2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
21 * Copyright (C) 2010 Freescale Semiconductor, Inc.
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/pci.h>
33 #include <linux/init.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/spinlock.h>
39 #include <linux/workqueue.h>
40 #include <linux/bitops.h>
42 #include <linux/irq.h>
43 #include <linux/clk.h>
44 #include <linux/platform_device.h>
45 #include <linux/phy.h>
46 #include <linux/fec.h>
48 #include <asm/cacheflush.h>
51 #include <asm/coldfire.h>
52 #include <asm/mcfsim.h>
57 #if defined(CONFIG_ARM)
58 #define FEC_ALIGNMENT 0xf
60 #define FEC_ALIGNMENT 0x3
63 #define DRIVER_NAME "fec"
65 /* Controller is ENET-MAC */
66 #define FEC_QUIRK_ENET_MAC (1 << 0)
67 /* Controller needs driver to swap frame */
68 #define FEC_QUIRK_SWAP_FRAME (1 << 1)
70 static struct platform_device_id fec_devtype
[] = {
76 .driver_data
= FEC_QUIRK_ENET_MAC
| FEC_QUIRK_SWAP_FRAME
,
81 static unsigned char macaddr
[ETH_ALEN
];
82 module_param_array(macaddr
, byte
, NULL
, 0);
83 MODULE_PARM_DESC(macaddr
, "FEC Ethernet MAC address");
85 #if defined(CONFIG_M5272)
87 * Some hardware gets it MAC address out of local flash memory.
88 * if this is non-zero then assume it is the address to get MAC from.
90 #if defined(CONFIG_NETtel)
91 #define FEC_FLASHMAC 0xf0006006
92 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
93 #define FEC_FLASHMAC 0xf0006000
94 #elif defined(CONFIG_CANCam)
95 #define FEC_FLASHMAC 0xf0020000
96 #elif defined (CONFIG_M5272C3)
97 #define FEC_FLASHMAC (0xffe04000 + 4)
98 #elif defined(CONFIG_MOD5272)
99 #define FEC_FLASHMAC 0xffc0406b
101 #define FEC_FLASHMAC 0
103 #endif /* CONFIG_M5272 */
105 /* The number of Tx and Rx buffers. These are allocated from the page
106 * pool. The code may assume these are power of two, so it it best
107 * to keep them that size.
108 * We don't need to allocate pages for the transmitter. We just use
109 * the skbuffer directly.
111 #define FEC_ENET_RX_PAGES 8
112 #define FEC_ENET_RX_FRSIZE 2048
113 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
114 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
115 #define FEC_ENET_TX_FRSIZE 2048
116 #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
117 #define TX_RING_SIZE 16 /* Must be power of two */
118 #define TX_RING_MOD_MASK 15 /* for this to work */
120 #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
121 #error "FEC: descriptor ring size constants too large"
124 /* Interrupt events/masks. */
125 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
126 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
127 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
128 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
129 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
130 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
131 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
132 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
133 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
134 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
136 #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
138 /* The FEC stores dest/src/type, data, and checksum for receive packets.
140 #define PKT_MAXBUF_SIZE 1518
141 #define PKT_MINBUF_SIZE 64
142 #define PKT_MAXBLR_SIZE 1520
146 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
147 * size bits. Other FEC hardware does not, so we need to take that into
148 * account when setting it.
150 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
151 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
152 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
154 #define OPT_FRAME_SIZE 0
157 /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
158 * tx_bd_base always point to the base of the buffer descriptors. The
159 * cur_rx and cur_tx point to the currently available buffer.
160 * The dirty_tx tracks the current buffer that is being sent by the
161 * controller. The cur_tx and dirty_tx are equal under both completely
162 * empty and completely full conditions. The empty/ready indicator in
163 * the buffer descriptor determines the actual condition.
165 struct fec_enet_private
{
166 /* Hardware registers of the FEC device */
169 struct net_device
*netdev
;
173 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
174 unsigned char *tx_bounce
[TX_RING_SIZE
];
175 struct sk_buff
* tx_skbuff
[TX_RING_SIZE
];
176 struct sk_buff
* rx_skbuff
[RX_RING_SIZE
];
180 /* CPM dual port RAM relative addresses */
182 /* Address of Rx and Tx buffers */
183 struct bufdesc
*rx_bd_base
;
184 struct bufdesc
*tx_bd_base
;
185 /* The next free ring entry */
186 struct bufdesc
*cur_rx
, *cur_tx
;
187 /* The ring entries to be free()ed */
188 struct bufdesc
*dirty_tx
;
191 /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
194 struct platform_device
*pdev
;
198 /* Phylib and MDIO interface */
199 struct mii_bus
*mii_bus
;
200 struct phy_device
*phy_dev
;
203 phy_interface_t phy_interface
;
206 struct completion mdio_done
;
209 /* FEC MII MMFR bits definition */
210 #define FEC_MMFR_ST (1 << 30)
211 #define FEC_MMFR_OP_READ (2 << 28)
212 #define FEC_MMFR_OP_WRITE (1 << 28)
213 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
214 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
215 #define FEC_MMFR_TA (2 << 16)
216 #define FEC_MMFR_DATA(v) (v & 0xffff)
218 #define FEC_MII_TIMEOUT 1000 /* us */
220 /* Transmitter timeout */
221 #define TX_TIMEOUT (2 * HZ)
223 static void *swap_buffer(void *bufaddr
, int len
)
226 unsigned int *buf
= bufaddr
;
228 for (i
= 0; i
< (len
+ 3) / 4; i
++, buf
++)
229 *buf
= cpu_to_be32(*buf
);
235 fec_enet_start_xmit(struct sk_buff
*skb
, struct net_device
*ndev
)
237 struct fec_enet_private
*fep
= netdev_priv(ndev
);
238 const struct platform_device_id
*id_entry
=
239 platform_get_device_id(fep
->pdev
);
242 unsigned short status
;
246 /* Link is down or autonegotiation is in progress. */
247 return NETDEV_TX_BUSY
;
250 spin_lock_irqsave(&fep
->hw_lock
, flags
);
251 /* Fill in a Tx ring entry */
254 status
= bdp
->cbd_sc
;
256 if (status
& BD_ENET_TX_READY
) {
257 /* Ooops. All transmit buffers are full. Bail out.
