ARM: s3c2410_defconfig: Update s3c2410_defconfig to v2.6.34-git
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ubifs / gc.c
blob918d1582ca05ce4a43f884b75fbf5e2522156275
1 /*
2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
24 * This file implements garbage collection. The procedure for garbage collection
25 * is different depending on whether a LEB as an index LEB (contains index
26 * nodes) or not. For non-index LEBs, garbage collection finds a LEB which
27 * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete
28 * nodes to the journal, at which point the garbage-collected LEB is free to be
29 * reused. For index LEBs, garbage collection marks the non-obsolete index nodes
30 * dirty in the TNC, and after the next commit, the garbage-collected LEB is
31 * to be reused. Garbage collection will cause the number of dirty index nodes
32 * to grow, however sufficient space is reserved for the index to ensure the
33 * commit will never run out of space.
35 * Notes about dead watermark. At current UBIFS implementation we assume that
36 * LEBs which have less than @c->dead_wm bytes of free + dirty space are full
37 * and not worth garbage-collecting. The dead watermark is one min. I/O unit
38 * size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS
39 * Garbage Collector has to synchronize the GC head's write buffer before
40 * returning, so this is about wasting one min. I/O unit. However, UBIFS GC can
41 * actually reclaim even very small pieces of dirty space by garbage collecting
42 * enough dirty LEBs, but we do not bother doing this at this implementation.
44 * Notes about dark watermark. The results of GC work depends on how big are
45 * the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed,
46 * if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would
47 * have to waste large pieces of free space at the end of LEB B, because nodes
48 * from LEB A would not fit. And the worst situation is when all nodes are of
49 * maximum size. So dark watermark is the amount of free + dirty space in LEB
50 * which are guaranteed to be reclaimable. If LEB has less space, the GC might
51 * be unable to reclaim it. So, LEBs with free + dirty greater than dark
52 * watermark are "good" LEBs from GC's point of few. The other LEBs are not so
53 * good, and GC takes extra care when moving them.
56 #include <linux/slab.h>
57 #include <linux/pagemap.h>
58 #include <linux/list_sort.h>
59 #include "ubifs.h"
62 * GC may need to move more than one LEB to make progress. The below constants
63 * define "soft" and "hard" limits on the number of LEBs the garbage collector
64 * may move.
66 #define SOFT_LEBS_LIMIT 4
67 #define HARD_LEBS_LIMIT 32
69 /**
70 * switch_gc_head - switch the garbage collection journal head.
71 * @c: UBIFS file-system description object
72 * @buf: buffer to write
73 * @len: length of the buffer to write
74 * @lnum: LEB number written is returned here
75 * @offs: offset written is returned here
77 * This function switch the GC head to the next LEB which is reserved in
78 * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required,
79 * and other negative error code in case of failures.
81 static int switch_gc_head(struct ubifs_info *c)
83 int err, gc_lnum = c->gc_lnum;
84 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
86 ubifs_assert(gc_lnum != -1);
87 dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)",
88 wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum,
89 c->leb_size - wbuf->offs - wbuf->used);
91 err = ubifs_wbuf_sync_nolock(wbuf);
92 if (err)
93 return err;
96 * The GC write-buffer was synchronized, we may safely unmap
97 * 'c->gc_lnum'.
99 err = ubifs_leb_unmap(c, gc_lnum);
100 if (err)
101 return err;
103 err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0);
104 if (err)
105 return err;
107 c->gc_lnum = -1;
108 err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0, UBI_LONGTERM);
109 return err;
113 * data_nodes_cmp - compare 2 data nodes.
114 * @priv: UBIFS file-system description object
115 * @a: first data node
116 * @a: second data node
118 * This function compares data nodes @a and @b. Returns %1 if @a has greater
119 * inode or block number, and %-1 otherwise.
