2 * linux/fs/jbd/journal.c
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
12 * Generic filesystem journal-writing code; part of the ext2fs
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
25 #include <linux/module.h>
26 #include <linux/time.h>
28 #include <linux/jbd.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/ratelimit.h>
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/jbd.h>
44 #include <asm/uaccess.h>
47 EXPORT_SYMBOL(journal_start
);
48 EXPORT_SYMBOL(journal_restart
);
49 EXPORT_SYMBOL(journal_extend
);
50 EXPORT_SYMBOL(journal_stop
);
51 EXPORT_SYMBOL(journal_lock_updates
);
52 EXPORT_SYMBOL(journal_unlock_updates
);
53 EXPORT_SYMBOL(journal_get_write_access
);
54 EXPORT_SYMBOL(journal_get_create_access
);
55 EXPORT_SYMBOL(journal_get_undo_access
);
56 EXPORT_SYMBOL(journal_dirty_data
);
57 EXPORT_SYMBOL(journal_dirty_metadata
);
58 EXPORT_SYMBOL(journal_release_buffer
);
59 EXPORT_SYMBOL(journal_forget
);
61 EXPORT_SYMBOL(journal_sync_buffer
);
63 EXPORT_SYMBOL(journal_flush
);
64 EXPORT_SYMBOL(journal_revoke
);
66 EXPORT_SYMBOL(journal_init_dev
);
67 EXPORT_SYMBOL(journal_init_inode
);
68 EXPORT_SYMBOL(journal_update_format
);
69 EXPORT_SYMBOL(journal_check_used_features
);
70 EXPORT_SYMBOL(journal_check_available_features
);
71 EXPORT_SYMBOL(journal_set_features
);
72 EXPORT_SYMBOL(journal_create
);
73 EXPORT_SYMBOL(journal_load
);
74 EXPORT_SYMBOL(journal_destroy
);
75 EXPORT_SYMBOL(journal_abort
);
76 EXPORT_SYMBOL(journal_errno
);
77 EXPORT_SYMBOL(journal_ack_err
);
78 EXPORT_SYMBOL(journal_clear_err
);
79 EXPORT_SYMBOL(log_wait_commit
);
80 EXPORT_SYMBOL(log_start_commit
);
81 EXPORT_SYMBOL(journal_start_commit
);
82 EXPORT_SYMBOL(journal_force_commit_nested
);
83 EXPORT_SYMBOL(journal_wipe
);
84 EXPORT_SYMBOL(journal_blocks_per_page
);
85 EXPORT_SYMBOL(journal_invalidatepage
);
86 EXPORT_SYMBOL(journal_try_to_free_buffers
);
87 EXPORT_SYMBOL(journal_force_commit
);
89 static int journal_convert_superblock_v1(journal_t
*, journal_superblock_t
*);
90 static void __journal_abort_soft (journal_t
*journal
, int errno
);
91 static const char *journal_dev_name(journal_t
*journal
, char *buffer
);
94 * Helper function used to manage commit timeouts
97 static void commit_timeout(unsigned long __data
)
99 struct task_struct
* p
= (struct task_struct
*) __data
;
105 * kjournald: The main thread function used to manage a logging device
108 * This kernel thread is responsible for two things:
110 * 1) COMMIT: Every so often we need to commit the current state of the
111 * filesystem to disk. The journal thread is responsible for writing
112 * all of the metadata buffers to disk.
114 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
115 * of the data in that part of the log has been rewritten elsewhere on
116 * the disk. Flushing these old buffers to reclaim space in the log is
117 * known as checkpointing, and this thread is responsible for that job.
120 static int kjournald(void *arg
)
122 journal_t
*journal
= arg
;
123 transaction_t
*transaction
;
126 * Set up an interval timer which can be used to trigger a commit wakeup
127 * after the commit interval expires
129 setup_timer(&journal
->j_commit_timer
, commit_timeout
,
130 (unsigned long)current
);
132 /* Record that the journal thread is running */
133 journal
->j_task
= current
;
134 wake_up(&journal
->j_wait_done_commit
);
136 printk(KERN_INFO
"kjournald starting. Commit interval %ld seconds\n",
137 journal
->j_commit_interval
/ HZ
);
140 * And now, wait forever for commit wakeup events.
142 spin_lock(&journal
->j_state_lock
);
145 if (journal
->j_flags
& JFS_UNMOUNT
)
148 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
149 journal
->j_commit_sequence
, journal
->j_commit_request
);
151 if (journal
->j_commit_sequence
!= journal
->j_commit_request
) {
152 jbd_debug(1, "OK, requests differ\n");
153 spin_unlock(&journal
->j_state_lock
);
154 del_timer_sync(&journal
->j_commit_timer
);
155 journal_commit_transaction(journal
);
156 spin_lock(&journal
->j_state_lock
);
160 wake_up(&journal
->j_wait_done_commit
);
161 if (freezing(current
)) {
163 * The simpler the better. Flushing journal isn't a
164 * good idea, because that depends on threads that may
165 * be already stopped.
167 jbd_debug(1, "Now suspending kjournald\n");
168 spin_unlock(&journal
->j_state_lock
);
170 spin_lock(&journal
->j_state_lock
);
173 * We assume on resume that commits are already there,
177 int should_sleep
= 1;
179 prepare_to_wait(&journal
->j_wait_commit
, &wait
,
181 if (journal
->j_commit_sequence
!= journal
->j_commit_request
)
183 transaction
= journal
->j_running_transaction
;
184 if (transaction
&& time_after_eq(jiffies
,
185 transaction
->t_expires
))
187 if (journal
->j_flags
& JFS_UNMOUNT
)
190 spin_unlock(&journal
->j_state_lock
);
192 spin_lock(&journal
->j_state_lock
);
194 finish_wait(&journal
->j_wait_commit
, &wait
);
197 jbd_debug(1, "kjournald wakes\n");
200 * Were we woken up by a commit wakeup event?
202 transaction
= journal
->j_running_transaction
;
203 if (transaction
&& time_after_eq(jiffies
, transaction
->t_expires
)) {
204 journal
->j_commit_request
= transaction
->t_tid
;
205 jbd_debug(1, "woke because of timeout\n");
210 spin_unlock(&journal
->j_state_lock
);
211 del_timer_sync(&journal
->j_commit_timer
);
212 journal
->j_task
= NULL
;
213 wake_up(&journal
->j_wait_done_commit
);
214 jbd_debug(1, "Journal thread exiting.\n");
218 static int journal_start_thread(journal_t
*journal
)
220 struct task_struct
*t
;
222 t
= kthread_run(kjournald
, journal
, "kjournald");
226 wait_event(journal
->j_wait_done_commit
, journal
->j_task
!= NULL
);
230 static void journal_kill_thread(journal_t
*journal
)
232 spin_lock(&journal
->j_state_lock
);
233 journal
->j_flags
|= JFS_UNMOUNT
;
235 while (journal
->j_task
) {
236 wake_up(&journal
->j_wait_commit
);
237 spin_unlock(&journal
->j_state_lock
);
238 wait_event(journal
->j_wait_done_commit
,
239 journal
->j_task
== NULL
);
240 spin_lock(&journal
->j_state_lock
);
242 spin_unlock(&journal
->j_state_lock
);
246 * journal_write_metadata_buffer: write a metadata buffer to the journal.
248 * Writes a metadata buffer to a given disk block. The actual IO is not
249 * performed but a new buffer_head is constructed which labels the data
250 * to be written with the correct destination disk block.