258 * This should not happen, since ndev->tbusy should be set.
260 printk("%s: tx queue full!.\n", ndev
->name
);
261 spin_unlock_irqrestore(&fep
->hw_lock
, flags
);
262 return NETDEV_TX_BUSY
;
265 /* Clear all of the status flags */
266 status
&= ~BD_ENET_TX_STATS
;
268 /* Set buffer length and buffer pointer */
270 bdp
->cbd_datlen
= skb
->len
;
273 * On some FEC implementations data must be aligned on
274 * 4-byte boundaries. Use bounce buffers to copy data
275 * and get it aligned. Ugh.
277 if (((unsigned long) bufaddr
) & FEC_ALIGNMENT
) {
279 index
= bdp
- fep
->tx_bd_base
;
280 memcpy(fep
->tx_bounce
[index
], skb
->data
, skb
->len
);
281 bufaddr
= fep
->tx_bounce
[index
];
285 * Some design made an incorrect assumption on endian mode of
286 * the system that it's running on. As the result, driver has to
287 * swap every frame going to and coming from the controller.
289 if (id_entry
->driver_data
& FEC_QUIRK_SWAP_FRAME
)
290 swap_buffer(bufaddr
, skb
->len
);
292 /* Save skb pointer */
293 fep
->tx_skbuff
[fep
->skb_cur
] = skb
;
295 ndev
->stats
.tx_bytes
+= skb
->len
;
296 fep
->skb_cur
= (fep
->skb_cur
+1) & TX_RING_MOD_MASK
;
298 /* Push the data cache so the CPM does not get stale memory
301 bdp
->cbd_bufaddr
= dma_map_single(&fep
->pdev
->dev
, bufaddr
,
302 FEC_ENET_TX_FRSIZE
, DMA_TO_DEVICE
);
304 /* Send it on its way. Tell FEC it's ready, interrupt when done,
305 * it's the last BD of the frame, and to put the CRC on the end.
307 status
|= (BD_ENET_TX_READY
| BD_ENET_TX_INTR
308 | BD_ENET_TX_LAST
| BD_ENET_TX_TC
);
309 bdp
->cbd_sc
= status
;
311 /* Trigger transmission start */
312 writel(0, fep
->hwp
+ FEC_X_DES_ACTIVE
);
314 /* If this was the last BD in the ring, start at the beginning again. */
315 if (status
& BD_ENET_TX_WRAP
)
316 bdp
= fep
->tx_bd_base
;
320 if (bdp
== fep
->dirty_tx
) {
322 netif_stop_queue(ndev
);
327 skb_tx_timestamp(skb
);
329 spin_unlock_irqrestore(&fep
->hw_lock
, flags
);
334 /* This function is called to start or restart the FEC during a link
335 * change. This only happens when switching between half and full
339 fec_restart(struct net_device
*ndev
, int duplex
)
341 struct fec_enet_private
*fep
= netdev_priv(ndev
);
342 const struct platform_device_id
*id_entry
=
343 platform_get_device_id(fep
->pdev
);
346 u32 rcntl
= OPT_FRAME_SIZE
| 0x04;
348 /* Whack a reset. We should wait for this. */
349 writel(1, fep
->hwp
+ FEC_ECNTRL
);
353 * enet-mac reset will reset mac address registers too,
354 * so need to reconfigure it.
356 if (id_entry
->driver_data
& FEC_QUIRK_ENET_MAC
) {
357 memcpy(&temp_mac
, ndev
->dev_addr
, ETH_ALEN
);
358 writel(cpu_to_be32(temp_mac
[0]), fep
->hwp
+ FEC_ADDR_LOW
);
359 writel(cpu_to_be32(temp_mac
[1]), fep
->hwp
+ FEC_ADDR_HIGH
);
362 /* Clear any outstanding interrupt. */
363 writel(0xffc00000, fep
->hwp
+ FEC_IEVENT
);
365 /* Reset all multicast. */
366 writel(0, fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
367 writel(0, fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
369 writel(0, fep
->hwp
+ FEC_HASH_TABLE_HIGH
);
370 writel(0, fep
->hwp
+ FEC_HASH_TABLE_LOW
);
373 /* Set maximum receive buffer size. */
374 writel(PKT_MAXBLR_SIZE
, fep
->hwp
+ FEC_R_BUFF_SIZE
);
376 /* Set receive and transmit descriptor base. */
377 writel(fep
->bd_dma
, fep
->hwp
+ FEC_R_DES_START
);
378 writel((unsigned long)fep
->bd_dma
+ sizeof(struct bufdesc
) * RX_RING_SIZE
,
379 fep
->hwp
+ FEC_X_DES_START
);
381 fep
->dirty_tx
= fep
->cur_tx
= fep
->tx_bd_base
;
382 fep
->cur_rx
= fep
->rx_bd_base
;
384 /* Reset SKB transmit buffers. */
385 fep
->skb_cur
= fep
->skb_dirty
= 0;
386 for (i
= 0; i
<= TX_RING_MOD_MASK
; i
++) {
387 if (fep
->tx_skbuff
[i
]) {
388 dev_kfree_skb_any(fep
->tx_skbuff
[i
]);
389 fep
->tx_skbuff
[i
] = NULL
;
393 /* Enable MII mode */
396 writel(0x04, fep
->hwp
+ FEC_X_CNTRL
);
400 writel(0x0, fep
->hwp
+ FEC_X_CNTRL
);
403 fep
->full_duplex
= duplex
;
406 writel(fep
->phy_speed
, fep
->hwp
+ FEC_MII_SPEED
);
409 * The phy interface and speed need to get configured
410 * differently on enet-mac.