121 int data_nodes_cmp(void *priv, struct list_head *a, struct list_head *b)
123 ino_t inuma, inumb;
124 struct ubifs_info *c = priv;
125 struct ubifs_scan_node *sa, *sb;
127 cond_resched();
128 sa = list_entry(a, struct ubifs_scan_node, list);
129 sb = list_entry(b, struct ubifs_scan_node, list);
130 ubifs_assert(key_type(c, &sa->key) == UBIFS_DATA_KEY);
131 ubifs_assert(key_type(c, &sb->key) == UBIFS_DATA_KEY);
133 inuma = key_inum(c, &sa->key);
134 inumb = key_inum(c, &sb->key);
136 if (inuma == inumb) {
137 unsigned int blka = key_block(c, &sa->key);
138 unsigned int blkb = key_block(c, &sb->key);
140 if (blka <= blkb)
141 return -1;
142 } else if (inuma <= inumb)
143 return -1;
145 return 1;
149 * nondata_nodes_cmp - compare 2 non-data nodes.
150 * @priv: UBIFS file-system description object
151 * @a: first node
152 * @a: second node
154 * This function compares nodes @a and @b. It makes sure that inode nodes go
155 * first and sorted by length in descending order. Directory entry nodes go
156 * after inode nodes and are sorted in ascending hash valuer order.
158 int nondata_nodes_cmp(void *priv, struct list_head *a, struct list_head *b)
160 int typea, typeb;
161 ino_t inuma, inumb;
162 struct ubifs_info *c = priv;
163 struct ubifs_scan_node *sa, *sb;
165 cond_resched();
166 sa = list_entry(a, struct ubifs_scan_node, list);
167 sb = list_entry(b, struct ubifs_scan_node, list);
168 typea = key_type(c, &sa->key);
169 typeb = key_type(c, &sb->key);
170 ubifs_assert(typea != UBIFS_DATA_KEY && typeb != UBIFS_DATA_KEY);
172 /* Inodes go before directory entries */
173 if (typea == UBIFS_INO_KEY) {
174 if (typeb == UBIFS_INO_KEY)
175 return sb->len - sa->len;
176 return -1;
178 if (typeb == UBIFS_INO_KEY)
179 return 1;
181 ubifs_assert(typea == UBIFS_DENT_KEY && typeb == UBIFS_DENT_KEY);
182 inuma = key_inum(c, &sa->key);
183 inumb = key_inum(c, &sb->key);
185 if (inuma == inumb) {
186 uint32_t hasha = key_hash(c, &sa->key);
187 uint32_t hashb = key_hash(c, &sb->key);
189 if (hasha <= hashb)
190 return -1;
191 } else if (inuma <= inumb)
192 return -1;
194 return 1;
198 * sort_nodes - sort nodes for GC.
199 * @c: UBIFS file-system description object
200 * @sleb: describes nodes to sort and contains the result on exit
201 * @nondata: contains non-data nodes on exit
202 * @min: minimum node size is returned here
204 * This function sorts the list of inodes to garbage collect. First of all, it
205 * kills obsolete nodes and separates data and non-data nodes to the
206 * @sleb->nodes and @nondata lists correspondingly.
208 * Data nodes are then sorted in block number order - this is important for
209 * bulk-read; data nodes with lower inode number go before data nodes with
210 * higher inode number, and data nodes with lower block number go before data
211 * nodes with higher block number;
213 * Non-data nodes are sorted as follows.
214 * o First go inode nodes - they are sorted in descending length order.
215 * o Then go directory entry nodes - they are sorted in hash order, which
216 * should supposedly optimize 'readdir()'. Direntry nodes with lower parent
217 * inode number go before direntry nodes with higher parent inode number,
218 * and direntry nodes with lower name hash values go before direntry nodes
219 * with higher name hash values.
221 * This function returns zero in case of success and a negative error code in
222 * case of failure.
224 static int sort_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
225 struct list_head *nondata, int *min)
227 struct ubifs_scan_node *snod, *tmp;
229 *min = INT_MAX;
231 /* Separate data nodes and non-data nodes */
232 list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
233 int err;
235 ubifs_assert(snod->type != UBIFS_IDX_NODE);
236 ubifs_assert(snod->type != UBIFS_REF_NODE);
237 ubifs_assert(snod->type != UBIFS_CS_NODE);
239 err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum,
240 snod->offs, 0);
241 if (err < 0)
242 return err;
244 if (!err) {
245 /* The node is obsolete, remove it from the list */
246 list_del(&snod->list);
247 kfree(snod);
248 continue;
251 if (snod->len < *min)
252 *min = snod->len;
254 if (key_type(c, &snod->key) != UBIFS_DATA_KEY)
255 list_move_tail(&snod->list, nondata);
258 /* Sort data and non-data nodes */
259 list_sort(c, &sleb->nodes, &data_nodes_cmp);
260 list_sort(c, nondata, &nondata_nodes_cmp);
261 return 0;
265 * move_node - move a node.
