stmmac: fix platform driver unregistering
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / trace / ring_buffer.c
blobce8514feedcdf29c181dda4972eb7a53cd0df04e
1 /*
2 * Generic ring buffer
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/spinlock.h>
9 #include <linux/debugfs.h>
10 #include <linux/uaccess.h>
11 #include <linux/hardirq.h>
12 #include <linux/kmemcheck.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/fs.h>
23 #include <asm/local.h>
24 #include "trace.h"
26 static void update_pages_handler(struct work_struct *work);
29 * The ring buffer header is special. We must manually up keep it.
31 int ring_buffer_print_entry_header(struct trace_seq *s)
33 int ret;
35 ret = trace_seq_printf(s, "# compressed entry header\n");
36 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
37 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
38 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
39 ret = trace_seq_printf(s, "\n");
40 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
41 RINGBUF_TYPE_PADDING);
42 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 RINGBUF_TYPE_TIME_EXTEND);
44 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
47 return ret;
51 * The ring buffer is made up of a list of pages. A separate list of pages is
52 * allocated for each CPU. A writer may only write to a buffer that is
53 * associated with the CPU it is currently executing on. A reader may read
54 * from any per cpu buffer.
56 * The reader is special. For each per cpu buffer, the reader has its own
57 * reader page. When a reader has read the entire reader page, this reader
58 * page is swapped with another page in the ring buffer.
60 * Now, as long as the writer is off the reader page, the reader can do what
61 * ever it wants with that page. The writer will never write to that page
62 * again (as long as it is out of the ring buffer).
64 * Here's some silly ASCII art.
66 * +------+
67 * |reader| RING BUFFER
68 * |page |
69 * +------+ +---+ +---+ +---+
70 * | |-->| |-->| |
71 * +---+ +---+ +---+
72 * ^ |
73 * | |
74 * +---------------+
77 * +------+
78 * |reader| RING BUFFER
79 * |page |------------------v
80 * +------+ +---+ +---+ +---+
81 * | |-->| |-->| |
82 * +---+ +---+ +---+
83 * ^ |
84 * | |
85 * +---------------+
88 * +------+
89 * |reader| RING BUFFER
90 * |page |------------------v
91 * +------+ +---+ +---+ +---+
92 * ^ | |-->| |-->| |
93 * | +---+ +---+ +---+
94 * | |
95 * | |
96 * +------------------------------+
99 * +------+
100 * |buffer| RING BUFFER
101 * |page |------------------v
102 * +------+ +---+ +---+ +---+
103 * ^ | | | |-->| |
104 * | New +---+ +---+ +---+
105 * | Reader------^ |
106 * | page |
107 * +------------------------------+
110 * After we make this swap, the reader can hand this page off to the splice
111 * code and be done with it. It can even allocate a new page if it needs to
112 * and swap that into the ring buffer.
114 * We will be using cmpxchg soon to make all this lockless.
119 * A fast way to enable or disable all ring buffers is to
120 * call tracing_on or tracing_off. Turning off the ring buffers
121 * prevents all ring buffers from being recorded to.
122 * Turning this switch on, makes it OK to write to the
123 * ring buffer, if the ring buffer is enabled itself.
125 * There's three layers that must be on in order to write
126 * to the ring buffer.
128 * 1) This global flag must be set.
129 * 2) The ring buffer must be enabled for recording.
130 * 3) The per cpu buffer must be enabled for recording.
132 * In case of an anomaly, this global flag has a bit set that
133 * will permantly disable all ring buffers.
137 * Global flag to disable all recording to ring buffers
138 * This has two bits: ON, DISABLED
140 * ON DISABLED
141 * ---- ----------
142 * 0 0 : ring buffers are off
143 * 1 0 : ring buffers are on
144 * X 1 : ring buffers are permanently disabled
147 enum {
148 RB_BUFFERS_ON_BIT = 0,
149 RB_BUFFERS_DISABLED_BIT = 1,
152 enum {
153 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
154 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
157 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
159 /* Used for individual buffers (after the counter) */
160 #define RB_BUFFER_OFF (1 << 20)
162 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
165 * tracing_off_permanent - permanently disable ring buffers
167 * This function, once called, will disable all ring buffers
168 * permanently.