412 if (id_entry
->driver_data
& FEC_QUIRK_ENET_MAC
) {
413 /* Enable flow control and length check */
414 rcntl
|= 0x40000000 | 0x00000020;
417 if (fep
->phy_interface
== PHY_INTERFACE_MODE_RMII
)
423 if (fep
->phy_dev
&& fep
->phy_dev
->speed
== SPEED_100
)
429 #ifdef FEC_MIIGSK_ENR
430 if (fep
->phy_interface
== PHY_INTERFACE_MODE_RMII
) {
431 /* disable the gasket and wait */
432 writel(0, fep
->hwp
+ FEC_MIIGSK_ENR
);
433 while (readl(fep
->hwp
+ FEC_MIIGSK_ENR
) & 4)
437 * configure the gasket:
438 * RMII, 50 MHz, no loopback, no echo
440 writel(1, fep
->hwp
+ FEC_MIIGSK_CFGR
);
442 /* re-enable the gasket */
443 writel(2, fep
->hwp
+ FEC_MIIGSK_ENR
);
447 writel(rcntl
, fep
->hwp
+ FEC_R_CNTRL
);
449 /* And last, enable the transmit and receive processing */
450 writel(2, fep
->hwp
+ FEC_ECNTRL
);
451 writel(0, fep
->hwp
+ FEC_R_DES_ACTIVE
);
453 /* Enable interrupts we wish to service */
454 writel(FEC_DEFAULT_IMASK
, fep
->hwp
+ FEC_IMASK
);
458 fec_stop(struct net_device
*ndev
)
460 struct fec_enet_private
*fep
= netdev_priv(ndev
);
462 /* We cannot expect a graceful transmit stop without link !!! */
464 writel(1, fep
->hwp
+ FEC_X_CNTRL
); /* Graceful transmit stop */
466 if (!(readl(fep
->hwp
+ FEC_IEVENT
) & FEC_ENET_GRA
))
467 printk("fec_stop : Graceful transmit stop did not complete !\n");
470 /* Whack a reset. We should wait for this. */
471 writel(1, fep
->hwp
+ FEC_ECNTRL
);
473 writel(fep
->phy_speed
, fep
->hwp
+ FEC_MII_SPEED
);
474 writel(FEC_DEFAULT_IMASK
, fep
->hwp
+ FEC_IMASK
);
479 fec_timeout(struct net_device
*ndev
)
481 struct fec_enet_private
*fep
= netdev_priv(ndev
);
483 ndev
->stats
.tx_errors
++;
485 fec_restart(ndev
, fep
->full_duplex
);
486 netif_wake_queue(ndev
);
490 fec_enet_tx(struct net_device
*ndev
)
492 struct fec_enet_private
*fep
;
494 unsigned short status
;
497 fep
= netdev_priv(ndev
);
498 spin_lock(&fep
->hw_lock
);
501 while (((status
= bdp
->cbd_sc
) & BD_ENET_TX_READY
) == 0) {
502 if (bdp
== fep
->cur_tx
&& fep
->tx_full
== 0)
505 dma_unmap_single(&fep
->pdev
->dev
, bdp
->cbd_bufaddr
,
506 FEC_ENET_TX_FRSIZE
, DMA_TO_DEVICE
);
507 bdp
->cbd_bufaddr
= 0;
509 skb
= fep
->tx_skbuff
[fep
->skb_dirty
];
510 /* Check for errors. */
511 if (status
& (BD_ENET_TX_HB
| BD_ENET_TX_LC
|
512 BD_ENET_TX_RL
| BD_ENET_TX_UN
|
514 ndev
->stats
.tx_errors
++;
515 if (status
& BD_ENET_TX_HB
) /* No heartbeat */
516 ndev
->stats
.tx_heartbeat_errors
++;
517 if (status
& BD_ENET_TX_LC
) /* Late collision */
518 ndev
->stats
.tx_window_errors
++;
519 if (status
& BD_ENET_TX_RL
) /* Retrans limit */
520 ndev
->stats
.tx_aborted_errors
++;
521 if (status
& BD_ENET_TX_UN
) /* Underrun */
522 ndev
->stats
.tx_fifo_errors
++;
523 if (status
& BD_ENET_TX_CSL
) /* Carrier lost */
524 ndev
->stats
.tx_carrier_errors
++;
526 ndev
->stats
.tx_packets
++;
529 if (status
& BD_ENET_TX_READY
)
530 printk("HEY! Enet xmit interrupt and TX_READY.\n");
532 /* Deferred means some collisions occurred during transmit,
533 * but we eventually sent the packet OK.
535 if (status
& BD_ENET_TX_DEF
)
536 ndev
->stats
.collisions
++;
538 /* Free the sk buffer associated with this last transmit */
539 dev_kfree_skb_any(skb
);
540 fep
->tx_skbuff
[fep
->skb_dirty
] = NULL
;
541 fep
->skb_dirty
= (fep
->skb_dirty
+ 1) & TX_RING_MOD_MASK
;
543 /* Update pointer to next buffer descriptor to be transmitted */
544 if (status
& BD_ENET_TX_WRAP
)
545 bdp
= fep
->tx_bd_base
;
549 /* Since we have freed up a buffer, the ring is no longer full
553 if (netif_queue_stopped(ndev
))
554 netif_wake_queue(ndev
);
558 spin_unlock(&fep
->hw_lock
);
562 /* During a receive, the cur_rx points to the current incoming buffer.
563 * When we update through the ring, if the next incoming buffer has
564 * not been given to the system, we just set the empty indicator,
565 * effectively tossing the packet.
