gets written back prematurely before the data is fully
2686 * DMA'd to the controller */
2687 if (!skb->data_len && tx_ring->last_tx_tso &&
2688 !skb_is_gso(skb)) {
2689 tx_ring->last_tx_tso = 0;
2690 size -= 4;
2693 /* Workaround for premature desc write-backs
2694 * in TSO mode. Append 4-byte sentinel desc */
2695 if (unlikely(mss && !nr_frags && size == len && size > 8))
2696 size -= 4;
2697 /* work-around for errata 10 and it applies
2698 * to all controllers in PCI-X mode
2699 * The fix is to make sure that the first descriptor of a
2700 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2702 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2703 (size > 2015) && count == 0))
2704 size = 2015;
2706 /* Workaround for potential 82544 hang in PCI-X. Avoid
2707 * terminating buffers within evenly-aligned dwords. */
2708 if (unlikely(adapter->pcix_82544 &&
2709 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2710 size > 4))
2711 size -= 4;
2713 buffer_info->length = size;
2714 /* set time_stamp *before* dma to help avoid a possible race */
2715 buffer_info->time_stamp = jiffies;
2716 buffer_info->mapped_as_page = false;
2717 buffer_info->dma = pci_map_single(pdev, skb->data + offset,
2718 size, PCI_DMA_TODEVICE);
2719 if (pci_dma_mapping_error(pdev, buffer_info->dma))
2720 goto dma_error;
2721 buffer_info->next_to_watch = i;
2723 len -= size;
2724 offset += size;
2725 count++;
2726 if (len) {
2727 i++;
2728 if (unlikely(i == tx_ring->count))
2729 i = 0;
2733 for (f = 0; f < nr_frags; f++) {
2734 struct skb_frag_struct *frag;
2736 frag = &skb_shinfo(skb)->frags[f];
2737 len = frag->size;
2738 offset = frag->page_offset;
2740 while (len) {
2741 i++;
2742 if (unlikely(i == tx_ring->count))
2743 i = 0;
2745 buffer_info = &tx_ring->buffer_info[i];
2746 size = min(len, max_per_txd);
2747 /* Workaround for premature desc write-backs
2748 * in TSO mode. Append 4-byte sentinel desc */
2749 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2750 size -= 4;
2751 /* Workaround for potential 82544 hang in PCI-X.
2752 * Avoid terminating buffers within evenly-aligned
2753 * dwords. */
2754 if (unlikely(adapter->pcix_82544 &&
2755 !((unsigned long)(page_to_phys(frag->page) + offset
2756 + size - 1) & 4) &&
2757 size > 4))
2758 size -= 4;
2760 buffer_info->length = size;
2761 buffer_info->time_stamp = jiffies;
2762 buffer_info->mapped_as_page = true;
2763 buffer_info->dma = pci_map_page(pdev, frag->page,
2764 offset, size,
2765 PCI_DMA_TODEVICE);
2766 if (pci_dma_mapping_error(pdev, buffer_info->dma))
2767 goto dma_error;
2768 buffer_info->next_to_watch = i;
2770 len -= size;
2771 offset += size;
2772 count++;
2776 tx_ring->buffer_info[i].skb = skb;
2777 tx_ring->buffer_info[first].next_to_watch = i;
2779 return count;
2781 dma_error:
2782 dev_err(&pdev->dev, "TX DMA map failed\n");
2783 buffer_info->dma = 0;
2784 if (count)
2785 count--;
2787 while (count--) {
2788 if (i==0)
2789 i += tx_ring->count;
2790 i--;
2791 buffer_info = &tx_ring->buffer_info[i];
2792 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2795 return 0;
2798 static void e1000_tx_queue(struct e1000_adapter *adapter,
2799 struct e1000_tx_ring *tx_ring, int tx_flags,
2800 int count)
2802 struct e1000_hw *hw = &adapter->hw;
2803 struct e1000_tx_desc *tx_desc = NULL;
2804 struct e1000_buffer *buffer_info;
2805 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2806 unsigned int i;
2808 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2809 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2810 E1000_TXD_CMD_TSE;
2811 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2813 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2814 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2817 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2818 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2819 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2822 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2823 txd_lower |= E1000_TXD_CMD_VLE;
2824 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2827 i = tx_ring->next_to_use;
2829 while (count--) {
2830 buffer_info = &tx_ring->buffer_info[i];
2831 tx_desc = E1000_TX_DESC(*tx_ring, i);
2832 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2833 tx_desc->lower.data =
2834 cpu_to_le32(txd_lower | buffer_info->length);
2835 tx_desc->upper.data = cpu_to_le32(txd_upper);
2836 if (unlikely(++i == tx_ring->count)) i = 0;
2839 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2841 /* Force memory writes to complete before letting h/w
2842 * know there are new descriptors to fetch. (Only
2843 * applicable for weak-ordered memory model archs,
2844 * such as IA-64). */
2845 wmb();
2847 tx_ring->next_to_use = i;
2848 writel(i, hw->hw_addr + tx_ring->tdt);
2849 /* we need this if more than one processor can write to our tail
2850 * at a time, it syncronizes IO on IA64/Altix systems */
2851 mmiowb();
2855 * 82547 workaround to avoid controller hang in half-duplex environment.
2856 * The workaround is to avoid queuing a large packet that would span
2857 * the internal Tx FIFO ring boundary by notifying the stack to resend
2858 * the packet at a later time. This gives the Tx FIFO an opportunity to
2859 * flush all packets. When that occurs, we reset the Tx FIFO pointers
2860 * to the beginning of the Tx FIFO.
2863 #define E1000_FIFO_HDR 0x10
2864 #define E1000_82547_PAD_LEN 0x3E0
2866 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
2867 struct sk_buff *skb)
2869 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2870 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
2872 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
2874 if (adapter->link_duplex != HALF_DUPLEX)
2875 goto no_fifo_stall_required;
2877 if (atomic_read(&adapter->tx_fifo_stall))
2878 return 1;
2880 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2881 atomic_set(&adapter->tx_fifo_stall, 1);
2882 return 1;
2885 no_fifo_stall_required:
2886 adapter->tx_fifo_head += skb_fifo_len;
2887 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2888 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2889 return 0;
2892 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
2894 struct e1000_adapter *adapter = netdev_priv(netdev);
2895 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
2897 netif_stop_queue(netdev);
2898 /* Herbert's original patch had:
2899 * smp_mb__after_netif_stop_queue();
2900 * but since that doesn't exist yet, just open code it. */
2901 smp_mb();
2903 /* We need to check again in a case another CPU has just
2904 * made room available. */
2905 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
2906 return -EBUSY;
2908 /* A reprieve! */
2909 netif_start_queue(netdev);
2910 ++adapter->restart_queue;
2911 return 0;
2914 static int e1000_maybe_stop_tx(struct net_device *netdev,
2915 struct e1000_tx_ring *tx_ring, int size)
2917 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
2918 return 0;
2919 return __e1000_maybe_stop_tx(netdev, size);
2922 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2923 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
2924 struct net_device *netdev)
2926 struct e1000_adapter *adapter = netdev_priv(netdev);
2927 struct e1000_hw *hw = &adapter->hw;
2928 struct e1000_tx_ring *tx_ring;
2929 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2930 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2931 unsigned int tx_flags = 0;
2932 unsigned int len = skb->len - skb->data_len;
2933 unsigned int nr_frags;
2934 unsigned int mss;
2935 int count = 0;
2936 int tso;
2937 unsigned int f;
2939 /* This goes back to the question of how to logically map a tx queue
2940 * to a flow. Right now, performance is impacted slightly negatively