170 void tracing_off_permanent(void)
172 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
175 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
176 #define RB_ALIGNMENT 4U
177 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
178 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
180 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
181 # define RB_FORCE_8BYTE_ALIGNMENT 0
182 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
183 #else
184 # define RB_FORCE_8BYTE_ALIGNMENT 1
185 # define RB_ARCH_ALIGNMENT 8U
186 #endif
188 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
189 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
191 enum {
192 RB_LEN_TIME_EXTEND = 8,
193 RB_LEN_TIME_STAMP = 16,
196 #define skip_time_extend(event) \
197 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
199 static inline int rb_null_event(struct ring_buffer_event *event)
201 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
204 static void rb_event_set_padding(struct ring_buffer_event *event)
206 /* padding has a NULL time_delta */
207 event->type_len = RINGBUF_TYPE_PADDING;
208 event->time_delta = 0;
211 static unsigned
212 rb_event_data_length(struct ring_buffer_event *event)
214 unsigned length;
216 if (event->type_len)
217 length = event->type_len * RB_ALIGNMENT;
218 else
219 length = event->array[0];
220 return length + RB_EVNT_HDR_SIZE;
224 * Return the length of the given event. Will return
225 * the length of the time extend if the event is a
226 * time extend.
228 static inline unsigned
229 rb_event_length(struct ring_buffer_event *event)
231 switch (event->type_len) {
232 case RINGBUF_TYPE_PADDING:
233 if (rb_null_event(event))
234 /* undefined */
235 return -1;
236 return event->array[0] + RB_EVNT_HDR_SIZE;
238 case RINGBUF_TYPE_TIME_EXTEND:
239 return RB_LEN_TIME_EXTEND;
241 case RINGBUF_TYPE_TIME_STAMP:
242 return RB_LEN_TIME_STAMP;
244 case RINGBUF_TYPE_DATA:
245 return rb_event_data_length(event);
246 default:
247 BUG();
249 /* not hit */
250 return 0;
254 * Return total length of time extend and data,
255 * or just the event length for all other events.
257 static inline unsigned
258 rb_event_ts_length(struct ring_buffer_event *event)
260 unsigned len = 0;
262 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
263 /* time extends include the data event after it */
264 len = RB_LEN_TIME_EXTEND;
265 event = skip_time_extend(event);
267 return len + rb_event_length(event);
271 * ring_buffer_event_length - return the length of the event
272 * @event: the event to get the length of
274 * Returns the size of the data load of a data event.
275 * If the event is something other than a data event, it
276 * returns the size of the event itself. With the exception
277 * of a TIME EXTEND, where it still returns the size of the
278 * data load of the data event after it.
280 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
282 unsigned length;
284 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
285 event = skip_time_extend(event);
287 length = rb_event_length(event);
288 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
289 return length;
290 length -= RB_EVNT_HDR_SIZE;
291 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
292 length -= sizeof(event->array[0]);
293 return length;
295 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
297 /* inline for ring buffer fast paths */
298 static void *
299 rb_event_data(struct ring_buffer_event *event)
301 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
302 event = skip_time_extend(event);
303 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
304 /* If length is in len field, then array[0] has the data */
305 if (event->type_len)
306 return (void *)&event->array[0];
307 /* Otherwise length is in array[0] and array[1] has the data */
308 return (void *)&event->array[1];
312 * ring_buffer_event_data - return the data of the event
313 * @event: the event to get the data from
315 void *ring_buffer_event_data(struct ring_buffer_event *event)
317 return rb_event_data(event);
319 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
321 #define for_each_buffer_cpu(buffer, cpu) \
322 for_each_cpu(cpu, buffer->cpumask)
324 #define TS_SHIFT 27
325 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
326 #define TS_DELTA_TEST (~TS_MASK)
328 /* Flag when events were overwritten */
329 #define RB_MISSED_EVENTS (1 << 31)
330 /* Missed count stored at end */
331 #define RB_MISSED_STORED (1 << 30)
333 struct buffer_data_page {
334 u64 time_stamp; /* page time stamp */
335 local_t commit; /* write committed index */
336 unsigned char data[]; /* data of buffer page */
340 * Note, the buffer_page list must be first. The buffer pages
341 * are allocated in cache lines, which means that each buffer
342 * page will be at the beginning of a cache line, and thus
343 * the least significant bits will be zero. We use this to
344 * add flags in the list struct pointers, to make the ring buffer
345 * lockless.
