Staging: dream: camera: msm_camera: fix coding style issues
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / page_alloc.c
blob8deb9d0fd5b1781cac582487fbbb11bb28129b0b
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
51 #include <linux/memory.h>
52 #include <trace/events/kmem.h>
54 #include <asm/tlbflush.h>
55 #include <asm/div64.h>
56 #include "internal.h"
59 * Array of node states.
61 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
62 [N_POSSIBLE] = NODE_MASK_ALL,
63 [N_ONLINE] = { { [0] = 1UL } },
64 #ifndef CONFIG_NUMA
65 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
66 #ifdef CONFIG_HIGHMEM
67 [N_HIGH_MEMORY] = { { [0] = 1UL } },
68 #endif
69 [N_CPU] = { { [0] = 1UL } },
70 #endif /* NUMA */
72 EXPORT_SYMBOL(node_states);
74 unsigned long totalram_pages __read_mostly;
75 unsigned long totalreserve_pages __read_mostly;
76 int percpu_pagelist_fraction;
77 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
79 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
80 int pageblock_order __read_mostly;
81 #endif
83 static void __free_pages_ok(struct page *page, unsigned int order);
86 * results with 256, 32 in the lowmem_reserve sysctl:
87 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
88 * 1G machine -> (16M dma, 784M normal, 224M high)
89 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
90 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
91 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
93 * TBD: should special case ZONE_DMA32 machines here - in those we normally
94 * don't need any ZONE_NORMAL reservation
96 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
97 #ifdef CONFIG_ZONE_DMA
98 256,
99 #endif
100 #ifdef CONFIG_ZONE_DMA32
101 256,
102 #endif
103 #ifdef CONFIG_HIGHMEM
105 #endif
109 EXPORT_SYMBOL(totalram_pages);
111 static char * const zone_names[MAX_NR_ZONES] = {
112 #ifdef CONFIG_ZONE_DMA
113 "DMA",
114 #endif
115 #ifdef CONFIG_ZONE_DMA32
116 "DMA32",
117 #endif
118 "Normal",
119 #ifdef CONFIG_HIGHMEM
120 "HighMem",
121 #endif
122 "Movable",
125 int min_free_kbytes = 1024;
127 static unsigned long __meminitdata nr_kernel_pages;
128 static unsigned long __meminitdata nr_all_pages;
129 static unsigned long __meminitdata dma_reserve;
131 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
133 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
134 * ranges of memory (RAM) that may be registered with add_active_range().
135 * Ranges passed to add_active_range() will be merged if possible
136 * so the number of times add_active_range() can be called is
137 * related to the number of nodes and the number of holes
139 #ifdef CONFIG_MAX_ACTIVE_REGIONS
140 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
141 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
142 #else
143 #if MAX_NUMNODES >= 32
144 /* If there can be many nodes, allow up to 50 holes per node */
145 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
146 #else
147 /* By default, allow up to 256 distinct regions */
148 #define MAX_ACTIVE_REGIONS 256
149 #endif
150 #endif
152 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
153 static int __meminitdata nr_nodemap_entries;
154 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
155 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
156 static unsigned long __initdata required_kernelcore;
157 static unsigned long __initdata required_movablecore;
158 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161 int movable_zone;
162 EXPORT_SYMBOL(movable_zone);
163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
165 #if MAX_NUMNODES > 1
166 int nr_node_ids __read_mostly = MAX_NUMNODES;
167 int nr_online_nodes __read_mostly = 1;
168 EXPORT_SYMBOL(nr_node_ids);
169 EXPORT_SYMBOL(nr_online_nodes);
170 #endif
172 int page_group_by_mobility_disabled __read_mostly;
174 static void set_pageblock_migratetype(struct page *page, int migratetype)
177 if (unlikely(page_group_by_mobility_disabled))
178 migratetype = MIGRATE_UNMOVABLE;
180 set_pageblock_flags_group(page, (unsigned long)migratetype,
181 PB_migrate, PB_migrate_end);
184 bool oom_killer_disabled __read_mostly;
186 #ifdef CONFIG_DEBUG_VM
187 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
189 int ret = 0;
190 unsigned seq;
191 unsigned long pfn = page_to_pfn(page);
193 do {
194 seq = zone_span_seqbegin(zone);
195 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
196 ret = 1;
197 else if (pfn < zone->zone_start_pfn)
198 ret = 1;
199 } while (zone_span_seqretry(zone, seq));
201 return ret;
204 static int page_is_consistent(struct zone *zone, struct page *page)
206 if (!pfn_valid_within(page_to_pfn(page)))
207 return 0;
208 if (zone != page_zone(page))
209 return 0;
211 return 1;
214 * Temporary debugging check for pages not lying within a given zone.
216 static int bad_range(struct zone *zone, struct page *page)
218 if (page_outside_zone_boundaries(zone, page))
219 return 1;
220 if (!page_is_consistent(zone, page))
221 return 1;
223 return 0;
225 #else
226 static inline int bad_range(struct zone *zone, struct page *page)
228 return 0;
230 #endif
232 static void bad_page(struct page *page)
234 static unsigned long resume;
235 static unsigned long nr_shown;
236 static unsigned long nr_unshown;
238 /* Don't complain about poisoned pages */
239 if (PageHWPoison(page)) {
240 __ClearPageBuddy(page);
241 return;
245 * Allow a burst of 60 reports, then keep quiet for that minute;
246 * or allow a steady drip of one report per second.
248 if (nr_shown == 60) {
249 if (time_before(jiffies, resume)) {
250 nr_unshown++;
251 goto out;
253 if (nr_unshown) {
254 printk(KERN_ALERT
255 "BUG: Bad page state: %lu messages suppressed\n",
256 nr_unshown);
257 nr_unshown = 0;
259 nr_shown = 0;
261 if (nr_shown++ == 0)
262 resume = jiffies + 60 * HZ;
264 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
265 current->comm, page_to_pfn(page));
266 printk(KERN_ALERT
267 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
268 page, (void *)page->flags, page_count(page),
269 page_mapcount(page), page->mapping, page->index);
271 dump_stack();
272 out:
273 /* Leave bad fields for debug, except PageBuddy could make trouble */
274 __ClearPageBuddy(page);
275 add_taint(TAINT_BAD_PAGE);
279 * Higher-order pages are called "compound pages". They are structured thusly:
281 * The first PAGE_SIZE page is called the "head page".
283 * The remaining PAGE_SIZE pages are called "tail pages".
285 * All pages have PG_compound set. All pages have their ->private pointing at
286 * the head page (even the head page has this).
288 * The first tail page's ->lru.next holds the address of the compound page's
289 * put_page() function. Its ->lru.prev holds the order of allocation.
290 * This usage means that zero-order pages may not be compound.
293 static void free_compound_page(struct page *page)
295 __free_pages_ok(page, compound_order(page));
298 void prep_compound_page(struct page *page, unsigned long order)
300 int i;
301 int nr_pages = 1 << order;
303 set_compound_page_dtor(page, free_compound_page);
304 set_compound_order(page, order);
305 __SetPageHead(page);
306 for (i = 1; i < nr_pages; i++) {
307 struct page *p = page + i;
309 __SetPageTail(p);
310 p->first_page = page;
314 static int destroy_compound_page(struct page *page, unsigned long order)
316 int i;
317 int nr_pages = 1 << order;
318 int bad = 0;
320 if (unlikely(compound_order(page) != order) ||
321 unlikely(!PageHead(page))) {
322 bad_page(page);
323 bad++;
326 __ClearPageHead(page);
328 for (i = 1; i < nr_pages; i++) {
329 struct page *p = page + i;
331 if (unlikely(!PageTail(p) || (p->first_page != page))) {
332 bad_page(page);
333 bad++;
335 __ClearPageTail(p);
338 return bad;
341 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
343 int i;
346 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
347 * and __GFP_HIGHMEM from hard or soft interrupt context.
349 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
350 for (i = 0; i < (1 << order); i++)
351 clear_highpage(page + i);
354 static inline void set_page_order(struct page *page, int order)
356 set_page_private(page, order);
357 __SetPageBuddy(page);
360 static inline void rmv_page_order(struct page *page)
362 __ClearPageBuddy(page);
363 set_page_private(page, 0);
367 * Locate the struct page for both the matching buddy in our
368 * pair (buddy1) and the combined O(n+1) page they form (page).
370 * 1) Any buddy B1 will have an order O twin B2 which satisfies
371 * the following equation:
372 * B2 = B1 ^ (1 << O)
373 * For example, if the starting buddy (buddy2) is #8 its order
374 * 1 buddy is #10:
375 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
377 * 2) Any buddy B will have an order O+1 parent P which
378 * satisfies the following equation:
379 * P = B & ~(1 << O)
381 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
383 static inline struct page *
384 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
386 unsigned long buddy_idx = page_idx ^ (1 << order);
388 return page + (buddy_idx - page_idx);
391 static inline unsigned long
392 __find_combined_index(unsigned long page_idx, unsigned int order)
394 return (page_idx & ~(1 << order));
398 * This function checks whether a page is free && is the buddy
399 * we can do coalesce a page and its buddy if
400 * (a) the buddy is not in a hole &&
401 * (b) the buddy is in the buddy system &&
402 * (c) a page and its buddy have the same order &&
403 * (d) a page and its buddy are in the same zone.
405 * For recording whether a page is in the buddy system, we use PG_buddy.
406 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
408 * For recording page's order, we use page_private(page).
410 static inline int page_is_buddy(struct page *page, struct page *buddy,
411 int order)
413 if (!pfn_valid_within(page_to_pfn(buddy)))
414 return 0;
416 if (page_zone_id(page) != page_zone_id(buddy))
417 return 0;
419 if (PageBuddy(buddy) && page_order(buddy) == order) {
420 VM_BUG_ON(page_count(buddy) != 0);
421 return 1;
423 return 0;
427 * Freeing function for a buddy system allocator.
429 * The concept of a buddy system is to maintain direct-mapped table
430 * (containing bit values) for memory blocks of various "orders".
431 * The bottom level table contains the map for the smallest allocatable
432 * units of memory (here, pages), and each level above it describes
433 * pairs of units from the levels below, hence, "buddies".
434 * At a high level, all that happens here is marking the table entry
435 * at the bottom level available, and propagating the changes upward
436 * as necessary, plus some accounting needed to play nicely with other
437 * parts of the VM system.
438 * At each level, we keep a list of pages, which are heads of continuous
439 * free pages of length of (1 << order) and marked with PG_buddy. Page's
440 * order is recorded in page_private(page) field.
441 * So when we are allocating or freeing one, we can derive the state of the
442 * other. That is, if we allocate a small block, and both were
443 * free, the remainder of the region must be split into blocks.
444 * If a block is freed, and its buddy is also free, then this
445 * triggers coalescing into a block of larger size.
447 * -- wli
450 static inline void __free_one_page(struct page *page,
451 struct zone *zone, unsigned int order,
452 int migratetype)
454 unsigned long page_idx;
456 if (unlikely(PageCompound(page)))
457 if (unlikely(destroy_compound_page(page, order)))
458 return;
460 VM_BUG_ON(migratetype == -1);
462 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
464 VM_BUG_ON(page_idx & ((1 << order) - 1));
465 VM_BUG_ON(bad_range(zone, page));
467 while (order < MAX_ORDER-1) {
468 unsigned long combined_idx;
469 struct page *buddy;
471 buddy = __page_find_buddy(page, page_idx, order);
472 if (!page_is_buddy(page, buddy, order))
473 break;
475 /* Our buddy is free, merge with it and move up one order. */
476 list_del(&buddy->lru);
477 zone->free_area[order].nr_free--;
478 rmv_page_order(buddy);
479 combined_idx = __find_combined_index(page_idx, order);
480 page = page + (combined_idx - page_idx);
481 page_idx = combined_idx;
482 order++;
484 set_page_order(page, order);
485 list_add(&page->lru,
486 &zone->free_area[order].free_list[migratetype]);
487 zone->free_area[order].nr_free++;
491 * free_page_mlock() -- clean up attempts to free and mlocked() page.
492 * Page should not be on lru, so no need to fix that up.
493 * free_pages_check() will verify...
495 static inline void free_page_mlock(struct page *page)
497 __dec_zone_page_state(page, NR_MLOCK);
498 __count_vm_event(UNEVICTABLE_MLOCKFREED);
501 static inline int free_pages_check(struct page *page)
503 if (unlikely(page_mapcount(page) |
504 (page->mapping != NULL) |
505 (atomic_read(&page->_count) != 0) |
506 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
507 bad_page(page);
508 return 1;
510 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
511 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
512 return 0;
516 * Frees a number of pages from the PCP lists
517 * Assumes all pages on list are in same zone, and of same order.
518 * count is the number of pages to free.
520 * If the zone was previously in an "all pages pinned" state then look to
521 * see if this freeing clears that state.
523 * And clear the zone's pages_scanned counter, to hold off the "all pages are
524 * pinned" detection logic.
526 static void free_pcppages_bulk(struct zone *zone, int count,
527 struct per_cpu_pages *pcp)
529 int migratetype = 0;
530 int batch_free = 0;
532 spin_lock(&zone->lock);
533 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
534 zone->pages_scanned = 0;
536 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
537 while (count) {
538 struct page *page;
539 struct list_head *list;
542 * Remove pages from lists in a round-robin fashion. A
543 * batch_free count is maintained that is incremented when an
544 * empty list is encountered. This is so more pages are freed
545 * off fuller lists instead of spinning excessively around empty
546 * lists
548 do {
549 batch_free++;
550 if (++migratetype == MIGRATE_PCPTYPES)
551 migratetype = 0;
552 list = &pcp->lists[migratetype];
553 } while (list_empty(list));
555 do {
556 page = list_entry(list->prev, struct page, lru);
557 /* must delete as __free_one_page list manipulates */
558 list_del(&page->lru);
559 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
560 __free_one_page(page, zone, 0, page_private(page));
561 trace_mm_page_pcpu_drain(page, 0, page_private(page));
562 } while (--count && --batch_free && !list_empty(list));
564 spin_unlock(&zone->lock);
567 static void free_one_page(struct zone *zone, struct page *page, int order,
568 int migratetype)
570 spin_lock(&zone->lock);
571 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
572 zone->pages_scanned = 0;
574 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
575 __free_one_page(page, zone, order, migratetype);
576 spin_unlock(&zone->lock);
579 static void __free_pages_ok(struct page *page, unsigned int order)
581 unsigned long flags;
582 int i;
583 int bad = 0;
584 int wasMlocked = __TestClearPageMlocked(page);
586 kmemcheck_free_shadow(page, order);
588 for (i = 0 ; i < (1 << order) ; ++i)
589 bad += free_pages_check(page + i);
590 if (bad)
591 return;
593 if (!PageHighMem(page)) {
594 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
595 debug_check_no_obj_freed(page_address(page),
596 PAGE_SIZE << order);
598 arch_free_page(page, order);
599 kernel_map_pages(page, 1 << order, 0);
601 local_irq_save(flags);
602 if (unlikely(wasMlocked))
603 free_page_mlock(page);
604 __count_vm_events(PGFREE, 1 << order);
605 free_one_page(page_zone(page), page, order,
606 get_pageblock_migratetype(page));
607 local_irq_restore(flags);
611 * permit the bootmem allocator to evade page validation on high-order frees
613 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
615 if (order == 0) {
616 __ClearPageReserved(page);
617 set_page_count(page, 0);
618 set_page_refcounted(page);
619 __free_page(page);
620 } else {
621 int loop;
623 prefetchw(page);
624 for (loop = 0; loop < BITS_PER_LONG; loop++) {
625 struct page *p = &page[loop];
627 if (loop + 1 < BITS_PER_LONG)
628 prefetchw(p + 1);
629 __ClearPageReserved(p);
630 set_page_count(p, 0);
633 set_page_refcounted(page);
634 __free_pages(page, order);
640 * The order of subdivision here is critical for the IO subsystem.
641 * Please do not alter this order without good reasons and regression
642 * testing. Specifically, as large blocks of memory are subdivided,
643 * the order in which smaller blocks are delivered depends on the order
644 * they're subdivided in this function. This is the primary factor
645 * influencing the order in which pages are delivered to the IO
646 * subsystem according to empirical testing, and this is also justified
647 * by considering the behavior of a buddy system containing a single
648 * large block of memory acted on by a series of small allocations.
649 * This behavior is a critical factor in sglist merging's success.
651 * -- wli
653 static inline void expand(struct zone *zone, struct page *page,
654 int low, int high, struct free_area *area,
655 int migratetype)
657 unsigned long size = 1 << high;
659 while (high > low) {
660 area--;
661 high--;
662 size >>= 1;
663 VM_BUG_ON(bad_range(zone, &page[size]));
664 list_add(&page[size].lru, &area->free_list[migratetype]);
665 area->nr_free++;
666 set_page_order(&page[size], high);
671 * This page is about to be returned from the page allocator
673 static inline int check_new_page(struct page *page)
675 if (unlikely(page_mapcount(page) |
676 (page->mapping != NULL) |
677 (atomic_read(&page->_count) != 0) |
678 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
679 bad_page(page);
680 return 1;
682 return 0;
685 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
687 int i;
689 for (i = 0; i < (1 << order); i++) {
690 struct page *p = page + i;
691 if (unlikely(check_new_page(p)))
692 return 1;
695 set_page_private(page, 0);
696 set_page_refcounted(page);
698 arch_alloc_page(page, order);
699 kernel_map_pages(page, 1 << order, 1);
701 if (gfp_flags & __GFP_ZERO)
702 prep_zero_page(page, order, gfp_flags);
704 if (order && (gfp_flags & __GFP_COMP))
705 prep_compound_page(page, order);
707 return 0;
711 * Go through the free lists for the given migratetype and remove
712 * the smallest available page from the freelists
714 static inline
715 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
716 int migratetype)
718 unsigned int current_order;
719 struct free_area * area;
720 struct page *page;
722 /* Find a page of the appropriate size in the preferred list */
723 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
724 area = &(zone->free_area[current_order]);
725 if (list_empty(&area->free_list[migratetype]))
726 continue;
728 page = list_entry(area->free_list[migratetype].next,
729 struct page, lru);
730 list_del(&page->lru);
731 rmv_page_order(page);
732 area->nr_free--;
733 expand(zone, page, order, current_order, area, migratetype);
734 return page;
737 return NULL;
742 * This array describes the order lists are fallen back to when
743 * the free lists for the desirable migrate type are depleted
745 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
746 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
747 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
748 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
749 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
753 * Move the free pages in a range to the free lists of the requested type.
