net: sh_eth: remove the SH_TSU_ADDR
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / memblock.c
blob4618fda975a0e1c149b6735d64b6a779cc8c301d
1 /*
2 * Procedures for maintaining information about logical memory blocks.
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
23 struct memblock memblock __initdata_memblock;
25 int memblock_debug __initdata_memblock;
26 int memblock_can_resize __initdata_memblock;
27 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS + 1] __initdata_memblock;
28 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS + 1] __initdata_memblock;
30 /* inline so we don't get a warning when pr_debug is compiled out */
31 static inline const char *memblock_type_name(struct memblock_type *type)
33 if (type == &memblock.memory)
34 return "memory";
35 else if (type == &memblock.reserved)
36 return "reserved";
37 else
38 return "unknown";
42 * Address comparison utilities
45 static phys_addr_t __init_memblock memblock_align_down(phys_addr_t addr, phys_addr_t size)
47 return addr & ~(size - 1);
50 static phys_addr_t __init_memblock memblock_align_up(phys_addr_t addr, phys_addr_t size)
52 return (addr + (size - 1)) & ~(size - 1);
55 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
56 phys_addr_t base2, phys_addr_t size2)
58 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
61 static long __init_memblock memblock_addrs_adjacent(phys_addr_t base1, phys_addr_t size1,
62 phys_addr_t base2, phys_addr_t size2)
64 if (base2 == base1 + size1)
65 return 1;
66 else if (base1 == base2 + size2)
67 return -1;
69 return 0;
72 static long __init_memblock memblock_regions_adjacent(struct memblock_type *type,
73 unsigned long r1, unsigned long r2)
75 phys_addr_t base1 = type->regions[r1].base;
76 phys_addr_t size1 = type->regions[r1].size;
77 phys_addr_t base2 = type->regions[r2].base;
78 phys_addr_t size2 = type->regions[r2].size;
80 return memblock_addrs_adjacent(base1, size1, base2, size2);
83 long __init_memblock memblock_overlaps_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
85 unsigned long i;
87 for (i = 0; i < type->cnt; i++) {
88 phys_addr_t rgnbase = type->regions[i].base;
89 phys_addr_t rgnsize = type->regions[i].size;
90 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
91 break;
94 return (i < type->cnt) ? i : -1;
98 * Find, allocate, deallocate or reserve unreserved regions. All allocations
99 * are top-down.
102 static phys_addr_t __init_memblock memblock_find_region(phys_addr_t start, phys_addr_t end,
103 phys_addr_t size, phys_addr_t align)
105 phys_addr_t base, res_base;
106 long j;
108 /* In case, huge size is requested */
109 if (end < size)
110 return MEMBLOCK_ERROR;
112 base = memblock_align_down((end - size), align);
114 /* Prevent allocations returning 0 as it's also used to
115 * indicate an allocation failure
117 if (start == 0)
118 start = PAGE_SIZE;
120 while (start <= base) {
121 j = memblock_overlaps_region(&memblock.reserved, base, size);
122 if (j < 0)
123 return base;
124 res_base = memblock.reserved.regions[j].base;
125 if (res_base < size)
126 break;
127 base = memblock_align_down(res_base - size, align);
130 return MEMBLOCK_ERROR;
133 static phys_addr_t __init_memblock memblock_find_base(phys_addr_t size,
134 phys_addr_t align, phys_addr_t start, phys_addr_t end)
136 long i;
138 BUG_ON(0 == size);
140 /* Pump up max_addr */
141 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
142 end = memblock.current_limit;
144 /* We do a top-down search, this tends to limit memory
145 * fragmentation by keeping early boot allocs near the
146 * top of memory
148 for (i = memblock.memory.cnt - 1; i >= 0; i--) {
149 phys_addr_t memblockbase = memblock.memory.regions[i].base;
150 phys_addr_t memblocksize = memblock.memory.regions[i].size;
151 phys_addr_t bottom, top, found;
153 if (memblocksize < size)
154 continue;
155 if ((memblockbase + memblocksize) <= start)
156 break;
157 bottom = max(memblockbase, start);
158 top = min(memblockbase + memblocksize, end);
159 if (bottom >= top)
160 continue;
161 found = memblock_find_region(bottom, top, size, align);
162 if (found != MEMBLOCK_ERROR)
163 return found;
165 return MEMBLOCK_ERROR;
169 * Find a free area with specified alignment in a specific range.