347 struct buffer_page {
348 struct list_head list; /* list of buffer pages */
349 local_t write; /* index for next write */
350 unsigned read; /* index for next read */
351 local_t entries; /* entries on this page */
352 unsigned long real_end; /* real end of data */
353 struct buffer_data_page *page; /* Actual data page */
357 * The buffer page counters, write and entries, must be reset
358 * atomically when crossing page boundaries. To synchronize this
359 * update, two counters are inserted into the number. One is
360 * the actual counter for the write position or count on the page.
362 * The other is a counter of updaters. Before an update happens
363 * the update partition of the counter is incremented. This will
364 * allow the updater to update the counter atomically.
366 * The counter is 20 bits, and the state data is 12.
368 #define RB_WRITE_MASK 0xfffff
369 #define RB_WRITE_INTCNT (1 << 20)
371 static void rb_init_page(struct buffer_data_page *bpage)
373 local_set(&bpage->commit, 0);
377 * ring_buffer_page_len - the size of data on the page.
378 * @page: The page to read
380 * Returns the amount of data on the page, including buffer page header.
382 size_t ring_buffer_page_len(void *page)
384 return local_read(&((struct buffer_data_page *)page)->commit)
385 + BUF_PAGE_HDR_SIZE;
389 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
390 * this issue out.
392 static void free_buffer_page(struct buffer_page *bpage)
394 free_page((unsigned long)bpage->page);
395 kfree(bpage);
399 * We need to fit the time_stamp delta into 27 bits.
401 static inline int test_time_stamp(u64 delta)
403 if (delta & TS_DELTA_TEST)
404 return 1;
405 return 0;
408 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
410 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
411 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
413 int ring_buffer_print_page_header(struct trace_seq *s)
415 struct buffer_data_page field;
416 int ret;
418 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
419 "offset:0;\tsize:%u;\tsigned:%u;\n",
420 (unsigned int)sizeof(field.time_stamp),
421 (unsigned int)is_signed_type(u64));
423 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
424 "offset:%u;\tsize:%u;\tsigned:%u;\n",
425 (unsigned int)offsetof(typeof(field), commit),
426 (unsigned int)sizeof(field.commit),
427 (unsigned int)is_signed_type(long));
429 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
430 "offset:%u;\tsize:%u;\tsigned:%u;\n",
431 (unsigned int)offsetof(typeof(field), commit),
433 (unsigned int)is_signed_type(long));
435 ret = trace_seq_printf(s, "\tfield: char data;\t"
436 "offset:%u;\tsize:%u;\tsigned:%u;\n",
437 (unsigned int)offsetof(typeof(field), data),
438 (unsigned int)BUF_PAGE_SIZE,
439 (unsigned int)is_signed_type(char));
441 return ret;
445 * head_page == tail_page && head == tail then buffer is empty.