252 * Any magic-number escaping which needs to be done will cause a
253 * copy-out here. If the buffer happens to start with the
254 * JFS_MAGIC_NUMBER, then we can't write it to the log directly: the
255 * magic number is only written to the log for descripter blocks. In
256 * this case, we copy the data and replace the first word with 0, and we
257 * return a result code which indicates that this buffer needs to be
258 * marked as an escaped buffer in the corresponding log descriptor
259 * block. The missing word can then be restored when the block is read
262 * If the source buffer has already been modified by a new transaction
263 * since we took the last commit snapshot, we use the frozen copy of
264 * that data for IO. If we end up using the existing buffer_head's data
265 * for the write, then we *have* to lock the buffer to prevent anyone
266 * else from using and possibly modifying it while the IO is in
269 * The function returns a pointer to the buffer_heads to be used for IO.
271 * We assume that the journal has already been locked in this function.
278 * Bit 0 set == escape performed on the data
279 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
282 int journal_write_metadata_buffer(transaction_t
*transaction
,
283 struct journal_head
*jh_in
,
284 struct journal_head
**jh_out
,
285 unsigned int blocknr
)
287 int need_copy_out
= 0;
288 int done_copy_out
= 0;
291 struct buffer_head
*new_bh
;
292 struct journal_head
*new_jh
;
293 struct page
*new_page
;
294 unsigned int new_offset
;
295 struct buffer_head
*bh_in
= jh2bh(jh_in
);
296 journal_t
*journal
= transaction
->t_journal
;
299 * The buffer really shouldn't be locked: only the current committing
300 * transaction is allowed to write it, so nobody else is allowed
303 * akpm: except if we're journalling data, and write() output is
304 * also part of a shared mapping, and another thread has
305 * decided to launch a writepage() against this buffer.
307 J_ASSERT_BH(bh_in
, buffer_jbddirty(bh_in
));
309 new_bh
= alloc_buffer_head(GFP_NOFS
|__GFP_NOFAIL
);
310 /* keep subsequent assertions sane */
312 init_buffer(new_bh
, NULL
, NULL
);
313 atomic_set(&new_bh
->b_count
, 1);
314 new_jh
= journal_add_journal_head(new_bh
); /* This sleeps */
317 * If a new transaction has already done a buffer copy-out, then
318 * we use that version of the data for the commit.
320 jbd_lock_bh_state(bh_in
);
322 if (jh_in
->b_frozen_data
) {
324 new_page
= virt_to_page(jh_in
->b_frozen_data
);
325 new_offset
= offset_in_page(jh_in
->b_frozen_data
);
327 new_page
= jh2bh(jh_in
)->b_page
;
328 new_offset
= offset_in_page(jh2bh(jh_in
)->b_data
);
331 mapped_data
= kmap_atomic(new_page
, KM_USER0
);
335 if (*((__be32
*)(mapped_data
+ new_offset
)) ==
336 cpu_to_be32(JFS_MAGIC_NUMBER
)) {
340 kunmap_atomic(mapped_data
, KM_USER0
);
343 * Do we need to do a data copy?
345 if (need_copy_out
&& !done_copy_out
) {
348 jbd_unlock_bh_state(bh_in
);
349 tmp
= jbd_alloc(bh_in
->b_size
, GFP_NOFS
);
350 jbd_lock_bh_state(bh_in
);
351 if (jh_in
->b_frozen_data
) {
352 jbd_free(tmp
, bh_in
->b_size
);
356 jh_in
->b_frozen_data
= tmp
;
357 mapped_data
= kmap_atomic(new_page
, KM_USER0
);
358 memcpy(tmp
, mapped_data
+ new_offset
, jh2bh(jh_in
)->b_size
);
359 kunmap_atomic(mapped_data
, KM_USER0
);
361 new_page
= virt_to_page(tmp
);
362 new_offset
= offset_in_page(tmp
);
367 * Did we need to do an escaping? Now we've done all the
368 * copying, we can finally do so.
371 mapped_data
= kmap_atomic(new_page
, KM_USER0
);
372 *((unsigned int *)(mapped_data
+ new_offset
)) = 0;
373 kunmap_atomic(mapped_data
, KM_USER0
);
376 set_bh_page(new_bh
, new_page
, new_offset
);
377 new_jh
->b_transaction
= NULL
;
378 new_bh
->b_size
= jh2bh(jh_in
)->b_size
;
379 new_bh
->b_bdev
= transaction
->t_journal
->j_dev
;
380 new_bh
->b_blocknr
= blocknr
;
381 set_buffer_mapped(new_bh
);
382 set_buffer_dirty(new_bh
);
387 * The to-be-written buffer needs to get moved to the io queue,
388 * and the original buffer whose contents we are shadowing or
389 * copying is moved to the transaction's shadow queue.
391 JBUFFER_TRACE(jh_in
, "file as BJ_Shadow");
392 spin_lock(&journal
->j_list_lock
);
393 __journal_file_buffer(jh_in
, transaction
, BJ_Shadow
);
394 spin_unlock(&journal
->j_list_lock
);
395 jbd_unlock_bh_state(bh_in
);
397 JBUFFER_TRACE(new_jh
, "file as BJ_IO");
398 journal_file_buffer(new_jh
, transaction
, BJ_IO
);
400 return do_escape
| (done_copy_out
<< 1);
404 * Allocation code for the journal file. Manage the space left in the
405 * journal, so that we can begin checkpointing when appropriate.
409 * __log_space_left: Return the number of free blocks left in the journal.
411 * Called with the journal already locked.
413 * Called under j_state_lock
416 int __log_space_left(journal_t
*journal
)
418 int left
= journal
->j_free
;
420 assert_spin_locked(&journal
->j_state_lock
);
423 * Be pessimistic here about the number of those free blocks which
424 * might be required for log descriptor control blocks.
427 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
429 left
-= MIN_LOG_RESERVED_BLOCKS
;
438 * Called under j_state_lock. Returns true if a transaction commit was started.
440 int __log_start_commit(journal_t
*journal
, tid_t target
)
443 * The only transaction we can possibly wait upon is the
444 * currently running transaction (if it exists). Otherwise,
445 * the target tid must be an old one.
447 if (journal
->j_running_transaction
&&
448 journal
->j_running_transaction
->t_tid
== target
) {
450 * We want a new commit: OK, mark the request and wakeup the
451 * commit thread. We do _not_ do the commit ourselves.
454 journal
->j_commit_request
= target
;
455 jbd_debug(1, "JBD: requesting commit %d/%d\n",
456 journal
->j_commit_request
,
457 journal
->j_commit_sequence
);
458 wake_up(&journal
->j_wait_commit
);
460 } else if (!tid_geq(journal
->j_commit_request
, target
))
461 /* This should never happen, but if it does, preserve
462 the evidence before kjournald goes into a loop and
463 increments j_commit_sequence beyond all recognition. */
464 WARN_ONCE(1, "jbd: bad log_start_commit: %u %u %u %u\n",
465 journal
->j_commit_request
, journal
->j_commit_sequence
,
466 target
, journal
->j_running_transaction
?
467 journal
->j_running_transaction
->t_tid
: 0);
471 int log_start_commit(journal_t
*journal
, tid_t tid
)
475 spin_lock(&journal
->j_state_lock
);
476 ret
= __log_start_commit(journal
, tid
);
477 spin_unlock(&journal
->j_state_lock
);
482 * Force and wait upon a commit if the calling process is not within
483 * transaction. This is used for forcing out undo-protected data which contains
484 * bitmaps, when the fs is running out of space.
486 * We can only force the running transaction if we don't have an active handle;
487 * otherwise, we will deadlock.
489 * Returns true if a transaction was started.