568 fec_enet_rx(struct net_device
*ndev
)
570 struct fec_enet_private
*fep
= netdev_priv(ndev
);
571 const struct platform_device_id
*id_entry
=
572 platform_get_device_id(fep
->pdev
);
574 unsigned short status
;
583 spin_lock(&fep
->hw_lock
);
585 /* First, grab all of the stats for the incoming packet.
586 * These get messed up if we get called due to a busy condition.
590 while (!((status
= bdp
->cbd_sc
) & BD_ENET_RX_EMPTY
)) {
592 /* Since we have allocated space to hold a complete frame,
593 * the last indicator should be set.
595 if ((status
& BD_ENET_RX_LAST
) == 0)
596 printk("FEC ENET: rcv is not +last\n");
599 goto rx_processing_done
;
601 /* Check for errors. */
602 if (status
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
| BD_ENET_RX_NO
|
603 BD_ENET_RX_CR
| BD_ENET_RX_OV
)) {
604 ndev
->stats
.rx_errors
++;
605 if (status
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
)) {
606 /* Frame too long or too short. */
607 ndev
->stats
.rx_length_errors
++;
609 if (status
& BD_ENET_RX_NO
) /* Frame alignment */
610 ndev
->stats
.rx_frame_errors
++;
611 if (status
& BD_ENET_RX_CR
) /* CRC Error */
612 ndev
->stats
.rx_crc_errors
++;
613 if (status
& BD_ENET_RX_OV
) /* FIFO overrun */
614 ndev
->stats
.rx_fifo_errors
++;
617 /* Report late collisions as a frame error.
618 * On this error, the BD is closed, but we don't know what we
619 * have in the buffer. So, just drop this frame on the floor.
621 if (status
& BD_ENET_RX_CL
) {
622 ndev
->stats
.rx_errors
++;
623 ndev
->stats
.rx_frame_errors
++;
624 goto rx_processing_done
;
627 /* Process the incoming frame. */
628 ndev
->stats
.rx_packets
++;
629 pkt_len
= bdp
->cbd_datlen
;
630 ndev
->stats
.rx_bytes
+= pkt_len
;
631 data
= (__u8
*)__va(bdp
->cbd_bufaddr
);
633 dma_unmap_single(&fep
->pdev
->dev
, bdp
->cbd_bufaddr
,
634 FEC_ENET_TX_FRSIZE
, DMA_FROM_DEVICE
);
636 if (id_entry
->driver_data
& FEC_QUIRK_SWAP_FRAME
)
637 swap_buffer(data
, pkt_len
);
639 /* This does 16 byte alignment, exactly what we need.
640 * The packet length includes FCS, but we don't want to
641 * include that when passing upstream as it messes up
642 * bridging applications.
644 skb
= dev_alloc_skb(pkt_len
- 4 + NET_IP_ALIGN
);
646 if (unlikely(!skb
)) {
647 printk("%s: Memory squeeze, dropping packet.\n",
649 ndev
->stats
.rx_dropped
++;
651 skb_reserve(skb
, NET_IP_ALIGN
);
652 skb_put(skb
, pkt_len
- 4); /* Make room */
653 skb_copy_to_linear_data(skb
, data
, pkt_len
- 4);
654 skb
->protocol
= eth_type_trans(skb
, ndev
);
655 if (!skb_defer_rx_timestamp(skb
))
659 bdp
->cbd_bufaddr
= dma_map_single(&fep
->pdev
->dev
, data
,
660 FEC_ENET_TX_FRSIZE
, DMA_FROM_DEVICE
);
662 /* Clear the status flags for this buffer */
663 status
&= ~BD_ENET_RX_STATS
;
665 /* Mark the buffer empty */
666 status
|= BD_ENET_RX_EMPTY
;
667 bdp
->cbd_sc
= status
;
669 /* Update BD pointer to next entry */
670 if (status
& BD_ENET_RX_WRAP
)
671 bdp
= fep
->rx_bd_base
;
674 /* Doing this here will keep the FEC running while we process
675 * incoming frames. On a heavily loaded network, we should be
676 * able to keep up at the expense of system resources.
678 writel(0, fep
->hwp
+ FEC_R_DES_ACTIVE
);
682 spin_unlock(&fep
->hw_lock
);
686 fec_enet_interrupt(int irq
, void *dev_id
)
688 struct net_device
*ndev
= dev_id
;
689 struct fec_enet_private
*fep
= netdev_priv(ndev
);
691 irqreturn_t ret
= IRQ_NONE
;
694 int_events
= readl(fep
->hwp
+ FEC_IEVENT
);
695 writel(int_events
, fep
->hwp
+ FEC_IEVENT
);
697 if (int_events
& FEC_ENET_RXF
) {
702 /* Transmit OK, or non-fatal error. Update the buffer
703 * descriptors. FEC handles all errors, we just discover
704 * them as part of the transmit process.