447 struct ring_buffer_per_cpu {
448 int cpu;
449 atomic_t record_disabled;
450 struct ring_buffer *buffer;
451 raw_spinlock_t reader_lock; /* serialize readers */
452 arch_spinlock_t lock;
453 struct lock_class_key lock_key;
454 unsigned int nr_pages;
455 struct list_head *pages;
456 struct buffer_page *head_page; /* read from head */
457 struct buffer_page *tail_page; /* write to tail */
458 struct buffer_page *commit_page; /* committed pages */
459 struct buffer_page *reader_page;
460 unsigned long lost_events;
461 unsigned long last_overrun;
462 local_t entries_bytes;
463 local_t entries;
464 local_t overrun;
465 local_t commit_overrun;
466 local_t dropped_events;
467 local_t committing;
468 local_t commits;
469 unsigned long read;
470 unsigned long read_bytes;
471 u64 write_stamp;
472 u64 read_stamp;
473 /* ring buffer pages to update, > 0 to add, < 0 to remove */
474 int nr_pages_to_update;
475 struct list_head new_pages; /* new pages to add */
476 struct work_struct update_pages_work;
477 struct completion update_done;
480 struct ring_buffer {
481 unsigned flags;
482 int cpus;
483 atomic_t record_disabled;
484 atomic_t resize_disabled;
485 cpumask_var_t cpumask;
487 struct lock_class_key *reader_lock_key;
489 struct mutex mutex;
491 struct ring_buffer_per_cpu **buffers;
493 #ifdef CONFIG_HOTPLUG_CPU
494 struct notifier_block cpu_notify;
495 #endif
496 u64 (*clock)(void);
499 struct ring_buffer_iter {
500 struct ring_buffer_per_cpu *cpu_buffer;
501 unsigned long head;
502 struct buffer_page *head_page;
503 struct buffer_page *cache_reader_page;
504 unsigned long cache_read;
505 u64 read_stamp;
508 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
509 #define RB_WARN_ON(b, cond) \
510 ({ \
511 int _____ret = unlikely(cond); \
512 if (_____ret) { \
513 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
514 struct ring_buffer_per_cpu *__b = \
515 (void *)b; \
516 atomic_inc(&__b->buffer->record_disabled); \
517 } else \
518 atomic_inc(&b->record_disabled); \
519 WARN_ON(1); \
521 _____ret; \
524 /* Up this if you want to test the TIME_EXTENTS and normalization */
525 #define DEBUG_SHIFT 0
527 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
529 /* shift to debug/test normalization and TIME_EXTENTS */
530 return buffer->clock() << DEBUG_SHIFT;
533 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
535 u64 time;
537 preempt_disable_notrace();
538 time = rb_time_stamp(buffer);
539 preempt_enable_no_resched_notrace();
541 return time;
543 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
545 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
546 int cpu, u64 *ts)
548 /* Just stupid testing the normalize function and deltas */
549 *ts >>= DEBUG_SHIFT;
551 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
554 * Making the ring buffer lockless makes things tricky.
555 * Although writes only happen on the CPU that they are on,
556 * and they only need to worry about interrupts. Reads can
557 * happen on any CPU.
559 * The reader page is always off the ring buffer, but when the
560 * reader finishes with a page, it needs to swap its page with
561 * a new one from the buffer. The reader needs to take from
562 * the head (writes go to the tail). But if a writer is in overwrite
563 * mode and wraps, it must push the head page forward.
565 * Here lies the problem.
567 * The reader must be careful to replace only the head page, and
568 * not another one. As described at the top of the file in the
569 * ASCII art, the reader sets its old page to point to the next
570 * page after head. It then sets the page after head to point to
571 * the old reader page. But if the writer moves the head page
572 * during this operation, the reader could end up with the tail.
574 * We use cmpxchg to help prevent this race. We also do something
575 * special with the page before head. We set the LSB to 1.
577 * When the writer must push the page forward, it will clear the
578 * bit that points to the head page, move the head, and then set
579 * the bit that points to the new head page.
581 * We also don't want an interrupt coming in and moving the head
582 * page on another writer. Thus we use the second LSB to catch
583 * that too. Thus:
585 * head->list->prev->next bit 1 bit 0
586 * ------- -------
587 * Normal page 0 0
588 * Points to head page 0 1
589 * New head page 1 0
591 * Note we can not trust the prev pointer of the head page, because:
593 * +----+ +-----+ +-----+
594 * | |------>| T |---X--->| N |
595 * | |<------| | | |
596 * +----+ +-----+ +-----+
597 * ^ ^ |
598 * | +-----+ | |
599 * +----------| R |----------+ |
600 * | |<-----------+
601 * +-----+
603 * Key: ---X--> HEAD flag set in pointer
604 * T Tail page
605 * R Reader page
606 * N Next page
608 * (see __rb_reserve_next() to see where this happens)
610 * What the above shows is that the reader just swapped out
611 * the reader page with a page in the buffer, but before it
612 * could make the new header point back to the new page added
613 * it was preempted by a writer. The writer moved forward onto
614 * the new page added by the reader and is about to move forward
615 * again.