2941 * if using multiple tx queues. If the stack breaks away from a
2942 * single qdisc implementation, we can look at this again. */
2943 tx_ring = adapter->tx_ring;
2945 if (unlikely(skb->len <= 0)) {
2946 dev_kfree_skb_any(skb);
2947 return NETDEV_TX_OK;
2950 mss = skb_shinfo(skb)->gso_size;
2951 /* The controller does a simple calculation to
2952 * make sure there is enough room in the FIFO before
2953 * initiating the DMA for each buffer. The calc is:
2954 * 4 = ceil(buffer len/mss). To make sure we don't
2955 * overrun the FIFO, adjust the max buffer len if mss
2956 * drops. */
2957 if (mss) {
2958 u8 hdr_len;
2959 max_per_txd = min(mss << 2, max_per_txd);
2960 max_txd_pwr = fls(max_per_txd) - 1;
2962 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2963 if (skb->data_len && hdr_len == len) {
2964 switch (hw->mac_type) {
2965 unsigned int pull_size;
2966 case e1000_82544:
2967 /* Make sure we have room to chop off 4 bytes,
2968 * and that the end alignment will work out to
2969 * this hardware's requirements
2970 * NOTE: this is a TSO only workaround
2971 * if end byte alignment not correct move us
2972 * into the next dword */
2973 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
2974 break;
2975 /* fall through */
2976 pull_size = min((unsigned int)4, skb->data_len);
2977 if (!__pskb_pull_tail(skb, pull_size)) {
2978 DPRINTK(DRV, ERR,
2979 "__pskb_pull_tail failed.\n");
2980 dev_kfree_skb_any(skb);
2981 return NETDEV_TX_OK;
2983 len = skb->len - skb->data_len;
2984 break;
2985 default:
2986 /* do nothing */
2987 break;
2992 /* reserve a descriptor for the offload context */
2993 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
2994 count++;
2995 count++;
2997 /* Controller Erratum workaround */
2998 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
2999 count++;
3001 count += TXD_USE_COUNT(len, max_txd_pwr);
3003 if (adapter->pcix_82544)
3004 count++;
3006 /* work-around for errata 10 and it applies to all controllers
3007 * in PCI-X mode, so add one more descriptor to the count
3009 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3010 (len > 2015)))
3011 count++;
3013 nr_frags = skb_shinfo(skb)->nr_frags;
3014 for (f = 0; f < nr_frags; f++)
3015 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3016 max_txd_pwr);
3017 if (adapter->pcix_82544)
3018 count += nr_frags;
3020 /* need: count + 2 desc gap to keep tail from touching
3021 * head, otherwise try next time */
3022 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3023 return NETDEV_TX_BUSY;
3025 if (unlikely(hw->mac_type == e1000_82547)) {
3026 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3027 netif_stop_queue(netdev);
3028 if (!test_bit(__E1000_DOWN, &adapter->flags))
3029 mod_timer(&adapter->tx_fifo_stall_timer,
3030 jiffies + 1);
3031 return NETDEV_TX_BUSY;
3035 if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3036 tx_flags |= E1000_TX_FLAGS_VLAN;
3037 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3040 first = tx_ring->next_to_use;
3042 tso = e1000_tso(adapter, tx_ring, skb);
3043 if (tso < 0) {
3044 dev_kfree_skb_any(skb);
3045 return NETDEV_TX_OK;
3048 if (likely(tso)) {
3049 if (likely(hw->mac_type != e1000_82544))
3050 tx_ring->last_tx_tso = 1;
3051 tx_flags |= E1000_TX_FLAGS_TSO;
3052 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3053 tx_flags |= E1000_TX_FLAGS_CSUM;
3055 if (likely(skb->protocol == htons(ETH_P_IP)))
3056 tx_flags |= E1000_TX_FLAGS_IPV4;
3058 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3059 nr_frags, mss);
3061 if (count) {
3062 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3063 /* Make sure there is space in the ring for the next send. */
3064 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3066 } else {
3067 dev_kfree_skb_any(skb);
3068 tx_ring->buffer_info[first].time_stamp = 0;
3069 tx_ring->next_to_use = first;
3072 return NETDEV_TX_OK;
3076 * e1000_tx_timeout - Respond to a Tx Hang
3077 * @netdev: network interface device structure
3080 static void e1000_tx_timeout(struct net_device *netdev)
3082 struct e1000_adapter *adapter = netdev_priv(netdev);
3084 /* Do the reset outside of interrupt context */
3085 adapter->tx_timeout_count++;
3086 schedule_work(&adapter->reset_task);
3089 static void e1000_reset_task(struct work_struct *work)
3091 struct e1000_adapter *adapter =
3092 container_of(work, struct e1000_adapter, reset_task);
3094 e1000_reinit_locked(adapter);
3098 * e1000_get_stats - Get System Network Statistics
3099 * @netdev: network interface device structure
3101 * Returns the address of the device statistics structure.
3102 * The statistics are actually updated from the timer callback.
3105 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3107 /* only return the current stats */
3108 return &netdev->stats;
3112 * e1000_change_mtu - Change the Maximum Transfer Unit
3113 * @netdev: network interface device structure
3114 * @new_mtu: new value for maximum frame size
3116 * Returns 0 on success, negative on failure
3119 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3121 struct e1000_adapter *adapter = netdev_priv(netdev);
3122 struct e1000_hw *hw = &adapter->hw;
3123 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3125 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3126 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3127 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3128 return -EINVAL;
3131 /* Adapter-specific max frame size limits. */
3132 switch (hw->mac_type) {
3133 case e1000_undefined ... e1000_82542_rev2_1:
3134 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3135 DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3136 return -EINVAL;
3138 break;
3139 default:
3140 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3141 break;
3144 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3145 msleep(1);
3146 /* e1000_down has a dependency on max_frame_size */
3147 hw->max_frame_size = max_frame;
3148 if (netif_running(netdev))
3149 e1000_down(adapter);
3151 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3152 * means we reserve 2 more, this pushes us to allocate from the next
3153 * larger slab size.
3154 * i.e. RXBUFFER_2048 --> size-4096 slab
3155 * however with the new *_jumbo_rx* routines, jumbo receives will use
3156 * fragmented skbs */
3158 if (max_frame <= E1000_RXBUFFER_2048)
3159 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3160 else
3161 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3162 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3163 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3164 adapter->rx_buffer_len = PAGE_SIZE;
3165 #endif
3167 /* adjust allocation if LPE protects us, and we aren't using SBP */
3168 if (!hw->tbi_compatibility_on &&
3169 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3170 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3171 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3173 printk(KERN_INFO "e1000: %s changing MTU from %d to %d\n",
3174 netdev->name, netdev->mtu, new_mtu);
3175 netdev->mtu = new_mtu;
3177 if (netif_running(netdev))
3178 e1000_up(adapter);
3179 else
3180 e1000_reset(adapter);
3182 clear_bit(__E1000_RESETTING, &adapter->flags);
3184 return 0;
3188 * e1000_update_stats - Update the board statistics counters
3189 * @adapter: board private structure
3192 void e1000_update_stats(struct e1000_adapter *adapter)
3194 struct net_device *netdev = adapter->netdev;
3195 struct e1000_hw *hw = &adapter->hw;
3196 struct pci_dev *pdev = adapter->pdev;
3197 unsigned long flags;
3198 u16 phy_tmp;
3200 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3203 * Prevent stats update while adapter is being reset, or if the pci
3204 * connection is down.