706 if (int_events
& FEC_ENET_TXF
) {
711 if (int_events
& FEC_ENET_MII
) {
713 complete(&fep
->mdio_done
);
715 } while (int_events
);
722 /* ------------------------------------------------------------------------- */
723 static void __inline__
fec_get_mac(struct net_device
*ndev
)
725 struct fec_enet_private
*fep
= netdev_priv(ndev
);
726 struct fec_platform_data
*pdata
= fep
->pdev
->dev
.platform_data
;
727 unsigned char *iap
, tmpaddr
[ETH_ALEN
];
730 * try to get mac address in following order:
732 * 1) module parameter via kernel command line in form
733 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
738 * 2) from flash or fuse (via platform data)
740 if (!is_valid_ether_addr(iap
)) {
743 iap
= (unsigned char *)FEC_FLASHMAC
;
746 memcpy(iap
, pdata
->mac
, ETH_ALEN
);
751 * 3) FEC mac registers set by bootloader
753 if (!is_valid_ether_addr(iap
)) {
754 *((unsigned long *) &tmpaddr
[0]) =
755 be32_to_cpu(readl(fep
->hwp
+ FEC_ADDR_LOW
));
756 *((unsigned short *) &tmpaddr
[4]) =
757 be16_to_cpu(readl(fep
->hwp
+ FEC_ADDR_HIGH
) >> 16);
761 memcpy(ndev
->dev_addr
, iap
, ETH_ALEN
);
763 /* Adjust MAC if using macaddr */
765 ndev
->dev_addr
[ETH_ALEN
-1] = macaddr
[ETH_ALEN
-1] + fep
->pdev
->id
;
768 /* ------------------------------------------------------------------------- */
773 static void fec_enet_adjust_link(struct net_device
*ndev
)
775 struct fec_enet_private
*fep
= netdev_priv(ndev
);
776 struct phy_device
*phy_dev
= fep
->phy_dev
;
779 int status_change
= 0;
781 spin_lock_irqsave(&fep
->hw_lock
, flags
);
783 /* Prevent a state halted on mii error */
784 if (fep
->mii_timeout
&& phy_dev
->state
== PHY_HALTED
) {
785 phy_dev
->state
= PHY_RESUMING
;
789 /* Duplex link change */
791 if (fep
->full_duplex
!= phy_dev
->duplex
) {
792 fec_restart(ndev
, phy_dev
->duplex
);
797 /* Link on or off change */
798 if (phy_dev
->link
!= fep
->link
) {
799 fep
->link
= phy_dev
->link
;
801 fec_restart(ndev
, phy_dev
->duplex
);
808 spin_unlock_irqrestore(&fep
->hw_lock
, flags
);
811 phy_print_status(phy_dev
);
814 static int fec_enet_mdio_read(struct mii_bus
*bus
, int mii_id
, int regnum
)
816 struct fec_enet_private
*fep
= bus
->priv
;
817 unsigned long time_left
;
819 fep
->mii_timeout
= 0;
820 init_completion(&fep
->mdio_done
);
822 /* start a read op */
823 writel(FEC_MMFR_ST
| FEC_MMFR_OP_READ
|
824 FEC_MMFR_PA(mii_id
) | FEC_MMFR_RA(regnum
) |
825 FEC_MMFR_TA
, fep
->hwp
+ FEC_MII_DATA
);
827 /* wait for end of transfer */
828 time_left
= wait_for_completion_timeout(&fep
->mdio_done
,
829 usecs_to_jiffies(FEC_MII_TIMEOUT
));
830 if (time_left
== 0) {
831 fep
->mii_timeout
= 1;
832 printk(KERN_ERR
"FEC: MDIO read timeout\n");
837 return FEC_MMFR_DATA(readl(fep
->hwp
+ FEC_MII_DATA
));
840 static int fec_enet_mdio_write(struct mii_bus
*bus
, int mii_id
, int regnum
,
843 struct fec_enet_private
*fep
= bus
->priv
;
844 unsigned long time_left
;
846 fep
->mii_timeout
= 0;
847 init_completion(&fep
->mdio_done
);
849 /* start a write op */
850 writel(FEC_MMFR_ST
| FEC_MMFR_OP_WRITE
|
851 FEC_MMFR_PA(mii_id
) | FEC_MMFR_RA(regnum
) |
852 FEC_MMFR_TA
| FEC_MMFR_DATA(value
),
853 fep
->hwp
+ FEC_MII_DATA
);
855 /* wait for end of transfer */
856 time_left
= wait_for_completion_timeout(&fep
->mdio_done
,
857 usecs_to_jiffies(FEC_MII_TIMEOUT
));
858 if (time_left
== 0) {
859 fep
->mii_timeout
= 1;
860 printk(KERN_ERR
"FEC: MDIO write timeout\n");
867 static int fec_enet_mdio_reset(struct mii_bus
*bus
)
872 static int fec_enet_mii_probe(struct net_device
*ndev
)
874 struct fec_enet_private
*fep
= netdev_priv(ndev
);
875 struct phy_device
*phy_dev
= NULL
;
876 char mdio_bus_id
[MII_BUS_ID_SIZE
];
877 char phy_name
[MII_BUS_ID_SIZE
+ 3];
879 int dev_id
= fep
->pdev
->id
;
883 /* check for attached phy */
884 for (phy_id
= 0; (phy_id
< PHY_MAX_ADDR
); phy_id
++) {
885 if ((fep
->mii_bus
->phy_mask
& (1 << phy_id
)))
887 if (fep
->mii_bus
->phy_map
[phy_id
] == NULL
)
889 if (fep
->mii_bus
->phy_map
[phy_id
]->phy_id
== 0)
893 strncpy(mdio_bus_id
, fep
->mii_bus
->id
, MII_BUS_ID_SIZE
);
897 if (phy_id
>= PHY_MAX_ADDR
) {
898 printk(KERN_INFO
"%s: no PHY, assuming direct connection "
899 "to switch\n", ndev
->name
);
900 strncpy(mdio_bus_id
, "0", MII_BUS_ID_SIZE
);
904 snprintf(phy_name
, MII_BUS_ID_SIZE
, PHY_ID_FMT
, mdio_bus_id
, phy_id
);
905 phy_dev
= phy_connect(ndev
, phy_name
, &fec_enet_adjust_link
, 0,
906 PHY_INTERFACE_MODE_MII
);
907 if (IS_ERR(phy_dev
)) {
908 printk(KERN_ERR
"%s: could not attach to PHY\n", ndev
->name
);
909 return PTR_ERR(phy_dev
);
912 /* mask with MAC supported features */
913 phy_dev
->supported
&= PHY_BASIC_FEATURES
;
914 phy_dev
->advertising
= phy_dev
->supported
;
916 fep
->phy_dev
= phy_dev
;
918 fep
->full_duplex
= 0;
920 printk(KERN_INFO
"%s: Freescale FEC PHY driver [%s] "
921 "(mii_bus:phy_addr=%s, irq=%d)\n", ndev
->name
,
922 fep
->phy_dev
->drv
->name
, dev_name(&fep
->phy_dev
->dev
),
928 static int fec_enet_mii_init(struct platform_device
*pdev
)
930 static struct mii_bus
*fec0_mii_bus
;
931 struct net_device
*ndev
= platform_get_drvdata(pdev
);
932 struct fec_enet_private
*fep
= netdev_priv(ndev
);
933 const struct platform_device_id
*id_entry
=
934 platform_get_device_id(fep
->pdev
);
938 * The dual fec interfaces are not equivalent with enet-mac.