617 * You can see, it is legitimate for the previous pointer of
618 * the head (or any page) not to point back to itself. But only
619 * temporarially.
622 #define RB_PAGE_NORMAL 0UL
623 #define RB_PAGE_HEAD 1UL
624 #define RB_PAGE_UPDATE 2UL
627 #define RB_FLAG_MASK 3UL
629 /* PAGE_MOVED is not part of the mask */
630 #define RB_PAGE_MOVED 4UL
633 * rb_list_head - remove any bit
635 static struct list_head *rb_list_head(struct list_head *list)
637 unsigned long val = (unsigned long)list;
639 return (struct list_head *)(val & ~RB_FLAG_MASK);
643 * rb_is_head_page - test if the given page is the head page
645 * Because the reader may move the head_page pointer, we can
646 * not trust what the head page is (it may be pointing to
647 * the reader page). But if the next page is a header page,
648 * its flags will be non zero.
650 static inline int
651 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
652 struct buffer_page *page, struct list_head *list)
654 unsigned long val;
656 val = (unsigned long)list->next;
658 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
659 return RB_PAGE_MOVED;
661 return val & RB_FLAG_MASK;
665 * rb_is_reader_page
667 * The unique thing about the reader page, is that, if the
668 * writer is ever on it, the previous pointer never points
669 * back to the reader page.
671 static int rb_is_reader_page(struct buffer_page *page)
673 struct list_head *list = page->list.prev;
675 return rb_list_head(list->next) != &page->list;
679 * rb_set_list_to_head - set a list_head to be pointing to head.
681 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
682 struct list_head *list)
684 unsigned long *ptr;
686 ptr = (unsigned long *)&list->next;
687 *ptr |= RB_PAGE_HEAD;
688 *ptr &= ~RB_PAGE_UPDATE;
692 * rb_head_page_activate - sets up head page
694 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
696 struct buffer_page *head;
698 head = cpu_buffer->head_page;
699 if (!head)
700 return;
703 * Set the previous list pointer to have the HEAD flag.
705 rb_set_list_to_head(cpu_buffer, head->list.prev);
708 static void rb_list_head_clear(struct list_head *list)
710 unsigned long *ptr = (unsigned long *)&list->next;
712 *ptr &= ~RB_FLAG_MASK;
716 * rb_head_page_dactivate - clears head page ptr (for free list)
718 static void
719 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
721 struct list_head *hd;
723 /* Go through the whole list and clear any pointers found. */
724 rb_list_head_clear(cpu_buffer->pages);
726 list_for_each(hd, cpu_buffer->pages)
727 rb_list_head_clear(hd);
730 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
731 struct buffer_page *head,
732 struct buffer_page *prev,
733 int old_flag, int new_flag)
735 struct list_head *list;
736 unsigned long val = (unsigned long)&head->list;
737 unsigned long ret;
739 list = &prev->list;
741 val &= ~RB_FLAG_MASK;
743 ret = cmpxchg((unsigned long *)&list->next,
744 val | old_flag, val | new_flag);
746 /* check if the reader took the page */
747 if ((ret & ~RB_FLAG_MASK) != val)
748 return RB_PAGE_MOVED;
750 return ret & RB_FLAG_MASK;
753 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
754 struct buffer_page *head,
755 struct buffer_page *prev,
756 int old_flag)
758 return rb_head_page_set(cpu_buffer, head, prev,
759 old_flag, RB_PAGE_UPDATE);
762 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
763 struct buffer_page *head,
764 struct buffer_page *prev,
765 int old_flag)
767 return rb_head_page_set(cpu_buffer, head, prev,
768 old_flag, RB_PAGE_HEAD);
771 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
772 struct buffer_page *head,
773 struct buffer_page *prev,
774 int old_flag)
776 return rb_head_page_set(cpu_buffer, head, prev,
777 old_flag, RB_PAGE_NORMAL);
780 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
781 struct buffer_page **bpage)
783 struct list_head *p = rb_list_head((*bpage)->list.next);
785 *bpage = list_entry(p, struct buffer_page, list);
788 static struct buffer_page *
789 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
791 struct buffer_page *head;
792 struct buffer_page *page;
793 struct list_head *list;
794 int i;
796 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
797 return NULL;
799 /* sanity check */
800 list = cpu_buffer->pages;
801 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
802 return NULL;
804 page = head = cpu_buffer->head_page;
806 * It is possible that the writer moves the header behind
807 * where we started, and we miss in one loop.