491 int journal_force_commit_nested(journal_t
*journal
)
493 transaction_t
*transaction
= NULL
;
496 spin_lock(&journal
->j_state_lock
);
497 if (journal
->j_running_transaction
&& !current
->journal_info
) {
498 transaction
= journal
->j_running_transaction
;
499 __log_start_commit(journal
, transaction
->t_tid
);
500 } else if (journal
->j_committing_transaction
)
501 transaction
= journal
->j_committing_transaction
;
504 spin_unlock(&journal
->j_state_lock
);
505 return 0; /* Nothing to retry */
508 tid
= transaction
->t_tid
;
509 spin_unlock(&journal
->j_state_lock
);
510 log_wait_commit(journal
, tid
);
515 * Start a commit of the current running transaction (if any). Returns true
516 * if a transaction is going to be committed (or is currently already
517 * committing), and fills its tid in at *ptid
519 int journal_start_commit(journal_t
*journal
, tid_t
*ptid
)
523 spin_lock(&journal
->j_state_lock
);
524 if (journal
->j_running_transaction
) {
525 tid_t tid
= journal
->j_running_transaction
->t_tid
;
527 __log_start_commit(journal
, tid
);
528 /* There's a running transaction and we've just made sure
529 * it's commit has been scheduled. */
533 } else if (journal
->j_committing_transaction
) {
535 * If ext3_write_super() recently started a commit, then we
536 * have to wait for completion of that transaction
539 *ptid
= journal
->j_committing_transaction
->t_tid
;
542 spin_unlock(&journal
->j_state_lock
);
547 * Wait for a specified commit to complete.
548 * The caller may not hold the journal lock.
550 int log_wait_commit(journal_t
*journal
, tid_t tid
)
554 #ifdef CONFIG_JBD_DEBUG
555 spin_lock(&journal
->j_state_lock
);
556 if (!tid_geq(journal
->j_commit_request
, tid
)) {
558 "%s: error: j_commit_request=%d, tid=%d\n",
559 __func__
, journal
->j_commit_request
, tid
);
561 spin_unlock(&journal
->j_state_lock
);
563 spin_lock(&journal
->j_state_lock
);
564 while (tid_gt(tid
, journal
->j_commit_sequence
)) {
565 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
566 tid
, journal
->j_commit_sequence
);
567 wake_up(&journal
->j_wait_commit
);
568 spin_unlock(&journal
->j_state_lock
);
569 wait_event(journal
->j_wait_done_commit
,
570 !tid_gt(tid
, journal
->j_commit_sequence
));
571 spin_lock(&journal
->j_state_lock
);
573 spin_unlock(&journal
->j_state_lock
);
575 if (unlikely(is_journal_aborted(journal
))) {
576 printk(KERN_EMERG
"journal commit I/O error\n");
583 * Return 1 if a given transaction has not yet sent barrier request
584 * connected with a transaction commit. If 0 is returned, transaction
585 * may or may not have sent the barrier. Used to avoid sending barrier
586 * twice in common cases.
588 int journal_trans_will_send_data_barrier(journal_t
*journal
, tid_t tid
)
591 transaction_t
*commit_trans
;
593 if (!(journal
->j_flags
& JFS_BARRIER
))
595 spin_lock(&journal
->j_state_lock
);
596 /* Transaction already committed? */
597 if (tid_geq(journal
->j_commit_sequence
, tid
))
600 * Transaction is being committed and we already proceeded to
601 * writing commit record?
603 commit_trans
= journal
->j_committing_transaction
;
604 if (commit_trans
&& commit_trans
->t_tid
== tid
&&
605 commit_trans
->t_state
>= T_COMMIT_RECORD
)
609 spin_unlock(&journal
->j_state_lock
);
612 EXPORT_SYMBOL(journal_trans_will_send_data_barrier
);
615 * Log buffer allocation routines:
618 int journal_next_log_block(journal_t
*journal
, unsigned int *retp
)
620 unsigned int blocknr
;
622 spin_lock(&journal
->j_state_lock
);
623 J_ASSERT(journal
->j_free
> 1);
625 blocknr
= journal
->j_head
;
628 if (journal
->j_head
== journal
->j_last
)
629 journal
->j_head
= journal
->j_first
;
630 spin_unlock(&journal
->j_state_lock
);
631 return journal_bmap(journal
, blocknr
, retp
);
635 * Conversion of logical to physical block numbers for the journal
637 * On external journals the journal blocks are identity-mapped, so
638 * this is a no-op. If needed, we can use j_blk_offset - everything is
641 int journal_bmap(journal_t
*journal
, unsigned int blocknr
,
647 if (journal
->j_inode
) {
648 ret
= bmap(journal
->j_inode
, blocknr
);
652 char b
[BDEVNAME_SIZE
];
654 printk(KERN_ALERT
"%s: journal block not found "
655 "at offset %u on %s\n",
658 bdevname(journal
->j_dev
, b
));
660 __journal_abort_soft(journal
, err
);
663 *retp
= blocknr
; /* +journal->j_blk_offset */
669 * We play buffer_head aliasing tricks to write data/metadata blocks to
670 * the journal without copying their contents, but for journal
671 * descriptor blocks we do need to generate bona fide buffers.
673 * After the caller of journal_get_descriptor_buffer() has finished modifying
674 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
675 * But we don't bother doing that, so there will be coherency problems with
676 * mmaps of blockdevs which hold live JBD-controlled filesystems.
678 struct journal_head
*journal_get_descriptor_buffer(journal_t
*journal
)
680 struct buffer_head
*bh
;
681 unsigned int blocknr
;
684 err
= journal_next_log_block(journal
, &blocknr
);
689 bh
= __getblk(journal
->j_dev
, blocknr
, journal
->j_blocksize
);
693 memset(bh
->b_data
, 0, journal
->j_blocksize
);
694 set_buffer_uptodate(bh
);
696 BUFFER_TRACE(bh
, "return this buffer");
697 return journal_add_journal_head(bh
);
701 * Management for journal control blocks: functions to create and
702 * destroy journal_t structures, and to initialise and read existing
703 * journal blocks from disk. */
705 /* First: create and setup a journal_t object in memory. We initialise
706 * very few fields yet: that has to wait until we have created the
707 * journal structures from from scratch, or loaded them from disk. */
709 static journal_t
* journal_init_common (void)
714 journal
= kzalloc(sizeof(*journal
), GFP_KERNEL
);
718 init_waitqueue_head(&journal
->j_wait_transaction_locked
);
719 init_waitqueue_head(&journal
->j_wait_logspace
);
720 init_waitqueue_head(&journal
->j_wait_done_commit
);
721 init_waitqueue_head(&journal
->j_wait_checkpoint
);
722 init_waitqueue_head(&journal
->j_wait_commit
);
723 init_waitqueue_head(&journal
->j_wait_updates
);
724 mutex_init(&journal
->j_barrier
);
725 mutex_init(&journal
->j_checkpoint_mutex
);
726 spin_lock_init(&journal
->j_revoke_lock
);
727 spin_lock_init(&journal
->j_list_lock
);
728 spin_lock_init(&journal
->j_state_lock
);
730 journal
->j_commit_interval
= (HZ
* JBD_DEFAULT_MAX_COMMIT_AGE
);
732 /* The journal is marked for error until we succeed with recovery! */
733 journal
->j_flags
= JFS_ABORT
;
735 /* Set up a default-sized revoke table for the new mount. */
736 err
= journal_init_revoke(journal
, JOURNAL_REVOKE_DEFAULT_HASH
);
746 /* journal_init_dev and journal_init_inode:
748 * Create a journal structure assigned some fixed set of disk blocks to
749 * the journal. We don't actually touch those disk blocks yet, but we
750 * need to set up all of the mapping information to tell the journaling
751 * system where the journal blocks are.
756 * journal_t * journal_init_dev() - creates and initialises a journal structure
757 * @bdev: Block device on which to create the journal
758 * @fs_dev: Device which hold journalled filesystem for this journal.
759 * @start: Block nr Start of journal.
760 * @len: Length of the journal in blocks.
761 * @blocksize: blocksize of journalling device
763 * Returns: a newly created journal_t *
765 * journal_init_dev creates a journal which maps a fixed contiguous
766 * range of blocks on an arbitrary block device.