171 u64 __init_memblock memblock_find_in_range(u64 start, u64 end, u64 size, u64 align)
173 return memblock_find_base(size, align, start, end);
177 * Free memblock.reserved.regions
179 int __init_memblock memblock_free_reserved_regions(void)
181 if (memblock.reserved.regions == memblock_reserved_init_regions)
182 return 0;
184 return memblock_free(__pa(memblock.reserved.regions),
185 sizeof(struct memblock_region) * memblock.reserved.max);
189 * Reserve memblock.reserved.regions
191 int __init_memblock memblock_reserve_reserved_regions(void)
193 if (memblock.reserved.regions == memblock_reserved_init_regions)
194 return 0;
196 return memblock_reserve(__pa(memblock.reserved.regions),
197 sizeof(struct memblock_region) * memblock.reserved.max);
200 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
202 unsigned long i;
204 for (i = r; i < type->cnt - 1; i++) {
205 type->regions[i].base = type->regions[i + 1].base;
206 type->regions[i].size = type->regions[i + 1].size;
208 type->cnt--;
211 /* Assumption: base addr of region 1 < base addr of region 2 */
212 static void __init_memblock memblock_coalesce_regions(struct memblock_type *type,
213 unsigned long r1, unsigned long r2)
215 type->regions[r1].size += type->regions[r2].size;
216 memblock_remove_region(type, r2);
219 /* Defined below but needed now */
220 static long memblock_add_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size);
222 static int __init_memblock memblock_double_array(struct memblock_type *type)
224 struct memblock_region *new_array, *old_array;
225 phys_addr_t old_size, new_size, addr;
226 int use_slab = slab_is_available();
228 /* We don't allow resizing until we know about the reserved regions
229 * of memory that aren't suitable for allocation
231 if (!memblock_can_resize)
232 return -1;
234 /* Calculate new doubled size */
235 old_size = type->max * sizeof(struct memblock_region);
236 new_size = old_size << 1;
238 /* Try to find some space for it.
240 * WARNING: We assume that either slab_is_available() and we use it or
241 * we use MEMBLOCK for allocations. That means that this is unsafe to use
242 * when bootmem is currently active (unless bootmem itself is implemented
243 * on top of MEMBLOCK which isn't the case yet)
245 * This should however not be an issue for now, as we currently only
246 * call into MEMBLOCK while it's still active, or much later when slab is
247 * active for memory hotplug operations
249 if (use_slab) {
250 new_array = kmalloc(new_size, GFP_KERNEL);
251 addr = new_array == NULL ? MEMBLOCK_ERROR : __pa(new_array);
252 } else
253 addr = memblock_find_base(new_size, sizeof(phys_addr_t), 0, MEMBLOCK_ALLOC_ACCESSIBLE);
254 if (addr == MEMBLOCK_ERROR) {
255 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
256 memblock_type_name(type), type->max, type->max * 2);
257 return -1;
259 new_array = __va(addr);
261 memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]",
262 memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1);
264 /* Found space, we now need to move the array over before
265 * we add the reserved region since it may be our reserved
266 * array itself that is full.