808 * A second loop should grab the header, but we'll do
809 * three loops just because I'm paranoid.
811 for (i = 0; i < 3; i++) {
812 do {
813 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
814 cpu_buffer->head_page = page;
815 return page;
817 rb_inc_page(cpu_buffer, &page);
818 } while (page != head);
821 RB_WARN_ON(cpu_buffer, 1);
823 return NULL;
826 static int rb_head_page_replace(struct buffer_page *old,
827 struct buffer_page *new)
829 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
830 unsigned long val;
831 unsigned long ret;
833 val = *ptr & ~RB_FLAG_MASK;
834 val |= RB_PAGE_HEAD;
836 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
838 return ret == val;
842 * rb_tail_page_update - move the tail page forward
844 * Returns 1 if moved tail page, 0 if someone else did.
846 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
847 struct buffer_page *tail_page,
848 struct buffer_page *next_page)
850 struct buffer_page *old_tail;
851 unsigned long old_entries;
852 unsigned long old_write;
853 int ret = 0;
856 * The tail page now needs to be moved forward.
858 * We need to reset the tail page, but without messing
859 * with possible erasing of data brought in by interrupts
860 * that have moved the tail page and are currently on it.
862 * We add a counter to the write field to denote this.
864 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
865 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
868 * Just make sure we have seen our old_write and synchronize
869 * with any interrupts that come in.
871 barrier();
874 * If the tail page is still the same as what we think
875 * it is, then it is up to us to update the tail
876 * pointer.
878 if (tail_page == cpu_buffer->tail_page) {
879 /* Zero the write counter */
880 unsigned long val = old_write & ~RB_WRITE_MASK;
881 unsigned long eval = old_entries & ~RB_WRITE_MASK;
884 * This will only succeed if an interrupt did
885 * not come in and change it. In which case, we
886 * do not want to modify it.
888 * We add (void) to let the compiler know that we do not care
889 * about the return value of these functions. We use the
890 * cmpxchg to only update if an interrupt did not already
891 * do it for us. If the cmpxchg fails, we don't care.
893 (void)local_cmpxchg(&next_page->write, old_write, val);
894 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
897 * No need to worry about races with clearing out the commit.
898 * it only can increment when a commit takes place. But that
899 * only happens in the outer most nested commit.
901 local_set(&next_page->page->commit, 0);
903 old_tail = cmpxchg(&cpu_buffer->tail_page,
904 tail_page, next_page);
906 if (old_tail == tail_page)
907 ret = 1;
910 return ret;
913 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
914 struct buffer_page *bpage)
916 unsigned long val = (unsigned long)bpage;
918 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
919 return 1;
921 return 0;
925 * rb_check_list - make sure a pointer to a list has the last bits zero
927 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
928 struct list_head *list)
930 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
931 return 1;
932 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
933 return 1;
934 return 0;
938 * check_pages - integrity check of buffer pages
939 * @cpu_buffer: CPU buffer with pages to test
941 * As a safety measure we check to make sure the data pages have not
942 * been corrupted.