754 * Note that start_page and end_pages are not aligned on a pageblock
755 * boundary. If alignment is required, use move_freepages_block()
757 static int move_freepages(struct zone *zone,
758 struct page *start_page, struct page *end_page,
759 int migratetype)
761 struct page *page;
762 unsigned long order;
763 int pages_moved = 0;
765 #ifndef CONFIG_HOLES_IN_ZONE
767 * page_zone is not safe to call in this context when
768 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
769 * anyway as we check zone boundaries in move_freepages_block().
770 * Remove at a later date when no bug reports exist related to
771 * grouping pages by mobility
773 BUG_ON(page_zone(start_page) != page_zone(end_page));
774 #endif
776 for (page = start_page; page <= end_page;) {
777 /* Make sure we are not inadvertently changing nodes */
778 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
780 if (!pfn_valid_within(page_to_pfn(page))) {
781 page++;
782 continue;
785 if (!PageBuddy(page)) {
786 page++;
787 continue;
790 order = page_order(page);
791 list_del(&page->lru);
792 list_add(&page->lru,
793 &zone->free_area[order].free_list[migratetype]);
794 page += 1 << order;
795 pages_moved += 1 << order;
798 return pages_moved;
801 static int move_freepages_block(struct zone *zone, struct page *page,
802 int migratetype)
804 unsigned long start_pfn, end_pfn;
805 struct page *start_page, *end_page;
807 start_pfn = page_to_pfn(page);
808 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
809 start_page = pfn_to_page(start_pfn);
810 end_page = start_page + pageblock_nr_pages - 1;
811 end_pfn = start_pfn + pageblock_nr_pages - 1;
813 /* Do not cross zone boundaries */
814 if (start_pfn < zone->zone_start_pfn)
815 start_page = page;
816 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
817 return 0;
819 return move_freepages(zone, start_page, end_page, migratetype);
822 static void change_pageblock_range(struct page *pageblock_page,
823 int start_order, int migratetype)
825 int nr_pageblocks = 1 << (start_order - pageblock_order);
827 while (nr_pageblocks--) {
828 set_pageblock_migratetype(pageblock_page, migratetype);
829 pageblock_page += pageblock_nr_pages;
833 /* Remove an element from the buddy allocator from the fallback list */
834 static inline struct page *
835 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
837 struct free_area * area;
838 int current_order;
839 struct page *page;
840 int migratetype, i;
842 /* Find the largest possible block of pages in the other list */
843 for (current_order = MAX_ORDER-1; current_order >= order;
844 --current_order) {
845 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
846 migratetype = fallbacks[start_migratetype][i];
848 /* MIGRATE_RESERVE handled later if necessary */
849 if (migratetype == MIGRATE_RESERVE)
850 continue;
852 area = &(zone->free_area[current_order]);
853 if (list_empty(&area->free_list[migratetype]))
854 continue;
856 page = list_entry(area->free_list[migratetype].next,
857 struct page, lru);
858 area->nr_free--;
861 * If breaking a large block of pages, move all free
862 * pages to the preferred allocation list. If falling
863 * back for a reclaimable kernel allocation, be more
864 * agressive about taking ownership of free pages
866 if (unlikely(current_order >= (pageblock_order >> 1)) ||
867 start_migratetype == MIGRATE_RECLAIMABLE ||
868 page_group_by_mobility_disabled) {
869 unsigned long pages;
870 pages = move_freepages_block(zone, page,
871 start_migratetype);
873 /* Claim the whole block if over half of it is free */
874 if (pages >= (1 << (pageblock_order-1)) ||
875 page_group_by_mobility_disabled)
876 set_pageblock_migratetype(page,
877 start_migratetype);
879 migratetype = start_migratetype;
882 /* Remove the page from the freelists */
883 list_del(&page->lru);
884 rmv_page_order(page);
886 /* Take ownership for orders >= pageblock_order */
887 if (current_order >= pageblock_order)
888 change_pageblock_range(page, current_order,
889 start_migratetype);
891 expand(zone, page, order, current_order, area, migratetype);
893 trace_mm_page_alloc_extfrag(page, order, current_order,
894 start_migratetype, migratetype);
896 return page;
900 return NULL;
904 * Do the hard work of removing an element from the buddy allocator.
905 * Call me with the zone->lock already held.
907 static struct page *__rmqueue(struct zone *zone, unsigned int order,
908 int migratetype)
910 struct page *page;
912 retry_reserve:
913 page = __rmqueue_smallest(zone, order, migratetype);
915 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
916 page = __rmqueue_fallback(zone, order, migratetype);
919 * Use MIGRATE_RESERVE rather than fail an allocation. goto
920 * is used because __rmqueue_smallest is an inline function
921 * and we want just one call site
923 if (!page) {
924 migratetype = MIGRATE_RESERVE;
925 goto retry_reserve;
929 trace_mm_page_alloc_zone_locked(page, order, migratetype);
930 return page;
934 * Obtain a specified number of elements from the buddy allocator, all under
935 * a single hold of the lock, for efficiency. Add them to the supplied list.
936 * Returns the number of new pages which were placed at *list.
938 static int rmqueue_bulk(struct zone *zone, unsigned int order,
939 unsigned long count, struct list_head *list,
940 int migratetype, int cold)
942 int i;
944 spin_lock(&zone->lock);
945 for (i = 0; i < count; ++i) {
946 struct page *page = __rmqueue(zone, order, migratetype);
947 if (unlikely(page == NULL))
948 break;
951 * Split buddy pages returned by expand() are received here
952 * in physical page order. The page is added to the callers and
953 * list and the list head then moves forward. From the callers
954 * perspective, the linked list is ordered by page number in
955 * some conditions. This is useful for IO devices that can
956 * merge IO requests if the physical pages are ordered
957 * properly.
959 if (likely(cold == 0))
960 list_add(&page->lru, list);
961 else
962 list_add_tail(&page->lru, list);
963 set_page_private(page, migratetype);
964 list = &page->lru;
966 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
967 spin_unlock(&zone->lock);
968 return i;
971 #ifdef CONFIG_NUMA
973 * Called from the vmstat counter updater to drain pagesets of this
974 * currently executing processor on remote nodes after they have
975 * expired.
977 * Note that this function must be called with the thread pinned to
978 * a single processor.
980 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
982 unsigned long flags;
983 int to_drain;
985 local_irq_save(flags);
986 if (pcp->count >= pcp->batch)
987 to_drain = pcp->batch;
988 else
989 to_drain = pcp->count;
990 free_pcppages_bulk(zone, to_drain, pcp);
991 pcp->count -= to_drain;
992 local_irq_restore(flags);
994 #endif
997 * Drain pages of the indicated processor.
999 * The processor must either be the current processor and the
1000 * thread pinned to the current processor or a processor that
1001 * is not online.
1003 static void drain_pages(unsigned int cpu)
1005 unsigned long flags;
1006 struct zone *zone;
1008 for_each_populated_zone(zone) {
1009 struct per_cpu_pageset *pset;
1010 struct per_cpu_pages *pcp;
1012 pset = zone_pcp(zone, cpu);
1014 pcp = &pset->pcp;
1015 local_irq_save(flags);
1016 free_pcppages_bulk(zone, pcp->count, pcp);
1017 pcp->count = 0;
1018 local_irq_restore(flags);
1023 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1025 void drain_local_pages(void *arg)
1027 drain_pages(smp_processor_id());
1031 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1033 void drain_all_pages(void)
1035 on_each_cpu(drain_local_pages, NULL, 1);
1038 #ifdef CONFIG_HIBERNATION
1040 void mark_free_pages(struct zone *zone)
1042 unsigned long pfn, max_zone_pfn;
1043 unsigned long flags;
1044 int order, t;
1045 struct list_head *curr;
1047 if (!zone->spanned_pages)
1048 return;
1050 spin_lock_irqsave(&zone->lock, flags);
1052 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1053 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1054 if (pfn_valid(pfn)) {
1055 struct page *page = pfn_to_page(pfn);
1057 if (!swsusp_page_is_forbidden(page))
1058 swsusp_unset_page_free(page);
1061 for_each_migratetype_order(order, t) {
1062 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1063 unsigned long i;
1065 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1066 for (i = 0; i < (1UL << order); i++)
1067 swsusp_set_page_free(pfn_to_page(pfn + i));
1070 spin_unlock_irqrestore(&zone->lock, flags);
1072 #endif /* CONFIG_PM */
1075 * Free a 0-order page
1077 static void free_hot_cold_page(struct page *page, int cold)
1079 struct zone *zone = page_zone(page);
1080 struct per_cpu_pages *pcp;
1081 unsigned long flags;
1082 int migratetype;
1083 int wasMlocked = __TestClearPageMlocked(page);
1085 kmemcheck_free_shadow(page, 0);
1087 if (PageAnon(page))
1088 page->mapping = NULL;
1089 if (free_pages_check(page))
1090 return;
1092 if (!PageHighMem(page)) {
1093 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1094 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1096 arch_free_page(page, 0);
1097 kernel_map_pages(page, 1, 0);
1099 pcp = &zone_pcp(zone, get_cpu())->pcp;
1100 migratetype = get_pageblock_migratetype(page);
1101 set_page_private(page, migratetype);
1102 local_irq_save(flags);
1103 if (unlikely(wasMlocked))
1104 free_page_mlock(page);
1105 __count_vm_event(PGFREE);
1108 * We only track unmovable, reclaimable and movable on pcp lists.
1109 * Free ISOLATE pages back to the allocator because they are being
1110 * offlined but treat RESERVE as movable pages so we can get those
1111 * areas back if necessary. Otherwise, we may have to free
1112 * excessively into the page allocator
1114 if (migratetype >= MIGRATE_PCPTYPES) {
1115 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1116 free_one_page(zone, page, 0, migratetype);
1117 goto out;
1119 migratetype = MIGRATE_MOVABLE;
1122 if (cold)
1123 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1124 else
1125 list_add(&page->lru, &pcp->lists[migratetype]);
1126 pcp->count++;
1127 if (pcp->count >= pcp->high) {
1128 free_pcppages_bulk(zone, pcp->batch, pcp);
1129 pcp->count -= pcp->batch;
1132 out:
1133 local_irq_restore(flags);
1134 put_cpu();
1137 void free_hot_page(struct page *page)
1139 trace_mm_page_free_direct(page, 0);
1140 free_hot_cold_page(page, 0);
1144 * split_page takes a non-compound higher-order page, and splits it into
1145 * n (1<<order) sub-pages: page[0..n]
1146 * Each sub-page must be freed individually.
1148 * Note: this is probably too low level an operation for use in drivers.
1149 * Please consult with lkml before using this in your driver.
1151 void split_page(struct page *page, unsigned int order)
1153 int i;
1155 VM_BUG_ON(PageCompound(page));
1156 VM_BUG_ON(!page_count(page));
1158 #ifdef CONFIG_KMEMCHECK
1160 * Split shadow pages too, because free(page[0]) would
1161 * otherwise free the whole shadow.
1163 if (kmemcheck_page_is_tracked(page))
1164 split_page(virt_to_page(page[0].shadow), order);
1165 #endif
1167 for (i = 1; i < (1 << order); i++)
1168 set_page_refcounted(page + i);
1172 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1173 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1174 * or two.
1176 static inline
1177 struct page *buffered_rmqueue(struct zone *preferred_zone,
1178 struct zone *zone, int order, gfp_t gfp_flags,
1179 int migratetype)
1181 unsigned long flags;
1182 struct page *page;
1183 int cold = !!(gfp_flags & __GFP_COLD);
1184 int cpu;
1186 again:
1187 cpu = get_cpu();
1188 if (likely(order == 0)) {
1189 struct per_cpu_pages *pcp;
1190 struct list_head *list;
1192 pcp = &zone_pcp(zone, cpu)->pcp;
1193 list = &pcp->lists[migratetype];
1194 local_irq_save(flags);
1195 if (list_empty(list)) {
1196 pcp->count += rmqueue_bulk(zone, 0,
1197 pcp->batch, list,
1198 migratetype, cold);
1199 if (unlikely(list_empty(list)))
1200 goto failed;
1203 if (cold)
1204 page = list_entry(list->prev, struct page, lru);
1205 else
1206 page = list_entry(list->next, struct page, lru);
1208 list_del(&page->lru);
1209 pcp->count--;
1210 } else {
1211 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1213 * __GFP_NOFAIL is not to be used in new code.
1215 * All __GFP_NOFAIL callers should be fixed so that they
1216 * properly detect and handle allocation failures.
1218 * We most definitely don't want callers attempting to
1219 * allocate greater than order-1 page units with
1220 * __GFP_NOFAIL.
1222 WARN_ON_ONCE(order > 1);
1224 spin_lock_irqsave(&zone->lock, flags);
1225 page = __rmqueue(zone, order, migratetype);
1226 spin_unlock(&zone->lock);
1227 if (!page)
1228 goto failed;
1229 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1232 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1233 zone_statistics(preferred_zone, zone);
1234 local_irq_restore(flags);
1235 put_cpu();
1237 VM_BUG_ON(bad_range(zone, page));
1238 if (prep_new_page(page, order, gfp_flags))
1239 goto again;
1240 return page;
1242 failed:
1243 local_irq_restore(flags);
1244 put_cpu();
1245 return NULL;
1248 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1249 #define ALLOC_WMARK_MIN WMARK_MIN
1250 #define ALLOC_WMARK_LOW WMARK_LOW
1251 #define ALLOC_WMARK_HIGH WMARK_HIGH
1252 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1254 /* Mask to get the watermark bits */
1255 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1257 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1258 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1259 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1261 #ifdef CONFIG_FAIL_PAGE_ALLOC
1263 static struct fail_page_alloc_attr {
1264 struct fault_attr attr;
1266 u32 ignore_gfp_highmem;
1267 u32 ignore_gfp_wait;
1268 u32 min_order;
1270 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1272 struct dentry *ignore_gfp_highmem_file;
1273 struct dentry *ignore_gfp_wait_file;
1274 struct dentry *min_order_file;
1276 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1278 } fail_page_alloc = {
1279 .attr = FAULT_ATTR_INITIALIZER,
1280 .ignore_gfp_wait = 1,
1281 .ignore_gfp_highmem = 1,
1282 .min_order = 1,
1285 static int __init setup_fail_page_alloc(char *str)
1287 return setup_fault_attr(&fail_page_alloc.attr, str);
1289 __setup("fail_page_alloc=", setup_fail_page_alloc);
1291 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1293 if (order < fail_page_alloc.min_order)
1294 return 0;
1295 if (gfp_mask & __GFP_NOFAIL)
1296 return 0;
1297 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1298 return 0;
1299 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1300 return 0;
1302 return should_fail(&fail_page_alloc.attr, 1 << order);
1305 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1307 static int __init fail_page_alloc_debugfs(void)
1309 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1310 struct dentry *dir;
1311 int err;
1313 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1314 "fail_page_alloc");
1315 if (err)
1316 return err;
1317 dir = fail_page_alloc.attr.dentries.dir;
1319 fail_page_alloc.ignore_gfp_wait_file =
1320 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1321 &fail_page_alloc.ignore_gfp_wait);
1323 fail_page_alloc.ignore_gfp_highmem_file =
1324 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1325 &fail_page_alloc.ignore_gfp_highmem);
1326 fail_page_alloc.min_order_file =
1327 debugfs_create_u32("min-order", mode, dir,
1328 &fail_page_alloc.min_order);
1330 if (!fail_page_alloc.ignore_gfp_wait_file ||
1331 !fail_page_alloc.ignore_gfp_highmem_file ||
1332 !fail_page_alloc.min_order_file) {
1333 err = -ENOMEM;
1334 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1335 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1336 debugfs_remove(fail_page_alloc.min_order_file);
1337 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1340 return err;
1343 late_initcall(fail_page_alloc_debugfs);
1345 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1347 #else /* CONFIG_FAIL_PAGE_ALLOC */
1349 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1351 return 0;
1354 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1357 * Return 1 if free pages are above 'mark'. This takes into account the order
1358 * of the allocation.
1360 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1361 int classzone_idx, int alloc_flags)
1363 /* free_pages my go negative - that's OK */
1364 long min = mark;
1365 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1366 int o;
1368 if (alloc_flags & ALLOC_HIGH)
1369 min -= min / 2;
1370 if (alloc_flags & ALLOC_HARDER)
1371 min -= min / 4;
1373 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1374 return 0;
1375 for (o = 0; o < order; o++) {
1376 /* At the next order, this order's pages become unavailable */
1377 free_pages -= z->free_area[o].nr_free << o;
1379 /* Require fewer higher order pages to be free */
1380 min >>= 1;
1382 if (free_pages <= min)
1383 return 0;
1385 return 1;
1388 #ifdef CONFIG_NUMA
1390 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1391 * skip over zones that are not allowed by the cpuset, or that have
1392 * been recently (in last second) found to be nearly full. See further
1393 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1394 * that have to skip over a lot of full or unallowed zones.