3206 if (adapter->link_speed == 0)
3207 return;
3208 if (pci_channel_offline(pdev))
3209 return;
3211 spin_lock_irqsave(&adapter->stats_lock, flags);
3213 /* these counters are modified from e1000_tbi_adjust_stats,
3214 * called from the interrupt context, so they must only
3215 * be written while holding adapter->stats_lock
3218 adapter->stats.crcerrs += er32(CRCERRS);
3219 adapter->stats.gprc += er32(GPRC);
3220 adapter->stats.gorcl += er32(GORCL);
3221 adapter->stats.gorch += er32(GORCH);
3222 adapter->stats.bprc += er32(BPRC);
3223 adapter->stats.mprc += er32(MPRC);
3224 adapter->stats.roc += er32(ROC);
3226 adapter->stats.prc64 += er32(PRC64);
3227 adapter->stats.prc127 += er32(PRC127);
3228 adapter->stats.prc255 += er32(PRC255);
3229 adapter->stats.prc511 += er32(PRC511);
3230 adapter->stats.prc1023 += er32(PRC1023);
3231 adapter->stats.prc1522 += er32(PRC1522);
3233 adapter->stats.symerrs += er32(SYMERRS);
3234 adapter->stats.mpc += er32(MPC);
3235 adapter->stats.scc += er32(SCC);
3236 adapter->stats.ecol += er32(ECOL);
3237 adapter->stats.mcc += er32(MCC);
3238 adapter->stats.latecol += er32(LATECOL);
3239 adapter->stats.dc += er32(DC);
3240 adapter->stats.sec += er32(SEC);
3241 adapter->stats.rlec += er32(RLEC);
3242 adapter->stats.xonrxc += er32(XONRXC);
3243 adapter->stats.xontxc += er32(XONTXC);
3244 adapter->stats.xoffrxc += er32(XOFFRXC);
3245 adapter->stats.xofftxc += er32(XOFFTXC);
3246 adapter->stats.fcruc += er32(FCRUC);
3247 adapter->stats.gptc += er32(GPTC);
3248 adapter->stats.gotcl += er32(GOTCL);
3249 adapter->stats.gotch += er32(GOTCH);
3250 adapter->stats.rnbc += er32(RNBC);
3251 adapter->stats.ruc += er32(RUC);
3252 adapter->stats.rfc += er32(RFC);
3253 adapter->stats.rjc += er32(RJC);
3254 adapter->stats.torl += er32(TORL);
3255 adapter->stats.torh += er32(TORH);
3256 adapter->stats.totl += er32(TOTL);
3257 adapter->stats.toth += er32(TOTH);
3258 adapter->stats.tpr += er32(TPR);
3260 adapter->stats.ptc64 += er32(PTC64);
3261 adapter->stats.ptc127 += er32(PTC127);
3262 adapter->stats.ptc255 += er32(PTC255);
3263 adapter->stats.ptc511 += er32(PTC511);
3264 adapter->stats.ptc1023 += er32(PTC1023);
3265 adapter->stats.ptc1522 += er32(PTC1522);
3267 adapter->stats.mptc += er32(MPTC);
3268 adapter->stats.bptc += er32(BPTC);
3270 /* used for adaptive IFS */
3272 hw->tx_packet_delta = er32(TPT);
3273 adapter->stats.tpt += hw->tx_packet_delta;
3274 hw->collision_delta = er32(COLC);
3275 adapter->stats.colc += hw->collision_delta;
3277 if (hw->mac_type >= e1000_82543) {
3278 adapter->stats.algnerrc += er32(ALGNERRC);
3279 adapter->stats.rxerrc += er32(RXERRC);
3280 adapter->stats.tncrs += er32(TNCRS);
3281 adapter->stats.cexterr += er32(CEXTERR);
3282 adapter->stats.tsctc += er32(TSCTC);
3283 adapter->stats.tsctfc += er32(TSCTFC);
3286 /* Fill out the OS statistics structure */
3287 netdev->stats.multicast = adapter->stats.mprc;
3288 netdev->stats.collisions = adapter->stats.colc;
3290 /* Rx Errors */
3292 /* RLEC on some newer hardware can be incorrect so build
3293 * our own version based on RUC and ROC */
3294 netdev->stats.rx_errors = adapter->stats.rxerrc +
3295 adapter->stats.crcerrs + adapter->stats.algnerrc +
3296 adapter->stats.ruc + adapter->stats.roc +
3297 adapter->stats.cexterr;
3298 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3299 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3300 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3301 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3302 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3304 /* Tx Errors */
3305 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3306 netdev->stats.tx_errors = adapter->stats.txerrc;
3307 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3308 netdev->stats.tx_window_errors = adapter->stats.latecol;
3309 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3310 if (hw->bad_tx_carr_stats_fd &&
3311 adapter->link_duplex == FULL_DUPLEX) {
3312 netdev->stats.tx_carrier_errors = 0;
3313 adapter->stats.tncrs = 0;
3316 /* Tx Dropped needs to be maintained elsewhere */
3318 /* Phy Stats */
3319 if (hw->media_type == e1000_media_type_copper) {
3320 if ((adapter->link_speed == SPEED_1000) &&
3321 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3322 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3323 adapter->phy_stats.idle_errors += phy_tmp;
3326 if ((hw->mac_type <= e1000_82546) &&
3327 (hw->phy_type == e1000_phy_m88) &&
3328 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3329 adapter->phy_stats.receive_errors += phy_tmp;
3332 /* Management Stats */
3333 if (hw->has_smbus) {
3334 adapter->stats.mgptc += er32(MGTPTC);
3335 adapter->stats.mgprc += er32(MGTPRC);
3336 adapter->stats.mgpdc += er32(MGTPDC);
3339 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3343 * e1000_intr - Interrupt Handler
3344 * @irq: interrupt number
3345 * @data: pointer to a network interface device structure
3348 static irqreturn_t e1000_intr(int irq, void *data)
3350 struct net_device *netdev = data;
3351 struct e1000_adapter *adapter = netdev_priv(netdev);
3352 struct e1000_hw *hw = &adapter->hw;
3353 u32 icr = er32(ICR);
3355 if (unlikely((!icr) || test_bit(__E1000_DOWN, &adapter->flags)))
3356 return IRQ_NONE; /* Not our interrupt */
3358 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3359 hw->get_link_status = 1;
3360 /* guard against interrupt when we're going down */
3361 if (!test_bit(__E1000_DOWN, &adapter->flags))
3362 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3365 /* disable interrupts, without the synchronize_irq bit */
3366 ew32(IMC, ~0);
3367 E1000_WRITE_FLUSH();
3369 if (likely(napi_schedule_prep(&adapter->napi))) {
3370 adapter->total_tx_bytes = 0;
3371 adapter->total_tx_packets = 0;
3372 adapter->total_rx_bytes = 0;
3373 adapter->total_rx_packets = 0;
3374 __napi_schedule(&adapter->napi);
3375 } else {
3376 /* this really should not happen! if it does it is basically a
3377 * bug, but not a hard error, so enable ints and continue */
3378 if (!test_bit(__E1000_DOWN, &adapter->flags))
3379 e1000_irq_enable(adapter);
3382 return IRQ_HANDLED;
3386 * e1000_clean - NAPI Rx polling callback
3387 * @adapter: board private structure
3389 static int e1000_clean(struct napi_struct *napi, int budget)
3391 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3392 int tx_clean_complete = 0, work_done = 0;
3394 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3396 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3398 if (!tx_clean_complete)
3399 work_done = budget;
3401 /* If budget not fully consumed, exit the polling mode */
3402 if (work_done < budget) {
3403 if (likely(adapter->itr_setting & 3))
3404 e1000_set_itr(adapter);
3405 napi_complete(napi);
3406 if (!test_bit(__E1000_DOWN, &adapter->flags))
3407 e1000_irq_enable(adapter);
3410 return work_done;
3414 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3415 * @adapter: board private structure
3417 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3418 struct e1000_tx_ring *tx_ring)
3420 struct e1000_hw *hw = &adapter->hw;
3421 struct net_device *netdev = adapter->netdev;
3422 struct e1000_tx_desc *tx_desc, *eop_desc;
3423 struct e1000_buffer *buffer_info;
3424 unsigned int i, eop;
3425 unsigned int count = 0;
3426 unsigned int total_tx_bytes=0, total_tx_packets=0;
3428 i = tx_ring->next_to_clean;
3429 eop = tx_ring->buffer_info[i].next_to_watch;
3430 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3432 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3433 (count < tx_ring->count)) {
3434 bool cleaned = false;
3435 for ( ; !cleaned; count++) {
3436 tx_desc = E1000_TX_DESC(*tx_ring, i);
3437 buffer_info = &tx_ring->buffer_info[i];
3438 cleaned = (i == eop);
3440 if (cleaned) {
3441 struct sk_buff *skb = buffer_info->skb;
3442 unsigned int segs, bytecount;
3443 segs = skb_shinfo(skb)->gso_segs ?: 1;
3444 /* multiply data chunks by size of headers */
3445 bytecount = ((segs - 1) * skb_headlen(skb)) +
3446 skb->len;
3447 total_tx_packets += segs;
3448 total_tx_bytes += bytecount;
3450 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3451 tx_desc->upper.data = 0;
3453 if (unlikely(++i == tx_ring->count)) i = 0;
3456 eop = tx_ring->buffer_info[i].next_to_watch;
3457 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3460 tx_ring->next_to_clean = i;
3462 #define TX_WAKE_THRESHOLD 32
3463 if (unlikely(count && netif_carrier_ok(netdev) &&
3464 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3465 /* Make sure that anybody stopping the queue after this
3466 * sees the new next_to_clean.