266 * @c: UBIFS file-system description object
267 * @sleb: describes the LEB to move nodes from
268 * @snod: the mode to move
269 * @wbuf: write-buffer to move node to
271 * This function moves node @snod to @wbuf, changes TNC correspondingly, and
272 * destroys @snod. Returns zero in case of success and a negative error code in
273 * case of failure.
275 static int move_node(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
276 struct ubifs_scan_node *snod, struct ubifs_wbuf *wbuf)
278 int err, new_lnum = wbuf->lnum, new_offs = wbuf->offs + wbuf->used;
280 cond_resched();
281 err = ubifs_wbuf_write_nolock(wbuf, snod->node, snod->len);
282 if (err)
283 return err;
285 err = ubifs_tnc_replace(c, &snod->key, sleb->lnum,
286 snod->offs, new_lnum, new_offs,
287 snod->len);
288 list_del(&snod->list);
289 kfree(snod);
290 return err;
294 * move_nodes - move nodes.
295 * @c: UBIFS file-system description object
296 * @sleb: describes the LEB to move nodes from
298 * This function moves valid nodes from data LEB described by @sleb to the GC
299 * journal head. This function returns zero in case of success, %-EAGAIN if
300 * commit is required, and other negative error codes in case of other
301 * failures.
303 static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb)
305 int err, min;
306 LIST_HEAD(nondata);
307 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
309 if (wbuf->lnum == -1) {
311 * The GC journal head is not set, because it is the first GC
312 * invocation since mount.
314 err = switch_gc_head(c);
315 if (err)
316 return err;
319 err = sort_nodes(c, sleb, &nondata, &min);
320 if (err)
321 goto out;
323 /* Write nodes to their new location. Use the first-fit strategy */
324 while (1) {
325 int avail;
326 struct ubifs_scan_node *snod, *tmp;
328 /* Move data nodes */
329 list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
330 avail = c->leb_size - wbuf->offs - wbuf->used;
331 if (snod->len > avail)
333 * Do not skip data nodes in order to optimize
334 * bulk-read.
336 break;
338 err = move_node(c, sleb, snod, wbuf);
339 if (err)
340 goto out;
343 /* Move non-data nodes */
344 list_for_each_entry_safe(snod, tmp, &nondata, list) {
345 avail = c->leb_size - wbuf->offs - wbuf->used;
346 if (avail < min)
347 break;
349 if (snod->len > avail) {
351 * Keep going only if this is an inode with
352 * some data. Otherwise stop and switch the GC
353 * head. IOW, we assume that data-less inode
354 * nodes and direntry nodes are roughly of the
355 * same size.
357 if (key_type(c, &snod->key) == UBIFS_DENT_KEY ||
358 snod->len == UBIFS_INO_NODE_SZ)
359 break;
360 continue;
363 err = move_node(c, sleb, snod, wbuf);
364 if (err)
365 goto out;
368 if (list_empty(&sleb->nodes) && list_empty(&nondata))
369 break;
372 * Waste the rest of the space in the LEB and switch to the
373 * next LEB.
375 err = switch_gc_head(c);
376 if (err)
377 goto out;
380 return 0;
382 out:
383 list_splice_tail(&nondata, &sleb->nodes);
384 return err;
388 * gc_sync_wbufs - sync write-buffers for GC.
389 * @c: UBIFS file-system description object
391 * We must guarantee that obsoleting nodes are on flash. Unfortunately they may
392 * be in a write-buffer instead. That is, a node could be written to a
393 * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is
394 * erased before the write-buffer is sync'd and then there is an unclean
395 * unmount, then an existing node is lost. To avoid this, we sync all
396 * write-buffers.
398 * This function returns %0 on success or a negative error code on failure.