939 * Here are the differences:
941 * - fec0 supports MII & RMII modes while fec1 only supports RMII
942 * - fec0 acts as the 1588 time master while fec1 is slave
943 * - external phys can only be configured by fec0
945 * That is to say fec1 can not work independently. It only works
946 * when fec0 is working. The reason behind this design is that the
947 * second interface is added primarily for Switch mode.
949 * Because of the last point above, both phys are attached on fec0
950 * mdio interface in board design, and need to be configured by
953 if ((id_entry
->driver_data
& FEC_QUIRK_ENET_MAC
) && pdev
->id
) {
954 /* fec1 uses fec0 mii_bus */
955 fep
->mii_bus
= fec0_mii_bus
;
959 fep
->mii_timeout
= 0;
962 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
964 fep
->phy_speed
= DIV_ROUND_UP(clk_get_rate(fep
->clk
), 5000000) << 1;
965 writel(fep
->phy_speed
, fep
->hwp
+ FEC_MII_SPEED
);
967 fep
->mii_bus
= mdiobus_alloc();
968 if (fep
->mii_bus
== NULL
) {
973 fep
->mii_bus
->name
= "fec_enet_mii_bus";
974 fep
->mii_bus
->read
= fec_enet_mdio_read
;
975 fep
->mii_bus
->write
= fec_enet_mdio_write
;
976 fep
->mii_bus
->reset
= fec_enet_mdio_reset
;
977 snprintf(fep
->mii_bus
->id
, MII_BUS_ID_SIZE
, "%x", pdev
->id
+ 1);
978 fep
->mii_bus
->priv
= fep
;
979 fep
->mii_bus
->parent
= &pdev
->dev
;
981 fep
->mii_bus
->irq
= kmalloc(sizeof(int) * PHY_MAX_ADDR
, GFP_KERNEL
);
982 if (!fep
->mii_bus
->irq
) {
984 goto err_out_free_mdiobus
;
987 for (i
= 0; i
< PHY_MAX_ADDR
; i
++)
988 fep
->mii_bus
->irq
[i
] = PHY_POLL
;
990 if (mdiobus_register(fep
->mii_bus
))
991 goto err_out_free_mdio_irq
;
993 /* save fec0 mii_bus */
994 if (id_entry
->driver_data
& FEC_QUIRK_ENET_MAC
)
995 fec0_mii_bus
= fep
->mii_bus
;
999 err_out_free_mdio_irq
:
1000 kfree(fep
->mii_bus
->irq
);
1001 err_out_free_mdiobus
:
1002 mdiobus_free(fep
->mii_bus
);
1007 static void fec_enet_mii_remove(struct fec_enet_private
*fep
)
1010 phy_disconnect(fep
->phy_dev
);
1011 mdiobus_unregister(fep
->mii_bus
);
1012 kfree(fep
->mii_bus
->irq
);
1013 mdiobus_free(fep
->mii_bus
);
1016 static int fec_enet_get_settings(struct net_device
*ndev
,
1017 struct ethtool_cmd
*cmd
)
1019 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1020 struct phy_device
*phydev
= fep
->phy_dev
;
1025 return phy_ethtool_gset(phydev
, cmd
);
1028 static int fec_enet_set_settings(struct net_device
*ndev
,
1029 struct ethtool_cmd
*cmd
)
1031 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1032 struct phy_device
*phydev
= fep
->phy_dev
;
1037 return phy_ethtool_sset(phydev
, cmd
);
1040 static void fec_enet_get_drvinfo(struct net_device
*ndev
,
1041 struct ethtool_drvinfo
*info
)
1043 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1045 strcpy(info
->driver
, fep
->pdev
->dev
.driver
->name
);
1046 strcpy(info
->version
, "Revision: 1.0");
1047 strcpy(info
->bus_info
, dev_name(&ndev
->dev
));
1050 static struct ethtool_ops fec_enet_ethtool_ops
= {
1051 .get_settings
= fec_enet_get_settings
,
1052 .set_settings
= fec_enet_set_settings
,
1053 .get_drvinfo
= fec_enet_get_drvinfo
,
1054 .get_link
= ethtool_op_get_link
,
1057 static int fec_enet_ioctl(struct net_device
*ndev
, struct ifreq
*rq
, int cmd
)
1059 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1060 struct phy_device
*phydev
= fep
->phy_dev
;
1062 if (!netif_running(ndev
))
1068 return phy_mii_ioctl(phydev
, rq
, cmd
);
1071 static void fec_enet_free_buffers(struct net_device
*ndev
)
1073 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1075 struct sk_buff
*skb
;
1076 struct bufdesc
*bdp
;
1078 bdp
= fep
->rx_bd_base
;
1079 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1080 skb
= fep
->rx_skbuff
[i
];
1082 if (bdp
->cbd_bufaddr
)
1083 dma_unmap_single(&fep
->pdev
->dev
, bdp
->cbd_bufaddr
,
1084 FEC_ENET_RX_FRSIZE
, DMA_FROM_DEVICE
);
1090 bdp
= fep
->tx_bd_base
;
1091 for (i
= 0; i
< TX_RING_SIZE
; i
++)
1092 kfree(fep
->tx_bounce
[i
]);
1095 static int fec_enet_alloc_buffers(struct net_device
*ndev
)
1097 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1099 struct sk_buff
*skb
;
1100 struct bufdesc
*bdp
;
1102 bdp
= fep
->rx_bd_base
;
1103 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1104 skb
= dev_alloc_skb(FEC_ENET_RX_FRSIZE
);
1106 fec_enet_free_buffers(ndev
);
1109 fep
->rx_skbuff
[i
] = skb
;
1111 bdp
->cbd_bufaddr
= dma_map_single(&fep
->pdev
->dev
, skb
->data
,
1112 FEC_ENET_RX_FRSIZE
, DMA_FROM_DEVICE
);
1113 bdp
->cbd_sc
= BD_ENET_RX_EMPTY
;
1117 /* Set the last buffer to wrap. */
1119 bdp
->cbd_sc
|= BD_SC_WRAP
;
1121 bdp
= fep
->tx_bd_base
;
1122 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1123 fep
->tx_bounce
[i
] = kmalloc(FEC_ENET_TX_FRSIZE
, GFP_KERNEL
);
1126 bdp
->cbd_bufaddr
= 0;
1130 /* Set the last buffer to wrap. */
1132 bdp
->cbd_sc
|= BD_SC_WRAP
;
1138 fec_enet_open(struct net_device
*ndev
)
1140 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1143 /* I should reset the ring buffers here, but I don't yet know
1144 * a simple way to do that.