3468 smp_mb();
3470 if (netif_queue_stopped(netdev) &&
3471 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3472 netif_wake_queue(netdev);
3473 ++adapter->restart_queue;
3477 if (adapter->detect_tx_hung) {
3478 /* Detect a transmit hang in hardware, this serializes the
3479 * check with the clearing of time_stamp and movement of i */
3480 adapter->detect_tx_hung = false;
3481 if (tx_ring->buffer_info[eop].time_stamp &&
3482 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3483 (adapter->tx_timeout_factor * HZ)) &&
3484 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3486 /* detected Tx unit hang */
3487 DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3488 " Tx Queue <%lu>\n"
3489 " TDH <%x>\n"
3490 " TDT <%x>\n"
3491 " next_to_use <%x>\n"
3492 " next_to_clean <%x>\n"
3493 "buffer_info[next_to_clean]\n"
3494 " time_stamp <%lx>\n"
3495 " next_to_watch <%x>\n"
3496 " jiffies <%lx>\n"
3497 " next_to_watch.status <%x>\n",
3498 (unsigned long)((tx_ring - adapter->tx_ring) /
3499 sizeof(struct e1000_tx_ring)),
3500 readl(hw->hw_addr + tx_ring->tdh),
3501 readl(hw->hw_addr + tx_ring->tdt),
3502 tx_ring->next_to_use,
3503 tx_ring->next_to_clean,
3504 tx_ring->buffer_info[eop].time_stamp,
3505 eop,
3506 jiffies,
3507 eop_desc->upper.fields.status);
3508 netif_stop_queue(netdev);
3511 adapter->total_tx_bytes += total_tx_bytes;
3512 adapter->total_tx_packets += total_tx_packets;
3513 netdev->stats.tx_bytes += total_tx_bytes;
3514 netdev->stats.tx_packets += total_tx_packets;
3515 return (count < tx_ring->count);
3519 * e1000_rx_checksum - Receive Checksum Offload for 82543
3520 * @adapter: board private structure
3521 * @status_err: receive descriptor status and error fields
3522 * @csum: receive descriptor csum field
3523 * @sk_buff: socket buffer with received data
3526 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3527 u32 csum, struct sk_buff *skb)
3529 struct e1000_hw *hw = &adapter->hw;
3530 u16 status = (u16)status_err;
3531 u8 errors = (u8)(status_err >> 24);
3532 skb->ip_summed = CHECKSUM_NONE;
3534 /* 82543 or newer only */
3535 if (unlikely(hw->mac_type < e1000_82543)) return;
3536 /* Ignore Checksum bit is set */
3537 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3538 /* TCP/UDP checksum error bit is set */
3539 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3540 /* let the stack verify checksum errors */
3541 adapter->hw_csum_err++;
3542 return;
3544 /* TCP/UDP Checksum has not been calculated */
3545 if (!(status & E1000_RXD_STAT_TCPCS))
3546 return;
3548 /* It must be a TCP or UDP packet with a valid checksum */
3549 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3550 /* TCP checksum is good */
3551 skb->ip_summed = CHECKSUM_UNNECESSARY;
3553 adapter->hw_csum_good++;
3557 * e1000_consume_page - helper function
3559 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3560 u16 length)
3562 bi->page = NULL;
3563 skb->len += length;
3564 skb->data_len += length;
3565 skb->truesize += length;
3569 * e1000_receive_skb - helper function to handle rx indications
3570 * @adapter: board private structure
3571 * @status: descriptor status field as written by hardware
3572 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3573 * @skb: pointer to sk_buff to be indicated to stack
3575 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3576 __le16 vlan, struct sk_buff *skb)
3578 if (unlikely(adapter->vlgrp && (status & E1000_RXD_STAT_VP))) {
3579 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3580 le16_to_cpu(vlan) &
3581 E1000_RXD_SPC_VLAN_MASK);
3582 } else {
3583 netif_receive_skb(skb);
3588 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3589 * @adapter: board private structure
3590 * @rx_ring: ring to clean
3591 * @work_done: amount of napi work completed this call
3592 * @work_to_do: max amount of work allowed for this call to do
3594 * the return value indicates whether actual cleaning was done, there
3595 * is no guarantee that everything was cleaned
3597 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
3598 struct e1000_rx_ring *rx_ring,
3599 int *work_done, int work_to_do)
3601 struct e1000_hw *hw = &adapter->hw;
3602 struct net_device *netdev = adapter->netdev;
3603 struct pci_dev *pdev = adapter->pdev;
3604 struct e1000_rx_desc *rx_desc, *next_rxd;
3605 struct e1000_buffer *buffer_info, *next_buffer;
3606 unsigned long irq_flags;
3607 u32 length;
3608 unsigned int i;
3609 int cleaned_count = 0;
3610 bool cleaned = false;
3611 unsigned int total_rx_bytes=0, total_rx_packets=0;
3613 i = rx_ring->next_to_clean;
3614 rx_desc = E1000_RX_DESC(*rx_ring, i);
3615 buffer_info = &rx_ring->buffer_info[i];
3617 while (rx_desc->status & E1000_RXD_STAT_DD) {
3618 struct sk_buff *skb;
3619 u8 status;
3621 if (*work_done >= work_to_do)
3622 break;
3623 (*work_done)++;
3625 status = rx_desc->status;
3626 skb = buffer_info->skb;
3627 buffer_info->skb = NULL;
3629 if (++i == rx_ring->count) i = 0;
3630 next_rxd = E1000_RX_DESC(*rx_ring, i);
3631 prefetch(next_rxd);
3633 next_buffer = &rx_ring->buffer_info[i];
3635 cleaned = true;
3636 cleaned_count++;
3637 pci_unmap_page(pdev, buffer_info->dma, buffer_info->length,
3638 PCI_DMA_FROMDEVICE);
3639 buffer_info->dma = 0;
3641 length = le16_to_cpu(rx_desc->length);
3643 /* errors is only valid for DD + EOP descriptors */
3644 if (unlikely((status & E1000_RXD_STAT_EOP) &&
3645 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
3646 u8 last_byte = *(skb->data + length - 1);
3647 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
3648 last_byte)) {
3649 spin_lock_irqsave(&adapter->stats_lock,
3650 irq_flags);
3651 e1000_tbi_adjust_stats(hw, &adapter->stats,
3652 length, skb->data);
3653 spin_unlock_irqrestore(&adapter->stats_lock,
3654 irq_flags);
3655 length--;
3656 } else {
3657 /* recycle both page and skb */
3658 buffer_info->skb = skb;
3659 /* an error means any chain goes out the window
3660 * too */
3661 if (rx_ring->rx_skb_top)
3662 dev_kfree_skb(rx_ring->rx_skb_top);
3663 rx_ring->rx_skb_top = NULL;
3664 goto next_desc;
3668 #define rxtop rx_ring->rx_skb_top
3669 if (!(status & E1000_RXD_STAT_EOP)) {
3670 /* this descriptor is only the beginning (or middle) */
3671 if (!rxtop) {
3672 /* this is the beginning of a chain */
3673 rxtop = skb;
3674 skb_fill_page_desc(rxtop, 0, buffer_info->page,
3675 0, length);
3676 } else {
3677 /* this is the middle of a chain */
3678 skb_fill_page_desc(rxtop,
3679 skb_shinfo(rxtop)->nr_frags,
3680 buffer_info->page, 0, length);
3681 /* re-use the skb, only consumed the page */
3682 buffer_info->skb = skb;
3684 e1000_consume_page(buffer_info, rxtop, length);
3685 goto next_desc;
3686 } else {
3687 if (rxtop) {
3688 /* end of the chain */
3689 skb_fill_page_desc(rxtop,
3690 skb_shinfo(rxtop)->nr_frags,
3691 buffer_info->page, 0, length);
3692 /* re-use the current skb, we only consumed the
3693 * page */
3694 buffer_info->skb = skb;
3695 skb = rxtop;
3696 rxtop = NULL;
3697 e1000_consume_page(buffer_info, skb, length);
3698 } else {
3699 /* no chain, got EOP, this buf is the packet
3700 * copybreak to save the put_page/alloc_page */