268 memcpy(new_array, type->regions, old_size);
269 memset(new_array + type->max, 0, old_size);
270 old_array = type->regions;
271 type->regions = new_array;
272 type->max <<= 1;
274 /* If we use SLAB that's it, we are done */
275 if (use_slab)
276 return 0;
278 /* Add the new reserved region now. Should not fail ! */
279 BUG_ON(memblock_add_region(&memblock.reserved, addr, new_size) < 0);
281 /* If the array wasn't our static init one, then free it. We only do
282 * that before SLAB is available as later on, we don't know whether
283 * to use kfree or free_bootmem_pages(). Shouldn't be a big deal
284 * anyways
286 if (old_array != memblock_memory_init_regions &&
287 old_array != memblock_reserved_init_regions)
288 memblock_free(__pa(old_array), old_size);
290 return 0;
293 extern int __init_memblock __weak memblock_memory_can_coalesce(phys_addr_t addr1, phys_addr_t size1,
294 phys_addr_t addr2, phys_addr_t size2)
296 return 1;
299 static long __init_memblock memblock_add_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
301 unsigned long coalesced = 0;
302 long adjacent, i;
304 if ((type->cnt == 1) && (type->regions[0].size == 0)) {
305 type->regions[0].base = base;
306 type->regions[0].size = size;
307 return 0;
310 /* First try and coalesce this MEMBLOCK with another. */
311 for (i = 0; i < type->cnt; i++) {
312 phys_addr_t rgnbase = type->regions[i].base;
313 phys_addr_t rgnsize = type->regions[i].size;
315 if ((rgnbase == base) && (rgnsize == size))
316 /* Already have this region, so we're done */
317 return 0;
319 adjacent = memblock_addrs_adjacent(base, size, rgnbase, rgnsize);
320 /* Check if arch allows coalescing */
321 if (adjacent != 0 && type == &memblock.memory &&
322 !memblock_memory_can_coalesce(base, size, rgnbase, rgnsize))
323 break;
324 if (adjacent > 0) {
325 type->regions[i].base -= size;
326 type->regions[i].size += size;
327 coalesced++;
328 break;
329 } else if (adjacent < 0) {
330 type->regions[i].size += size;
331 coalesced++;
332 break;
336 /* If we plugged a hole, we may want to also coalesce with the
337 * next region
339 if ((i < type->cnt - 1) && memblock_regions_adjacent(type, i, i+1) &&
340 ((type != &memblock.memory || memblock_memory_can_coalesce(type->regions[i].base,
341 type->regions[i].size,
342 type->regions[i+1].base,
343 type->regions[i+1].size)))) {
344 memblock_coalesce_regions(type, i, i+1);
345 coalesced++;
348 if (coalesced)
349 return coalesced;
351 /* If we are out of space, we fail. It's too late to resize the array
352 * but then this shouldn't have happened in the first place.
354 if (WARN_ON(type->cnt >= type->max))
355 return -1;
357 /* Couldn't coalesce the MEMBLOCK, so add it to the sorted table. */
358 for (i = type->cnt - 1; i >= 0; i--) {
359 if (base < type->regions[i].base) {
360 type->regions[i+1].base = type->regions[i].base;
361 type->regions[i+1].size = type->regions[i].size;
362 } else {
363 type->regions[i+1].base = base;
364 type->regions[i+1].size = size;
365 break;
369 if (base < type->regions[0].base) {
370 type->regions[0].base = base;
371 type->regions[0].size = size;
373 type->cnt++;
375 /* The array is full ? Try to resize it. If that fails, we undo
376 * our allocation and return an error
378 if (type->cnt == type->max && memblock_double_array(type)) {
379 type->cnt--;
380 return -1;
383 return 0;
386 long __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
388 return memblock_add_region(&memblock.memory, base, size);
392 static long __init_memblock __memblock_remove(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
394 phys_addr_t rgnbegin, rgnend;
395 phys_addr_t end = base + size;
396 int i;
398 rgnbegin = rgnend = 0; /* supress gcc warnings */
400 /* Find the region where (base, size) belongs to */
401 for (i=0; i < type->cnt; i++) {
402 rgnbegin = type->regions[i].base;
403 rgnend = rgnbegin + type->regions[i].size;
405 if ((rgnbegin <= base) && (end <= rgnend))
406 break;
409 /* Didn't find the region */
410 if (i == type->cnt)
411 return -1;
413 /* Check to see if we are removing entire region */
414 if ((rgnbegin == base) && (rgnend == end)) {
415 memblock_remove_region(type, i);
416 return 0;
419 /* Check to see if region is matching at the front */
420 if (rgnbegin == base) {
421 type->regions[i].base = end;
422 type->regions[i].size -= size;
423 return 0;
426 /* Check to see if the region is matching at the end */
427 if (rgnend == end) {
428 type->regions[i].size -= size;
429 return 0;
433 * We need to split the entry - adjust the current one to the
434 * beginging of the hole and add the region after hole.