769 journal_t
* journal_init_dev(struct block_device
*bdev
,
770 struct block_device
*fs_dev
,
771 int start
, int len
, int blocksize
)
773 journal_t
*journal
= journal_init_common();
774 struct buffer_head
*bh
;
780 /* journal descriptor can store up to n blocks -bzzz */
781 journal
->j_blocksize
= blocksize
;
782 n
= journal
->j_blocksize
/ sizeof(journal_block_tag_t
);
783 journal
->j_wbufsize
= n
;
784 journal
->j_wbuf
= kmalloc(n
* sizeof(struct buffer_head
*), GFP_KERNEL
);
785 if (!journal
->j_wbuf
) {
786 printk(KERN_ERR
"%s: Can't allocate bhs for commit thread\n",
790 journal
->j_dev
= bdev
;
791 journal
->j_fs_dev
= fs_dev
;
792 journal
->j_blk_offset
= start
;
793 journal
->j_maxlen
= len
;
795 bh
= __getblk(journal
->j_dev
, start
, journal
->j_blocksize
);
798 "%s: Cannot get buffer for journal superblock\n",
802 journal
->j_sb_buffer
= bh
;
803 journal
->j_superblock
= (journal_superblock_t
*)bh
->b_data
;
807 kfree(journal
->j_wbuf
);
813 * journal_t * journal_init_inode () - creates a journal which maps to a inode.
814 * @inode: An inode to create the journal in
816 * journal_init_inode creates a journal which maps an on-disk inode as
817 * the journal. The inode must exist already, must support bmap() and
818 * must have all data blocks preallocated.
820 journal_t
* journal_init_inode (struct inode
*inode
)
822 struct buffer_head
*bh
;
823 journal_t
*journal
= journal_init_common();
826 unsigned int blocknr
;
831 journal
->j_dev
= journal
->j_fs_dev
= inode
->i_sb
->s_bdev
;
832 journal
->j_inode
= inode
;
834 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
835 journal
, inode
->i_sb
->s_id
, inode
->i_ino
,
836 (long long) inode
->i_size
,
837 inode
->i_sb
->s_blocksize_bits
, inode
->i_sb
->s_blocksize
);
839 journal
->j_maxlen
= inode
->i_size
>> inode
->i_sb
->s_blocksize_bits
;
840 journal
->j_blocksize
= inode
->i_sb
->s_blocksize
;
842 /* journal descriptor can store up to n blocks -bzzz */
843 n
= journal
->j_blocksize
/ sizeof(journal_block_tag_t
);
844 journal
->j_wbufsize
= n
;
845 journal
->j_wbuf
= kmalloc(n
* sizeof(struct buffer_head
*), GFP_KERNEL
);
846 if (!journal
->j_wbuf
) {
847 printk(KERN_ERR
"%s: Can't allocate bhs for commit thread\n",
852 err
= journal_bmap(journal
, 0, &blocknr
);
853 /* If that failed, give up */
855 printk(KERN_ERR
"%s: Cannot locate journal superblock\n",
860 bh
= __getblk(journal
->j_dev
, blocknr
, journal
->j_blocksize
);
863 "%s: Cannot get buffer for journal superblock\n",
867 journal
->j_sb_buffer
= bh
;
868 journal
->j_superblock
= (journal_superblock_t
*)bh
->b_data
;
872 kfree(journal
->j_wbuf
);
878 * If the journal init or create aborts, we need to mark the journal
879 * superblock as being NULL to prevent the journal destroy from writing
880 * back a bogus superblock.
882 static void journal_fail_superblock (journal_t
*journal
)
884 struct buffer_head
*bh
= journal
->j_sb_buffer
;
886 journal
->j_sb_buffer
= NULL
;
890 * Given a journal_t structure, initialise the various fields for
891 * startup of a new journaling session. We use this both when creating
892 * a journal, and after recovering an old journal to reset it for
896 static int journal_reset(journal_t
*journal
)
898 journal_superblock_t
*sb
= journal
->j_superblock
;
899 unsigned int first
, last
;
901 first
= be32_to_cpu(sb
->s_first
);
902 last
= be32_to_cpu(sb
->s_maxlen
);
903 if (first
+ JFS_MIN_JOURNAL_BLOCKS
> last
+ 1) {
904 printk(KERN_ERR
"JBD: Journal too short (blocks %u-%u).\n",
906 journal_fail_superblock(journal
);
910 journal
->j_first
= first
;
911 journal
->j_last
= last
;
913 journal
->j_head
= first
;
914 journal
->j_tail
= first
;
915 journal
->j_free
= last
- first
;
917 journal
->j_tail_sequence
= journal
->j_transaction_sequence
;
918 journal
->j_commit_sequence
= journal
->j_transaction_sequence
- 1;
919 journal
->j_commit_request
= journal
->j_commit_sequence
;
921 journal
->j_max_transaction_buffers
= journal
->j_maxlen
/ 4;
923 /* Add the dynamic fields and write it to disk. */
924 journal_update_superblock(journal
, 1);
925 return journal_start_thread(journal
);
929 * int journal_create() - Initialise the new journal file
930 * @journal: Journal to create. This structure must have been initialised
932 * Given a journal_t structure which tells us which disk blocks we can
933 * use, create a new journal superblock and initialise all of the
934 * journal fields from scratch.
936 int journal_create(journal_t
*journal
)
938 unsigned int blocknr
;
939 struct buffer_head
*bh
;
940 journal_superblock_t
*sb
;
943 if (journal
->j_maxlen
< JFS_MIN_JOURNAL_BLOCKS
) {
944 printk (KERN_ERR
"Journal length (%d blocks) too short.\n",
946 journal_fail_superblock(journal
);
950 if (journal
->j_inode
== NULL
) {
952 * We don't know what block to start at!
955 "%s: creation of journal on external device!\n",
960 /* Zero out the entire journal on disk. We cannot afford to
961 have any blocks on disk beginning with JFS_MAGIC_NUMBER. */
962 jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
963 for (i
= 0; i
< journal
->j_maxlen
; i
++) {
964 err
= journal_bmap(journal
, i
, &blocknr
);
967 bh
= __getblk(journal
->j_dev
, blocknr
, journal
->j_blocksize
);
971 memset (bh
->b_data
, 0, journal
->j_blocksize
);
972 BUFFER_TRACE(bh
, "marking dirty");
973 mark_buffer_dirty(bh
);
974 BUFFER_TRACE(bh
, "marking uptodate");
975 set_buffer_uptodate(bh
);
980 sync_blockdev(journal
->j_dev
);
981 jbd_debug(1, "JBD: journal cleared.\n");
983 /* OK, fill in the initial static fields in the new superblock */
984 sb
= journal
->j_superblock
;
986 sb
->s_header
.h_magic
= cpu_to_be32(JFS_MAGIC_NUMBER
);
987 sb
->s_header
.h_blocktype
= cpu_to_be32(JFS_SUPERBLOCK_V2
);
989 sb
->s_blocksize
= cpu_to_be32(journal
->j_blocksize
);
990 sb
->s_maxlen
= cpu_to_be32(journal
->j_maxlen
);
991 sb
->s_first
= cpu_to_be32(1);
993 journal
->j_transaction_sequence
= 1;
995 journal
->j_flags
&= ~JFS_ABORT
;
996 journal
->j_format_version
= 2;
998 return journal_reset(journal
);
1002 * void journal_update_superblock() - Update journal sb on disk.
1003 * @journal: The journal to update.
1004 * @wait: Set to '0' if you don't want to wait for IO completion.
1006 * Update a journal's dynamic superblock fields and write it to disk,
1007 * optionally waiting for the IO to complete.