1396 * If the zonelist cache is present in the passed in zonelist, then
1397 * returns a pointer to the allowed node mask (either the current
1398 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1400 * If the zonelist cache is not available for this zonelist, does
1401 * nothing and returns NULL.
1403 * If the fullzones BITMAP in the zonelist cache is stale (more than
1404 * a second since last zap'd) then we zap it out (clear its bits.)
1406 * We hold off even calling zlc_setup, until after we've checked the
1407 * first zone in the zonelist, on the theory that most allocations will
1408 * be satisfied from that first zone, so best to examine that zone as
1409 * quickly as we can.
1411 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1413 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1414 nodemask_t *allowednodes; /* zonelist_cache approximation */
1416 zlc = zonelist->zlcache_ptr;
1417 if (!zlc)
1418 return NULL;
1420 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1421 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1422 zlc->last_full_zap = jiffies;
1425 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1426 &cpuset_current_mems_allowed :
1427 &node_states[N_HIGH_MEMORY];
1428 return allowednodes;
1432 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1433 * if it is worth looking at further for free memory:
1434 * 1) Check that the zone isn't thought to be full (doesn't have its
1435 * bit set in the zonelist_cache fullzones BITMAP).
1436 * 2) Check that the zones node (obtained from the zonelist_cache
1437 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1438 * Return true (non-zero) if zone is worth looking at further, or
1439 * else return false (zero) if it is not.
1441 * This check -ignores- the distinction between various watermarks,
1442 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1443 * found to be full for any variation of these watermarks, it will
1444 * be considered full for up to one second by all requests, unless
1445 * we are so low on memory on all allowed nodes that we are forced
1446 * into the second scan of the zonelist.
1448 * In the second scan we ignore this zonelist cache and exactly
1449 * apply the watermarks to all zones, even it is slower to do so.
1450 * We are low on memory in the second scan, and should leave no stone
1451 * unturned looking for a free page.
1453 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1454 nodemask_t *allowednodes)
1456 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1457 int i; /* index of *z in zonelist zones */
1458 int n; /* node that zone *z is on */
1460 zlc = zonelist->zlcache_ptr;
1461 if (!zlc)
1462 return 1;
1464 i = z - zonelist->_zonerefs;
1465 n = zlc->z_to_n[i];
1467 /* This zone is worth trying if it is allowed but not full */
1468 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1472 * Given 'z' scanning a zonelist, set the corresponding bit in
1473 * zlc->fullzones, so that subsequent attempts to allocate a page
1474 * from that zone don't waste time re-examining it.
1476 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1478 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1479 int i; /* index of *z in zonelist zones */
1481 zlc = zonelist->zlcache_ptr;
1482 if (!zlc)
1483 return;
1485 i = z - zonelist->_zonerefs;
1487 set_bit(i, zlc->fullzones);
1490 #else /* CONFIG_NUMA */
1492 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1494 return NULL;
1497 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1498 nodemask_t *allowednodes)
1500 return 1;
1503 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1506 #endif /* CONFIG_NUMA */
1509 * get_page_from_freelist goes through the zonelist trying to allocate
1510 * a page.
1512 static struct page *
1513 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1514 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1515 struct zone *preferred_zone, int migratetype)
1517 struct zoneref *z;
1518 struct page *page = NULL;
1519 int classzone_idx;
1520 struct zone *zone;
1521 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1522 int zlc_active = 0; /* set if using zonelist_cache */
1523 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1525 classzone_idx = zone_idx(preferred_zone);
1526 zonelist_scan:
1528 * Scan zonelist, looking for a zone with enough free.
1529 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1531 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1532 high_zoneidx, nodemask) {
1533 if (NUMA_BUILD && zlc_active &&
1534 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1535 continue;
1536 if ((alloc_flags & ALLOC_CPUSET) &&
1537 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1538 goto try_next_zone;
1540 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1541 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1542 unsigned long mark;
1543 int ret;
1545 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1546 if (zone_watermark_ok(zone, order, mark,
1547 classzone_idx, alloc_flags))
1548 goto try_this_zone;
1550 if (zone_reclaim_mode == 0)
1551 goto this_zone_full;
1553 ret = zone_reclaim(zone, gfp_mask, order);
1554 switch (ret) {
1555 case ZONE_RECLAIM_NOSCAN:
1556 /* did not scan */
1557 goto try_next_zone;
1558 case ZONE_RECLAIM_FULL:
1559 /* scanned but unreclaimable */
1560 goto this_zone_full;
1561 default:
1562 /* did we reclaim enough */
1563 if (!zone_watermark_ok(zone, order, mark,
1564 classzone_idx, alloc_flags))
1565 goto this_zone_full;
1569 try_this_zone:
1570 page = buffered_rmqueue(preferred_zone, zone, order,
1571 gfp_mask, migratetype);
1572 if (page)
1573 break;
1574 this_zone_full:
1575 if (NUMA_BUILD)
1576 zlc_mark_zone_full(zonelist, z);
1577 try_next_zone:
1578 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1580 * we do zlc_setup after the first zone is tried but only
1581 * if there are multiple nodes make it worthwhile
1583 allowednodes = zlc_setup(zonelist, alloc_flags);
1584 zlc_active = 1;
1585 did_zlc_setup = 1;
1589 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1590 /* Disable zlc cache for second zonelist scan */
1591 zlc_active = 0;
1592 goto zonelist_scan;
1594 return page;
1597 static inline int
1598 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1599 unsigned long pages_reclaimed)
1601 /* Do not loop if specifically requested */
1602 if (gfp_mask & __GFP_NORETRY)
1603 return 0;
1606 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1607 * means __GFP_NOFAIL, but that may not be true in other
1608 * implementations.
1610 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1611 return 1;
1614 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1615 * specified, then we retry until we no longer reclaim any pages
1616 * (above), or we've reclaimed an order of pages at least as
1617 * large as the allocation's order. In both cases, if the
1618 * allocation still fails, we stop retrying.
1620 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1621 return 1;
1624 * Don't let big-order allocations loop unless the caller
1625 * explicitly requests that.
1627 if (gfp_mask & __GFP_NOFAIL)
1628 return 1;
1630 return 0;
1633 static inline struct page *
1634 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1635 struct zonelist *zonelist, enum zone_type high_zoneidx,
1636 nodemask_t *nodemask, struct zone *preferred_zone,
1637 int migratetype)
1639 struct page *page;
1641 /* Acquire the OOM killer lock for the zones in zonelist */
1642 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1643 schedule_timeout_uninterruptible(1);
1644 return NULL;
1648 * Go through the zonelist yet one more time, keep very high watermark
1649 * here, this is only to catch a parallel oom killing, we must fail if
1650 * we're still under heavy pressure.
1652 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1653 order, zonelist, high_zoneidx,
1654 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1655 preferred_zone, migratetype);
1656 if (page)
1657 goto out;
1659 if (!(gfp_mask & __GFP_NOFAIL)) {
1660 /* The OOM killer will not help higher order allocs */
1661 if (order > PAGE_ALLOC_COSTLY_ORDER)
1662 goto out;
1664 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1665 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1666 * The caller should handle page allocation failure by itself if
1667 * it specifies __GFP_THISNODE.
1668 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1670 if (gfp_mask & __GFP_THISNODE)
1671 goto out;
1673 /* Exhausted what can be done so it's blamo time */
1674 out_of_memory(zonelist, gfp_mask, order, nodemask);
1676 out:
1677 clear_zonelist_oom(zonelist, gfp_mask);
1678 return page;
1681 /* The really slow allocator path where we enter direct reclaim */
1682 static inline struct page *
1683 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1684 struct zonelist *zonelist, enum zone_type high_zoneidx,
1685 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1686 int migratetype, unsigned long *did_some_progress)
1688 struct page *page = NULL;
1689 struct reclaim_state reclaim_state;
1690 struct task_struct *p = current;
1692 cond_resched();
1694 /* We now go into synchronous reclaim */
1695 cpuset_memory_pressure_bump();
1696 p->flags |= PF_MEMALLOC;
1697 lockdep_set_current_reclaim_state(gfp_mask);
1698 reclaim_state.reclaimed_slab = 0;
1699 p->reclaim_state = &reclaim_state;
1701 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1703 p->reclaim_state = NULL;
1704 lockdep_clear_current_reclaim_state();
1705 p->flags &= ~PF_MEMALLOC;
1707 cond_resched();
1709 if (order != 0)
1710 drain_all_pages();
1712 if (likely(*did_some_progress))
1713 page = get_page_from_freelist(gfp_mask, nodemask, order,
1714 zonelist, high_zoneidx,
1715 alloc_flags, preferred_zone,
1716 migratetype);
1717 return page;
1721 * This is called in the allocator slow-path if the allocation request is of
1722 * sufficient urgency to ignore watermarks and take other desperate measures
1724 static inline struct page *
1725 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1726 struct zonelist *zonelist, enum zone_type high_zoneidx,
1727 nodemask_t *nodemask, struct zone *preferred_zone,
1728 int migratetype)
1730 struct page *page;
1732 do {
1733 page = get_page_from_freelist(gfp_mask, nodemask, order,
1734 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1735 preferred_zone, migratetype);
1737 if (!page && gfp_mask & __GFP_NOFAIL)
1738 congestion_wait(BLK_RW_ASYNC, HZ/50);
1739 } while (!page && (gfp_mask & __GFP_NOFAIL));
1741 return page;
1744 static inline
1745 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1746 enum zone_type high_zoneidx)
1748 struct zoneref *z;
1749 struct zone *zone;
1751 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1752 wakeup_kswapd(zone, order);
1755 static inline int
1756 gfp_to_alloc_flags(gfp_t gfp_mask)
1758 struct task_struct *p = current;
1759 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1760 const gfp_t wait = gfp_mask & __GFP_WAIT;
1762 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1763 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1766 * The caller may dip into page reserves a bit more if the caller
1767 * cannot run direct reclaim, or if the caller has realtime scheduling
1768 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1769 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1771 alloc_flags |= (gfp_mask & __GFP_HIGH);
1773 if (!wait) {
1774 alloc_flags |= ALLOC_HARDER;
1776 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1777 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1779 alloc_flags &= ~ALLOC_CPUSET;
1780 } else if (unlikely(rt_task(p)) && !in_interrupt())
1781 alloc_flags |= ALLOC_HARDER;
1783 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1784 if (!in_interrupt() &&
1785 ((p->flags & PF_MEMALLOC) ||
1786 unlikely(test_thread_flag(TIF_MEMDIE))))
1787 alloc_flags |= ALLOC_NO_WATERMARKS;
1790 return alloc_flags;
1793 static inline struct page *
1794 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1795 struct zonelist *zonelist, enum zone_type high_zoneidx,
1796 nodemask_t *nodemask, struct zone *preferred_zone,
1797 int migratetype)
1799 const gfp_t wait = gfp_mask & __GFP_WAIT;
1800 struct page *page = NULL;
1801 int alloc_flags;
1802 unsigned long pages_reclaimed = 0;
1803 unsigned long did_some_progress;
1804 struct task_struct *p = current;
1807 * In the slowpath, we sanity check order to avoid ever trying to
1808 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1809 * be using allocators in order of preference for an area that is
1810 * too large.
1812 if (order >= MAX_ORDER) {
1813 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1814 return NULL;
1818 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1819 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1820 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1821 * using a larger set of nodes after it has established that the
1822 * allowed per node queues are empty and that nodes are
1823 * over allocated.
1825 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1826 goto nopage;
1828 restart:
1829 wake_all_kswapd(order, zonelist, high_zoneidx);
1832 * OK, we're below the kswapd watermark and have kicked background
1833 * reclaim. Now things get more complex, so set up alloc_flags according
1834 * to how we want to proceed.
1836 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1838 /* This is the last chance, in general, before the goto nopage. */
1839 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1840 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1841 preferred_zone, migratetype);
1842 if (page)
1843 goto got_pg;
1845 rebalance:
1846 /* Allocate without watermarks if the context allows */
1847 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1848 page = __alloc_pages_high_priority(gfp_mask, order,
1849 zonelist, high_zoneidx, nodemask,
1850 preferred_zone, migratetype);
1851 if (page)
1852 goto got_pg;
1855 /* Atomic allocations - we can't balance anything */
1856 if (!wait)
1857 goto nopage;
1859 /* Avoid recursion of direct reclaim */
1860 if (p->flags & PF_MEMALLOC)
1861 goto nopage;
1863 /* Avoid allocations with no watermarks from looping endlessly */
1864 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
1865 goto nopage;
1867 /* Try direct reclaim and then allocating */
1868 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1869 zonelist, high_zoneidx,
1870 nodemask,
1871 alloc_flags, preferred_zone,
1872 migratetype, &did_some_progress);
1873 if (page)
1874 goto got_pg;
1877 * If we failed to make any progress reclaiming, then we are
1878 * running out of options and have to consider going OOM
1880 if (!did_some_progress) {
1881 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1882 if (oom_killer_disabled)
1883 goto nopage;
1884 page = __alloc_pages_may_oom(gfp_mask, order,
1885 zonelist, high_zoneidx,
1886 nodemask, preferred_zone,
1887 migratetype);
1888 if (page)
1889 goto got_pg;
1892 * The OOM killer does not trigger for high-order
1893 * ~__GFP_NOFAIL allocations so if no progress is being
1894 * made, there are no other options and retrying is
1895 * unlikely to help.
1897 if (order > PAGE_ALLOC_COSTLY_ORDER &&
1898 !(gfp_mask & __GFP_NOFAIL))
1899 goto nopage;
1901 goto restart;
1905 /* Check if we should retry the allocation */
1906 pages_reclaimed += did_some_progress;
1907 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1908 /* Wait for some write requests to complete then retry */
1909 congestion_wait(BLK_RW_ASYNC, HZ/50);
1910 goto rebalance;
1913 nopage:
1914 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1915 printk(KERN_WARNING "%s: page allocation failure."
1916 " order:%d, mode:0x%x\n",
1917 p->comm, order, gfp_mask);
1918 dump_stack();
1919 show_mem();
1921 return page;
1922 got_pg:
1923 if (kmemcheck_enabled)
1924 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1925 return page;
1930 * This is the 'heart' of the zoned buddy allocator.
1932 struct page *
1933 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1934 struct zonelist *zonelist, nodemask_t *nodemask)
1936 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1937 struct zone *preferred_zone;
1938 struct page *page;
1939 int migratetype = allocflags_to_migratetype(gfp_mask);
1941 gfp_mask &= gfp_allowed_mask;
1943 lockdep_trace_alloc(gfp_mask);
1945 might_sleep_if(gfp_mask & __GFP_WAIT);
1947 if (should_fail_alloc_page(gfp_mask, order))
1948 return NULL;
1951 * Check the zones suitable for the gfp_mask contain at least one
1952 * valid zone. It's possible to have an empty zonelist as a result
1953 * of GFP_THISNODE and a memoryless node
1955 if (unlikely(!zonelist->_zonerefs->zone))
1956 return NULL;
1958 /* The preferred zone is used for statistics later */
1959 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1960 if (!preferred_zone)
1961 return NULL;
1963 /* First allocation attempt */
1964 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1965 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1966 preferred_zone, migratetype);
1967 if (unlikely(!page))
1968 page = __alloc_pages_slowpath(gfp_mask, order,
1969 zonelist, high_zoneidx, nodemask,
1970 preferred_zone, migratetype);
1972 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
1973 return page;
1975 EXPORT_SYMBOL(__alloc_pages_nodemask);
1978 * Common helper functions.
1980 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1982 struct page *page;
1985 * __get_free_pages() returns a 32-bit address, which cannot represent
1986 * a highmem page
1988 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1990 page = alloc_pages(gfp_mask, order);
1991 if (!page)
1992 return 0;
1993 return (unsigned long) page_address(page);
1995 EXPORT_SYMBOL(__get_free_pages);
1997 unsigned long get_zeroed_page(gfp_t gfp_mask)
1999 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2001 EXPORT_SYMBOL(get_zeroed_page);
2003 void __pagevec_free(struct pagevec *pvec)
2005 int i = pagevec_count(pvec);
2007 while (--i >= 0) {
2008 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2009 free_hot_cold_page(pvec->pages[i], pvec->cold);
2013 void __free_pages(struct page *page, unsigned int order)
2015 if (put_page_testzero(page)) {
2016 trace_mm_page_free_direct(page, order);
2017 if (order == 0)
2018 free_hot_page(page);
2019 else
2020 __free_pages_ok(page, order);
2024 EXPORT_SYMBOL(__free_pages);
2026 void free_pages(unsigned long addr, unsigned int order)
2028 if (addr != 0) {
2029 VM_BUG_ON(!virt_addr_valid((void *)addr));
2030 __free_pages(virt_to_page((void *)addr), order);
2034 EXPORT_SYMBOL(free_pages);
2037 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2038 * @size: the number of bytes to allocate
2039 * @gfp_mask: GFP flags for the allocation
2041 * This function is similar to alloc_pages(), except that it allocates the
2042 * minimum number of pages to satisfy the request. alloc_pages() can only
2043 * allocate memory in power-of-two pages.
2045 * This function is also limited by MAX_ORDER.
2047 * Memory allocated by this function must be released by free_pages_exact().
2049 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2051 unsigned int order = get_order(size);
2052 unsigned long addr;
2054 addr = __get_free_pages(gfp_mask, order);
2055 if (addr) {
2056 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2057 unsigned long used = addr + PAGE_ALIGN(size);
2059 split_page(virt_to_page((void *)addr), order);
2060 while (used < alloc_end) {
2061 free_page(used);
2062 used += PAGE_SIZE;
2066 return (void *)addr;
2068 EXPORT_SYMBOL(alloc_pages_exact);
2071 * free_pages_exact - release memory allocated via alloc_pages_exact()
2072 * @virt: the value returned by alloc_pages_exact.