436 type->regions[i].size = base - type->regions[i].base;
437 return memblock_add_region(type, end, rgnend - end);
440 long __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
442 return __memblock_remove(&memblock.memory, base, size);
445 long __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
447 return __memblock_remove(&memblock.reserved, base, size);
450 long __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
452 struct memblock_type *_rgn = &memblock.reserved;
454 BUG_ON(0 == size);
456 return memblock_add_region(_rgn, base, size);
459 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
461 phys_addr_t found;
463 /* We align the size to limit fragmentation. Without this, a lot of
464 * small allocs quickly eat up the whole reserve array on sparc
466 size = memblock_align_up(size, align);
468 found = memblock_find_base(size, align, 0, max_addr);
469 if (found != MEMBLOCK_ERROR &&
470 memblock_add_region(&memblock.reserved, found, size) >= 0)
471 return found;
473 return 0;
476 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
478 phys_addr_t alloc;
480 alloc = __memblock_alloc_base(size, align, max_addr);
482 if (alloc == 0)
483 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
484 (unsigned long long) size, (unsigned long long) max_addr);
486 return alloc;
489 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
491 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
496 * Additional node-local allocators. Search for node memory is bottom up
497 * and walks memblock regions within that node bottom-up as well, but allocation
498 * within an memblock region is top-down. XXX I plan to fix that at some stage
500 * WARNING: Only available after early_node_map[] has been populated,
501 * on some architectures, that is after all the calls to add_active_range()
502 * have been done to populate it.
505 phys_addr_t __weak __init memblock_nid_range(phys_addr_t start, phys_addr_t end, int *nid)
507 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
509 * This code originates from sparc which really wants use to walk by addresses
510 * and returns the nid. This is not very convenient for early_pfn_map[] users
511 * as the map isn't sorted yet, and it really wants to be walked by nid.
513 * For now, I implement the inefficient method below which walks the early
514 * map multiple times. Eventually we may want to use an ARCH config option
515 * to implement a completely different method for both case.