1147 ret
= fec_enet_alloc_buffers(ndev
);
1151 /* Probe and connect to PHY when open the interface */
1152 ret
= fec_enet_mii_probe(ndev
);
1154 fec_enet_free_buffers(ndev
);
1157 phy_start(fep
->phy_dev
);
1158 netif_start_queue(ndev
);
1164 fec_enet_close(struct net_device
*ndev
)
1166 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1168 /* Don't know what to do yet. */
1170 netif_stop_queue(ndev
);
1174 phy_stop(fep
->phy_dev
);
1175 phy_disconnect(fep
->phy_dev
);
1178 fec_enet_free_buffers(ndev
);
1183 /* Set or clear the multicast filter for this adaptor.
1184 * Skeleton taken from sunlance driver.
1185 * The CPM Ethernet implementation allows Multicast as well as individual
1186 * MAC address filtering. Some of the drivers check to make sure it is
1187 * a group multicast address, and discard those that are not. I guess I
1188 * will do the same for now, but just remove the test if you want
1189 * individual filtering as well (do the upper net layers want or support
1190 * this kind of feature?).
1193 #define HASH_BITS 6 /* #bits in hash */
1194 #define CRC32_POLY 0xEDB88320
1196 static void set_multicast_list(struct net_device
*ndev
)
1198 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1199 struct netdev_hw_addr
*ha
;
1200 unsigned int i
, bit
, data
, crc
, tmp
;
1203 if (ndev
->flags
& IFF_PROMISC
) {
1204 tmp
= readl(fep
->hwp
+ FEC_R_CNTRL
);
1206 writel(tmp
, fep
->hwp
+ FEC_R_CNTRL
);
1210 tmp
= readl(fep
->hwp
+ FEC_R_CNTRL
);
1212 writel(tmp
, fep
->hwp
+ FEC_R_CNTRL
);
1214 if (ndev
->flags
& IFF_ALLMULTI
) {
1215 /* Catch all multicast addresses, so set the
1218 writel(0xffffffff, fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
1219 writel(0xffffffff, fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
1224 /* Clear filter and add the addresses in hash register
1226 writel(0, fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
1227 writel(0, fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
1229 netdev_for_each_mc_addr(ha
, ndev
) {
1230 /* calculate crc32 value of mac address */
1233 for (i
= 0; i
< ndev
->addr_len
; i
++) {
1235 for (bit
= 0; bit
< 8; bit
++, data
>>= 1) {
1237 (((crc
^ data
) & 1) ? CRC32_POLY
: 0);
1241 /* only upper 6 bits (HASH_BITS) are used
1242 * which point to specific bit in he hash registers
1244 hash
= (crc
>> (32 - HASH_BITS
)) & 0x3f;
1247 tmp
= readl(fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
1248 tmp
|= 1 << (hash
- 32);
1249 writel(tmp
, fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
1251 tmp
= readl(fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
1253 writel(tmp
, fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
1258 /* Set a MAC change in hardware. */
1260 fec_set_mac_address(struct net_device
*ndev
, void *p
)
1262 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1263 struct sockaddr
*addr
= p
;
1265 if (!is_valid_ether_addr(addr
->sa_data
))
1266 return -EADDRNOTAVAIL
;
1268 memcpy(ndev
->dev_addr
, addr
->sa_data
, ndev
->addr_len
);
1270 writel(ndev
->dev_addr
[3] | (ndev
->dev_addr
[2] << 8) |
1271 (ndev
->dev_addr
[1] << 16) | (ndev
->dev_addr
[0] << 24),
1272 fep
->hwp
+ FEC_ADDR_LOW
);
1273 writel((ndev
->dev_addr
[5] << 16) | (ndev
->dev_addr
[4] << 24),
1274 fep
->hwp
+ FEC_ADDR_HIGH
);
1278 static const struct net_device_ops fec_netdev_ops
= {
1279 .ndo_open
= fec_enet_open
,
1280 .ndo_stop
= fec_enet_close
,
1281 .ndo_start_xmit
= fec_enet_start_xmit
,
1282 .ndo_set_multicast_list
= set_multicast_list
,
1283 .ndo_change_mtu
= eth_change_mtu
,
1284 .ndo_validate_addr
= eth_validate_addr
,
1285 .ndo_tx_timeout
= fec_timeout
,
1286 .ndo_set_mac_address
= fec_set_mac_address
,
1287 .ndo_do_ioctl
= fec_enet_ioctl
,
1291 * XXX: We need to clean up on failure exits here.