2073 * @size: size of allocation, same value as passed to alloc_pages_exact().
2075 * Release the memory allocated by a previous call to alloc_pages_exact.
2077 void free_pages_exact(void *virt, size_t size)
2079 unsigned long addr = (unsigned long)virt;
2080 unsigned long end = addr + PAGE_ALIGN(size);
2082 while (addr < end) {
2083 free_page(addr);
2084 addr += PAGE_SIZE;
2087 EXPORT_SYMBOL(free_pages_exact);
2089 static unsigned int nr_free_zone_pages(int offset)
2091 struct zoneref *z;
2092 struct zone *zone;
2094 /* Just pick one node, since fallback list is circular */
2095 unsigned int sum = 0;
2097 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2099 for_each_zone_zonelist(zone, z, zonelist, offset) {
2100 unsigned long size = zone->present_pages;
2101 unsigned long high = high_wmark_pages(zone);
2102 if (size > high)
2103 sum += size - high;
2106 return sum;
2110 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2112 unsigned int nr_free_buffer_pages(void)
2114 return nr_free_zone_pages(gfp_zone(GFP_USER));
2116 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2119 * Amount of free RAM allocatable within all zones
2121 unsigned int nr_free_pagecache_pages(void)
2123 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2126 static inline void show_node(struct zone *zone)
2128 if (NUMA_BUILD)
2129 printk("Node %d ", zone_to_nid(zone));
2132 void si_meminfo(struct sysinfo *val)
2134 val->totalram = totalram_pages;
2135 val->sharedram = 0;
2136 val->freeram = global_page_state(NR_FREE_PAGES);
2137 val->bufferram = nr_blockdev_pages();
2138 val->totalhigh = totalhigh_pages;
2139 val->freehigh = nr_free_highpages();
2140 val->mem_unit = PAGE_SIZE;
2143 EXPORT_SYMBOL(si_meminfo);
2145 #ifdef CONFIG_NUMA
2146 void si_meminfo_node(struct sysinfo *val, int nid)
2148 pg_data_t *pgdat = NODE_DATA(nid);
2150 val->totalram = pgdat->node_present_pages;
2151 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2152 #ifdef CONFIG_HIGHMEM
2153 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2154 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2155 NR_FREE_PAGES);
2156 #else
2157 val->totalhigh = 0;
2158 val->freehigh = 0;
2159 #endif
2160 val->mem_unit = PAGE_SIZE;
2162 #endif
2164 #define K(x) ((x) << (PAGE_SHIFT-10))
2167 * Show free area list (used inside shift_scroll-lock stuff)
2168 * We also calculate the percentage fragmentation. We do this by counting the
2169 * memory on each free list with the exception of the first item on the list.
2171 void show_free_areas(void)
2173 int cpu;
2174 struct zone *zone;
2176 for_each_populated_zone(zone) {
2177 show_node(zone);
2178 printk("%s per-cpu:\n", zone->name);
2180 for_each_online_cpu(cpu) {
2181 struct per_cpu_pageset *pageset;
2183 pageset = zone_pcp(zone, cpu);
2185 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2186 cpu, pageset->pcp.high,
2187 pageset->pcp.batch, pageset->pcp.count);
2191 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2192 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2193 " unevictable:%lu"
2194 " dirty:%lu writeback:%lu unstable:%lu\n"
2195 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2196 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2197 global_page_state(NR_ACTIVE_ANON),
2198 global_page_state(NR_INACTIVE_ANON),
2199 global_page_state(NR_ISOLATED_ANON),
2200 global_page_state(NR_ACTIVE_FILE),
2201 global_page_state(NR_INACTIVE_FILE),
2202 global_page_state(NR_ISOLATED_FILE),
2203 global_page_state(NR_UNEVICTABLE),
2204 global_page_state(NR_FILE_DIRTY),
2205 global_page_state(NR_WRITEBACK),
2206 global_page_state(NR_UNSTABLE_NFS),
2207 global_page_state(NR_FREE_PAGES),
2208 global_page_state(NR_SLAB_RECLAIMABLE),
2209 global_page_state(NR_SLAB_UNRECLAIMABLE),
2210 global_page_state(NR_FILE_MAPPED),
2211 global_page_state(NR_SHMEM),
2212 global_page_state(NR_PAGETABLE),
2213 global_page_state(NR_BOUNCE));
2215 for_each_populated_zone(zone) {
2216 int i;
2218 show_node(zone);
2219 printk("%s"
2220 " free:%lukB"
2221 " min:%lukB"
2222 " low:%lukB"
2223 " high:%lukB"
2224 " active_anon:%lukB"
2225 " inactive_anon:%lukB"
2226 " active_file:%lukB"
2227 " inactive_file:%lukB"
2228 " unevictable:%lukB"
2229 " isolated(anon):%lukB"
2230 " isolated(file):%lukB"
2231 " present:%lukB"
2232 " mlocked:%lukB"
2233 " dirty:%lukB"
2234 " writeback:%lukB"
2235 " mapped:%lukB"
2236 " shmem:%lukB"
2237 " slab_reclaimable:%lukB"
2238 " slab_unreclaimable:%lukB"
2239 " kernel_stack:%lukB"
2240 " pagetables:%lukB"
2241 " unstable:%lukB"
2242 " bounce:%lukB"
2243 " writeback_tmp:%lukB"
2244 " pages_scanned:%lu"
2245 " all_unreclaimable? %s"
2246 "\n",
2247 zone->name,
2248 K(zone_page_state(zone, NR_FREE_PAGES)),
2249 K(min_wmark_pages(zone)),
2250 K(low_wmark_pages(zone)),
2251 K(high_wmark_pages(zone)),
2252 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2253 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2254 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2255 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2256 K(zone_page_state(zone, NR_UNEVICTABLE)),
2257 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2258 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2259 K(zone->present_pages),
2260 K(zone_page_state(zone, NR_MLOCK)),
2261 K(zone_page_state(zone, NR_FILE_DIRTY)),
2262 K(zone_page_state(zone, NR_WRITEBACK)),
2263 K(zone_page_state(zone, NR_FILE_MAPPED)),
2264 K(zone_page_state(zone, NR_SHMEM)),
2265 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2266 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2267 zone_page_state(zone, NR_KERNEL_STACK) *
2268 THREAD_SIZE / 1024,
2269 K(zone_page_state(zone, NR_PAGETABLE)),
2270 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2271 K(zone_page_state(zone, NR_BOUNCE)),
2272 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2273 zone->pages_scanned,
2274 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
2276 printk("lowmem_reserve[]:");
2277 for (i = 0; i < MAX_NR_ZONES; i++)
2278 printk(" %lu", zone->lowmem_reserve[i]);
2279 printk("\n");
2282 for_each_populated_zone(zone) {
2283 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2285 show_node(zone);
2286 printk("%s: ", zone->name);
2288 spin_lock_irqsave(&zone->lock, flags);
2289 for (order = 0; order < MAX_ORDER; order++) {
2290 nr[order] = zone->free_area[order].nr_free;
2291 total += nr[order] << order;
2293 spin_unlock_irqrestore(&zone->lock, flags);
2294 for (order = 0; order < MAX_ORDER; order++)
2295 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2296 printk("= %lukB\n", K(total));
2299 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2301 show_swap_cache_info();
2304 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2306 zoneref->zone = zone;
2307 zoneref->zone_idx = zone_idx(zone);
2311 * Builds allocation fallback zone lists.
2313 * Add all populated zones of a node to the zonelist.
2315 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2316 int nr_zones, enum zone_type zone_type)
2318 struct zone *zone;
2320 BUG_ON(zone_type >= MAX_NR_ZONES);
2321 zone_type++;
2323 do {
2324 zone_type--;
2325 zone = pgdat->node_zones + zone_type;
2326 if (populated_zone(zone)) {
2327 zoneref_set_zone(zone,
2328 &zonelist->_zonerefs[nr_zones++]);
2329 check_highest_zone(zone_type);
2332 } while (zone_type);
2333 return nr_zones;
2338 * zonelist_order:
2339 * 0 = automatic detection of better ordering.
2340 * 1 = order by ([node] distance, -zonetype)
2341 * 2 = order by (-zonetype, [node] distance)
2343 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2344 * the same zonelist. So only NUMA can configure this param.
2346 #define ZONELIST_ORDER_DEFAULT 0
2347 #define ZONELIST_ORDER_NODE 1
2348 #define ZONELIST_ORDER_ZONE 2
2350 /* zonelist order in the kernel.
2351 * set_zonelist_order() will set this to NODE or ZONE.
2353 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2354 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2357 #ifdef CONFIG_NUMA
2358 /* The value user specified ....changed by config */
2359 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2360 /* string for sysctl */
2361 #define NUMA_ZONELIST_ORDER_LEN 16
2362 char numa_zonelist_order[16] = "default";
2365 * interface for configure zonelist ordering.
2366 * command line option "numa_zonelist_order"
2367 * = "[dD]efault - default, automatic configuration.
2368 * = "[nN]ode - order by node locality, then by zone within node
2369 * = "[zZ]one - order by zone, then by locality within zone
2372 static int __parse_numa_zonelist_order(char *s)
2374 if (*s == 'd' || *s == 'D') {
2375 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2376 } else if (*s == 'n' || *s == 'N') {
2377 user_zonelist_order = ZONELIST_ORDER_NODE;
2378 } else if (*s == 'z' || *s == 'Z') {
2379 user_zonelist_order = ZONELIST_ORDER_ZONE;
2380 } else {
2381 printk(KERN_WARNING
2382 "Ignoring invalid numa_zonelist_order value: "
2383 "%s\n", s);
2384 return -EINVAL;
2386 return 0;
2389 static __init int setup_numa_zonelist_order(char *s)
2391 if (s)
2392 return __parse_numa_zonelist_order(s);
2393 return 0;
2395 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2398 * sysctl handler for numa_zonelist_order
2400 int numa_zonelist_order_handler(ctl_table *table, int write,
2401 void __user *buffer, size_t *length,
2402 loff_t *ppos)
2404 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2405 int ret;
2406 static DEFINE_MUTEX(zl_order_mutex);
2408 mutex_lock(&zl_order_mutex);
2409 if (write)
2410 strcpy(saved_string, (char*)table->data);
2411 ret = proc_dostring(table, write, buffer, length, ppos);
2412 if (ret)
2413 goto out;
2414 if (write) {
2415 int oldval = user_zonelist_order;
2416 if (__parse_numa_zonelist_order((char*)table->data)) {
2418 * bogus value. restore saved string
2420 strncpy((char*)table->data, saved_string,
2421 NUMA_ZONELIST_ORDER_LEN);
2422 user_zonelist_order = oldval;
2423 } else if (oldval != user_zonelist_order)
2424 build_all_zonelists();
2426 out:
2427 mutex_unlock(&zl_order_mutex);
2428 return ret;
2432 #define MAX_NODE_LOAD (nr_online_nodes)
2433 static int node_load[MAX_NUMNODES];
2436 * find_next_best_node - find the next node that should appear in a given node's fallback list
2437 * @node: node whose fallback list we're appending
2438 * @used_node_mask: nodemask_t of already used nodes
2440 * We use a number of factors to determine which is the next node that should
2441 * appear on a given node's fallback list. The node should not have appeared
2442 * already in @node's fallback list, and it should be the next closest node
2443 * according to the distance array (which contains arbitrary distance values
2444 * from each node to each node in the system), and should also prefer nodes
2445 * with no CPUs, since presumably they'll have very little allocation pressure
2446 * on them otherwise.
2447 * It returns -1 if no node is found.
2449 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2451 int n, val;
2452 int min_val = INT_MAX;
2453 int best_node = -1;
2454 const struct cpumask *tmp = cpumask_of_node(0);
2456 /* Use the local node if we haven't already */
2457 if (!node_isset(node, *used_node_mask)) {
2458 node_set(node, *used_node_mask);
2459 return node;
2462 for_each_node_state(n, N_HIGH_MEMORY) {
2464 /* Don't want a node to appear more than once */
2465 if (node_isset(n, *used_node_mask))
2466 continue;
2468 /* Use the distance array to find the distance */
2469 val = node_distance(node, n);
2471 /* Penalize nodes under us ("prefer the next node") */
2472 val += (n < node);
2474 /* Give preference to headless and unused nodes */
2475 tmp = cpumask_of_node(n);
2476 if (!cpumask_empty(tmp))
2477 val += PENALTY_FOR_NODE_WITH_CPUS;
2479 /* Slight preference for less loaded node */
2480 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2481 val += node_load[n];
2483 if (val < min_val) {
2484 min_val = val;
2485 best_node = n;
2489 if (best_node >= 0)
2490 node_set(best_node, *used_node_mask);
2492 return best_node;
2497 * Build zonelists ordered by node and zones within node.
2498 * This results in maximum locality--normal zone overflows into local
2499 * DMA zone, if any--but risks exhausting DMA zone.
2501 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2503 int j;
2504 struct zonelist *zonelist;
2506 zonelist = &pgdat->node_zonelists[0];
2507 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2509 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2510 MAX_NR_ZONES - 1);
2511 zonelist->_zonerefs[j].zone = NULL;
2512 zonelist->_zonerefs[j].zone_idx = 0;
2516 * Build gfp_thisnode zonelists
2518 static void build_thisnode_zonelists(pg_data_t *pgdat)
2520 int j;
2521 struct zonelist *zonelist;
2523 zonelist = &pgdat->node_zonelists[1];
2524 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2525 zonelist->_zonerefs[j].zone = NULL;
2526 zonelist->_zonerefs[j].zone_idx = 0;
2530 * Build zonelists ordered by zone and nodes within zones.
2531 * This results in conserving DMA zone[s] until all Normal memory is
2532 * exhausted, but results in overflowing to remote node while memory
2533 * may still exist in local DMA zone.
2535 static int node_order[MAX_NUMNODES];
2537 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2539 int pos, j, node;
2540 int zone_type; /* needs to be signed */
2541 struct zone *z;
2542 struct zonelist *zonelist;
2544 zonelist = &pgdat->node_zonelists[0];
2545 pos = 0;
2546 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2547 for (j = 0; j < nr_nodes; j++) {
2548 node = node_order[j];
2549 z = &NODE_DATA(node)->node_zones[zone_type];
2550 if (populated_zone(z)) {
2551 zoneref_set_zone(z,
2552 &zonelist->_zonerefs[pos++]);
2553 check_highest_zone(zone_type);
2557 zonelist->_zonerefs[pos].zone = NULL;
2558 zonelist->_zonerefs[pos].zone_idx = 0;
2561 static int default_zonelist_order(void)
2563 int nid, zone_type;
2564 unsigned long low_kmem_size,total_size;
2565 struct zone *z;
2566 int average_size;
2568 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2569 * If they are really small and used heavily, the system can fall
2570 * into OOM very easily.
2571 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2573 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2574 low_kmem_size = 0;
2575 total_size = 0;
2576 for_each_online_node(nid) {
2577 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2578 z = &NODE_DATA(nid)->node_zones[zone_type];
2579 if (populated_zone(z)) {
2580 if (zone_type < ZONE_NORMAL)
2581 low_kmem_size += z->present_pages;
2582 total_size += z->present_pages;
2586 if (!low_kmem_size || /* there are no DMA area. */
2587 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2588 return ZONELIST_ORDER_NODE;
2590 * look into each node's config.
2591 * If there is a node whose DMA/DMA32 memory is very big area on
2592 * local memory, NODE_ORDER may be suitable.
2594 average_size = total_size /
2595 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2596 for_each_online_node(nid) {
2597 low_kmem_size = 0;
2598 total_size = 0;
2599 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2600 z = &NODE_DATA(nid)->node_zones[zone_type];
2601 if (populated_zone(z)) {
2602 if (zone_type < ZONE_NORMAL)
2603 low_kmem_size += z->present_pages;
2604 total_size += z->present_pages;
2607 if (low_kmem_size &&
2608 total_size > average_size && /* ignore small node */
2609 low_kmem_size > total_size * 70/100)
2610 return ZONELIST_ORDER_NODE;
2612 return ZONELIST_ORDER_ZONE;
2615 static void set_zonelist_order(void)
2617 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2618 current_zonelist_order = default_zonelist_order();
2619 else
2620 current_zonelist_order = user_zonelist_order;
2623 static void build_zonelists(pg_data_t *pgdat)
2625 int j, node, load;
2626 enum zone_type i;
2627 nodemask_t used_mask;
2628 int local_node, prev_node;
2629 struct zonelist *zonelist;
2630 int order = current_zonelist_order;
2632 /* initialize zonelists */
2633 for (i = 0; i < MAX_ZONELISTS; i++) {
2634 zonelist = pgdat->node_zonelists + i;
2635 zonelist->_zonerefs[0].zone = NULL;
2636 zonelist->_zonerefs[0].zone_idx = 0;
2639 /* NUMA-aware ordering of nodes */
2640 local_node = pgdat->node_id;
2641 load = nr_online_nodes;
2642 prev_node = local_node;
2643 nodes_clear(used_mask);
2645 memset(node_order, 0, sizeof(node_order));
2646 j = 0;
2648 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2649 int distance = node_distance(local_node, node);
2652 * If another node is sufficiently far away then it is better
2653 * to reclaim pages in a zone before going off node.
2655 if (distance > RECLAIM_DISTANCE)
2656 zone_reclaim_mode = 1;
2659 * We don't want to pressure a particular node.
2660 * So adding penalty to the first node in same
2661 * distance group to make it round-robin.