1009 void journal_update_superblock(journal_t
*journal
, int wait
)
1011 journal_superblock_t
*sb
= journal
->j_superblock
;
1012 struct buffer_head
*bh
= journal
->j_sb_buffer
;
1015 * As a special case, if the on-disk copy is already marked as needing
1016 * no recovery (s_start == 0) and there are no outstanding transactions
1017 * in the filesystem, then we can safely defer the superblock update
1018 * until the next commit by setting JFS_FLUSHED. This avoids
1019 * attempting a write to a potential-readonly device.
1021 if (sb
->s_start
== 0 && journal
->j_tail_sequence
==
1022 journal
->j_transaction_sequence
) {
1023 jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
1024 "(start %u, seq %d, errno %d)\n",
1025 journal
->j_tail
, journal
->j_tail_sequence
,
1030 if (buffer_write_io_error(bh
)) {
1031 char b
[BDEVNAME_SIZE
];
1033 * Oh, dear. A previous attempt to write the journal
1034 * superblock failed. This could happen because the
1035 * USB device was yanked out. Or it could happen to
1036 * be a transient write error and maybe the block will
1037 * be remapped. Nothing we can do but to retry the
1038 * write and hope for the best.
1040 printk(KERN_ERR
"JBD: previous I/O error detected "
1041 "for journal superblock update for %s.\n",
1042 journal_dev_name(journal
, b
));
1043 clear_buffer_write_io_error(bh
);
1044 set_buffer_uptodate(bh
);
1047 spin_lock(&journal
->j_state_lock
);
1048 jbd_debug(1,"JBD: updating superblock (start %u, seq %d, errno %d)\n",
1049 journal
->j_tail
, journal
->j_tail_sequence
, journal
->j_errno
);
1051 sb
->s_sequence
= cpu_to_be32(journal
->j_tail_sequence
);
1052 sb
->s_start
= cpu_to_be32(journal
->j_tail
);
1053 sb
->s_errno
= cpu_to_be32(journal
->j_errno
);
1054 spin_unlock(&journal
->j_state_lock
);
1056 BUFFER_TRACE(bh
, "marking dirty");
1057 mark_buffer_dirty(bh
);
1059 sync_dirty_buffer(bh
);
1060 if (buffer_write_io_error(bh
)) {
1061 char b
[BDEVNAME_SIZE
];
1062 printk(KERN_ERR
"JBD: I/O error detected "
1063 "when updating journal superblock for %s.\n",
1064 journal_dev_name(journal
, b
));
1065 clear_buffer_write_io_error(bh
);
1066 set_buffer_uptodate(bh
);
1069 write_dirty_buffer(bh
, WRITE
);
1071 trace_jbd_update_superblock_end(journal
, wait
);
1073 /* If we have just flushed the log (by marking s_start==0), then
1074 * any future commit will have to be careful to update the
1075 * superblock again to re-record the true start of the log. */
1077 spin_lock(&journal
->j_state_lock
);
1079 journal
->j_flags
&= ~JFS_FLUSHED
;
1081 journal
->j_flags
|= JFS_FLUSHED
;
1082 spin_unlock(&journal
->j_state_lock
);
1086 * Read the superblock for a given journal, performing initial
1087 * validation of the format.
1090 static int journal_get_superblock(journal_t
*journal
)
1092 struct buffer_head
*bh
;
1093 journal_superblock_t
*sb
;
1096 bh
= journal
->j_sb_buffer
;
1098 J_ASSERT(bh
!= NULL
);
1099 if (!buffer_uptodate(bh
)) {
1100 ll_rw_block(READ
, 1, &bh
);
1102 if (!buffer_uptodate(bh
)) {
1104 "JBD: IO error reading journal superblock\n");
1109 sb
= journal
->j_superblock
;
1113 if (sb
->s_header
.h_magic
!= cpu_to_be32(JFS_MAGIC_NUMBER
) ||
1114 sb
->s_blocksize
!= cpu_to_be32(journal
->j_blocksize
)) {
1115 printk(KERN_WARNING
"JBD: no valid journal superblock found\n");
1119 switch(be32_to_cpu(sb
->s_header
.h_blocktype
)) {
1120 case JFS_SUPERBLOCK_V1
:
1121 journal
->j_format_version
= 1;
1123 case JFS_SUPERBLOCK_V2
:
1124 journal
->j_format_version
= 2;
1127 printk(KERN_WARNING
"JBD: unrecognised superblock format ID\n");
1131 if (be32_to_cpu(sb
->s_maxlen
) < journal
->j_maxlen
)
1132 journal
->j_maxlen
= be32_to_cpu(sb
->s_maxlen
);
1133 else if (be32_to_cpu(sb
->s_maxlen
) > journal
->j_maxlen
) {
1134 printk (KERN_WARNING
"JBD: journal file too short\n");
1141 journal_fail_superblock(journal
);
1146 * Load the on-disk journal superblock and read the key fields into the
1150 static int load_superblock(journal_t
*journal
)
1153 journal_superblock_t
*sb
;
1155 err
= journal_get_superblock(journal
);
1159 sb
= journal
->j_superblock
;
1161 journal
->j_tail_sequence
= be32_to_cpu(sb
->s_sequence
);
1162 journal
->j_tail
= be32_to_cpu(sb
->s_start
);
1163 journal
->j_first
= be32_to_cpu(sb
->s_first
);
1164 journal
->j_last
= be32_to_cpu(sb
->s_maxlen
);
1165 journal
->j_errno
= be32_to_cpu(sb
->s_errno
);
1172 * int journal_load() - Read journal from disk.
1173 * @journal: Journal to act on.
1175 * Given a journal_t structure which tells us which disk blocks contain
1176 * a journal, read the journal from disk to initialise the in-memory
1179 int journal_load(journal_t
*journal
)
1182 journal_superblock_t
*sb
;
1184 err
= load_superblock(journal
);
1188 sb
= journal
->j_superblock
;
1189 /* If this is a V2 superblock, then we have to check the
1190 * features flags on it. */
1192 if (journal
->j_format_version
>= 2) {
1193 if ((sb
->s_feature_ro_compat
&
1194 ~cpu_to_be32(JFS_KNOWN_ROCOMPAT_FEATURES
)) ||
1195 (sb
->s_feature_incompat
&
1196 ~cpu_to_be32(JFS_KNOWN_INCOMPAT_FEATURES
))) {
1197 printk (KERN_WARNING
1198 "JBD: Unrecognised features on journal\n");
1203 /* Let the recovery code check whether it needs to recover any
1204 * data from the journal. */
1205 if (journal_recover(journal
))
1206 goto recovery_error
;
1208 /* OK, we've finished with the dynamic journal bits:
1209 * reinitialise the dynamic contents of the superblock in memory
1210 * and reset them on disk. */
1211 if (journal_reset(journal
))
1212 goto recovery_error
;
1214 journal
->j_flags
&= ~JFS_ABORT
;
1215 journal
->j_flags
|= JFS_LOADED
;
1219 printk (KERN_WARNING
"JBD: recovery failed\n");
1224 * void journal_destroy() - Release a journal_t structure.
1225 * @journal: Journal to act on.
1227 * Release a journal_t structure once it is no longer in use by the
1229 * Return <0 if we couldn't clean up the journal.
1231 int journal_destroy(journal_t
*journal
)
1236 /* Wait for the commit thread to wake up and die. */
1237 journal_kill_thread(journal
);
1239 /* Force a final log commit */
1240 if (journal
->j_running_transaction
)
1241 journal_commit_transaction(journal
);
1243 /* Force any old transactions to disk */
1245 /* Totally anal locking here... */
1246 spin_lock(&journal
->j_list_lock
);
1247 while (journal
->j_checkpoint_transactions
!= NULL
) {
1248 spin_unlock(&journal
->j_list_lock
);
1249 log_do_checkpoint(journal
);
1250 spin_lock(&journal
->j_list_lock
);
1253 J_ASSERT(journal
->j_running_transaction
== NULL
);
1254 J_ASSERT(journal
->j_committing_transaction
== NULL
);
1255 J_ASSERT(journal
->j_checkpoint_transactions
== NULL
);
1256 spin_unlock(&journal
->j_list_lock
);
1258 if (journal
->j_sb_buffer
) {
1259 if (!is_journal_aborted(journal
)) {
1260 /* We can now mark the journal as empty. */
1261 journal
->j_tail
= 0;
1262 journal
->j_tail_sequence
=
1263 ++journal
->j_transaction_sequence
;
1264 journal_update_superblock(journal
, 1);
1268 brelse(journal
->j_sb_buffer
);
1271 if (journal
->j_inode
)
1272 iput(journal
->j_inode
);
1273 if (journal
->j_revoke
)
1274 journal_destroy_revoke(journal
);
1275 kfree(journal
->j_wbuf
);
1283 *int journal_check_used_features () - Check if features specified are used.