400 static int gc_sync_wbufs(struct ubifs_info *c)
402 int err, i;
404 for (i = 0; i < c->jhead_cnt; i++) {
405 if (i == GCHD)
406 continue;
407 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
408 if (err)
409 return err;
411 return 0;
415 * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock.
416 * @c: UBIFS file-system description object
417 * @lp: describes the LEB to garbage collect
419 * This function garbage-collects an LEB and returns one of the @LEB_FREED,
420 * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is
421 * required, and other negative error codes in case of failures.
423 int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp)
425 struct ubifs_scan_leb *sleb;
426 struct ubifs_scan_node *snod;
427 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
428 int err = 0, lnum = lp->lnum;
430 ubifs_assert(c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 ||
431 c->need_recovery);
432 ubifs_assert(c->gc_lnum != lnum);
433 ubifs_assert(wbuf->lnum != lnum);
436 * We scan the entire LEB even though we only really need to scan up to
437 * (c->leb_size - lp->free).
439 sleb = ubifs_scan(c, lnum, 0, c->sbuf, 0);
440 if (IS_ERR(sleb))
441 return PTR_ERR(sleb);
443 ubifs_assert(!list_empty(&sleb->nodes));
444 snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
446 if (snod->type == UBIFS_IDX_NODE) {
447 struct ubifs_gced_idx_leb *idx_gc;
449 dbg_gc("indexing LEB %d (free %d, dirty %d)",
450 lnum, lp->free, lp->dirty);
451 list_for_each_entry(snod, &sleb->nodes, list) {
452 struct ubifs_idx_node *idx = snod->node;
453 int level = le16_to_cpu(idx->level);
455 ubifs_assert(snod->type == UBIFS_IDX_NODE);
456 key_read(c, ubifs_idx_key(c, idx), &snod->key);
457 err = ubifs_dirty_idx_node(c, &snod->key, level, lnum,
458 snod->offs);
459 if (err)
460 goto out;
463 idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
464 if (!idx_gc) {
465 err = -ENOMEM;
466 goto out;
469 idx_gc->lnum = lnum;
470 idx_gc->unmap = 0;
471 list_add(&idx_gc->list, &c->idx_gc);
474 * Don't release the LEB until after the next commit, because
475 * it may contain data which is needed for recovery. So
476 * although we freed this LEB, it will become usable only after
477 * the commit.
479 err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0,
480 LPROPS_INDEX, 1);
481 if (err)
482 goto out;
483 err = LEB_FREED_IDX;
484 } else {
485 dbg_gc("data LEB %d (free %d, dirty %d)",
486 lnum, lp->free, lp->dirty);
488 err = move_nodes(c, sleb);
489 if (err)
490 goto out_inc_seq;
492 err = gc_sync_wbufs(c);
493 if (err)
494 goto out_inc_seq;
496 err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0);
497 if (err)
498 goto out_inc_seq;
500 /* Allow for races with TNC */
501 c->gced_lnum = lnum;
502 smp_wmb();
503 c->gc_seq += 1;
504 smp_wmb();
506 if (c->gc_lnum == -1) {
507 c->gc_lnum = lnum;
508 err = LEB_RETAINED;
509 } else {
510 err = ubifs_wbuf_sync_nolock(wbuf);
511 if (err)
512 goto out;
514 err = ubifs_leb_unmap(c, lnum);
515 if (err)
516 goto out;
518 err = LEB_FREED;
522 out:
523 ubifs_scan_destroy(sleb);
524 return err;
526 out_inc_seq:
527 /* We may have moved at least some nodes so allow for races with TNC */
528 c->gced_lnum = lnum;
529 smp_wmb();
530 c->gc_seq += 1;
531 smp_wmb();
532 goto out;
536 * ubifs_garbage_collect - UBIFS garbage collector.
537 * @c: UBIFS file-system description object
538 * @anyway: do GC even if there are free LEBs
540 * This function does out-of-place garbage collection. The return codes are:
541 * o positive LEB number if the LEB has been freed and may be used;
542 * o %-EAGAIN if the caller has to run commit;
543 * o %-ENOSPC if GC failed to make any progress;
544 * o other negative error codes in case of other errors.