3701 if (length <= copybreak &&
3702 skb_tailroom(skb) >= length) {
3703 u8 *vaddr;
3704 vaddr = kmap_atomic(buffer_info->page,
3705 KM_SKB_DATA_SOFTIRQ);
3706 memcpy(skb_tail_pointer(skb), vaddr, length);
3707 kunmap_atomic(vaddr,
3708 KM_SKB_DATA_SOFTIRQ);
3709 /* re-use the page, so don't erase
3710 * buffer_info->page */
3711 skb_put(skb, length);
3712 } else {
3713 skb_fill_page_desc(skb, 0,
3714 buffer_info->page, 0,
3715 length);
3716 e1000_consume_page(buffer_info, skb,
3717 length);
3722 /* Receive Checksum Offload XXX recompute due to CRC strip? */
3723 e1000_rx_checksum(adapter,
3724 (u32)(status) |
3725 ((u32)(rx_desc->errors) << 24),
3726 le16_to_cpu(rx_desc->csum), skb);
3728 pskb_trim(skb, skb->len - 4);
3730 /* probably a little skewed due to removing CRC */
3731 total_rx_bytes += skb->len;
3732 total_rx_packets++;
3734 /* eth type trans needs skb->data to point to something */
3735 if (!pskb_may_pull(skb, ETH_HLEN)) {
3736 DPRINTK(DRV, ERR, "pskb_may_pull failed.\n");
3737 dev_kfree_skb(skb);
3738 goto next_desc;
3741 skb->protocol = eth_type_trans(skb, netdev);
3743 e1000_receive_skb(adapter, status, rx_desc->special, skb);
3745 next_desc:
3746 rx_desc->status = 0;
3748 /* return some buffers to hardware, one at a time is too slow */
3749 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3750 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3751 cleaned_count = 0;
3754 /* use prefetched values */
3755 rx_desc = next_rxd;
3756 buffer_info = next_buffer;
3758 rx_ring->next_to_clean = i;
3760 cleaned_count = E1000_DESC_UNUSED(rx_ring);
3761 if (cleaned_count)
3762 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3764 adapter->total_rx_packets += total_rx_packets;
3765 adapter->total_rx_bytes += total_rx_bytes;
3766 netdev->stats.rx_bytes += total_rx_bytes;
3767 netdev->stats.rx_packets += total_rx_packets;
3768 return cleaned;
3772 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3773 * @adapter: board private structure
3774 * @rx_ring: ring to clean
3775 * @work_done: amount of napi work completed this call
3776 * @work_to_do: max amount of work allowed for this call to do
3778 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3779 struct e1000_rx_ring *rx_ring,
3780 int *work_done, int work_to_do)
3782 struct e1000_hw *hw = &adapter->hw;
3783 struct net_device *netdev = adapter->netdev;
3784 struct pci_dev *pdev = adapter->pdev;
3785 struct e1000_rx_desc *rx_desc, *next_rxd;
3786 struct e1000_buffer *buffer_info, *next_buffer;
3787 unsigned long flags;
3788 u32 length;
3789 unsigned int i;
3790 int cleaned_count = 0;
3791 bool cleaned = false;
3792 unsigned int total_rx_bytes=0, total_rx_packets=0;
3794 i = rx_ring->next_to_clean;
3795 rx_desc = E1000_RX_DESC(*rx_ring, i);
3796 buffer_info = &rx_ring->buffer_info[i];
3798 while (rx_desc->status & E1000_RXD_STAT_DD) {
3799 struct sk_buff *skb;
3800 u8 status;
3802 if (*work_done >= work_to_do)
3803 break;
3804 (*work_done)++;
3806 status = rx_desc->status;
3807 skb = buffer_info->skb;
3808 buffer_info->skb = NULL;
3810 prefetch(skb->data - NET_IP_ALIGN);
3812 if (++i == rx_ring->count) i = 0;
3813 next_rxd = E1000_RX_DESC(*rx_ring, i);
3814 prefetch(next_rxd);
3816 next_buffer = &rx_ring->buffer_info[i];
3818 cleaned = true;
3819 cleaned_count++;
3820 pci_unmap_single(pdev, buffer_info->dma, buffer_info->length,
3821 PCI_DMA_FROMDEVICE);
3822 buffer_info->dma = 0;
3824 length = le16_to_cpu(rx_desc->length);
3825 /* !EOP means multiple descriptors were used to store a single
3826 * packet, if thats the case we need to toss it. In fact, we
3827 * to toss every packet with the EOP bit clear and the next
3828 * frame that _does_ have the EOP bit set, as it is by
3829 * definition only a frame fragment
3831 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
3832 adapter->discarding = true;
3834 if (adapter->discarding) {
3835 /* All receives must fit into a single buffer */
3836 E1000_DBG("%s: Receive packet consumed multiple"
3837 " buffers\n", netdev->name);
3838 /* recycle */
3839 buffer_info->skb = skb;
3840 if (status & E1000_RXD_STAT_EOP)
3841 adapter->discarding = false;
3842 goto next_desc;
3845 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3846 u8 last_byte = *(skb->data + length - 1);
3847 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
3848 last_byte)) {
3849 spin_lock_irqsave(&adapter->stats_lock, flags);
3850 e1000_tbi_adjust_stats(hw, &adapter->stats,
3851 length, skb->data);
3852 spin_unlock_irqrestore(&adapter->stats_lock,
3853 flags);
3854 length--;
3855 } else {
3856 /* recycle */
3857 buffer_info->skb = skb;
3858 goto next_desc;
3862 /* adjust length to remove Ethernet CRC, this must be
3863 * done after the TBI_ACCEPT workaround above */
3864 length -= 4;
3866 /* probably a little skewed due to removing CRC */
3867 total_rx_bytes += length;
3868 total_rx_packets++;
3870 /* code added for copybreak, this should improve
3871 * performance for small packets with large amounts
3872 * of reassembly being done in the stack */
3873 if (length < copybreak) {
3874 struct sk_buff *new_skb =
3875 netdev_alloc_skb_ip_align(netdev, length);
3876 if (new_skb) {
3877 skb_copy_to_linear_data_offset(new_skb,
3878 -NET_IP_ALIGN,
3879 (skb->data -
3880 NET_IP_ALIGN),
3881 (length +
3882 NET_IP_ALIGN));
3883 /* save the skb in buffer_info as good */
3884 buffer_info->skb = skb;
3885 skb = new_skb;
3887 /* else just continue with the old one */
3889 /* end copybreak code */
3890 skb_put(skb, length);
3892 /* Receive Checksum Offload */
3893 e1000_rx_checksum(adapter,
3894 (u32)(status) |
3895 ((u32)(rx_desc->errors) << 24),
3896 le16_to_cpu(rx_desc->csum), skb);
3898 skb->protocol = eth_type_trans(skb, netdev);
3900 e1000_receive_skb(adapter, status, rx_desc->special, skb);
3902 next_desc:
3903 rx_desc->status = 0;
3905 /* return some buffers to hardware, one at a time is too slow */
3906 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3907 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3908 cleaned_count = 0;
3911 /* use prefetched values */
3912 rx_desc = next_rxd;
3913 buffer_info = next_buffer;
3915 rx_ring->next_to_clean = i;
3917 cleaned_count = E1000_DESC_UNUSED(rx_ring);
3918 if (cleaned_count)
3919 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3921 adapter->total_rx_packets += total_rx_packets;
3922 adapter->total_rx_bytes += total_rx_bytes;
3923 netdev->stats.rx_bytes += total_rx_bytes;
3924 netdev->stats.rx_packets += total_rx_packets;
3925 return cleaned;
3929 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
3930 * @adapter: address of board private structure
3931 * @rx_ring: pointer to receive ring structure
3932 * @cleaned_count: number of buffers to allocate this pass
3935 static void
3936 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
3937 struct e1000_rx_ring *rx_ring, int cleaned_count)
3939 struct net_device *netdev = adapter->netdev;
3940 struct pci_dev *pdev = adapter->pdev;
3941 struct e1000_rx_desc *rx_desc;
3942 struct e1000_buffer *buffer_info;
3943 struct sk_buff *skb;