1284 * @journal: Journal to check.
1285 * @compat: bitmask of compatible features
1286 * @ro: bitmask of features that force read-only mount
1287 * @incompat: bitmask of incompatible features
1289 * Check whether the journal uses all of a given set of
1290 * features. Return true (non-zero) if it does.
1293 int journal_check_used_features (journal_t
*journal
, unsigned long compat
,
1294 unsigned long ro
, unsigned long incompat
)
1296 journal_superblock_t
*sb
;
1298 if (!compat
&& !ro
&& !incompat
)
1300 if (journal
->j_format_version
== 1)
1303 sb
= journal
->j_superblock
;
1305 if (((be32_to_cpu(sb
->s_feature_compat
) & compat
) == compat
) &&
1306 ((be32_to_cpu(sb
->s_feature_ro_compat
) & ro
) == ro
) &&
1307 ((be32_to_cpu(sb
->s_feature_incompat
) & incompat
) == incompat
))
1314 * int journal_check_available_features() - Check feature set in journalling layer
1315 * @journal: Journal to check.
1316 * @compat: bitmask of compatible features
1317 * @ro: bitmask of features that force read-only mount
1318 * @incompat: bitmask of incompatible features
1320 * Check whether the journaling code supports the use of
1321 * all of a given set of features on this journal. Return true
1322 * (non-zero) if it can. */
1324 int journal_check_available_features (journal_t
*journal
, unsigned long compat
,
1325 unsigned long ro
, unsigned long incompat
)
1327 if (!compat
&& !ro
&& !incompat
)
1330 /* We can support any known requested features iff the
1331 * superblock is in version 2. Otherwise we fail to support any
1332 * extended sb features. */
1334 if (journal
->j_format_version
!= 2)
1337 if ((compat
& JFS_KNOWN_COMPAT_FEATURES
) == compat
&&
1338 (ro
& JFS_KNOWN_ROCOMPAT_FEATURES
) == ro
&&
1339 (incompat
& JFS_KNOWN_INCOMPAT_FEATURES
) == incompat
)
1346 * int journal_set_features () - Mark a given journal feature in the superblock
1347 * @journal: Journal to act on.
1348 * @compat: bitmask of compatible features
1349 * @ro: bitmask of features that force read-only mount
1350 * @incompat: bitmask of incompatible features
1352 * Mark a given journal feature as present on the
1353 * superblock. Returns true if the requested features could be set.
1357 int journal_set_features (journal_t
*journal
, unsigned long compat
,
1358 unsigned long ro
, unsigned long incompat
)
1360 journal_superblock_t
*sb
;
1362 if (journal_check_used_features(journal
, compat
, ro
, incompat
))
1365 if (!journal_check_available_features(journal
, compat
, ro
, incompat
))
1368 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1369 compat
, ro
, incompat
);
1371 sb
= journal
->j_superblock
;
1373 sb
->s_feature_compat
|= cpu_to_be32(compat
);
1374 sb
->s_feature_ro_compat
|= cpu_to_be32(ro
);
1375 sb
->s_feature_incompat
|= cpu_to_be32(incompat
);
1382 * int journal_update_format () - Update on-disk journal structure.
1383 * @journal: Journal to act on.
1385 * Given an initialised but unloaded journal struct, poke about in the
1386 * on-disk structure to update it to the most recent supported version.
1388 int journal_update_format (journal_t
*journal
)
1390 journal_superblock_t
*sb
;
1393 err
= journal_get_superblock(journal
);
1397 sb
= journal
->j_superblock
;
1399 switch (be32_to_cpu(sb
->s_header
.h_blocktype
)) {
1400 case JFS_SUPERBLOCK_V2
:
1402 case JFS_SUPERBLOCK_V1
:
1403 return journal_convert_superblock_v1(journal
, sb
);
1410 static int journal_convert_superblock_v1(journal_t
*journal
,
1411 journal_superblock_t
*sb
)
1413 int offset
, blocksize
;
1414 struct buffer_head
*bh
;
1417 "JBD: Converting superblock from version 1 to 2.\n");
1419 /* Pre-initialise new fields to zero */
1420 offset
= ((char *) &(sb
->s_feature_compat
)) - ((char *) sb
);
1421 blocksize
= be32_to_cpu(sb
->s_blocksize
);
1422 memset(&sb
->s_feature_compat
, 0, blocksize
-offset
);
1424 sb
->s_nr_users
= cpu_to_be32(1);
1425 sb
->s_header
.h_blocktype
= cpu_to_be32(JFS_SUPERBLOCK_V2
);
1426 journal
->j_format_version
= 2;
1428 bh
= journal
->j_sb_buffer
;
1429 BUFFER_TRACE(bh
, "marking dirty");
1430 mark_buffer_dirty(bh
);
1431 sync_dirty_buffer(bh
);
1437 * int journal_flush () - Flush journal
1438 * @journal: Journal to act on.
1440 * Flush all data for a given journal to disk and empty the journal.
1441 * Filesystems can use this when remounting readonly to ensure that
1442 * recovery does not need to happen on remount.
1445 int journal_flush(journal_t
*journal
)
1448 transaction_t
*transaction
= NULL
;
1449 unsigned int old_tail
;
1451 spin_lock(&journal
->j_state_lock
);
1453 /* Force everything buffered to the log... */
1454 if (journal
->j_running_transaction
) {
1455 transaction
= journal
->j_running_transaction
;
1456 __log_start_commit(journal
, transaction
->t_tid
);
1457 } else if (journal
->j_committing_transaction
)
1458 transaction
= journal
->j_committing_transaction
;
1460 /* Wait for the log commit to complete... */
1462 tid_t tid
= transaction
->t_tid
;
1464 spin_unlock(&journal
->j_state_lock
);
1465 log_wait_commit(journal
, tid
);
1467 spin_unlock(&journal
->j_state_lock
);
1470 /* ...and flush everything in the log out to disk. */
1471 spin_lock(&journal
->j_list_lock
);
1472 while (!err
&& journal
->j_checkpoint_transactions
!= NULL
) {
1473 spin_unlock(&journal
->j_list_lock
);
1474 mutex_lock(&journal
->j_checkpoint_mutex
);
1475 err
= log_do_checkpoint(journal
);
1476 mutex_unlock(&journal
->j_checkpoint_mutex
);
1477 spin_lock(&journal
->j_list_lock
);
1479 spin_unlock(&journal
->j_list_lock
);
1481 if (is_journal_aborted(journal
))
1484 cleanup_journal_tail(journal
);
1486 /* Finally, mark the journal as really needing no recovery.