546 * Garbage collector writes data to the journal when GC'ing data LEBs, and just
547 * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point
548 * commit may be required. But commit cannot be run from inside GC, because the
549 * caller might be holding the commit lock, so %-EAGAIN is returned instead;
550 * And this error code means that the caller has to run commit, and re-run GC
551 * if there is still no free space.
553 * There are many reasons why this function may return %-EAGAIN:
554 * o the log is full and there is no space to write an LEB reference for
555 * @c->gc_lnum;
556 * o the journal is too large and exceeds size limitations;
557 * o GC moved indexing LEBs, but they can be used only after the commit;
558 * o the shrinker fails to find clean znodes to free and requests the commit;
559 * o etc.
561 * Note, if the file-system is close to be full, this function may return
562 * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of
563 * the function. E.g., this happens if the limits on the journal size are too
564 * tough and GC writes too much to the journal before an LEB is freed. This
565 * might also mean that the journal is too large, and the TNC becomes to big,
566 * so that the shrinker is constantly called, finds not clean znodes to free,
567 * and requests commit. Well, this may also happen if the journal is all right,
568 * but another kernel process consumes too much memory. Anyway, infinite
569 * %-EAGAIN may happen, but in some extreme/misconfiguration cases.
571 int ubifs_garbage_collect(struct ubifs_info *c, int anyway)
573 int i, err, ret, min_space = c->dead_wm;
574 struct ubifs_lprops lp;
575 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
577 ubifs_assert_cmt_locked(c);
579 if (ubifs_gc_should_commit(c))
580 return -EAGAIN;
582 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
584 if (c->ro_media) {
585 ret = -EROFS;
586 goto out_unlock;
589 /* We expect the write-buffer to be empty on entry */
590 ubifs_assert(!wbuf->used);
592 for (i = 0; ; i++) {
593 int space_before = c->leb_size - wbuf->offs - wbuf->used;
594 int space_after;
596 cond_resched();
598 /* Give the commit an opportunity to run */
599 if (ubifs_gc_should_commit(c)) {
600 ret = -EAGAIN;
601 break;
604 if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) {
606 * We've done enough iterations. Indexing LEBs were
607 * moved and will be available after the commit.
609 dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN");
610 ubifs_commit_required(c);
611 ret = -EAGAIN;
612 break;
615 if (i > HARD_LEBS_LIMIT) {
617 * We've moved too many LEBs and have not made
618 * progress, give up.
620 dbg_gc("hard limit, -ENOSPC");
621 ret = -ENOSPC;
622 break;
626 * Empty and freeable LEBs can turn up while we waited for
627 * the wbuf lock, or while we have been running GC. In that
628 * case, we should just return one of those instead of
629 * continuing to GC dirty LEBs. Hence we request
630 * 'ubifs_find_dirty_leb()' to return an empty LEB if it can.
632 ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1);
633 if (ret) {
634 if (ret == -ENOSPC)
635 dbg_gc("no more dirty LEBs");
636 break;
639 dbg_gc("found LEB %d: free %d, dirty %d, sum %d "
640 "(min. space %d)", lp.lnum, lp.free, lp.dirty,
641 lp.free + lp.dirty, min_space);
643 if (lp.free + lp.dirty == c->leb_size) {
644 /* An empty LEB was returned */
645 dbg_gc("LEB %d is free, return it", lp.lnum);
647 * ubifs_find_dirty_leb() doesn't return freeable index
648 * LEBs.
650 ubifs_assert(!(lp.flags & LPROPS_INDEX));
651 if (lp.free != c->leb_size) {
653 * Write buffers must be sync'd before
654 * unmapping freeable LEBs, because one of them
655 * may contain data which obsoletes something
656 * in 'lp.pnum'.
658 ret = gc_sync_wbufs(c);
659 if (ret)
660 goto out;
661 ret = ubifs_change_one_lp(c, lp.lnum,
662 c->leb_size, 0, 0, 0,
664 if (ret)
665 goto out;
667 ret = ubifs_leb_unmap(c, lp.lnum);
668 if (ret)
669 goto out;
670 ret = lp.lnum;
671 break;
674 space_before = c->leb_size - wbuf->offs - wbuf->used;
675 if (wbuf->lnum == -1)
676 space_before = 0;
678 ret = ubifs_garbage_collect_leb(c, &lp);
679 if (ret < 0) {
680 if (ret == -EAGAIN || ret == -ENOSPC) {
682 * These codes are not errors, so we have to
683 * return the LEB to lprops. But if the
684 * 'ubifs_return_leb()' function fails, its
685 * failure code is propagated to the caller
686 * instead of the original '-EAGAIN' or
687 * '-ENOSPC'.