3944 unsigned int i;
3945 unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
3947 i = rx_ring->next_to_use;
3948 buffer_info = &rx_ring->buffer_info[i];
3950 while (cleaned_count--) {
3951 skb = buffer_info->skb;
3952 if (skb) {
3953 skb_trim(skb, 0);
3954 goto check_page;
3957 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
3958 if (unlikely(!skb)) {
3959 /* Better luck next round */
3960 adapter->alloc_rx_buff_failed++;
3961 break;
3964 /* Fix for errata 23, can't cross 64kB boundary */
3965 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3966 struct sk_buff *oldskb = skb;
3967 DPRINTK(PROBE, ERR, "skb align check failed: %u bytes "
3968 "at %p\n", bufsz, skb->data);
3969 /* Try again, without freeing the previous */
3970 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
3971 /* Failed allocation, critical failure */
3972 if (!skb) {
3973 dev_kfree_skb(oldskb);
3974 adapter->alloc_rx_buff_failed++;
3975 break;
3978 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3979 /* give up */
3980 dev_kfree_skb(skb);
3981 dev_kfree_skb(oldskb);
3982 break; /* while (cleaned_count--) */
3985 /* Use new allocation */
3986 dev_kfree_skb(oldskb);
3988 buffer_info->skb = skb;
3989 buffer_info->length = adapter->rx_buffer_len;
3990 check_page:
3991 /* allocate a new page if necessary */
3992 if (!buffer_info->page) {
3993 buffer_info->page = alloc_page(GFP_ATOMIC);
3994 if (unlikely(!buffer_info->page)) {
3995 adapter->alloc_rx_buff_failed++;
3996 break;
4000 if (!buffer_info->dma) {
4001 buffer_info->dma = pci_map_page(pdev,
4002 buffer_info->page, 0,
4003 buffer_info->length,
4004 PCI_DMA_FROMDEVICE);
4005 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
4006 put_page(buffer_info->page);
4007 dev_kfree_skb(skb);
4008 buffer_info->page = NULL;
4009 buffer_info->skb = NULL;
4010 buffer_info->dma = 0;
4011 adapter->alloc_rx_buff_failed++;
4012 break; /* while !buffer_info->skb */
4016 rx_desc = E1000_RX_DESC(*rx_ring, i);
4017 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4019 if (unlikely(++i == rx_ring->count))
4020 i = 0;
4021 buffer_info = &rx_ring->buffer_info[i];
4024 if (likely(rx_ring->next_to_use != i)) {
4025 rx_ring->next_to_use = i;
4026 if (unlikely(i-- == 0))
4027 i = (rx_ring->count - 1);
4029 /* Force memory writes to complete before letting h/w
4030 * know there are new descriptors to fetch. (Only
4031 * applicable for weak-ordered memory model archs,
4032 * such as IA-64). */
4033 wmb();
4034 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4039 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4040 * @adapter: address of board private structure
4043 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4044 struct e1000_rx_ring *rx_ring,
4045 int cleaned_count)
4047 struct e1000_hw *hw = &adapter->hw;
4048 struct net_device *netdev = adapter->netdev;
4049 struct pci_dev *pdev = adapter->pdev;
4050 struct e1000_rx_desc *rx_desc;
4051 struct e1000_buffer *buffer_info;
4052 struct sk_buff *skb;
4053 unsigned int i;
4054 unsigned int bufsz = adapter->rx_buffer_len;
4056 i = rx_ring->next_to_use;
4057 buffer_info = &rx_ring->buffer_info[i];
4059 while (cleaned_count--) {
4060 skb = buffer_info->skb;
4061 if (skb) {
4062 skb_trim(skb, 0);
4063 goto map_skb;
4066 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4067 if (unlikely(!skb)) {
4068 /* Better luck next round */
4069 adapter->alloc_rx_buff_failed++;
4070 break;
4073 /* Fix for errata 23, can't cross 64kB boundary */
4074 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4075 struct sk_buff *oldskb = skb;
4076 DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4077 "at %p\n", bufsz, skb->data);
4078 /* Try again, without freeing the previous */
4079 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4080 /* Failed allocation, critical failure */
4081 if (!skb) {
4082 dev_kfree_skb(oldskb);
4083 adapter->alloc_rx_buff_failed++;
4084 break;
4087 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4088 /* give up */
4089 dev_kfree_skb(skb);
4090 dev_kfree_skb(oldskb);
4091 adapter->alloc_rx_buff_failed++;
4092 break; /* while !buffer_info->skb */
4095 /* Use new allocation */
4096 dev_kfree_skb(oldskb);
4098 buffer_info->skb = skb;
4099 buffer_info->length = adapter->rx_buffer_len;
4100 map_skb:
4101 buffer_info->dma = pci_map_single(pdev,
4102 skb->data,
4103 buffer_info->length,
4104 PCI_DMA_FROMDEVICE);
4105 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
4106 dev_kfree_skb(skb);
4107 buffer_info->skb = NULL;
4108 buffer_info->dma = 0;
4109 adapter->alloc_rx_buff_failed++;
4110 break; /* while !buffer_info->skb */
4114 * XXX if it was allocated cleanly it will never map to a
4115 * boundary crossing
4118 /* Fix for errata 23, can't cross 64kB boundary */
4119 if (!e1000_check_64k_bound(adapter,
4120 (void *)(unsigned long)buffer_info->dma,
4121 adapter->rx_buffer_len)) {
4122 DPRINTK(RX_ERR, ERR,
4123 "dma align check failed: %u bytes at %p\n",
4124 adapter->rx_buffer_len,
4125 (void *)(unsigned long)buffer_info->dma);
4126 dev_kfree_skb(skb);
4127 buffer_info->skb = NULL;
4129 pci_unmap_single(pdev, buffer_info->dma,
4130 adapter->rx_buffer_len,
4131 PCI_DMA_FROMDEVICE);
4132 buffer_info->dma = 0;
4134 adapter->alloc_rx_buff_failed++;
4135 break; /* while !buffer_info->skb */
4137 rx_desc = E1000_RX_DESC(*rx_ring, i);
4138 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4140 if (unlikely(++i == rx_ring->count))
4141 i = 0;
4142 buffer_info = &rx_ring->buffer_info[i];
4145 if (likely(rx_ring->next_to_use != i)) {
4146 rx_ring->next_to_use = i;
4147 if (unlikely(i-- == 0))
4148 i = (rx_ring->count - 1);
4150 /* Force memory writes to complete before letting h/w
4151 * know there are new descriptors to fetch. (Only
4152 * applicable for weak-ordered memory model archs,
4153 * such as IA-64). */
4154 wmb();
4155 writel(i, hw->hw_addr + rx_ring->rdt);
4160 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4161 * @adapter:
4164 static void e1000_smartspeed(struct e1000_adapter *adapter)
4166 struct e1000_hw *hw = &adapter->hw;
4167 u16 phy_status;
4168 u16 phy_ctrl;
4170 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4171 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4172 return;
4174 if (adapter->smartspeed == 0) {
4175 /* If Master/Slave config fault is asserted twice,
4176 * we assume back-to-back */
4177 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4178 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4179 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4180 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4181 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4182 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4183 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4184 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4185 phy_ctrl);
4186 adapter->smartspeed++;
4187 if (!e1000_phy_setup_autoneg(hw) &&
4188 !e1000_read_phy_reg(hw, PHY_CTRL,
4189 &phy_ctrl)) {
4190 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4191 MII_CR_RESTART_AUTO_NEG);
4192 e1000_write_phy_reg(hw, PHY_CTRL,