1487 * This sets s_start==0 in the underlying superblock, which is
1488 * the magic code for a fully-recovered superblock. Any future
1489 * commits of data to the journal will restore the current
1491 spin_lock(&journal
->j_state_lock
);
1492 old_tail
= journal
->j_tail
;
1493 journal
->j_tail
= 0;
1494 spin_unlock(&journal
->j_state_lock
);
1495 journal_update_superblock(journal
, 1);
1496 spin_lock(&journal
->j_state_lock
);
1497 journal
->j_tail
= old_tail
;
1499 J_ASSERT(!journal
->j_running_transaction
);
1500 J_ASSERT(!journal
->j_committing_transaction
);
1501 J_ASSERT(!journal
->j_checkpoint_transactions
);
1502 J_ASSERT(journal
->j_head
== journal
->j_tail
);
1503 J_ASSERT(journal
->j_tail_sequence
== journal
->j_transaction_sequence
);
1504 spin_unlock(&journal
->j_state_lock
);
1509 * int journal_wipe() - Wipe journal contents
1510 * @journal: Journal to act on.
1511 * @write: flag (see below)
1513 * Wipe out all of the contents of a journal, safely. This will produce
1514 * a warning if the journal contains any valid recovery information.
1515 * Must be called between journal_init_*() and journal_load().
1517 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1518 * we merely suppress recovery.
1521 int journal_wipe(journal_t
*journal
, int write
)
1525 J_ASSERT (!(journal
->j_flags
& JFS_LOADED
));
1527 err
= load_superblock(journal
);
1531 if (!journal
->j_tail
)
1534 printk (KERN_WARNING
"JBD: %s recovery information on journal\n",
1535 write
? "Clearing" : "Ignoring");
1537 err
= journal_skip_recovery(journal
);
1539 journal_update_superblock(journal
, 1);
1546 * journal_dev_name: format a character string to describe on what
1547 * device this journal is present.
1550 static const char *journal_dev_name(journal_t
*journal
, char *buffer
)
1552 struct block_device
*bdev
;
1554 if (journal
->j_inode
)
1555 bdev
= journal
->j_inode
->i_sb
->s_bdev
;
1557 bdev
= journal
->j_dev
;
1559 return bdevname(bdev
, buffer
);
1563 * Journal abort has very specific semantics, which we describe
1564 * for journal abort.
1566 * Two internal function, which provide abort to te jbd layer
1571 * Quick version for internal journal use (doesn't lock the journal).
1572 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1573 * and don't attempt to make any other journal updates.
1575 static void __journal_abort_hard(journal_t
*journal
)
1577 transaction_t
*transaction
;
1578 char b
[BDEVNAME_SIZE
];
1580 if (journal
->j_flags
& JFS_ABORT
)
1583 printk(KERN_ERR
"Aborting journal on device %s.\n",
1584 journal_dev_name(journal
, b
));
1586 spin_lock(&journal
->j_state_lock
);
1587 journal
->j_flags
|= JFS_ABORT
;
1588 transaction
= journal
->j_running_transaction
;
1590 __log_start_commit(journal
, transaction
->t_tid
);
1591 spin_unlock(&journal
->j_state_lock
);
1594 /* Soft abort: record the abort error status in the journal superblock,
1595 * but don't do any other IO. */
1596 static void __journal_abort_soft (journal_t
*journal
, int errno
)
1598 if (journal
->j_flags
& JFS_ABORT
)
1601 if (!journal
->j_errno
)
1602 journal
->j_errno
= errno
;
1604 __journal_abort_hard(journal
);
1607 journal_update_superblock(journal
, 1);
1611 * void journal_abort () - Shutdown the journal immediately.
1612 * @journal: the journal to shutdown.
1613 * @errno: an error number to record in the journal indicating
1614 * the reason for the shutdown.
1616 * Perform a complete, immediate shutdown of the ENTIRE
1617 * journal (not of a single transaction). This operation cannot be
1618 * undone without closing and reopening the journal.
1620 * The journal_abort function is intended to support higher level error
1621 * recovery mechanisms such as the ext2/ext3 remount-readonly error
1624 * Journal abort has very specific semantics. Any existing dirty,
1625 * unjournaled buffers in the main filesystem will still be written to
1626 * disk by bdflush, but the journaling mechanism will be suspended
1627 * immediately and no further transaction commits will be honoured.
1629 * Any dirty, journaled buffers will be written back to disk without
1630 * hitting the journal. Atomicity cannot be guaranteed on an aborted
1631 * filesystem, but we _do_ attempt to leave as much data as possible
1632 * behind for fsck to use for cleanup.
1634 * Any attempt to get a new transaction handle on a journal which is in
1635 * ABORT state will just result in an -EROFS error return. A
1636 * journal_stop on an existing handle will return -EIO if we have
1637 * entered abort state during the update.
1639 * Recursive transactions are not disturbed by journal abort until the
1640 * final journal_stop, which will receive the -EIO error.
1642 * Finally, the journal_abort call allows the caller to supply an errno
1643 * which will be recorded (if possible) in the journal superblock. This
1644 * allows a client to record failure conditions in the middle of a
1645 * transaction without having to complete the transaction to record the
1646 * failure to disk. ext3_error, for example, now uses this
1649 * Errors which originate from within the journaling layer will NOT
1650 * supply an errno; a null errno implies that absolutely no further
1651 * writes are done to the journal (unless there are any already in
1656 void journal_abort(journal_t
*journal
, int errno
)
1658 __journal_abort_soft(journal
, errno
);
1662 * int journal_errno () - returns the journal's error state.
1663 * @journal: journal to examine.
1665 * This is the errno numbet set with journal_abort(), the last
1666 * time the journal was mounted - if the journal was stopped
1667 * without calling abort this will be 0.
1669 * If the journal has been aborted on this mount time -EROFS will
1672 int journal_errno(journal_t
*journal
)
1676 spin_lock(&journal
->j_state_lock
);
1677 if (journal
->j_flags
& JFS_ABORT
)
1680 err
= journal
->j_errno
;
1681 spin_unlock(&journal
->j_state_lock
);
1686 * int journal_clear_err () - clears the journal's error state
1687 * @journal: journal to act on.
1689 * An error must be cleared or Acked to take a FS out of readonly
1692 int journal_clear_err(journal_t
*journal
)
1696 spin_lock(&journal
->j_state_lock
);
1697 if (journal
->j_flags
& JFS_ABORT
)
1700 journal
->j_errno
= 0;
1701 spin_unlock(&journal
->j_state_lock
);
1706 * void journal_ack_err() - Ack journal err.
1707 * @journal: journal to act on.
1709 * An error must be cleared or Acked to take a FS out of readonly
1712 void journal_ack_err(journal_t
*journal
)
1714 spin_lock(&journal
->j_state_lock
);
1715 if (journal
->j_errno
)
1716 journal
->j_flags
|= JFS_ACK_ERR
;
1717 spin_unlock(&journal
->j_state_lock
);
1720 int journal_blocks_per_page(struct inode
*inode
)
1722 return 1 << (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
1726 * Journal_head storage management
1728 static struct kmem_cache
*journal_head_cache
;
1729 #ifdef CONFIG_JBD_DEBUG
1730 static atomic_t nr_journal_heads
= ATOMIC_INIT(0);
1733 static int journal_init_journal_head_cache(void)
1737 J_ASSERT(journal_head_cache
== NULL
);
1738 journal_head_cache
= kmem_cache_create("journal_head",
1739 sizeof(struct journal_head
),
1741 SLAB_TEMPORARY
, /* flags */
1744 if (!journal_head_cache
) {
1746 printk(KERN_EMERG
"JBD: no memory for journal_head cache\n");
1751 static void journal_destroy_journal_head_cache(void)
1753 if (journal_head_cache
) {
1754 kmem_cache_destroy(journal_head_cache
);
1755 journal_head_cache
= NULL
;
1760 * journal_head splicing and dicing
1762 static struct journal_head
*journal_alloc_journal_head(void)
1764 struct journal_head
*ret
;
1766 #ifdef CONFIG_JBD_DEBUG
1767 atomic_inc(&nr_journal_heads
);
1769 ret
= kmem_cache_alloc(journal_head_cache
, GFP_NOFS
);
1771 jbd_debug(1, "out of memory for journal_head\n");
1772 printk_ratelimited(KERN_NOTICE
"ENOMEM in %s, retrying.\n",
1775 while (ret
== NULL
) {
1777 ret
= kmem_cache_alloc(journal_head_cache
, GFP_NOFS
);
1783 static void journal_free_journal_head(struct journal_head
*jh
)
1785 #ifdef CONFIG_JBD_DEBUG
1786 atomic_dec(&nr_journal_heads
);
1787 memset(jh
, JBD_POISON_FREE
, sizeof(*jh
));
1789 kmem_cache_free(journal_head_cache
, jh
);
1793 * A journal_head is attached to a buffer_head whenever JBD has an
1794 * interest in the buffer.