2663 if (distance != node_distance(local_node, prev_node))
2664 node_load[node] = load;
2666 prev_node = node;
2667 load--;
2668 if (order == ZONELIST_ORDER_NODE)
2669 build_zonelists_in_node_order(pgdat, node);
2670 else
2671 node_order[j++] = node; /* remember order */
2674 if (order == ZONELIST_ORDER_ZONE) {
2675 /* calculate node order -- i.e., DMA last! */
2676 build_zonelists_in_zone_order(pgdat, j);
2679 build_thisnode_zonelists(pgdat);
2682 /* Construct the zonelist performance cache - see further mmzone.h */
2683 static void build_zonelist_cache(pg_data_t *pgdat)
2685 struct zonelist *zonelist;
2686 struct zonelist_cache *zlc;
2687 struct zoneref *z;
2689 zonelist = &pgdat->node_zonelists[0];
2690 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2691 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2692 for (z = zonelist->_zonerefs; z->zone; z++)
2693 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2697 #else /* CONFIG_NUMA */
2699 static void set_zonelist_order(void)
2701 current_zonelist_order = ZONELIST_ORDER_ZONE;
2704 static void build_zonelists(pg_data_t *pgdat)
2706 int node, local_node;
2707 enum zone_type j;
2708 struct zonelist *zonelist;
2710 local_node = pgdat->node_id;
2712 zonelist = &pgdat->node_zonelists[0];
2713 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2716 * Now we build the zonelist so that it contains the zones
2717 * of all the other nodes.
2718 * We don't want to pressure a particular node, so when
2719 * building the zones for node N, we make sure that the
2720 * zones coming right after the local ones are those from
2721 * node N+1 (modulo N)
2723 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2724 if (!node_online(node))
2725 continue;
2726 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2727 MAX_NR_ZONES - 1);
2729 for (node = 0; node < local_node; node++) {
2730 if (!node_online(node))
2731 continue;
2732 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2733 MAX_NR_ZONES - 1);
2736 zonelist->_zonerefs[j].zone = NULL;
2737 zonelist->_zonerefs[j].zone_idx = 0;
2740 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2741 static void build_zonelist_cache(pg_data_t *pgdat)
2743 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2746 #endif /* CONFIG_NUMA */
2748 /* return values int ....just for stop_machine() */
2749 static int __build_all_zonelists(void *dummy)
2751 int nid;
2753 #ifdef CONFIG_NUMA
2754 memset(node_load, 0, sizeof(node_load));
2755 #endif
2756 for_each_online_node(nid) {
2757 pg_data_t *pgdat = NODE_DATA(nid);
2759 build_zonelists(pgdat);
2760 build_zonelist_cache(pgdat);
2762 return 0;
2765 void build_all_zonelists(void)
2767 set_zonelist_order();
2769 if (system_state == SYSTEM_BOOTING) {
2770 __build_all_zonelists(NULL);
2771 mminit_verify_zonelist();
2772 cpuset_init_current_mems_allowed();
2773 } else {
2774 /* we have to stop all cpus to guarantee there is no user
2775 of zonelist */
2776 stop_machine(__build_all_zonelists, NULL, NULL);
2777 /* cpuset refresh routine should be here */
2779 vm_total_pages = nr_free_pagecache_pages();
2781 * Disable grouping by mobility if the number of pages in the
2782 * system is too low to allow the mechanism to work. It would be
2783 * more accurate, but expensive to check per-zone. This check is
2784 * made on memory-hotadd so a system can start with mobility
2785 * disabled and enable it later
2787 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2788 page_group_by_mobility_disabled = 1;
2789 else
2790 page_group_by_mobility_disabled = 0;
2792 printk("Built %i zonelists in %s order, mobility grouping %s. "
2793 "Total pages: %ld\n",
2794 nr_online_nodes,
2795 zonelist_order_name[current_zonelist_order],
2796 page_group_by_mobility_disabled ? "off" : "on",
2797 vm_total_pages);
2798 #ifdef CONFIG_NUMA
2799 printk("Policy zone: %s\n", zone_names[policy_zone]);
2800 #endif
2804 * Helper functions to size the waitqueue hash table.
2805 * Essentially these want to choose hash table sizes sufficiently
2806 * large so that collisions trying to wait on pages are rare.
2807 * But in fact, the number of active page waitqueues on typical
2808 * systems is ridiculously low, less than 200. So this is even
2809 * conservative, even though it seems large.
2811 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2812 * waitqueues, i.e. the size of the waitq table given the number of pages.
2814 #define PAGES_PER_WAITQUEUE 256
2816 #ifndef CONFIG_MEMORY_HOTPLUG
2817 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2819 unsigned long size = 1;
2821 pages /= PAGES_PER_WAITQUEUE;
2823 while (size < pages)
2824 size <<= 1;
2827 * Once we have dozens or even hundreds of threads sleeping
2828 * on IO we've got bigger problems than wait queue collision.
2829 * Limit the size of the wait table to a reasonable size.
2831 size = min(size, 4096UL);
2833 return max(size, 4UL);
2835 #else
2837 * A zone's size might be changed by hot-add, so it is not possible to determine
2838 * a suitable size for its wait_table. So we use the maximum size now.
2840 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2842 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2843 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2844 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2846 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2847 * or more by the traditional way. (See above). It equals:
2849 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2850 * ia64(16K page size) : = ( 8G + 4M)byte.
2851 * powerpc (64K page size) : = (32G +16M)byte.
2853 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2855 return 4096UL;
2857 #endif
2860 * This is an integer logarithm so that shifts can be used later
2861 * to extract the more random high bits from the multiplicative
2862 * hash function before the remainder is taken.
2864 static inline unsigned long wait_table_bits(unsigned long size)
2866 return ffz(~size);
2869 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2872 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2873 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2874 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2875 * higher will lead to a bigger reserve which will get freed as contiguous
2876 * blocks as reclaim kicks in
2878 static void setup_zone_migrate_reserve(struct zone *zone)
2880 unsigned long start_pfn, pfn, end_pfn;
2881 struct page *page;
2882 unsigned long block_migratetype;
2883 int reserve;
2885 /* Get the start pfn, end pfn and the number of blocks to reserve */
2886 start_pfn = zone->zone_start_pfn;
2887 end_pfn = start_pfn + zone->spanned_pages;
2888 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
2889 pageblock_order;
2892 * Reserve blocks are generally in place to help high-order atomic
2893 * allocations that are short-lived. A min_free_kbytes value that
2894 * would result in more than 2 reserve blocks for atomic allocations
2895 * is assumed to be in place to help anti-fragmentation for the
2896 * future allocation of hugepages at runtime.
2898 reserve = min(2, reserve);
2900 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2901 if (!pfn_valid(pfn))
2902 continue;
2903 page = pfn_to_page(pfn);
2905 /* Watch out for overlapping nodes */
2906 if (page_to_nid(page) != zone_to_nid(zone))
2907 continue;
2909 /* Blocks with reserved pages will never free, skip them. */
2910 if (PageReserved(page))
2911 continue;
2913 block_migratetype = get_pageblock_migratetype(page);
2915 /* If this block is reserved, account for it */
2916 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2917 reserve--;
2918 continue;
2921 /* Suitable for reserving if this block is movable */
2922 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2923 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2924 move_freepages_block(zone, page, MIGRATE_RESERVE);
2925 reserve--;
2926 continue;
2930 * If the reserve is met and this is a previous reserved block,
2931 * take it back
2933 if (block_migratetype == MIGRATE_RESERVE) {
2934 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2935 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2941 * Initially all pages are reserved - free ones are freed
2942 * up by free_all_bootmem() once the early boot process is
2943 * done. Non-atomic initialization, single-pass.
2945 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2946 unsigned long start_pfn, enum memmap_context context)
2948 struct page *page;
2949 unsigned long end_pfn = start_pfn + size;
2950 unsigned long pfn;
2951 struct zone *z;
2953 if (highest_memmap_pfn < end_pfn - 1)
2954 highest_memmap_pfn = end_pfn - 1;
2956 z = &NODE_DATA(nid)->node_zones[zone];
2957 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2959 * There can be holes in boot-time mem_map[]s
2960 * handed to this function. They do not
2961 * exist on hotplugged memory.
2963 if (context == MEMMAP_EARLY) {
2964 if (!early_pfn_valid(pfn))
2965 continue;
2966 if (!early_pfn_in_nid(pfn, nid))
2967 continue;
2969 page = pfn_to_page(pfn);
2970 set_page_links(page, zone, nid, pfn);
2971 mminit_verify_page_links(page, zone, nid, pfn);
2972 init_page_count(page);
2973 reset_page_mapcount(page);
2974 SetPageReserved(page);
2976 * Mark the block movable so that blocks are reserved for
2977 * movable at startup. This will force kernel allocations
2978 * to reserve their blocks rather than leaking throughout
2979 * the address space during boot when many long-lived
2980 * kernel allocations are made. Later some blocks near
2981 * the start are marked MIGRATE_RESERVE by
2982 * setup_zone_migrate_reserve()
2984 * bitmap is created for zone's valid pfn range. but memmap
2985 * can be created for invalid pages (for alignment)
2986 * check here not to call set_pageblock_migratetype() against
2987 * pfn out of zone.
2989 if ((z->zone_start_pfn <= pfn)
2990 && (pfn < z->zone_start_pfn + z->spanned_pages)
2991 && !(pfn & (pageblock_nr_pages - 1)))
2992 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2994 INIT_LIST_HEAD(&page->lru);
2995 #ifdef WANT_PAGE_VIRTUAL
2996 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2997 if (!is_highmem_idx(zone))
2998 set_page_address(page, __va(pfn << PAGE_SHIFT));
2999 #endif
3003 static void __meminit zone_init_free_lists(struct zone *zone)
3005 int order, t;
3006 for_each_migratetype_order(order, t) {
3007 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3008 zone->free_area[order].nr_free = 0;
3012 #ifndef __HAVE_ARCH_MEMMAP_INIT
3013 #define memmap_init(size, nid, zone, start_pfn) \
3014 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3015 #endif
3017 static int zone_batchsize(struct zone *zone)
3019 #ifdef CONFIG_MMU
3020 int batch;
3023 * The per-cpu-pages pools are set to around 1000th of the
3024 * size of the zone. But no more than 1/2 of a meg.
3026 * OK, so we don't know how big the cache is. So guess.
3028 batch = zone->present_pages / 1024;
3029 if (batch * PAGE_SIZE > 512 * 1024)
3030 batch = (512 * 1024) / PAGE_SIZE;
3031 batch /= 4; /* We effectively *= 4 below */
3032 if (batch < 1)
3033 batch = 1;
3036 * Clamp the batch to a 2^n - 1 value. Having a power
3037 * of 2 value was found to be more likely to have
3038 * suboptimal cache aliasing properties in some cases.
3040 * For example if 2 tasks are alternately allocating
3041 * batches of pages, one task can end up with a lot
3042 * of pages of one half of the possible page colors
3043 * and the other with pages of the other colors.
3045 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3047 return batch;
3049 #else
3050 /* The deferral and batching of frees should be suppressed under NOMMU
3051 * conditions.
3053 * The problem is that NOMMU needs to be able to allocate large chunks
3054 * of contiguous memory as there's no hardware page translation to
3055 * assemble apparent contiguous memory from discontiguous pages.
3057 * Queueing large contiguous runs of pages for batching, however,
3058 * causes the pages to actually be freed in smaller chunks. As there
3059 * can be a significant delay between the individual batches being
3060 * recycled, this leads to the once large chunks of space being
3061 * fragmented and becoming unavailable for high-order allocations.
3063 return 0;
3064 #endif
3067 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3069 struct per_cpu_pages *pcp;
3070 int migratetype;
3072 memset(p, 0, sizeof(*p));
3074 pcp = &p->pcp;
3075 pcp->count = 0;
3076 pcp->high = 6 * batch;
3077 pcp->batch = max(1UL, 1 * batch);
3078 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3079 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3083 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3084 * to the value high for the pageset p.
3087 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3088 unsigned long high)
3090 struct per_cpu_pages *pcp;
3092 pcp = &p->pcp;
3093 pcp->high = high;
3094 pcp->batch = max(1UL, high/4);
3095 if ((high/4) > (PAGE_SHIFT * 8))
3096 pcp->batch = PAGE_SHIFT * 8;
3100 #ifdef CONFIG_NUMA
3102 * Boot pageset table. One per cpu which is going to be used for all
3103 * zones and all nodes. The parameters will be set in such a way
3104 * that an item put on a list will immediately be handed over to
3105 * the buddy list. This is safe since pageset manipulation is done
3106 * with interrupts disabled.
3108 * Some NUMA counter updates may also be caught by the boot pagesets.
3110 * The boot_pagesets must be kept even after bootup is complete for
3111 * unused processors and/or zones. They do play a role for bootstrapping
3112 * hotplugged processors.
3114 * zoneinfo_show() and maybe other functions do
3115 * not check if the processor is online before following the pageset pointer.
3116 * Other parts of the kernel may not check if the zone is available.
3118 static struct per_cpu_pageset boot_pageset[NR_CPUS];
3121 * Dynamically allocate memory for the
3122 * per cpu pageset array in struct zone.
3124 static int __cpuinit process_zones(int cpu)
3126 struct zone *zone, *dzone;
3127 int node = cpu_to_node(cpu);
3129 node_set_state(node, N_CPU); /* this node has a cpu */
3131 for_each_populated_zone(zone) {
3132 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
3133 GFP_KERNEL, node);
3134 if (!zone_pcp(zone, cpu))
3135 goto bad;
3137 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
3139 if (percpu_pagelist_fraction)
3140 setup_pagelist_highmark(zone_pcp(zone, cpu),
3141 (zone->present_pages / percpu_pagelist_fraction));
3144 return 0;
3145 bad:
3146 for_each_zone(dzone) {
3147 if (!populated_zone(dzone))
3148 continue;
3149 if (dzone == zone)
3150 break;
3151 kfree(zone_pcp(dzone, cpu));
3152 zone_pcp(dzone, cpu) = &boot_pageset[cpu];
3154 return -ENOMEM;
3157 static inline void free_zone_pagesets(int cpu)
3159 struct zone *zone;
3161 for_each_zone(zone) {
3162 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
3164 /* Free per_cpu_pageset if it is slab allocated */
3165 if (pset != &boot_pageset[cpu])
3166 kfree(pset);
3167 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3171 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
3172 unsigned long action,
3173 void *hcpu)
3175 int cpu = (long)hcpu;
3176 int ret = NOTIFY_OK;
3178 switch (action) {
3179 case CPU_UP_PREPARE:
3180 case CPU_UP_PREPARE_FROZEN:
3181 if (process_zones(cpu))
3182 ret = NOTIFY_BAD;
3183 break;
3184 case CPU_UP_CANCELED:
3185 case CPU_UP_CANCELED_FROZEN:
3186 case CPU_DEAD:
3187 case CPU_DEAD_FROZEN:
3188 free_zone_pagesets(cpu);
3189 break;
3190 default:
3191 break;
3193 return ret;
3196 static struct notifier_block __cpuinitdata pageset_notifier =
3197 { &pageset_cpuup_callback, NULL, 0 };
3199 void __init setup_per_cpu_pageset(void)
3201 int err;
3203 /* Initialize per_cpu_pageset for cpu 0.
3204 * A cpuup callback will do this for every cpu
3205 * as it comes online
3207 err = process_zones(smp_processor_id());
3208 BUG_ON(err);
3209 register_cpu_notifier(&pageset_notifier);
3212 #endif
3214 static noinline __init_refok
3215 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3217 int i;
3218 struct pglist_data *pgdat = zone->zone_pgdat;
3219 size_t alloc_size;
3222 * The per-page waitqueue mechanism uses hashed waitqueues
3223 * per zone.
3225 zone->wait_table_hash_nr_entries =
3226 wait_table_hash_nr_entries(zone_size_pages);
3227 zone->wait_table_bits =
3228 wait_table_bits(zone->wait_table_hash_nr_entries);
3229 alloc_size = zone->wait_table_hash_nr_entries
3230 * sizeof(wait_queue_head_t);
3232 if (!slab_is_available()) {
3233 zone->wait_table = (wait_queue_head_t *)
3234 alloc_bootmem_node(pgdat, alloc_size);
3235 } else {
3237 * This case means that a zone whose size was 0 gets new memory
3238 * via memory hot-add.
3239 * But it may be the case that a new node was hot-added. In
3240 * this case vmalloc() will not be able to use this new node's
3241 * memory - this wait_table must be initialized to use this new
3242 * node itself as well.
3243 * To use this new node's memory, further consideration will be
3244 * necessary.