1294 static int fec_enet_init(struct net_device
*ndev
)
1296 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1297 struct bufdesc
*cbd_base
;
1298 struct bufdesc
*bdp
;
1301 /* Allocate memory for buffer descriptors. */
1302 cbd_base
= dma_alloc_coherent(NULL
, PAGE_SIZE
, &fep
->bd_dma
,
1305 printk("FEC: allocate descriptor memory failed?\n");
1309 spin_lock_init(&fep
->hw_lock
);
1313 /* Get the Ethernet address */
1316 /* Set receive and transmit descriptor base. */
1317 fep
->rx_bd_base
= cbd_base
;
1318 fep
->tx_bd_base
= cbd_base
+ RX_RING_SIZE
;
1320 /* The FEC Ethernet specific entries in the device structure */
1321 ndev
->watchdog_timeo
= TX_TIMEOUT
;
1322 ndev
->netdev_ops
= &fec_netdev_ops
;
1323 ndev
->ethtool_ops
= &fec_enet_ethtool_ops
;
1325 /* Initialize the receive buffer descriptors. */
1326 bdp
= fep
->rx_bd_base
;
1327 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1329 /* Initialize the BD for every fragment in the page. */
1334 /* Set the last buffer to wrap */
1336 bdp
->cbd_sc
|= BD_SC_WRAP
;
1338 /* ...and the same for transmit */
1339 bdp
= fep
->tx_bd_base
;
1340 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1342 /* Initialize the BD for every fragment in the page. */
1344 bdp
->cbd_bufaddr
= 0;
1348 /* Set the last buffer to wrap */
1350 bdp
->cbd_sc
|= BD_SC_WRAP
;
1352 fec_restart(ndev
, 0);
1357 static int __devinit
1358 fec_probe(struct platform_device
*pdev
)
1360 struct fec_enet_private
*fep
;
1361 struct fec_platform_data
*pdata
;
1362 struct net_device
*ndev
;
1363 int i
, irq
, ret
= 0;
1366 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1370 r
= request_mem_region(r
->start
, resource_size(r
), pdev
->name
);
1374 /* Init network device */
1375 ndev
= alloc_etherdev(sizeof(struct fec_enet_private
));
1378 goto failed_alloc_etherdev
;
1381 SET_NETDEV_DEV(ndev
, &pdev
->dev
);
1383 /* setup board info structure */
1384 fep
= netdev_priv(ndev
);
1386 fep
->hwp
= ioremap(r
->start
, resource_size(r
));
1391 goto failed_ioremap
;
1394 platform_set_drvdata(pdev
, ndev
);
1396 pdata
= pdev
->dev
.platform_data
;
1398 fep
->phy_interface
= pdata
->phy
;
1400 /* This device has up to three irqs on some platforms */
1401 for (i
= 0; i
< 3; i
++) {
1402 irq
= platform_get_irq(pdev
, i
);
1405 ret
= request_irq(irq
, fec_enet_interrupt
, IRQF_DISABLED
, pdev
->name
, ndev
);
1408 irq
= platform_get_irq(pdev
, i
);
1409 free_irq(irq
, ndev
);
1415 fep
->clk
= clk_get(&pdev
->dev
, "fec_clk");
1416 if (IS_ERR(fep
->clk
)) {
1417 ret
= PTR_ERR(fep
->clk
);
1420 clk_enable(fep
->clk
);
1422 ret
= fec_enet_init(ndev
);
1426 ret
= fec_enet_mii_init(pdev
);
1428 goto failed_mii_init
;
1430 /* Carrier starts down, phylib will bring it up */
1431 netif_carrier_off(ndev
);
1433 ret
= register_netdev(ndev
);
1435 goto failed_register
;
1440 fec_enet_mii_remove(fep
);
1443 clk_disable(fep
->clk
);
1446 for (i
= 0; i
< 3; i
++) {
1447 irq
= platform_get_irq(pdev
, i
);
1449 free_irq(irq
, ndev
);
1455 failed_alloc_etherdev
:
1456 release_mem_region(r
->start
, resource_size(r
));
1461 static int __devexit
1462 fec_drv_remove(struct platform_device
*pdev
)
1464 struct net_device
*ndev
= platform_get_drvdata(pdev
);
1465 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1469 fec_enet_mii_remove(fep
);
1470 clk_disable(fep
->clk
);
1473 unregister_netdev(ndev
);
1476 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1478 release_mem_region(r
->start
, resource_size(r
));
1480 platform_set_drvdata(pdev
, NULL
);
1487 fec_suspend(struct device
*dev
)
1489 struct net_device
*ndev
= dev_get_drvdata(dev
);
1490 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1492 if (netif_running(ndev
)) {
1494 netif_device_detach(ndev
);
1496 clk_disable(fep
->clk
);
1502 fec_resume(struct device
*dev
)
1504 struct net_device
*ndev
= dev_get_drvdata(dev
);
1505 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1507 clk_enable(fep
->clk
);
1508 if (netif_running(ndev
)) {
1509 fec_restart(ndev
, fep
->full_duplex
);
1510 netif_device_attach(ndev
);
1516 static const struct dev_pm_ops fec_pm_ops
= {
1517 .suspend
= fec_suspend
,
1518 .resume
= fec_resume
,
1519 .freeze
= fec_suspend
,
1521 .poweroff
= fec_suspend
,
1522 .restore
= fec_resume
,
1526 static struct platform_driver fec_driver
= {
1528 .name
= DRIVER_NAME
,
1529 .owner
= THIS_MODULE
,
1534 .id_table
= fec_devtype
,
1536 .remove
= __devexit_p(fec_drv_remove
),
1540 fec_enet_module_init(void)
1542 printk(KERN_INFO
"FEC Ethernet Driver\n");
1544 return platform_driver_register(&fec_driver
);
1548 fec_enet_cleanup(void)
1550 platform_driver_unregister(&fec_driver
);
1553 module_exit(fec_enet_cleanup
);
1554 module_init(fec_enet_module_init
);
1556 MODULE_LICENSE("GPL");