4193 phy_ctrl);
4196 return;
4197 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4198 /* If still no link, perhaps using 2/3 pair cable */
4199 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4200 phy_ctrl |= CR_1000T_MS_ENABLE;
4201 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4202 if (!e1000_phy_setup_autoneg(hw) &&
4203 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4204 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4205 MII_CR_RESTART_AUTO_NEG);
4206 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4209 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4210 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4211 adapter->smartspeed = 0;
4215 * e1000_ioctl -
4216 * @netdev:
4217 * @ifreq:
4218 * @cmd:
4221 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4223 switch (cmd) {
4224 case SIOCGMIIPHY:
4225 case SIOCGMIIREG:
4226 case SIOCSMIIREG:
4227 return e1000_mii_ioctl(netdev, ifr, cmd);
4228 default:
4229 return -EOPNOTSUPP;
4234 * e1000_mii_ioctl -
4235 * @netdev:
4236 * @ifreq:
4237 * @cmd:
4240 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4241 int cmd)
4243 struct e1000_adapter *adapter = netdev_priv(netdev);
4244 struct e1000_hw *hw = &adapter->hw;
4245 struct mii_ioctl_data *data = if_mii(ifr);
4246 int retval;
4247 u16 mii_reg;
4248 u16 spddplx;
4249 unsigned long flags;
4251 if (hw->media_type != e1000_media_type_copper)
4252 return -EOPNOTSUPP;
4254 switch (cmd) {
4255 case SIOCGMIIPHY:
4256 data->phy_id = hw->phy_addr;
4257 break;
4258 case SIOCGMIIREG:
4259 spin_lock_irqsave(&adapter->stats_lock, flags);
4260 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4261 &data->val_out)) {
4262 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4263 return -EIO;
4265 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4266 break;
4267 case SIOCSMIIREG:
4268 if (data->reg_num & ~(0x1F))
4269 return -EFAULT;
4270 mii_reg = data->val_in;
4271 spin_lock_irqsave(&adapter->stats_lock, flags);
4272 if (e1000_write_phy_reg(hw, data->reg_num,
4273 mii_reg)) {
4274 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4275 return -EIO;
4277 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4278 if (hw->media_type == e1000_media_type_copper) {
4279 switch (data->reg_num) {
4280 case PHY_CTRL:
4281 if (mii_reg & MII_CR_POWER_DOWN)
4282 break;
4283 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4284 hw->autoneg = 1;
4285 hw->autoneg_advertised = 0x2F;
4286 } else {
4287 if (mii_reg & 0x40)
4288 spddplx = SPEED_1000;
4289 else if (mii_reg & 0x2000)
4290 spddplx = SPEED_100;
4291 else
4292 spddplx = SPEED_10;
4293 spddplx += (mii_reg & 0x100)
4294 ? DUPLEX_FULL :
4295 DUPLEX_HALF;
4296 retval = e1000_set_spd_dplx(adapter,
4297 spddplx);
4298 if (retval)
4299 return retval;
4301 if (netif_running(adapter->netdev))
4302 e1000_reinit_locked(adapter);
4303 else
4304 e1000_reset(adapter);
4305 break;
4306 case M88E1000_PHY_SPEC_CTRL:
4307 case M88E1000_EXT_PHY_SPEC_CTRL:
4308 if (e1000_phy_reset(hw))
4309 return -EIO;
4310 break;
4312 } else {
4313 switch (data->reg_num) {
4314 case PHY_CTRL:
4315 if (mii_reg & MII_CR_POWER_DOWN)
4316 break;
4317 if (netif_running(adapter->netdev))
4318 e1000_reinit_locked(adapter);
4319 else
4320 e1000_reset(adapter);
4321 break;
4324 break;
4325 default:
4326 return -EOPNOTSUPP;
4328 return E1000_SUCCESS;
4331 void e1000_pci_set_mwi(struct e1000_hw *hw)
4333 struct e1000_adapter *adapter = hw->back;
4334 int ret_val = pci_set_mwi(adapter->pdev);
4336 if (ret_val)
4337 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4340 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4342 struct e1000_adapter *adapter = hw->back;
4344 pci_clear_mwi(adapter->pdev);
4347 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4349 struct e1000_adapter *adapter = hw->back;
4350 return pcix_get_mmrbc(adapter->pdev);
4353 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4355 struct e1000_adapter *adapter = hw->back;
4356 pcix_set_mmrbc(adapter->pdev, mmrbc);
4359 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4361 outl(value, port);
4364 static void e1000_vlan_rx_register(struct net_device *netdev,
4365 struct vlan_group *grp)
4367 struct e1000_adapter *adapter = netdev_priv(netdev);
4368 struct e1000_hw *hw = &adapter->hw;
4369 u32 ctrl, rctl;
4371 if (!test_bit(__E1000_DOWN, &adapter->flags))
4372 e1000_irq_disable(adapter);
4373 adapter->vlgrp = grp;
4375 if (grp) {
4376 /* enable VLAN tag insert/strip */
4377 ctrl = er32(CTRL);
4378 ctrl |= E1000_CTRL_VME;
4379 ew32(CTRL, ctrl);
4381 /* enable VLAN receive filtering */
4382 rctl = er32(RCTL);
4383 rctl &= ~E1000_RCTL_CFIEN;
4384 if (!(netdev->flags & IFF_PROMISC))
4385 rctl |= E1000_RCTL_VFE;
4386 ew32(RCTL, rctl);
4387 e1000_update_mng_vlan(adapter);
4388 } else {
4389 /* disable VLAN tag insert/strip */
4390 ctrl = er32(CTRL);
4391 ctrl &= ~E1000_CTRL_VME;
4392 ew32(CTRL, ctrl);
4394 /* disable VLAN receive filtering */
4395 rctl = er32(RCTL);
4396 rctl &= ~E1000_RCTL_VFE;
4397 ew32(RCTL, rctl);
4399 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
4400 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4401 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4405 if (!test_bit(__E1000_DOWN, &adapter->flags))
4406 e1000_irq_enable(adapter);
4409 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4411 struct e1000_adapter *adapter = netdev_priv(netdev);
4412 struct e1000_hw *hw = &adapter->hw;
4413 u32 vfta, index;
4415 if ((hw->mng_cookie.status &
4416 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4417 (vid == adapter->mng_vlan_id))
4418 return;
4419 /* add VID to filter table */
4420 index = (vid >> 5) & 0x7F;
4421 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4422 vfta |= (1 << (vid & 0x1F));
4423 e1000_write_vfta(hw, index, vfta);
4426 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4428 struct e1000_adapter *adapter = netdev_priv(netdev);
4429 struct e1000_hw *hw = &adapter->hw;
4430 u32 vfta, index;
4432 if (!test_bit(__E1000_DOWN, &adapter->flags))
4433 e1000_irq_disable(adapter);
4434 vlan_group_set_device(adapter->vlgrp, vid, NULL);
4435 if (!test_bit(__E1000_DOWN, &adapter->flags))
4436 e1000_irq_enable(adapter);
4438 /* remove VID from filter table */
4439 index = (vid >> 5) & 0x7F;
4440 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4441 vfta &= ~(1 << (vid & 0x1F));
4442 e1000_write_vfta(hw, index, vfta);
4445 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4447 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4449 if (adapter->vlgrp) {
4450 u16 vid;
4451 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4452 if (!vlan_group_get_device(adapter->vlgrp, vid))
4453 continue;
4454 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4459 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
4461 struct e1000_hw *hw = &adapter->hw;
4463 hw->autoneg = 0;
4465 /* Fiber NICs only allow 1000 gbps Full duplex */
4466 if ((hw->media_type == e1000_media_type_fiber) &&
4467 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4468 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4469 return -EINVAL;