689 err = ubifs_return_leb(c, lp.lnum);
690 if (err)
691 ret = err;
692 break;
694 goto out;
697 if (ret == LEB_FREED) {
698 /* An LEB has been freed and is ready for use */
699 dbg_gc("LEB %d freed, return", lp.lnum);
700 ret = lp.lnum;
701 break;
704 if (ret == LEB_FREED_IDX) {
706 * This was an indexing LEB and it cannot be
707 * immediately used. And instead of requesting the
708 * commit straight away, we try to garbage collect some
709 * more.
711 dbg_gc("indexing LEB %d freed, continue", lp.lnum);
712 continue;
715 ubifs_assert(ret == LEB_RETAINED);
716 space_after = c->leb_size - wbuf->offs - wbuf->used;
717 dbg_gc("LEB %d retained, freed %d bytes", lp.lnum,
718 space_after - space_before);
720 if (space_after > space_before) {
721 /* GC makes progress, keep working */
722 min_space >>= 1;
723 if (min_space < c->dead_wm)
724 min_space = c->dead_wm;
725 continue;
728 dbg_gc("did not make progress");
731 * GC moved an LEB bud have not done any progress. This means
732 * that the previous GC head LEB contained too few free space
733 * and the LEB which was GC'ed contained only large nodes which
734 * did not fit that space.
736 * We can do 2 things:
737 * 1. pick another LEB in a hope it'll contain a small node
738 * which will fit the space we have at the end of current GC
739 * head LEB, but there is no guarantee, so we try this out
740 * unless we have already been working for too long;
741 * 2. request an LEB with more dirty space, which will force
742 * 'ubifs_find_dirty_leb()' to start scanning the lprops
743 * table, instead of just picking one from the heap
744 * (previously it already picked the dirtiest LEB).
746 if (i < SOFT_LEBS_LIMIT) {
747 dbg_gc("try again");
748 continue;
751 min_space <<= 1;
752 if (min_space > c->dark_wm)
753 min_space = c->dark_wm;
754 dbg_gc("set min. space to %d", min_space);
757 if (ret == -ENOSPC && !list_empty(&c->idx_gc)) {
758 dbg_gc("no space, some index LEBs GC'ed, -EAGAIN");
759 ubifs_commit_required(c);
760 ret = -EAGAIN;
763 err = ubifs_wbuf_sync_nolock(wbuf);
764 if (!err)
765 err = ubifs_leb_unmap(c, c->gc_lnum);
766 if (err) {
767 ret = err;
768 goto out;
770 out_unlock:
771 mutex_unlock(&wbuf->io_mutex);
772 return ret;
774 out:
775 ubifs_assert(ret < 0);
776 ubifs_assert(ret != -ENOSPC && ret != -EAGAIN);
777 ubifs_ro_mode(c, ret);
778 ubifs_wbuf_sync_nolock(wbuf);
779 mutex_unlock(&wbuf->io_mutex);
780 ubifs_return_leb(c, lp.lnum);
781 return ret;
785 * ubifs_gc_start_commit - garbage collection at start of commit.
786 * @c: UBIFS file-system description object
788 * If a LEB has only dirty and free space, then we may safely unmap it and make
789 * it free. Note, we cannot do this with indexing LEBs because dirty space may
790 * correspond index nodes that are required for recovery. In that case, the
791 * LEB cannot be unmapped until after the next commit.
793 * This function returns %0 upon success and a negative error code upon failure.
795 int ubifs_gc_start_commit(struct ubifs_info *c)
797 struct ubifs_gced_idx_leb *idx_gc;
798 const struct ubifs_lprops *lp;
799 int err = 0, flags;
801 ubifs_get_lprops(c);
804 * Unmap (non-index) freeable LEBs. Note that recovery requires that all
805 * wbufs are sync'd before this, which is done in 'do_commit()'.