3246 zone->wait_table = vmalloc(alloc_size);
3248 if (!zone->wait_table)
3249 return -ENOMEM;
3251 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3252 init_waitqueue_head(zone->wait_table + i);
3254 return 0;
3257 static int __zone_pcp_update(void *data)
3259 struct zone *zone = data;
3260 int cpu;
3261 unsigned long batch = zone_batchsize(zone), flags;
3263 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3264 struct per_cpu_pageset *pset;
3265 struct per_cpu_pages *pcp;
3267 pset = zone_pcp(zone, cpu);
3268 pcp = &pset->pcp;
3270 local_irq_save(flags);
3271 free_pcppages_bulk(zone, pcp->count, pcp);
3272 setup_pageset(pset, batch);
3273 local_irq_restore(flags);
3275 return 0;
3278 void zone_pcp_update(struct zone *zone)
3280 stop_machine(__zone_pcp_update, zone, NULL);
3283 static __meminit void zone_pcp_init(struct zone *zone)
3285 int cpu;
3286 unsigned long batch = zone_batchsize(zone);
3288 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3289 #ifdef CONFIG_NUMA
3290 /* Early boot. Slab allocator not functional yet */
3291 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3292 setup_pageset(&boot_pageset[cpu],0);
3293 #else
3294 setup_pageset(zone_pcp(zone,cpu), batch);
3295 #endif
3297 if (zone->present_pages)
3298 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3299 zone->name, zone->present_pages, batch);
3302 __meminit int init_currently_empty_zone(struct zone *zone,
3303 unsigned long zone_start_pfn,
3304 unsigned long size,
3305 enum memmap_context context)
3307 struct pglist_data *pgdat = zone->zone_pgdat;
3308 int ret;
3309 ret = zone_wait_table_init(zone, size);
3310 if (ret)
3311 return ret;
3312 pgdat->nr_zones = zone_idx(zone) + 1;
3314 zone->zone_start_pfn = zone_start_pfn;
3316 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3317 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3318 pgdat->node_id,
3319 (unsigned long)zone_idx(zone),
3320 zone_start_pfn, (zone_start_pfn + size));
3322 zone_init_free_lists(zone);
3324 return 0;
3327 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3329 * Basic iterator support. Return the first range of PFNs for a node
3330 * Note: nid == MAX_NUMNODES returns first region regardless of node
3332 static int __meminit first_active_region_index_in_nid(int nid)
3334 int i;
3336 for (i = 0; i < nr_nodemap_entries; i++)
3337 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3338 return i;
3340 return -1;
3344 * Basic iterator support. Return the next active range of PFNs for a node
3345 * Note: nid == MAX_NUMNODES returns next region regardless of node
3347 static int __meminit next_active_region_index_in_nid(int index, int nid)
3349 for (index = index + 1; index < nr_nodemap_entries; index++)
3350 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3351 return index;
3353 return -1;
3356 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3358 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3359 * Architectures may implement their own version but if add_active_range()
3360 * was used and there are no special requirements, this is a convenient
3361 * alternative
3363 int __meminit __early_pfn_to_nid(unsigned long pfn)
3365 int i;
3367 for (i = 0; i < nr_nodemap_entries; i++) {
3368 unsigned long start_pfn = early_node_map[i].start_pfn;
3369 unsigned long end_pfn = early_node_map[i].end_pfn;
3371 if (start_pfn <= pfn && pfn < end_pfn)
3372 return early_node_map[i].nid;
3374 /* This is a memory hole */
3375 return -1;
3377 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3379 int __meminit early_pfn_to_nid(unsigned long pfn)
3381 int nid;
3383 nid = __early_pfn_to_nid(pfn);
3384 if (nid >= 0)
3385 return nid;
3386 /* just returns 0 */
3387 return 0;
3390 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3391 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3393 int nid;
3395 nid = __early_pfn_to_nid(pfn);
3396 if (nid >= 0 && nid != node)
3397 return false;
3398 return true;
3400 #endif
3402 /* Basic iterator support to walk early_node_map[] */
3403 #define for_each_active_range_index_in_nid(i, nid) \
3404 for (i = first_active_region_index_in_nid(nid); i != -1; \
3405 i = next_active_region_index_in_nid(i, nid))
3408 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3409 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3410 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3412 * If an architecture guarantees that all ranges registered with
3413 * add_active_ranges() contain no holes and may be freed, this
3414 * this function may be used instead of calling free_bootmem() manually.
3416 void __init free_bootmem_with_active_regions(int nid,
3417 unsigned long max_low_pfn)
3419 int i;
3421 for_each_active_range_index_in_nid(i, nid) {
3422 unsigned long size_pages = 0;
3423 unsigned long end_pfn = early_node_map[i].end_pfn;
3425 if (early_node_map[i].start_pfn >= max_low_pfn)
3426 continue;
3428 if (end_pfn > max_low_pfn)
3429 end_pfn = max_low_pfn;
3431 size_pages = end_pfn - early_node_map[i].start_pfn;
3432 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3433 PFN_PHYS(early_node_map[i].start_pfn),
3434 size_pages << PAGE_SHIFT);
3438 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3440 int i;
3441 int ret;
3443 for_each_active_range_index_in_nid(i, nid) {
3444 ret = work_fn(early_node_map[i].start_pfn,
3445 early_node_map[i].end_pfn, data);
3446 if (ret)
3447 break;
3451 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3452 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3454 * If an architecture guarantees that all ranges registered with
3455 * add_active_ranges() contain no holes and may be freed, this
3456 * function may be used instead of calling memory_present() manually.
3458 void __init sparse_memory_present_with_active_regions(int nid)
3460 int i;
3462 for_each_active_range_index_in_nid(i, nid)
3463 memory_present(early_node_map[i].nid,
3464 early_node_map[i].start_pfn,
3465 early_node_map[i].end_pfn);
3469 * get_pfn_range_for_nid - Return the start and end page frames for a node
3470 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3471 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3472 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3474 * It returns the start and end page frame of a node based on information
3475 * provided by an arch calling add_active_range(). If called for a node
3476 * with no available memory, a warning is printed and the start and end
3477 * PFNs will be 0.
3479 void __meminit get_pfn_range_for_nid(unsigned int nid,
3480 unsigned long *start_pfn, unsigned long *end_pfn)
3482 int i;
3483 *start_pfn = -1UL;
3484 *end_pfn = 0;
3486 for_each_active_range_index_in_nid(i, nid) {
3487 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3488 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3491 if (*start_pfn == -1UL)
3492 *start_pfn = 0;
3496 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3497 * assumption is made that zones within a node are ordered in monotonic
3498 * increasing memory addresses so that the "highest" populated zone is used
3500 static void __init find_usable_zone_for_movable(void)
3502 int zone_index;
3503 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3504 if (zone_index == ZONE_MOVABLE)
3505 continue;
3507 if (arch_zone_highest_possible_pfn[zone_index] >
3508 arch_zone_lowest_possible_pfn[zone_index])
3509 break;
3512 VM_BUG_ON(zone_index == -1);
3513 movable_zone = zone_index;
3517 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3518 * because it is sized independant of architecture. Unlike the other zones,
3519 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3520 * in each node depending on the size of each node and how evenly kernelcore
3521 * is distributed. This helper function adjusts the zone ranges
3522 * provided by the architecture for a given node by using the end of the
3523 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3524 * zones within a node are in order of monotonic increases memory addresses
3526 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3527 unsigned long zone_type,
3528 unsigned long node_start_pfn,
3529 unsigned long node_end_pfn,
3530 unsigned long *zone_start_pfn,
3531 unsigned long *zone_end_pfn)
3533 /* Only adjust if ZONE_MOVABLE is on this node */
3534 if (zone_movable_pfn[nid]) {
3535 /* Size ZONE_MOVABLE */
3536 if (zone_type == ZONE_MOVABLE) {
3537 *zone_start_pfn = zone_movable_pfn[nid];
3538 *zone_end_pfn = min(node_end_pfn,
3539 arch_zone_highest_possible_pfn[movable_zone]);
3541 /* Adjust for ZONE_MOVABLE starting within this range */
3542 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3543 *zone_end_pfn > zone_movable_pfn[nid]) {
3544 *zone_end_pfn = zone_movable_pfn[nid];
3546 /* Check if this whole range is within ZONE_MOVABLE */
3547 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3548 *zone_start_pfn = *zone_end_pfn;
3553 * Return the number of pages a zone spans in a node, including holes
3554 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3556 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3557 unsigned long zone_type,
3558 unsigned long *ignored)
3560 unsigned long node_start_pfn, node_end_pfn;
3561 unsigned long zone_start_pfn, zone_end_pfn;
3563 /* Get the start and end of the node and zone */
3564 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3565 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3566 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3567 adjust_zone_range_for_zone_movable(nid, zone_type,
3568 node_start_pfn, node_end_pfn,
3569 &zone_start_pfn, &zone_end_pfn);
3571 /* Check that this node has pages within the zone's required range */
3572 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3573 return 0;
3575 /* Move the zone boundaries inside the node if necessary */
3576 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3577 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3579 /* Return the spanned pages */
3580 return zone_end_pfn - zone_start_pfn;
3584 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3585 * then all holes in the requested range will be accounted for.
3587 unsigned long __meminit __absent_pages_in_range(int nid,
3588 unsigned long range_start_pfn,
3589 unsigned long range_end_pfn)
3591 int i = 0;
3592 unsigned long prev_end_pfn = 0, hole_pages = 0;
3593 unsigned long start_pfn;
3595 /* Find the end_pfn of the first active range of pfns in the node */
3596 i = first_active_region_index_in_nid(nid);
3597 if (i == -1)
3598 return 0;
3600 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3602 /* Account for ranges before physical memory on this node */
3603 if (early_node_map[i].start_pfn > range_start_pfn)
3604 hole_pages = prev_end_pfn - range_start_pfn;
3606 /* Find all holes for the zone within the node */
3607 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3609 /* No need to continue if prev_end_pfn is outside the zone */
3610 if (prev_end_pfn >= range_end_pfn)
3611 break;
3613 /* Make sure the end of the zone is not within the hole */
3614 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3615 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3617 /* Update the hole size cound and move on */
3618 if (start_pfn > range_start_pfn) {
3619 BUG_ON(prev_end_pfn > start_pfn);
3620 hole_pages += start_pfn - prev_end_pfn;
3622 prev_end_pfn = early_node_map[i].end_pfn;
3625 /* Account for ranges past physical memory on this node */
3626 if (range_end_pfn > prev_end_pfn)
3627 hole_pages += range_end_pfn -
3628 max(range_start_pfn, prev_end_pfn);
3630 return hole_pages;
3634 * absent_pages_in_range - Return number of page frames in holes within a range
3635 * @start_pfn: The start PFN to start searching for holes
3636 * @end_pfn: The end PFN to stop searching for holes
3638 * It returns the number of pages frames in memory holes within a range.
3640 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3641 unsigned long end_pfn)
3643 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3646 /* Return the number of page frames in holes in a zone on a node */
3647 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3648 unsigned long zone_type,
3649 unsigned long *ignored)
3651 unsigned long node_start_pfn, node_end_pfn;
3652 unsigned long zone_start_pfn, zone_end_pfn;
3654 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3655 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3656 node_start_pfn);
3657 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3658 node_end_pfn);
3660 adjust_zone_range_for_zone_movable(nid, zone_type,
3661 node_start_pfn, node_end_pfn,
3662 &zone_start_pfn, &zone_end_pfn);
3663 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3666 #else
3667 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3668 unsigned long zone_type,
3669 unsigned long *zones_size)
3671 return zones_size[zone_type];
3674 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3675 unsigned long zone_type,
3676 unsigned long *zholes_size)
3678 if (!zholes_size)
3679 return 0;
3681 return zholes_size[zone_type];
3684 #endif
3686 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3687 unsigned long *zones_size, unsigned long *zholes_size)
3689 unsigned long realtotalpages, totalpages = 0;
3690 enum zone_type i;
3692 for (i = 0; i < MAX_NR_ZONES; i++)
3693 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3694 zones_size);
3695 pgdat->node_spanned_pages = totalpages;
3697 realtotalpages = totalpages;
3698 for (i = 0; i < MAX_NR_ZONES; i++)
3699 realtotalpages -=
3700 zone_absent_pages_in_node(pgdat->node_id, i,
3701 zholes_size);
3702 pgdat->node_present_pages = realtotalpages;
3703 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3704 realtotalpages);
3707 #ifndef CONFIG_SPARSEMEM
3709 * Calculate the size of the zone->blockflags rounded to an unsigned long
3710 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3711 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3712 * round what is now in bits to nearest long in bits, then return it in
3713 * bytes.
3715 static unsigned long __init usemap_size(unsigned long zonesize)
3717 unsigned long usemapsize;
3719 usemapsize = roundup(zonesize, pageblock_nr_pages);
3720 usemapsize = usemapsize >> pageblock_order;
3721 usemapsize *= NR_PAGEBLOCK_BITS;
3722 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3724 return usemapsize / 8;
3727 static void __init setup_usemap(struct pglist_data *pgdat,
3728 struct zone *zone, unsigned long zonesize)
3730 unsigned long usemapsize = usemap_size(zonesize);
3731 zone->pageblock_flags = NULL;
3732 if (usemapsize)
3733 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3735 #else
3736 static void inline setup_usemap(struct pglist_data *pgdat,
3737 struct zone *zone, unsigned long zonesize) {}
3738 #endif /* CONFIG_SPARSEMEM */
3740 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3742 /* Return a sensible default order for the pageblock size. */
3743 static inline int pageblock_default_order(void)
3745 if (HPAGE_SHIFT > PAGE_SHIFT)
3746 return HUGETLB_PAGE_ORDER;
3748 return MAX_ORDER-1;
3751 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3752 static inline void __init set_pageblock_order(unsigned int order)
3754 /* Check that pageblock_nr_pages has not already been setup */
3755 if (pageblock_order)
3756 return;
3759 * Assume the largest contiguous order of interest is a huge page.
3760 * This value may be variable depending on boot parameters on IA64
3762 pageblock_order = order;
3764 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3767 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3768 * and pageblock_default_order() are unused as pageblock_order is set
3769 * at compile-time. See include/linux/pageblock-flags.h for the values of
3770 * pageblock_order based on the kernel config
3772 static inline int pageblock_default_order(unsigned int order)
3774 return MAX_ORDER-1;
3776 #define set_pageblock_order(x) do {} while (0)
3778 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3781 * Set up the zone data structures:
3782 * - mark all pages reserved
3783 * - mark all memory queues empty
3784 * - clear the memory bitmaps
3786 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3787 unsigned long *zones_size, unsigned long *zholes_size)
3789 enum zone_type j;
3790 int nid = pgdat->node_id;
3791 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3792 int ret;
3794 pgdat_resize_init(pgdat);
3795 pgdat->nr_zones = 0;
3796 init_waitqueue_head(&pgdat->kswapd_wait);
3797 pgdat->kswapd_max_order = 0;
3798 pgdat_page_cgroup_init(pgdat);
3800 for (j = 0; j < MAX_NR_ZONES; j++) {
3801 struct zone *zone = pgdat->node_zones + j;
3802 unsigned long size, realsize, memmap_pages;
3803 enum lru_list l;
3805 size = zone_spanned_pages_in_node(nid, j, zones_size);
3806 realsize = size - zone_absent_pages_in_node(nid, j,
3807 zholes_size);
3810 * Adjust realsize so that it accounts for how much memory
3811 * is used by this zone for memmap. This affects the watermark
3812 * and per-cpu initialisations
3814 memmap_pages =
3815 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3816 if (realsize >= memmap_pages) {
3817 realsize -= memmap_pages;
3818 if (memmap_pages)
3819 printk(KERN_DEBUG
3820 " %s zone: %lu pages used for memmap\n",
3821 zone_names[j], memmap_pages);
3822 } else
3823 printk(KERN_WARNING
3824 " %s zone: %lu pages exceeds realsize %lu\n",
3825 zone_names[j], memmap_pages, realsize);
3827 /* Account for reserved pages */
3828 if (j == 0 && realsize > dma_reserve) {
3829 realsize -= dma_reserve;
3830 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3831 zone_names[0], dma_reserve);
3834 if (!is_highmem_idx(j))
3835 nr_kernel_pages += realsize;
3836 nr_all_pages += realsize;
3838 zone->spanned_pages = size;
3839 zone->present_pages = realsize;
3840 #ifdef CONFIG_NUMA
3841 zone->node = nid;
3842 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3843 / 100;
3844 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3845 #endif
3846 zone->name = zone_names[j];
3847 spin_lock_init(&zone->lock);
3848 spin_lock_init(&zone->lru_lock);
3849 zone_seqlock_init(zone);
3850 zone->zone_pgdat = pgdat;
3852 zone->prev_priority = DEF_PRIORITY;
3854 zone_pcp_init(zone);
3855 for_each_lru(l) {
3856 INIT_LIST_HEAD(&zone->lru[l].list);
3857 zone->reclaim_stat.nr_saved_scan[l] = 0;
3859 zone->reclaim_stat.recent_rotated[0] = 0;
3860 zone->reclaim_stat.recent_rotated[1] = 0;
3861 zone->reclaim_stat.recent_scanned[0] = 0;
3862 zone->reclaim_stat.recent_scanned[1] = 0;
3863 zap_zone_vm_stats(zone);
3864 zone->flags = 0;
3865 if (!size)
3866 continue;
3868 set_pageblock_order(pageblock_default_order());
3869 setup_usemap(pgdat, zone, size);
3870 ret = init_currently_empty_zone(zone, zone_start_pfn,
3871 size, MEMMAP_EARLY);
3872 BUG_ON(ret);
3873 memmap_init(size, nid, j, zone_start_pfn);
3874 zone_start_pfn += size;
3878 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3880 /* Skip empty nodes */
3881 if (!pgdat->node_spanned_pages)
3882 return;
3884 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3885 /* ia64 gets its own node_mem_map, before this, without bootmem */
3886 if (!pgdat->node_mem_map) {
3887 unsigned long size, start, end;
3888 struct page *map;
3891 * The zone's endpoints aren't required to be MAX_ORDER
3892 * aligned but the node_mem_map endpoints must be in order
3893 * for the buddy allocator to function correctly.
3895 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3896 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3897 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3898 size = (end - start) * sizeof(struct page);
3899 map = alloc_remap(pgdat->node_id, size);
3900 if (!map)
3901 map = alloc_bootmem_node(pgdat, size);
3902 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3904 #ifndef CONFIG_NEED_MULTIPLE_NODES
3906 * With no DISCONTIG, the global mem_map is just set as node 0's
3908 if (pgdat == NODE_DATA(0)) {
3909 mem_map = NODE_DATA(0)->node_mem_map;
3910 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3911 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3912 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3913 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3915 #endif
3916 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3919 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3920 unsigned long node_start_pfn, unsigned long *zholes_size)
3922 pg_data_t *pgdat = NODE_DATA(nid);
3924 pgdat->node_id = nid;
3925 pgdat->node_start_pfn = node_start_pfn;
3926 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3928 alloc_node_mem_map(pgdat);
3929 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3930 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3931 nid, (unsigned long)pgdat,
3932 (unsigned long)pgdat->node_mem_map);
3933 #endif
3935 free_area_init_core(pgdat, zones_size, zholes_size);
3938 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3940 #if MAX_NUMNODES > 1
3942 * Figure out the number of possible node ids.