944 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
946 struct list_head *head = cpu_buffer->pages;
947 struct buffer_page *bpage, *tmp;
949 /* Reset the head page if it exists */
950 if (cpu_buffer->head_page)
951 rb_set_head_page(cpu_buffer);
953 rb_head_page_deactivate(cpu_buffer);
955 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
956 return -1;
957 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
958 return -1;
960 if (rb_check_list(cpu_buffer, head))
961 return -1;
963 list_for_each_entry_safe(bpage, tmp, head, list) {
964 if (RB_WARN_ON(cpu_buffer,
965 bpage->list.next->prev != &bpage->list))
966 return -1;
967 if (RB_WARN_ON(cpu_buffer,
968 bpage->list.prev->next != &bpage->list))
969 return -1;
970 if (rb_check_list(cpu_buffer, &bpage->list))
971 return -1;
974 rb_head_page_activate(cpu_buffer);
976 return 0;
979 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
981 int i;
982 struct buffer_page *bpage, *tmp;
984 for (i = 0; i < nr_pages; i++) {
985 struct page *page;
987 * __GFP_NORETRY flag makes sure that the allocation fails
988 * gracefully without invoking oom-killer and the system is
989 * not destabilized.
991 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
992 GFP_KERNEL | __GFP_NORETRY,
993 cpu_to_node(cpu));
994 if (!bpage)
995 goto free_pages;
997 list_add(&bpage->list, pages);
999 page = alloc_pages_node(cpu_to_node(cpu),
1000 GFP_KERNEL | __GFP_NORETRY, 0);
1001 if (!page)
1002 goto free_pages;
1003 bpage->page = page_address(page);
1004 rb_init_page(bpage->page);
1007 return 0;
1009 free_pages:
1010 list_for_each_entry_safe(bpage, tmp, pages, list) {
1011 list_del_init(&bpage->list);
1012 free_buffer_page(bpage);
1015 return -ENOMEM;
1018 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1019 unsigned nr_pages)
1021 LIST_HEAD(pages);
1023 WARN_ON(!nr_pages);
1025 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1026 return -ENOMEM;
1029 * The ring buffer page list is a circular list that does not
1030 * start and end with a list head. All page list items point to
1031 * other pages.
1033 cpu_buffer->pages = pages.next;
1034 list_del(&pages);
1036 cpu_buffer->nr_pages = nr_pages;
1038 rb_check_pages(cpu_buffer);
1040 return 0;
1043 static struct ring_buffer_per_cpu *
1044 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1046 struct ring_buffer_per_cpu *cpu_buffer;
1047 struct buffer_page *bpage;
1048 struct page *page;
1049 int ret;
1051 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1052 GFP_KERNEL, cpu_to_node(cpu));
1053 if (!cpu_buffer)
1054 return NULL;
1056 cpu_buffer->cpu = cpu;
1057 cpu_buffer->buffer = buffer;
1058 raw_spin_lock_init(&cpu_buffer->reader_lock);
1059 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1060 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1061 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1062 init_completion(&cpu_buffer->update_done);
1064 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1065 GFP_KERNEL, cpu_to_node(cpu));
1066 if (!bpage)
1067 goto fail_free_buffer;
1069 rb_check_bpage(cpu_buffer, bpage);
1071 cpu_buffer->reader_page = bpage;
1072 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1073 if (!page)
1074 goto fail_free_reader;
1075 bpage->page = page_address(page);
1076 rb_init_page(bpage->page);
1078 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1079 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1081 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1082 if (ret < 0)
1083 goto fail_free_reader;
1085 cpu_buffer->head_page
1086 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1087 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1089 rb_head_page_activate(cpu_buffer);
1091 return cpu_buffer;
1093 fail_free_reader:
1094 free_buffer_page(cpu_buffer->reader_page);
1096 fail_free_buffer:
1097 kfree(cpu_buffer);
1098 return NULL;
1101 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1103 struct list_head *head = cpu_buffer->pages;
1104 struct buffer_page *bpage, *tmp;
1106 free_buffer_page(cpu_buffer->reader_page);
1108 rb_head_page_deactivate(cpu_buffer);
1110 if (head) {
1111 list_for_each_entry_safe(bpage, tmp, head, list) {
1112 list_del_init(&bpage->list);
1113 free_buffer_page(bpage);
1115 bpage = list_entry(head, struct buffer_page, list);
1116 free_buffer_page(bpage);
1119 kfree(cpu_buffer);
1122 #ifdef CONFIG_HOTPLUG_CPU
1123 static int rb_cpu_notify(struct notifier_block *self,
1124 unsigned long action, void *hcpu);
1125 #endif
1128 * ring_buffer_alloc - allocate a new ring_buffer
1129 * @size: the size in bytes per cpu that is needed.