517 unsigned long start_pfn, end_pfn;
518 int i;
520 for (i = 0; i < MAX_NUMNODES; i++) {
521 get_pfn_range_for_nid(i, &start_pfn, &end_pfn);
522 if (start < PFN_PHYS(start_pfn) || start >= PFN_PHYS(end_pfn))
523 continue;
524 *nid = i;
525 return min(end, PFN_PHYS(end_pfn));
527 #endif
528 *nid = 0;
530 return end;
533 static phys_addr_t __init memblock_alloc_nid_region(struct memblock_region *mp,
534 phys_addr_t size,
535 phys_addr_t align, int nid)
537 phys_addr_t start, end;
539 start = mp->base;
540 end = start + mp->size;
542 start = memblock_align_up(start, align);
543 while (start < end) {
544 phys_addr_t this_end;
545 int this_nid;
547 this_end = memblock_nid_range(start, end, &this_nid);
548 if (this_nid == nid) {
549 phys_addr_t ret = memblock_find_region(start, this_end, size, align);
550 if (ret != MEMBLOCK_ERROR &&
551 memblock_add_region(&memblock.reserved, ret, size) >= 0)
552 return ret;
554 start = this_end;
557 return MEMBLOCK_ERROR;
560 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
562 struct memblock_type *mem = &memblock.memory;
563 int i;
565 BUG_ON(0 == size);
567 /* We align the size to limit fragmentation. Without this, a lot of
568 * small allocs quickly eat up the whole reserve array on sparc
570 size = memblock_align_up(size, align);
572 /* We do a bottom-up search for a region with the right
573 * nid since that's easier considering how memblock_nid_range()
574 * works
576 for (i = 0; i < mem->cnt; i++) {
577 phys_addr_t ret = memblock_alloc_nid_region(&mem->regions[i],
578 size, align, nid);
579 if (ret != MEMBLOCK_ERROR)
580 return ret;
583 return 0;
586 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
588 phys_addr_t res = memblock_alloc_nid(size, align, nid);
590 if (res)
591 return res;
592 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ANYWHERE);
597 * Remaining API functions
600 /* You must call memblock_analyze() before this. */
601 phys_addr_t __init memblock_phys_mem_size(void)
603 return memblock.memory_size;
606 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
608 int idx = memblock.memory.cnt - 1;
610 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
613 /* You must call memblock_analyze() after this. */
614 void __init memblock_enforce_memory_limit(phys_addr_t memory_limit)
616 unsigned long i;
617 phys_addr_t limit;
618 struct memblock_region *p;
620 if (!memory_limit)
621 return;
623 /* Truncate the memblock regions to satisfy the memory limit. */
624 limit = memory_limit;
625 for (i = 0; i < memblock.memory.cnt; i++) {
626 if (limit > memblock.memory.regions[i].size) {
627 limit -= memblock.memory.regions[i].size;
628 continue;
631 memblock.memory.regions[i].size = limit;
632 memblock.memory.cnt = i + 1;
633 break;
636 memory_limit = memblock_end_of_DRAM();
638 /* And truncate any reserves above the limit also. */
639 for (i = 0; i < memblock.reserved.cnt; i++) {
640 p = &memblock.reserved.regions[i];
642 if (p->base > memory_limit)
643 p->size = 0;
644 else if ((p->base + p->size) > memory_limit)
645 p->size = memory_limit - p->base;
647 if (p->size == 0) {
648 memblock_remove_region(&memblock.reserved, i);
649 i--;
654 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
656 unsigned int left = 0, right = type->cnt;
658 do {
659 unsigned int mid = (right + left) / 2;
661 if (addr < type->regions[mid].base)
662 right = mid;
663 else if (addr >= (type->regions[mid].base +
664 type->regions[mid].size))
665 left = mid + 1;
666 else
667 return mid;
668 } while (left < right);
669 return -1;
672 int __init memblock_is_reserved(phys_addr_t addr)
674 return memblock_search(&memblock.reserved, addr) != -1;
677 int __init_memblock memblock_is_memory(phys_addr_t addr)
679 return memblock_search(&memblock.memory, addr) != -1;
682 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
684 int idx = memblock_search(&memblock.memory, base);
686 if (idx == -1)
687 return 0;
688 return memblock.memory.regions[idx].base <= base &&
689 (memblock.memory.regions[idx].base +