3944 static void __init setup_nr_node_ids(void)
3946 unsigned int node;
3947 unsigned int highest = 0;
3949 for_each_node_mask(node, node_possible_map)
3950 highest = node;
3951 nr_node_ids = highest + 1;
3953 #else
3954 static inline void setup_nr_node_ids(void)
3957 #endif
3960 * add_active_range - Register a range of PFNs backed by physical memory
3961 * @nid: The node ID the range resides on
3962 * @start_pfn: The start PFN of the available physical memory
3963 * @end_pfn: The end PFN of the available physical memory
3965 * These ranges are stored in an early_node_map[] and later used by
3966 * free_area_init_nodes() to calculate zone sizes and holes. If the
3967 * range spans a memory hole, it is up to the architecture to ensure
3968 * the memory is not freed by the bootmem allocator. If possible
3969 * the range being registered will be merged with existing ranges.
3971 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3972 unsigned long end_pfn)
3974 int i;
3976 mminit_dprintk(MMINIT_TRACE, "memory_register",
3977 "Entering add_active_range(%d, %#lx, %#lx) "
3978 "%d entries of %d used\n",
3979 nid, start_pfn, end_pfn,
3980 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3982 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3984 /* Merge with existing active regions if possible */
3985 for (i = 0; i < nr_nodemap_entries; i++) {
3986 if (early_node_map[i].nid != nid)
3987 continue;
3989 /* Skip if an existing region covers this new one */
3990 if (start_pfn >= early_node_map[i].start_pfn &&
3991 end_pfn <= early_node_map[i].end_pfn)
3992 return;
3994 /* Merge forward if suitable */
3995 if (start_pfn <= early_node_map[i].end_pfn &&
3996 end_pfn > early_node_map[i].end_pfn) {
3997 early_node_map[i].end_pfn = end_pfn;
3998 return;
4001 /* Merge backward if suitable */
4002 if (start_pfn < early_node_map[i].start_pfn &&
4003 end_pfn >= early_node_map[i].start_pfn) {
4004 early_node_map[i].start_pfn = start_pfn;
4005 return;
4009 /* Check that early_node_map is large enough */
4010 if (i >= MAX_ACTIVE_REGIONS) {
4011 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4012 MAX_ACTIVE_REGIONS);
4013 return;
4016 early_node_map[i].nid = nid;
4017 early_node_map[i].start_pfn = start_pfn;
4018 early_node_map[i].end_pfn = end_pfn;
4019 nr_nodemap_entries = i + 1;
4023 * remove_active_range - Shrink an existing registered range of PFNs
4024 * @nid: The node id the range is on that should be shrunk
4025 * @start_pfn: The new PFN of the range
4026 * @end_pfn: The new PFN of the range
4028 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4029 * The map is kept near the end physical page range that has already been
4030 * registered. This function allows an arch to shrink an existing registered
4031 * range.
4033 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4034 unsigned long end_pfn)
4036 int i, j;
4037 int removed = 0;
4039 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4040 nid, start_pfn, end_pfn);
4042 /* Find the old active region end and shrink */
4043 for_each_active_range_index_in_nid(i, nid) {
4044 if (early_node_map[i].start_pfn >= start_pfn &&
4045 early_node_map[i].end_pfn <= end_pfn) {
4046 /* clear it */
4047 early_node_map[i].start_pfn = 0;
4048 early_node_map[i].end_pfn = 0;
4049 removed = 1;
4050 continue;
4052 if (early_node_map[i].start_pfn < start_pfn &&
4053 early_node_map[i].end_pfn > start_pfn) {
4054 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4055 early_node_map[i].end_pfn = start_pfn;
4056 if (temp_end_pfn > end_pfn)
4057 add_active_range(nid, end_pfn, temp_end_pfn);
4058 continue;
4060 if (early_node_map[i].start_pfn >= start_pfn &&
4061 early_node_map[i].end_pfn > end_pfn &&
4062 early_node_map[i].start_pfn < end_pfn) {
4063 early_node_map[i].start_pfn = end_pfn;
4064 continue;
4068 if (!removed)
4069 return;
4071 /* remove the blank ones */
4072 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4073 if (early_node_map[i].nid != nid)
4074 continue;
4075 if (early_node_map[i].end_pfn)
4076 continue;
4077 /* we found it, get rid of it */
4078 for (j = i; j < nr_nodemap_entries - 1; j++)
4079 memcpy(&early_node_map[j], &early_node_map[j+1],
4080 sizeof(early_node_map[j]));
4081 j = nr_nodemap_entries - 1;
4082 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4083 nr_nodemap_entries--;
4088 * remove_all_active_ranges - Remove all currently registered regions
4090 * During discovery, it may be found that a table like SRAT is invalid
4091 * and an alternative discovery method must be used. This function removes
4092 * all currently registered regions.
4094 void __init remove_all_active_ranges(void)
4096 memset(early_node_map, 0, sizeof(early_node_map));
4097 nr_nodemap_entries = 0;
4100 /* Compare two active node_active_regions */
4101 static int __init cmp_node_active_region(const void *a, const void *b)
4103 struct node_active_region *arange = (struct node_active_region *)a;
4104 struct node_active_region *brange = (struct node_active_region *)b;
4106 /* Done this way to avoid overflows */
4107 if (arange->start_pfn > brange->start_pfn)
4108 return 1;
4109 if (arange->start_pfn < brange->start_pfn)
4110 return -1;
4112 return 0;
4115 /* sort the node_map by start_pfn */
4116 void __init sort_node_map(void)
4118 sort(early_node_map, (size_t)nr_nodemap_entries,
4119 sizeof(struct node_active_region),
4120 cmp_node_active_region, NULL);
4123 /* Find the lowest pfn for a node */
4124 static unsigned long __init find_min_pfn_for_node(int nid)
4126 int i;
4127 unsigned long min_pfn = ULONG_MAX;
4129 /* Assuming a sorted map, the first range found has the starting pfn */
4130 for_each_active_range_index_in_nid(i, nid)
4131 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4133 if (min_pfn == ULONG_MAX) {
4134 printk(KERN_WARNING
4135 "Could not find start_pfn for node %d\n", nid);
4136 return 0;
4139 return min_pfn;
4143 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4145 * It returns the minimum PFN based on information provided via
4146 * add_active_range().
4148 unsigned long __init find_min_pfn_with_active_regions(void)
4150 return find_min_pfn_for_node(MAX_NUMNODES);
4154 * early_calculate_totalpages()
4155 * Sum pages in active regions for movable zone.
4156 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4158 static unsigned long __init early_calculate_totalpages(void)
4160 int i;
4161 unsigned long totalpages = 0;
4163 for (i = 0; i < nr_nodemap_entries; i++) {
4164 unsigned long pages = early_node_map[i].end_pfn -
4165 early_node_map[i].start_pfn;
4166 totalpages += pages;
4167 if (pages)
4168 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4170 return totalpages;
4174 * Find the PFN the Movable zone begins in each node. Kernel memory
4175 * is spread evenly between nodes as long as the nodes have enough
4176 * memory. When they don't, some nodes will have more kernelcore than
4177 * others
4179 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4181 int i, nid;
4182 unsigned long usable_startpfn;
4183 unsigned long kernelcore_node, kernelcore_remaining;
4184 /* save the state before borrow the nodemask */
4185 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4186 unsigned long totalpages = early_calculate_totalpages();
4187 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4190 * If movablecore was specified, calculate what size of
4191 * kernelcore that corresponds so that memory usable for
4192 * any allocation type is evenly spread. If both kernelcore
4193 * and movablecore are specified, then the value of kernelcore
4194 * will be used for required_kernelcore if it's greater than
4195 * what movablecore would have allowed.
4197 if (required_movablecore) {
4198 unsigned long corepages;
4201 * Round-up so that ZONE_MOVABLE is at least as large as what
4202 * was requested by the user
4204 required_movablecore =
4205 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4206 corepages = totalpages - required_movablecore;
4208 required_kernelcore = max(required_kernelcore, corepages);
4211 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4212 if (!required_kernelcore)
4213 goto out;
4215 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4216 find_usable_zone_for_movable();
4217 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4219 restart:
4220 /* Spread kernelcore memory as evenly as possible throughout nodes */
4221 kernelcore_node = required_kernelcore / usable_nodes;
4222 for_each_node_state(nid, N_HIGH_MEMORY) {
4224 * Recalculate kernelcore_node if the division per node
4225 * now exceeds what is necessary to satisfy the requested
4226 * amount of memory for the kernel
4228 if (required_kernelcore < kernelcore_node)
4229 kernelcore_node = required_kernelcore / usable_nodes;
4232 * As the map is walked, we track how much memory is usable
4233 * by the kernel using kernelcore_remaining. When it is
4234 * 0, the rest of the node is usable by ZONE_MOVABLE
4236 kernelcore_remaining = kernelcore_node;
4238 /* Go through each range of PFNs within this node */
4239 for_each_active_range_index_in_nid(i, nid) {
4240 unsigned long start_pfn, end_pfn;
4241 unsigned long size_pages;
4243 start_pfn = max(early_node_map[i].start_pfn,
4244 zone_movable_pfn[nid]);
4245 end_pfn = early_node_map[i].end_pfn;
4246 if (start_pfn >= end_pfn)
4247 continue;
4249 /* Account for what is only usable for kernelcore */
4250 if (start_pfn < usable_startpfn) {
4251 unsigned long kernel_pages;
4252 kernel_pages = min(end_pfn, usable_startpfn)
4253 - start_pfn;
4255 kernelcore_remaining -= min(kernel_pages,
4256 kernelcore_remaining);
4257 required_kernelcore -= min(kernel_pages,
4258 required_kernelcore);
4260 /* Continue if range is now fully accounted */
4261 if (end_pfn <= usable_startpfn) {
4264 * Push zone_movable_pfn to the end so
4265 * that if we have to rebalance
4266 * kernelcore across nodes, we will
4267 * not double account here
4269 zone_movable_pfn[nid] = end_pfn;
4270 continue;
4272 start_pfn = usable_startpfn;
4276 * The usable PFN range for ZONE_MOVABLE is from
4277 * start_pfn->end_pfn. Calculate size_pages as the
4278 * number of pages used as kernelcore
4280 size_pages = end_pfn - start_pfn;
4281 if (size_pages > kernelcore_remaining)
4282 size_pages = kernelcore_remaining;
4283 zone_movable_pfn[nid] = start_pfn + size_pages;
4286 * Some kernelcore has been met, update counts and
4287 * break if the kernelcore for this node has been
4288 * satisified
4290 required_kernelcore -= min(required_kernelcore,
4291 size_pages);
4292 kernelcore_remaining -= size_pages;
4293 if (!kernelcore_remaining)
4294 break;
4299 * If there is still required_kernelcore, we do another pass with one
4300 * less node in the count. This will push zone_movable_pfn[nid] further
4301 * along on the nodes that still have memory until kernelcore is
4302 * satisified
4304 usable_nodes--;
4305 if (usable_nodes && required_kernelcore > usable_nodes)
4306 goto restart;
4308 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4309 for (nid = 0; nid < MAX_NUMNODES; nid++)
4310 zone_movable_pfn[nid] =
4311 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4313 out:
4314 /* restore the node_state */
4315 node_states[N_HIGH_MEMORY] = saved_node_state;
4318 /* Any regular memory on that node ? */
4319 static void check_for_regular_memory(pg_data_t *pgdat)
4321 #ifdef CONFIG_HIGHMEM
4322 enum zone_type zone_type;
4324 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4325 struct zone *zone = &pgdat->node_zones[zone_type];
4326 if (zone->present_pages)
4327 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4329 #endif
4333 * free_area_init_nodes - Initialise all pg_data_t and zone data
4334 * @max_zone_pfn: an array of max PFNs for each zone
4336 * This will call free_area_init_node() for each active node in the system.
4337 * Using the page ranges provided by add_active_range(), the size of each
4338 * zone in each node and their holes is calculated. If the maximum PFN
4339 * between two adjacent zones match, it is assumed that the zone is empty.
4340 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4341 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4342 * starts where the previous one ended. For example, ZONE_DMA32 starts
4343 * at arch_max_dma_pfn.
4345 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4347 unsigned long nid;
4348 int i;
4350 /* Sort early_node_map as initialisation assumes it is sorted */
4351 sort_node_map();
4353 /* Record where the zone boundaries are */
4354 memset(arch_zone_lowest_possible_pfn, 0,
4355 sizeof(arch_zone_lowest_possible_pfn));
4356 memset(arch_zone_highest_possible_pfn, 0,
4357 sizeof(arch_zone_highest_possible_pfn));
4358 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4359 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4360 for (i = 1; i < MAX_NR_ZONES; i++) {
4361 if (i == ZONE_MOVABLE)
4362 continue;
4363 arch_zone_lowest_possible_pfn[i] =
4364 arch_zone_highest_possible_pfn[i-1];
4365 arch_zone_highest_possible_pfn[i] =
4366 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4368 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4369 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4371 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4372 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4373 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4375 /* Print out the zone ranges */
4376 printk("Zone PFN ranges:\n");
4377 for (i = 0; i < MAX_NR_ZONES; i++) {
4378 if (i == ZONE_MOVABLE)
4379 continue;
4380 printk(" %-8s %0#10lx -> %0#10lx\n",
4381 zone_names[i],
4382 arch_zone_lowest_possible_pfn[i],
4383 arch_zone_highest_possible_pfn[i]);
4386 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4387 printk("Movable zone start PFN for each node\n");
4388 for (i = 0; i < MAX_NUMNODES; i++) {
4389 if (zone_movable_pfn[i])
4390 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4393 /* Print out the early_node_map[] */
4394 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4395 for (i = 0; i < nr_nodemap_entries; i++)
4396 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4397 early_node_map[i].start_pfn,
4398 early_node_map[i].end_pfn);
4400 /* Initialise every node */
4401 mminit_verify_pageflags_layout();
4402 setup_nr_node_ids();
4403 for_each_online_node(nid) {
4404 pg_data_t *pgdat = NODE_DATA(nid);
4405 free_area_init_node(nid, NULL,
4406 find_min_pfn_for_node(nid), NULL);
4408 /* Any memory on that node */
4409 if (pgdat->node_present_pages)
4410 node_set_state(nid, N_HIGH_MEMORY);
4411 check_for_regular_memory(pgdat);
4415 static int __init cmdline_parse_core(char *p, unsigned long *core)
4417 unsigned long long coremem;
4418 if (!p)
4419 return -EINVAL;
4421 coremem = memparse(p, &p);
4422 *core = coremem >> PAGE_SHIFT;
4424 /* Paranoid check that UL is enough for the coremem value */
4425 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4427 return 0;
4431 * kernelcore=size sets the amount of memory for use for allocations that
4432 * cannot be reclaimed or migrated.
4434 static int __init cmdline_parse_kernelcore(char *p)
4436 return cmdline_parse_core(p, &required_kernelcore);
4440 * movablecore=size sets the amount of memory for use for allocations that
4441 * can be reclaimed or migrated.
4443 static int __init cmdline_parse_movablecore(char *p)
4445 return cmdline_parse_core(p, &required_movablecore);
4448 early_param("kernelcore", cmdline_parse_kernelcore);
4449 early_param("movablecore", cmdline_parse_movablecore);
4451 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4454 * set_dma_reserve - set the specified number of pages reserved in the first zone
4455 * @new_dma_reserve: The number of pages to mark reserved
4457 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4458 * In the DMA zone, a significant percentage may be consumed by kernel image
4459 * and other unfreeable allocations which can skew the watermarks badly. This
4460 * function may optionally be used to account for unfreeable pages in the
4461 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4462 * smaller per-cpu batchsize.
4464 void __init set_dma_reserve(unsigned long new_dma_reserve)
4466 dma_reserve = new_dma_reserve;
4469 #ifndef CONFIG_NEED_MULTIPLE_NODES
4470 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4471 EXPORT_SYMBOL(contig_page_data);
4472 #endif
4474 void __init free_area_init(unsigned long *zones_size)
4476 free_area_init_node(0, zones_size,
4477 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4480 static int page_alloc_cpu_notify(struct notifier_block *self,
4481 unsigned long action, void *hcpu)
4483 int cpu = (unsigned long)hcpu;
4485 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4486 drain_pages(cpu);
4489 * Spill the event counters of the dead processor
4490 * into the current processors event counters.
4491 * This artificially elevates the count of the current
4492 * processor.
4494 vm_events_fold_cpu(cpu);
4497 * Zero the differential counters of the dead processor
4498 * so that the vm statistics are consistent.
4500 * This is only okay since the processor is dead and cannot
4501 * race with what we are doing.
4503 refresh_cpu_vm_stats(cpu);
4505 return NOTIFY_OK;
4508 void __init page_alloc_init(void)
4510 hotcpu_notifier(page_alloc_cpu_notify, 0);
4514 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4515 * or min_free_kbytes changes.