1796 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1797 * is set. This bit is tested in core kernel code where we need to take
1798 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
1801 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1803 * When a buffer has its BH_JBD bit set it is immune from being released by
1804 * core kernel code, mainly via ->b_count.
1806 * A journal_head is detached from its buffer_head when the journal_head's
1807 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
1808 * transaction (b_cp_transaction) hold their references to b_jcount.
1810 * Various places in the kernel want to attach a journal_head to a buffer_head
1811 * _before_ attaching the journal_head to a transaction. To protect the
1812 * journal_head in this situation, journal_add_journal_head elevates the
1813 * journal_head's b_jcount refcount by one. The caller must call
1814 * journal_put_journal_head() to undo this.
1816 * So the typical usage would be:
1818 * (Attach a journal_head if needed. Increments b_jcount)
1819 * struct journal_head *jh = journal_add_journal_head(bh);
1821 * (Get another reference for transaction)
1822 * journal_grab_journal_head(bh);
1823 * jh->b_transaction = xxx;
1824 * (Put original reference)
1825 * journal_put_journal_head(jh);
1829 * Give a buffer_head a journal_head.
1833 struct journal_head
*journal_add_journal_head(struct buffer_head
*bh
)
1835 struct journal_head
*jh
;
1836 struct journal_head
*new_jh
= NULL
;
1839 if (!buffer_jbd(bh
)) {
1840 new_jh
= journal_alloc_journal_head();
1841 memset(new_jh
, 0, sizeof(*new_jh
));
1844 jbd_lock_bh_journal_head(bh
);
1845 if (buffer_jbd(bh
)) {
1849 (atomic_read(&bh
->b_count
) > 0) ||
1850 (bh
->b_page
&& bh
->b_page
->mapping
));
1853 jbd_unlock_bh_journal_head(bh
);
1858 new_jh
= NULL
; /* We consumed it */
1863 BUFFER_TRACE(bh
, "added journal_head");
1866 jbd_unlock_bh_journal_head(bh
);
1868 journal_free_journal_head(new_jh
);
1869 return bh
->b_private
;
1873 * Grab a ref against this buffer_head's journal_head. If it ended up not
1874 * having a journal_head, return NULL
1876 struct journal_head
*journal_grab_journal_head(struct buffer_head
*bh
)
1878 struct journal_head
*jh
= NULL
;
1880 jbd_lock_bh_journal_head(bh
);
1881 if (buffer_jbd(bh
)) {
1885 jbd_unlock_bh_journal_head(bh
);
1889 static void __journal_remove_journal_head(struct buffer_head
*bh
)
1891 struct journal_head
*jh
= bh2jh(bh
);
1893 J_ASSERT_JH(jh
, jh
->b_jcount
>= 0);
1894 J_ASSERT_JH(jh
, jh
->b_transaction
== NULL
);
1895 J_ASSERT_JH(jh
, jh
->b_next_transaction
== NULL
);
1896 J_ASSERT_JH(jh
, jh
->b_cp_transaction
== NULL
);
1897 J_ASSERT_JH(jh
, jh
->b_jlist
== BJ_None
);
1898 J_ASSERT_BH(bh
, buffer_jbd(bh
));
1899 J_ASSERT_BH(bh
, jh2bh(jh
) == bh
);
1900 BUFFER_TRACE(bh
, "remove journal_head");
1901 if (jh
->b_frozen_data
) {
1902 printk(KERN_WARNING
"%s: freeing b_frozen_data\n", __func__
);
1903 jbd_free(jh
->b_frozen_data
, bh
->b_size
);
1905 if (jh
->b_committed_data
) {
1906 printk(KERN_WARNING
"%s: freeing b_committed_data\n", __func__
);
1907 jbd_free(jh
->b_committed_data
, bh
->b_size
);
1909 bh
->b_private
= NULL
;
1910 jh
->b_bh
= NULL
; /* debug, really */
1911 clear_buffer_jbd(bh
);
1912 journal_free_journal_head(jh
);
1916 * Drop a reference on the passed journal_head. If it fell to zero then
1917 * release the journal_head from the buffer_head.
1919 void journal_put_journal_head(struct journal_head
*jh
)
1921 struct buffer_head
*bh
= jh2bh(jh
);
1923 jbd_lock_bh_journal_head(bh
);
1924 J_ASSERT_JH(jh
, jh
->b_jcount
> 0);
1926 if (!jh
->b_jcount
) {
1927 __journal_remove_journal_head(bh
);
1928 jbd_unlock_bh_journal_head(bh
);
1931 jbd_unlock_bh_journal_head(bh
);
1937 #ifdef CONFIG_JBD_DEBUG
1939 u8 journal_enable_debug __read_mostly
;
1940 EXPORT_SYMBOL(journal_enable_debug
);
1942 static struct dentry
*jbd_debugfs_dir
;
1943 static struct dentry
*jbd_debug
;
1945 static void __init
jbd_create_debugfs_entry(void)
1947 jbd_debugfs_dir
= debugfs_create_dir("jbd", NULL
);
1948 if (jbd_debugfs_dir
)
1949 jbd_debug
= debugfs_create_u8("jbd-debug", S_IRUGO
| S_IWUSR
,
1951 &journal_enable_debug
);
1954 static void __exit
jbd_remove_debugfs_entry(void)
1956 debugfs_remove(jbd_debug
);
1957 debugfs_remove(jbd_debugfs_dir
);
1962 static inline void jbd_create_debugfs_entry(void)
1966 static inline void jbd_remove_debugfs_entry(void)
1972 struct kmem_cache
*jbd_handle_cache
;
1974 static int __init
journal_init_handle_cache(void)
1976 jbd_handle_cache
= kmem_cache_create("journal_handle",
1979 SLAB_TEMPORARY
, /* flags */
1981 if (jbd_handle_cache
== NULL
) {
1982 printk(KERN_EMERG
"JBD: failed to create handle cache\n");
1988 static void journal_destroy_handle_cache(void)
1990 if (jbd_handle_cache
)
1991 kmem_cache_destroy(jbd_handle_cache
);
1995 * Module startup and shutdown
1998 static int __init
journal_init_caches(void)
2002 ret
= journal_init_revoke_caches();
2004 ret
= journal_init_journal_head_cache();
2006 ret
= journal_init_handle_cache();
2010 static void journal_destroy_caches(void)
2012 journal_destroy_revoke_caches();
2013 journal_destroy_journal_head_cache();
2014 journal_destroy_handle_cache();
2017 static int __init
journal_init(void)
2021 BUILD_BUG_ON(sizeof(struct journal_superblock_s
) != 1024);
2023 ret
= journal_init_caches();
2025 journal_destroy_caches();
2026 jbd_create_debugfs_entry();
2030 static void __exit
journal_exit(void)
2032 #ifdef CONFIG_JBD_DEBUG
2033 int n
= atomic_read(&nr_journal_heads
);
2035 printk(KERN_EMERG
"JBD: leaked %d journal_heads!\n", n
);
2037 jbd_remove_debugfs_entry();
2038 journal_destroy_caches();
2041 MODULE_LICENSE("GPL");
2042 module_init(journal_init
);
2043 module_exit(journal_exit
);