690 memblock.memory.regions[idx].size) >= (base + size);
693 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
695 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
699 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
701 memblock.current_limit = limit;
704 static void __init_memblock memblock_dump(struct memblock_type *region, char *name)
706 unsigned long long base, size;
707 int i;
709 pr_info(" %s.cnt = 0x%lx\n", name, region->cnt);
711 for (i = 0; i < region->cnt; i++) {
712 base = region->regions[i].base;
713 size = region->regions[i].size;
715 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes\n",
716 name, i, base, base + size - 1, size);
720 void __init_memblock memblock_dump_all(void)
722 if (!memblock_debug)
723 return;
725 pr_info("MEMBLOCK configuration:\n");
726 pr_info(" memory size = 0x%llx\n", (unsigned long long)memblock.memory_size);
728 memblock_dump(&memblock.memory, "memory");
729 memblock_dump(&memblock.reserved, "reserved");
732 void __init memblock_analyze(void)
734 int i;
736 /* Check marker in the unused last array entry */
737 WARN_ON(memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS].base
738 != (phys_addr_t)RED_INACTIVE);
739 WARN_ON(memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS].base
740 != (phys_addr_t)RED_INACTIVE);
742 memblock.memory_size = 0;
744 for (i = 0; i < memblock.memory.cnt; i++)
745 memblock.memory_size += memblock.memory.regions[i].size;
747 /* We allow resizing from there */
748 memblock_can_resize = 1;
751 void __init memblock_init(void)
753 static int init_done __initdata = 0;
755 if (init_done)
756 return;
757 init_done = 1;
759 /* Hookup the initial arrays */
760 memblock.memory.regions = memblock_memory_init_regions;
761 memblock.memory.max = INIT_MEMBLOCK_REGIONS;
762 memblock.reserved.regions = memblock_reserved_init_regions;
763 memblock.reserved.max = INIT_MEMBLOCK_REGIONS;
765 /* Write a marker in the unused last array entry */
766 memblock.memory.regions[INIT_MEMBLOCK_REGIONS].base = (phys_addr_t)RED_INACTIVE;
767 memblock.reserved.regions[INIT_MEMBLOCK_REGIONS].base = (phys_addr_t)RED_INACTIVE;
769 /* Create a dummy zero size MEMBLOCK which will get coalesced away later.
770 * This simplifies the memblock_add() code below...
772 memblock.memory.regions[0].base = 0;
773 memblock.memory.regions[0].size = 0;
774 memblock.memory.cnt = 1;
776 /* Ditto. */
777 memblock.reserved.regions[0].base = 0;
778 memblock.reserved.regions[0].size = 0;
779 memblock.reserved.cnt = 1;
781 memblock.current_limit = MEMBLOCK_ALLOC_ANYWHERE;
784 static int __init early_memblock(char *p)
786 if (p && strstr(p, "debug"))
787 memblock_debug = 1;
788 return 0;
790 early_param("memblock", early_memblock);
792 #if defined(CONFIG_DEBUG_FS) && !defined(ARCH_DISCARD_MEMBLOCK)
794 static int memblock_debug_show(struct seq_file *m, void *private)
796 struct memblock_type *type = m->private;
797 struct memblock_region *reg;
798 int i;
800 for (i = 0; i < type->cnt; i++) {
801 reg = &type->regions[i];
802 seq_printf(m, "%4d: ", i);
803 if (sizeof(phys_addr_t) == 4)
804 seq_printf(m, "0x%08lx..0x%08lx\n",
805 (unsigned long)reg->base,
806 (unsigned long)(reg->base + reg->size - 1));
807 else
808 seq_printf(m, "0x%016llx..0x%016llx\n",
809 (unsigned long long)reg->base,
810 (unsigned long long)(reg->base + reg->size - 1));
813 return 0;
816 static int memblock_debug_open(struct inode *inode, struct file *file)
818 return single_open(file, memblock_debug_show, inode->i_private);
821 static const struct file_operations memblock_debug_fops = {
822 .open = memblock_debug_open,
823 .read = seq_read,
824 .llseek = seq_lseek,
825 .release = single_release,
828 static int __init memblock_init_debugfs(void)
830 struct dentry *root = debugfs_create_dir("memblock", NULL);
831 if (!root)
832 return -ENXIO;
833 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
834 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
836 return 0;
838 __initcall(memblock_init_debugfs);
840 #endif /* CONFIG_DEBUG_FS */