4517 static void calculate_totalreserve_pages(void)
4519 struct pglist_data *pgdat;
4520 unsigned long reserve_pages = 0;
4521 enum zone_type i, j;
4523 for_each_online_pgdat(pgdat) {
4524 for (i = 0; i < MAX_NR_ZONES; i++) {
4525 struct zone *zone = pgdat->node_zones + i;
4526 unsigned long max = 0;
4528 /* Find valid and maximum lowmem_reserve in the zone */
4529 for (j = i; j < MAX_NR_ZONES; j++) {
4530 if (zone->lowmem_reserve[j] > max)
4531 max = zone->lowmem_reserve[j];
4534 /* we treat the high watermark as reserved pages. */
4535 max += high_wmark_pages(zone);
4537 if (max > zone->present_pages)
4538 max = zone->present_pages;
4539 reserve_pages += max;
4542 totalreserve_pages = reserve_pages;
4546 * setup_per_zone_lowmem_reserve - called whenever
4547 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4548 * has a correct pages reserved value, so an adequate number of
4549 * pages are left in the zone after a successful __alloc_pages().
4551 static void setup_per_zone_lowmem_reserve(void)
4553 struct pglist_data *pgdat;
4554 enum zone_type j, idx;
4556 for_each_online_pgdat(pgdat) {
4557 for (j = 0; j < MAX_NR_ZONES; j++) {
4558 struct zone *zone = pgdat->node_zones + j;
4559 unsigned long present_pages = zone->present_pages;
4561 zone->lowmem_reserve[j] = 0;
4563 idx = j;
4564 while (idx) {
4565 struct zone *lower_zone;
4567 idx--;
4569 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4570 sysctl_lowmem_reserve_ratio[idx] = 1;
4572 lower_zone = pgdat->node_zones + idx;
4573 lower_zone->lowmem_reserve[j] = present_pages /
4574 sysctl_lowmem_reserve_ratio[idx];
4575 present_pages += lower_zone->present_pages;
4580 /* update totalreserve_pages */
4581 calculate_totalreserve_pages();
4585 * setup_per_zone_wmarks - called when min_free_kbytes changes
4586 * or when memory is hot-{added|removed}
4588 * Ensures that the watermark[min,low,high] values for each zone are set
4589 * correctly with respect to min_free_kbytes.
4591 void setup_per_zone_wmarks(void)
4593 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4594 unsigned long lowmem_pages = 0;
4595 struct zone *zone;
4596 unsigned long flags;
4598 /* Calculate total number of !ZONE_HIGHMEM pages */
4599 for_each_zone(zone) {
4600 if (!is_highmem(zone))
4601 lowmem_pages += zone->present_pages;
4604 for_each_zone(zone) {
4605 u64 tmp;
4607 spin_lock_irqsave(&zone->lock, flags);
4608 tmp = (u64)pages_min * zone->present_pages;
4609 do_div(tmp, lowmem_pages);
4610 if (is_highmem(zone)) {
4612 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4613 * need highmem pages, so cap pages_min to a small
4614 * value here.
4616 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4617 * deltas controls asynch page reclaim, and so should
4618 * not be capped for highmem.
4620 int min_pages;
4622 min_pages = zone->present_pages / 1024;
4623 if (min_pages < SWAP_CLUSTER_MAX)
4624 min_pages = SWAP_CLUSTER_MAX;
4625 if (min_pages > 128)
4626 min_pages = 128;
4627 zone->watermark[WMARK_MIN] = min_pages;
4628 } else {
4630 * If it's a lowmem zone, reserve a number of pages
4631 * proportionate to the zone's size.
4633 zone->watermark[WMARK_MIN] = tmp;
4636 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4637 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4638 setup_zone_migrate_reserve(zone);
4639 spin_unlock_irqrestore(&zone->lock, flags);
4642 /* update totalreserve_pages */
4643 calculate_totalreserve_pages();
4647 * The inactive anon list should be small enough that the VM never has to
4648 * do too much work, but large enough that each inactive page has a chance
4649 * to be referenced again before it is swapped out.
4651 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4652 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4653 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4654 * the anonymous pages are kept on the inactive list.
4656 * total target max
4657 * memory ratio inactive anon
4658 * -------------------------------------
4659 * 10MB 1 5MB
4660 * 100MB 1 50MB
4661 * 1GB 3 250MB
4662 * 10GB 10 0.9GB
4663 * 100GB 31 3GB
4664 * 1TB 101 10GB
4665 * 10TB 320 32GB
4667 void calculate_zone_inactive_ratio(struct zone *zone)
4669 unsigned int gb, ratio;
4671 /* Zone size in gigabytes */
4672 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4673 if (gb)
4674 ratio = int_sqrt(10 * gb);
4675 else
4676 ratio = 1;
4678 zone->inactive_ratio = ratio;
4681 static void __init setup_per_zone_inactive_ratio(void)
4683 struct zone *zone;
4685 for_each_zone(zone)
4686 calculate_zone_inactive_ratio(zone);
4690 * Initialise min_free_kbytes.
4692 * For small machines we want it small (128k min). For large machines
4693 * we want it large (64MB max). But it is not linear, because network
4694 * bandwidth does not increase linearly with machine size. We use
4696 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4697 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4699 * which yields
4701 * 16MB: 512k
4702 * 32MB: 724k
4703 * 64MB: 1024k
4704 * 128MB: 1448k
4705 * 256MB: 2048k
4706 * 512MB: 2896k
4707 * 1024MB: 4096k
4708 * 2048MB: 5792k
4709 * 4096MB: 8192k
4710 * 8192MB: 11584k
4711 * 16384MB: 16384k
4713 static int __init init_per_zone_wmark_min(void)
4715 unsigned long lowmem_kbytes;
4717 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4719 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4720 if (min_free_kbytes < 128)
4721 min_free_kbytes = 128;
4722 if (min_free_kbytes > 65536)
4723 min_free_kbytes = 65536;
4724 setup_per_zone_wmarks();
4725 setup_per_zone_lowmem_reserve();
4726 setup_per_zone_inactive_ratio();
4727 return 0;
4729 module_init(init_per_zone_wmark_min)
4732 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4733 * that we can call two helper functions whenever min_free_kbytes
4734 * changes.
4736 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4737 void __user *buffer, size_t *length, loff_t *ppos)
4739 proc_dointvec(table, write, buffer, length, ppos);
4740 if (write)
4741 setup_per_zone_wmarks();
4742 return 0;
4745 #ifdef CONFIG_NUMA
4746 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4747 void __user *buffer, size_t *length, loff_t *ppos)
4749 struct zone *zone;
4750 int rc;
4752 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4753 if (rc)
4754 return rc;
4756 for_each_zone(zone)
4757 zone->min_unmapped_pages = (zone->present_pages *
4758 sysctl_min_unmapped_ratio) / 100;
4759 return 0;
4762 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4763 void __user *buffer, size_t *length, loff_t *ppos)
4765 struct zone *zone;
4766 int rc;
4768 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4769 if (rc)
4770 return rc;
4772 for_each_zone(zone)
4773 zone->min_slab_pages = (zone->present_pages *
4774 sysctl_min_slab_ratio) / 100;
4775 return 0;
4777 #endif
4780 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4781 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4782 * whenever sysctl_lowmem_reserve_ratio changes.
4784 * The reserve ratio obviously has absolutely no relation with the
4785 * minimum watermarks. The lowmem reserve ratio can only make sense
4786 * if in function of the boot time zone sizes.
4788 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4789 void __user *buffer, size_t *length, loff_t *ppos)
4791 proc_dointvec_minmax(table, write, buffer, length, ppos);
4792 setup_per_zone_lowmem_reserve();
4793 return 0;
4797 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4798 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4799 * can have before it gets flushed back to buddy allocator.
4802 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4803 void __user *buffer, size_t *length, loff_t *ppos)
4805 struct zone *zone;
4806 unsigned int cpu;
4807 int ret;
4809 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
4810 if (!write || (ret == -EINVAL))
4811 return ret;
4812 for_each_populated_zone(zone) {
4813 for_each_online_cpu(cpu) {
4814 unsigned long high;
4815 high = zone->present_pages / percpu_pagelist_fraction;
4816 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4819 return 0;
4822 int hashdist = HASHDIST_DEFAULT;
4824 #ifdef CONFIG_NUMA
4825 static int __init set_hashdist(char *str)
4827 if (!str)
4828 return 0;
4829 hashdist = simple_strtoul(str, &str, 0);
4830 return 1;
4832 __setup("hashdist=", set_hashdist);
4833 #endif
4836 * allocate a large system hash table from bootmem
4837 * - it is assumed that the hash table must contain an exact power-of-2
4838 * quantity of entries
4839 * - limit is the number of hash buckets, not the total allocation size
4841 void *__init alloc_large_system_hash(const char *tablename,
4842 unsigned long bucketsize,
4843 unsigned long numentries,
4844 int scale,
4845 int flags,
4846 unsigned int *_hash_shift,
4847 unsigned int *_hash_mask,
4848 unsigned long limit)
4850 unsigned long long max = limit;
4851 unsigned long log2qty, size;
4852 void *table = NULL;
4854 /* allow the kernel cmdline to have a say */
4855 if (!numentries) {
4856 /* round applicable memory size up to nearest megabyte */
4857 numentries = nr_kernel_pages;
4858 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4859 numentries >>= 20 - PAGE_SHIFT;
4860 numentries <<= 20 - PAGE_SHIFT;
4862 /* limit to 1 bucket per 2^scale bytes of low memory */
4863 if (scale > PAGE_SHIFT)
4864 numentries >>= (scale - PAGE_SHIFT);
4865 else
4866 numentries <<= (PAGE_SHIFT - scale);
4868 /* Make sure we've got at least a 0-order allocation.. */
4869 if (unlikely(flags & HASH_SMALL)) {
4870 /* Makes no sense without HASH_EARLY */
4871 WARN_ON(!(flags & HASH_EARLY));
4872 if (!(numentries >> *_hash_shift)) {
4873 numentries = 1UL << *_hash_shift;
4874 BUG_ON(!numentries);
4876 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4877 numentries = PAGE_SIZE / bucketsize;
4879 numentries = roundup_pow_of_two(numentries);
4881 /* limit allocation size to 1/16 total memory by default */
4882 if (max == 0) {
4883 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4884 do_div(max, bucketsize);
4887 if (numentries > max)
4888 numentries = max;
4890 log2qty = ilog2(numentries);
4892 do {
4893 size = bucketsize << log2qty;
4894 if (flags & HASH_EARLY)
4895 table = alloc_bootmem_nopanic(size);
4896 else if (hashdist)
4897 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4898 else {
4900 * If bucketsize is not a power-of-two, we may free
4901 * some pages at the end of hash table which
4902 * alloc_pages_exact() automatically does
4904 if (get_order(size) < MAX_ORDER) {
4905 table = alloc_pages_exact(size, GFP_ATOMIC);
4906 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4909 } while (!table && size > PAGE_SIZE && --log2qty);
4911 if (!table)
4912 panic("Failed to allocate %s hash table\n", tablename);
4914 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4915 tablename,
4916 (1U << log2qty),
4917 ilog2(size) - PAGE_SHIFT,
4918 size);
4920 if (_hash_shift)
4921 *_hash_shift = log2qty;
4922 if (_hash_mask)
4923 *_hash_mask = (1 << log2qty) - 1;
4925 return table;
4928 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4929 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4930 unsigned long pfn)
4932 #ifdef CONFIG_SPARSEMEM
4933 return __pfn_to_section(pfn)->pageblock_flags;
4934 #else
4935 return zone->pageblock_flags;
4936 #endif /* CONFIG_SPARSEMEM */
4939 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4941 #ifdef CONFIG_SPARSEMEM
4942 pfn &= (PAGES_PER_SECTION-1);
4943 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4944 #else
4945 pfn = pfn - zone->zone_start_pfn;
4946 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4947 #endif /* CONFIG_SPARSEMEM */
4951 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4952 * @page: The page within the block of interest
4953 * @start_bitidx: The first bit of interest to retrieve
4954 * @end_bitidx: The last bit of interest
4955 * returns pageblock_bits flags
4957 unsigned long get_pageblock_flags_group(struct page *page,
4958 int start_bitidx, int end_bitidx)
4960 struct zone *zone;
4961 unsigned long *bitmap;
4962 unsigned long pfn, bitidx;
4963 unsigned long flags = 0;
4964 unsigned long value = 1;
4966 zone = page_zone(page);
4967 pfn = page_to_pfn(page);
4968 bitmap = get_pageblock_bitmap(zone, pfn);
4969 bitidx = pfn_to_bitidx(zone, pfn);
4971 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4972 if (test_bit(bitidx + start_bitidx, bitmap))
4973 flags |= value;
4975 return flags;
4979 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4980 * @page: The page within the block of interest
4981 * @start_bitidx: The first bit of interest
4982 * @end_bitidx: The last bit of interest
4983 * @flags: The flags to set
4985 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4986 int start_bitidx, int end_bitidx)
4988 struct zone *zone;
4989 unsigned long *bitmap;
4990 unsigned long pfn, bitidx;
4991 unsigned long value = 1;
4993 zone = page_zone(page);
4994 pfn = page_to_pfn(page);
4995 bitmap = get_pageblock_bitmap(zone, pfn);
4996 bitidx = pfn_to_bitidx(zone, pfn);
4997 VM_BUG_ON(pfn < zone->zone_start_pfn);
4998 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5000 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5001 if (flags & value)
5002 __set_bit(bitidx + start_bitidx, bitmap);
5003 else
5004 __clear_bit(bitidx + start_bitidx, bitmap);
5008 * This is designed as sub function...plz see page_isolation.c also.
5009 * set/clear page block's type to be ISOLATE.
5010 * page allocater never alloc memory from ISOLATE block.
5013 int set_migratetype_isolate(struct page *page)
5015 struct zone *zone;
5016 struct page *curr_page;
5017 unsigned long flags, pfn, iter;
5018 unsigned long immobile = 0;
5019 struct memory_isolate_notify arg;
5020 int notifier_ret;
5021 int ret = -EBUSY;
5022 int zone_idx;
5024 zone = page_zone(page);
5025 zone_idx = zone_idx(zone);
5027 spin_lock_irqsave(&zone->lock, flags);
5028 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE ||
5029 zone_idx == ZONE_MOVABLE) {
5030 ret = 0;
5031 goto out;
5034 pfn = page_to_pfn(page);
5035 arg.start_pfn = pfn;
5036 arg.nr_pages = pageblock_nr_pages;
5037 arg.pages_found = 0;
5040 * It may be possible to isolate a pageblock even if the
5041 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5042 * notifier chain is used by balloon drivers to return the
5043 * number of pages in a range that are held by the balloon
5044 * driver to shrink memory. If all the pages are accounted for
5045 * by balloons, are free, or on the LRU, isolation can continue.
5046 * Later, for example, when memory hotplug notifier runs, these
5047 * pages reported as "can be isolated" should be isolated(freed)
5048 * by the balloon driver through the memory notifier chain.
5050 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5051 notifier_ret = notifier_to_errno(notifier_ret);
5052 if (notifier_ret || !arg.pages_found)
5053 goto out;
5055 for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) {
5056 if (!pfn_valid_within(pfn))
5057 continue;
5059 curr_page = pfn_to_page(iter);
5060 if (!page_count(curr_page) || PageLRU(curr_page))
5061 continue;
5063 immobile++;
5066 if (arg.pages_found == immobile)
5067 ret = 0;
5069 out:
5070 if (!ret) {
5071 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5072 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5075 spin_unlock_irqrestore(&zone->lock, flags);
5076 if (!ret)
5077 drain_all_pages();
5078 return ret;
5081 void unset_migratetype_isolate(struct page *page)
5083 struct zone *zone;
5084 unsigned long flags;
5085 zone = page_zone(page);
5086 spin_lock_irqsave(&zone->lock, flags);
5087 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5088 goto out;
5089 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5090 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5091 out:
5092 spin_unlock_irqrestore(&zone->lock, flags);
5095 #ifdef CONFIG_MEMORY_HOTREMOVE
5097 * All pages in the range must be isolated before calling this.
5099 void
5100 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5102 struct page *page;
5103 struct zone *zone;
5104 int order, i;
5105 unsigned long pfn;
5106 unsigned long flags;
5107 /* find the first valid pfn */
5108 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5109 if (pfn_valid(pfn))
5110 break;
5111 if (pfn == end_pfn)
5112 return;
5113 zone = page_zone(pfn_to_page(pfn));
5114 spin_lock_irqsave(&zone->lock, flags);
5115 pfn = start_pfn;
5116 while (pfn < end_pfn) {
5117 if (!pfn_valid(pfn)) {
5118 pfn++;
5119 continue;
5121 page = pfn_to_page(pfn);
5122 BUG_ON(page_count(page));
5123 BUG_ON(!PageBuddy(page));
5124 order = page_order(page);
5125 #ifdef CONFIG_DEBUG_VM
5126 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5127 pfn, 1 << order, end_pfn);
5128 #endif
5129 list_del(&page->lru);
5130 rmv_page_order(page);
5131 zone->free_area[order].nr_free--;
5132 __mod_zone_page_state(zone, NR_FREE_PAGES,
5133 - (1UL << order));
5134 for (i = 0; i < (1 << order); i++)
5135 SetPageReserved((page+i));
5136 pfn += (1 << order);
5138 spin_unlock_irqrestore(&zone->lock, flags);
5140 #endif
5142 #ifdef CONFIG_MEMORY_FAILURE
5143 bool is_free_buddy_page(struct page *page)
5145 struct zone *zone = page_zone(page);
5146 unsigned long pfn = page_to_pfn(page);
5147 unsigned long flags;
5148 int order;
5150 spin_lock_irqsave(&zone->lock, flags);
5151 for (order = 0; order < MAX_ORDER; order++) {
5152 struct page *page_head = page - (pfn & ((1 << order) - 1));
5154 if (PageBuddy(page_head) && page_order(page_head) >= order)
5155 break;
5157 spin_unlock_irqrestore(&zone->lock, flags);
5159 return order < MAX_ORDER;
5161 #endif