2 * SLOB Allocator: Simple List Of Blocks
4 * Matt Mackall <mpm@selenic.com> 12/30/03
8 * The core of SLOB is a traditional K&R style heap allocator, with
9 * support for returning aligned objects. The granularity of this
10 * allocator is 8 bytes on x86, though it's perhaps possible to reduce
11 * this to 4 if it's deemed worth the effort. The slob heap is a
12 * singly-linked list of pages from __get_free_page, grown on demand
13 * and allocation from the heap is currently first-fit.
15 * Above this is an implementation of kmalloc/kfree. Blocks returned
16 * from kmalloc are 8-byte aligned and prepended with a 8-byte header.
17 * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
18 * __get_free_pages directly so that it can return page-aligned blocks
19 * and keeps a linked list of such pages and their orders. These
20 * objects are detected in kfree() by their page alignment.
22 * SLAB is emulated on top of SLOB by simply calling constructors and
23 * destructors for every SLAB allocation. Objects are returned with
24 * the 8-byte alignment unless the SLAB_MUST_HWCACHE_ALIGN flag is
25 * set, in which case the low-level allocator will fragment blocks to
26 * create the proper alignment. Again, objects of page-size or greater
27 * are allocated by calling __get_free_pages. As SLAB objects know
28 * their size, no separate size bookkeeping is necessary and there is
29 * essentially no allocation space overhead.
32 #include <linux/config.h>
33 #include <linux/slab.h>
35 #include <linux/cache.h>
36 #include <linux/init.h>
37 #include <linux/module.h>
38 #include <linux/timer.h>
42 struct slob_block
*next
;
44 typedef struct slob_block slob_t
;
46 #define SLOB_UNIT sizeof(slob_t)
47 #define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT)
48 #define SLOB_ALIGN L1_CACHE_BYTES
53 struct bigblock
*next
;
55 typedef struct bigblock bigblock_t
;
57 static slob_t arena
= { .next
= &arena
, .units
= 1 };
58 static slob_t
*slobfree
= &arena
;
59 static bigblock_t
*bigblocks
;
60 static DEFINE_SPINLOCK(slob_lock
);
61 static DEFINE_SPINLOCK(block_lock
);
63 static void slob_free(void *b
, int size
);
65 static void *slob_alloc(size_t size
, gfp_t gfp
, int align
)
67 slob_t
*prev
, *cur
, *aligned
= 0;
68 int delta
= 0, units
= SLOB_UNITS(size
);
71 spin_lock_irqsave(&slob_lock
, flags
);
73 for (cur
= prev
->next
; ; prev
= cur
, cur
= cur
->next
) {
75 aligned
= (slob_t
*)ALIGN((unsigned long)cur
, align
);
76 delta
= aligned
- cur
;
78 if (cur
->units
>= units
+ delta
) { /* room enough? */
79 if (delta
) { /* need to fragment head to align? */
80 aligned
->units
= cur
->units
- delta
;
81 aligned
->next
= cur
->next
;
88 if (cur
->units
== units
) /* exact fit? */
89 prev
->next
= cur
->next
; /* unlink */
91 prev
->next
= cur
+ units
;
92 prev
->next
->units
= cur
->units
- units
;
93 prev
->next
->next
= cur
->next
;
98 spin_unlock_irqrestore(&slob_lock
, flags
);
101 if (cur
== slobfree
) {
102 spin_unlock_irqrestore(&slob_lock
, flags
);
104 if (size
== PAGE_SIZE
) /* trying to shrink arena? */
107 cur
= (slob_t
*)__get_free_page(gfp
);
111 slob_free(cur
, PAGE_SIZE
);
112 spin_lock_irqsave(&slob_lock
, flags
);
118 static void slob_free(void *block
, int size
)
120 slob_t
*cur
, *b
= (slob_t
*)block
;
127 b
->units
= SLOB_UNITS(size
);
129 /* Find reinsertion point */
130 spin_lock_irqsave(&slob_lock
, flags
);
131 for (cur
= slobfree
; !(b
> cur
&& b
< cur
->next
); cur
= cur
->next
)
132 if (cur
>= cur
->next
&& (b
> cur
|| b
< cur
->next
))
135 if (b
+ b
->units
== cur
->next
) {
136 b
->units
+= cur
->next
->units
;
137 b
->next
= cur
->next
->next
;
141 if (cur
+ cur
->units
== b
) {
142 cur
->units
+= b
->units
;
149 spin_unlock_irqrestore(&slob_lock
, flags
);
152 static int FASTCALL(find_order(int size
));
153 static int fastcall
find_order(int size
)
156 for ( ; size
> 4096 ; size
>>=1)
161 void *kmalloc(size_t size
, gfp_t gfp
)
167 if (size
< PAGE_SIZE
- SLOB_UNIT
) {
168 m
= slob_alloc(size
+ SLOB_UNIT
, gfp
, 0);
169 return m
? (void *)(m