807 while (1) {
808 lp = ubifs_fast_find_freeable(c);
809 if (IS_ERR(lp)) {
810 err = PTR_ERR(lp);
811 goto out;
813 if (!lp)
814 break;
815 ubifs_assert(!(lp->flags & LPROPS_TAKEN));
816 ubifs_assert(!(lp->flags & LPROPS_INDEX));
817 err = ubifs_leb_unmap(c, lp->lnum);
818 if (err)
819 goto out;
820 lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0);
821 if (IS_ERR(lp)) {
822 err = PTR_ERR(lp);
823 goto out;
825 ubifs_assert(!(lp->flags & LPROPS_TAKEN));
826 ubifs_assert(!(lp->flags & LPROPS_INDEX));
829 /* Mark GC'd index LEBs OK to unmap after this commit finishes */
830 list_for_each_entry(idx_gc, &c->idx_gc, list)
831 idx_gc->unmap = 1;
833 /* Record index freeable LEBs for unmapping after commit */
834 while (1) {
835 lp = ubifs_fast_find_frdi_idx(c);
836 if (IS_ERR(lp)) {
837 err = PTR_ERR(lp);
838 goto out;
840 if (!lp)
841 break;
842 idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
843 if (!idx_gc) {
844 err = -ENOMEM;
845 goto out;
847 ubifs_assert(!(lp->flags & LPROPS_TAKEN));
848 ubifs_assert(lp->flags & LPROPS_INDEX);
849 /* Don't release the LEB until after the next commit */
850 flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX;
851 lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1);
852 if (IS_ERR(lp)) {
853 err = PTR_ERR(lp);
854 kfree(idx_gc);
855 goto out;
857 ubifs_assert(lp->flags & LPROPS_TAKEN);
858 ubifs_assert(!(lp->flags & LPROPS_INDEX));
859 idx_gc->lnum = lp->lnum;
860 idx_gc->unmap = 1;
861 list_add(&idx_gc->list, &c->idx_gc);
863 out:
864 ubifs_release_lprops(c);
865 return err;
869 * ubifs_gc_end_commit - garbage collection at end of commit.
870 * @c: UBIFS file-system description object
872 * This function completes out-of-place garbage collection of index LEBs.
874 int ubifs_gc_end_commit(struct ubifs_info *c)
876 struct ubifs_gced_idx_leb *idx_gc, *tmp;
877 struct ubifs_wbuf *wbuf;
878 int err = 0;
880 wbuf = &c->jheads[GCHD].wbuf;
881 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
882 list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list)
883 if (idx_gc->unmap) {
884 dbg_gc("LEB %d", idx_gc->lnum);
885 err = ubifs_leb_unmap(c, idx_gc->lnum);
886 if (err)
887 goto out;
888 err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC,
889 LPROPS_NC, 0, LPROPS_TAKEN, -1);
890 if (err)
891 goto out;
892 list_del(&idx_gc->list);
893 kfree(idx_gc);
895 out:
896 mutex_unlock(&wbuf->io_mutex);
897 return err;
901 * ubifs_destroy_idx_gc - destroy idx_gc list.
902 * @c: UBIFS file-system description object
904 * This function destroys the @c->idx_gc list. It is called when unmounting
905 * so locks are not needed. Returns zero in case of success and a negative
906 * error code in case of failure.
908 void ubifs_destroy_idx_gc(struct ubifs_info *c)
910 while (!list_empty(&c->idx_gc)) {
911 struct ubifs_gced_idx_leb *idx_gc;
913 idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb,
914 list);
915 c->idx_gc_cnt -= 1;
916 list_del(&idx_gc->list);
917 kfree(idx_gc);
922 * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list.
923 * @c: UBIFS file-system description object
925 * Called during start commit so locks are not needed.
927 int ubifs_get_idx_gc_leb(struct ubifs_info *c)
929 struct ubifs_gced_idx_leb *idx_gc;
930 int lnum;
932 if (list_empty(&c->idx_gc))
933 return -ENOSPC;
934 idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list);
935 lnum = idx_gc->lnum;
936 /* c->idx_gc_cnt is updated by the caller when lprops are updated */
937 list_del(&idx_gc->list);
938 kfree(idx_gc);
939 return lnum;