4472 switch (spddplx) {
4473 case SPEED_10 + DUPLEX_HALF:
4474 hw->forced_speed_duplex = e1000_10_half;
4475 break;
4476 case SPEED_10 + DUPLEX_FULL:
4477 hw->forced_speed_duplex = e1000_10_full;
4478 break;
4479 case SPEED_100 + DUPLEX_HALF:
4480 hw->forced_speed_duplex = e1000_100_half;
4481 break;
4482 case SPEED_100 + DUPLEX_FULL:
4483 hw->forced_speed_duplex = e1000_100_full;
4484 break;
4485 case SPEED_1000 + DUPLEX_FULL:
4486 hw->autoneg = 1;
4487 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4488 break;
4489 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4490 default:
4491 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4492 return -EINVAL;
4494 return 0;
4497 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4499 struct net_device *netdev = pci_get_drvdata(pdev);
4500 struct e1000_adapter *adapter = netdev_priv(netdev);
4501 struct e1000_hw *hw = &adapter->hw;
4502 u32 ctrl, ctrl_ext, rctl, status;
4503 u32 wufc = adapter->wol;
4504 #ifdef CONFIG_PM
4505 int retval = 0;
4506 #endif
4508 netif_device_detach(netdev);
4510 if (netif_running(netdev)) {
4511 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4512 e1000_down(adapter);
4515 #ifdef CONFIG_PM
4516 retval = pci_save_state(pdev);
4517 if (retval)
4518 return retval;
4519 #endif
4521 status = er32(STATUS);
4522 if (status & E1000_STATUS_LU)
4523 wufc &= ~E1000_WUFC_LNKC;
4525 if (wufc) {
4526 e1000_setup_rctl(adapter);
4527 e1000_set_rx_mode(netdev);
4529 /* turn on all-multi mode if wake on multicast is enabled */
4530 if (wufc & E1000_WUFC_MC) {
4531 rctl = er32(RCTL);
4532 rctl |= E1000_RCTL_MPE;
4533 ew32(RCTL, rctl);
4536 if (hw->mac_type >= e1000_82540) {
4537 ctrl = er32(CTRL);
4538 /* advertise wake from D3Cold */
4539 #define E1000_CTRL_ADVD3WUC 0x00100000
4540 /* phy power management enable */
4541 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4542 ctrl |= E1000_CTRL_ADVD3WUC |
4543 E1000_CTRL_EN_PHY_PWR_MGMT;
4544 ew32(CTRL, ctrl);
4547 if (hw->media_type == e1000_media_type_fiber ||
4548 hw->media_type == e1000_media_type_internal_serdes) {
4549 /* keep the laser running in D3 */
4550 ctrl_ext = er32(CTRL_EXT);
4551 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4552 ew32(CTRL_EXT, ctrl_ext);
4555 ew32(WUC, E1000_WUC_PME_EN);
4556 ew32(WUFC, wufc);
4557 } else {
4558 ew32(WUC, 0);
4559 ew32(WUFC, 0);
4562 e1000_release_manageability(adapter);
4564 *enable_wake = !!wufc;
4566 /* make sure adapter isn't asleep if manageability is enabled */
4567 if (adapter->en_mng_pt)
4568 *enable_wake = true;
4570 if (netif_running(netdev))
4571 e1000_free_irq(adapter);
4573 pci_disable_device(pdev);
4575 return 0;
4578 #ifdef CONFIG_PM
4579 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4581 int retval;
4582 bool wake;
4584 retval = __e1000_shutdown(pdev, &wake);
4585 if (retval)
4586 return retval;
4588 if (wake) {
4589 pci_prepare_to_sleep(pdev);
4590 } else {
4591 pci_wake_from_d3(pdev, false);
4592 pci_set_power_state(pdev, PCI_D3hot);
4595 return 0;
4598 static int e1000_resume(struct pci_dev *pdev)
4600 struct net_device *netdev = pci_get_drvdata(pdev);
4601 struct e1000_adapter *adapter = netdev_priv(netdev);
4602 struct e1000_hw *hw = &adapter->hw;
4603 u32 err;
4605 pci_set_power_state(pdev, PCI_D0);
4606 pci_restore_state(pdev);
4607 pci_save_state(pdev);
4609 if (adapter->need_ioport)
4610 err = pci_enable_device(pdev);
4611 else
4612 err = pci_enable_device_mem(pdev);
4613 if (err) {
4614 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
4615 return err;
4617 pci_set_master(pdev);
4619 pci_enable_wake(pdev, PCI_D3hot, 0);
4620 pci_enable_wake(pdev, PCI_D3cold, 0);
4622 if (netif_running(netdev)) {
4623 err = e1000_request_irq(adapter);
4624 if (err)
4625 return err;
4628 e1000_power_up_phy(adapter);
4629 e1000_reset(adapter);
4630 ew32(WUS, ~0);
4632 e1000_init_manageability(adapter);
4634 if (netif_running(netdev))
4635 e1000_up(adapter);
4637 netif_device_attach(netdev);
4639 return 0;
4641 #endif
4643 static void e1000_shutdown(struct pci_dev *pdev)
4645 bool wake;
4647 __e1000_shutdown(pdev, &wake);
4649 if (system_state == SYSTEM_POWER_OFF) {
4650 pci_wake_from_d3(pdev, wake);
4651 pci_set_power_state(pdev, PCI_D3hot);
4655 #ifdef CONFIG_NET_POLL_CONTROLLER
4657 * Polling 'interrupt' - used by things like netconsole to send skbs
4658 * without having to re-enable interrupts. It's not called while
4659 * the interrupt routine is executing.
4661 static void e1000_netpoll(struct net_device *netdev)
4663 struct e1000_adapter *adapter = netdev_priv(netdev);
4665 disable_irq(adapter->pdev->irq);
4666 e1000_intr(adapter->pdev->irq, netdev);
4667 enable_irq(adapter->pdev->irq);
4669 #endif
4672 * e1000_io_error_detected - called when PCI error is detected
4673 * @pdev: Pointer to PCI device
4674 * @state: The current pci connection state
4676 * This function is called after a PCI bus error affecting
4677 * this device has been detected.
4679 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4680 pci_channel_state_t state)
4682 struct net_device *netdev = pci_get_drvdata(pdev);
4683 struct e1000_adapter *adapter = netdev_priv(netdev);
4685 netif_device_detach(netdev);
4687 if (state == pci_channel_io_perm_failure)
4688 return PCI_ERS_RESULT_DISCONNECT;
4690 if (netif_running(netdev))
4691 e1000_down(adapter);
4692 pci_disable_device(pdev);
4694 /* Request a slot slot reset. */
4695 return PCI_ERS_RESULT_NEED_RESET;
4699 * e1000_io_slot_reset - called after the pci bus has been reset.
4700 * @pdev: Pointer to PCI device
4702 * Restart the card from scratch, as if from a cold-boot. Implementation
4703 * resembles the first-half of the e1000_resume routine.
4705 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4707 struct net_device *netdev = pci_get_drvdata(pdev);
4708 struct e1000_adapter *adapter = netdev_priv(netdev);
4709 struct e1000_hw *hw = &adapter->hw;
4710 int err;
4712 if (adapter->need_ioport)
4713 err = pci_enable_device(pdev);
4714 else
4715 err = pci_enable_device_mem(pdev);
4716 if (err) {
4717 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4718 return PCI_ERS_RESULT_DISCONNECT;
4720 pci_set_master(pdev);
4722 pci_enable_wake(pdev, PCI_D3hot, 0);
4723 pci_enable_wake(pdev, PCI_D3cold, 0);
4725 e1000_reset(adapter);
4726 ew32(WUS, ~0);
4728 return PCI_ERS_RESULT_RECOVERED;
4732 * e1000_io_resume - called when traffic can start flowing again.
4733 * @pdev: Pointer to PCI device
4735 * This callback is called when the error recovery driver tells us that
4736 * its OK to resume normal operation. Implementation resembles the
4737 * second-half of the e1000_resume routine.
4739 static void e1000_io_resume(struct pci_dev *pdev)
4741 struct net_device *netdev = pci_get_drvdata(pdev);
4742 struct e1000_adapter *adapter = netdev_priv(netdev);
4744 e1000_init_manageability(adapter);
4746 if (netif_running(netdev)) {
4747 if (e1000_up(adapter)) {
4748 printk("e1000: can't bring device back up after reset\n");
4749 return;
4753 netif_device_attach(netdev);
4756 /* e1000_main.c */