+ 1) : 0;
172 bb
= slob_alloc(sizeof(bigblock_t
), gfp
, 0);
176 bb
->order
= find_order(size
);
177 bb
->pages
= (void *)__get_free_pages(gfp
, bb
->order
);
180 spin_lock_irqsave(&block_lock
, flags
);
181 bb
->next
= bigblocks
;
183 spin_unlock_irqrestore(&block_lock
, flags
);
187 slob_free(bb
, sizeof(bigblock_t
));
191 EXPORT_SYMBOL(kmalloc
);
193 void kfree(const void *block
)
195 bigblock_t
*bb
, **last
= &bigblocks
;
201 if (!((unsigned long)block
& (PAGE_SIZE
-1))) {
202 /* might be on the big block list */
203 spin_lock_irqsave(&block_lock
, flags
);
204 for (bb
= bigblocks
; bb
; last
= &bb
->next
, bb
= bb
->next
) {
205 if (bb
->pages
== block
) {
207 spin_unlock_irqrestore(&block_lock
, flags
);
208 free_pages((unsigned long)block
, bb
->order
);
209 slob_free(bb
, sizeof(bigblock_t
));
213 spin_unlock_irqrestore(&block_lock
, flags
);
216 slob_free((slob_t
*)block
- 1, 0);
220 EXPORT_SYMBOL(kfree
);
222 unsigned int ksize(const void *block
)
230 if (!((unsigned long)block
& (PAGE_SIZE
-1))) {
231 spin_lock_irqsave(&block_lock
, flags
);
232 for (bb
= bigblocks
; bb
; bb
= bb
->next
)
233 if (bb
->pages
== block
) {
234 spin_unlock_irqrestore(&slob_lock
, flags
);
235 return PAGE_SIZE
<< bb
->order
;
237 spin_unlock_irqrestore(&block_lock
, flags
);
240 return ((slob_t
*)block
- 1)->units
* SLOB_UNIT
;
244 unsigned int size
, align
;
246 void (*ctor
)(void *, struct kmem_cache
*, unsigned long);
247 void (*dtor
)(void *, struct kmem_cache
*, unsigned long);
250 struct kmem_cache
*kmem_cache_create(const char *name
, size_t size
,
251 size_t align
, unsigned long flags
,
252 void (*ctor
)(void*, struct kmem_cache
*, unsigned long),
253 void (*dtor
)(void*, struct kmem_cache
*, unsigned long))
255 struct kmem_cache
*c
;
257 c
= slob_alloc(sizeof(struct kmem_cache
), flags
, 0);
264 /* ignore alignment unless it's forced */
265 c
->align
= (flags
& SLAB_MUST_HWCACHE_ALIGN
) ? SLOB_ALIGN
: 0;
266 if (c
->align
< align
)
272 EXPORT_SYMBOL(kmem_cache_create
);
274 int kmem_cache_destroy(struct kmem_cache
*c
)
276 slob_free(c
, sizeof(struct kmem_cache
));
279 EXPORT_SYMBOL(kmem_cache_destroy
);
281 void *kmem_cache_alloc(struct kmem_cache
*c
, gfp_t flags
)
285 if (c
->size
< PAGE_SIZE
)
286 b
= slob_alloc(c
->size
, flags
, c
->align
);
288 b
= (void *)__get_free_pages(flags
, find_order(c
->size
));
291 c
->ctor(b
, c
, SLAB_CTOR_CONSTRUCTOR
);
295 EXPORT_SYMBOL(kmem_cache_alloc
);
297 void *kmem_cache_zalloc(struct kmem_cache
*c
, gfp_t flags
)
299 void *ret
= kmem_cache_alloc(c
, flags
);
301 memset(ret
, 0, c
->size
);
305 EXPORT_SYMBOL(kmem_cache_zalloc
);
307 void kmem_cache_free(struct kmem_cache
*c
, void *b
)
312 if (c
->size
< PAGE_SIZE
)
313 slob_free(b
, c
->size
);
315 free_pages((unsigned long)b
, find_order(c
->size
));
317 EXPORT_SYMBOL(kmem_cache_free
);
319 unsigned int kmem_cache_size(struct kmem_cache
*c
)
323 EXPORT_SYMBOL(kmem_cache_size
);
325 const char *kmem_cache_name(struct kmem_cache
*c
)
329 EXPORT_SYMBOL(kmem_cache_name
);
331 static struct timer_list slob_timer
= TIMER_INITIALIZER(
332 (void (*)(unsigned long))kmem_cache_init
, 0, 0);
334 void kmem_cache_init(void)
336 void *p
= slob_alloc(PAGE_SIZE
, 0, PAGE_SIZE
-1);
339 free_page((unsigned long)p
);
341 mod_timer(&slob_timer
, jiffies
+ HZ
);
344 atomic_t slab_reclaim_pages
= ATOMIC_INIT(0);
345 EXPORT_SYMBOL(slab_reclaim_pages
);
349 void *__alloc_percpu(size_t size
)
352 struct percpu_data
*pdata
= kmalloc(sizeof (*pdata
), GFP_KERNEL
);
357 for (i
= 0; i
< NR_CPUS
; i
++) {
358 if (!cpu_possible(i
))
360 pdata
->ptrs
[i
] = kmalloc(size
, GFP_KERNEL
);
363 memset(pdata
->ptrs
[i
], 0, size
);
366 /* Catch derefs w/o wrappers */
367 return (void *) (~(unsigned long) pdata
);
371 if (!cpu_possible(i
))
373 kfree(pdata
->ptrs
[i
]);
378 EXPORT_SYMBOL(__alloc_percpu
);
381 free_percpu(const void *objp
)
384 struct percpu_data
*p
= (struct percpu_data
*) (~(unsigned long) objp
);
386 for (i
= 0; i
< NR_CPUS
; i
++) {
387 if (!cpu_possible(i
))
393 EXPORT_SYMBOL(free_percpu
);