1130 * @flags: attributes to set for the ring buffer.
1132 * Currently the only flag that is available is the RB_FL_OVERWRITE
1133 * flag. This flag means that the buffer will overwrite old data
1134 * when the buffer wraps. If this flag is not set, the buffer will
1135 * drop data when the tail hits the head.
1137 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1138 struct lock_class_key *key)
1140 struct ring_buffer *buffer;
1141 int bsize;
1142 int cpu, nr_pages;
1144 /* keep it in its own cache line */
1145 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1146 GFP_KERNEL);
1147 if (!buffer)
1148 return NULL;
1150 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1151 goto fail_free_buffer;
1153 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1154 buffer->flags = flags;
1155 buffer->clock = trace_clock_local;
1156 buffer->reader_lock_key = key;
1158 /* need at least two pages */
1159 if (nr_pages < 2)
1160 nr_pages = 2;
1163 * In case of non-hotplug cpu, if the ring-buffer is allocated
1164 * in early initcall, it will not be notified of secondary cpus.
1165 * In that off case, we need to allocate for all possible cpus.
1167 #ifdef CONFIG_HOTPLUG_CPU
1168 get_online_cpus();
1169 cpumask_copy(buffer->cpumask, cpu_online_mask);
1170 #else
1171 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1172 #endif
1173 buffer->cpus = nr_cpu_ids;
1175 bsize = sizeof(void *) * nr_cpu_ids;
1176 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1177 GFP_KERNEL);
1178 if (!buffer->buffers)
1179 goto fail_free_cpumask;
1181 for_each_buffer_cpu(buffer, cpu) {
1182 buffer->buffers[cpu] =
1183 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1184 if (!buffer->buffers[cpu])
1185 goto fail_free_buffers;
1188 #ifdef CONFIG_HOTPLUG_CPU
1189 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1190 buffer->cpu_notify.priority = 0;
1191 register_cpu_notifier(&buffer->cpu_notify);
1192 #endif
1194 put_online_cpus();
1195 mutex_init(&buffer->mutex);
1197 return buffer;
1199 fail_free_buffers:
1200 for_each_buffer_cpu(buffer, cpu) {
1201 if (buffer->buffers[cpu])
1202 rb_free_cpu_buffer(buffer->buffers[cpu]);
1204 kfree(buffer->buffers);
1206 fail_free_cpumask:
1207 free_cpumask_var(buffer->cpumask);
1208 put_online_cpus();
1210 fail_free_buffer:
1211 kfree(buffer);
1212 return NULL;
1214 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1217 * ring_buffer_free - free a ring buffer.
1218 * @buffer: the buffer to free.
1220 void
1221 ring_buffer_free(struct ring_buffer *buffer)
1223 int cpu;
1225 get_online_cpus();
1227 #ifdef CONFIG_HOTPLUG_CPU
1228 unregister_cpu_notifier(&buffer->cpu_notify);
1229 #endif
1231 for_each_buffer_cpu(buffer, cpu)
1232 rb_free_cpu_buffer(buffer->buffers[cpu]);
1234 put_online_cpus();
1236 kfree(buffer->buffers);
1237 free_cpumask_var(buffer->cpumask);
1239 kfree(buffer);
1241 EXPORT_SYMBOL_GPL(ring_buffer_free);
1243 void ring_buffer_set_clock(struct ring_buffer *buffer,
1244 u64 (*clock)(void))
1246 buffer->clock = clock;
1249 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1251 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1253 return local_read(&bpage->entries) & RB_WRITE_MASK;
1256 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1258 return local_read(&bpage->write) & RB_WRITE_MASK;
1261 static int
1262 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1264 struct list_head *tail_page, *to_remove, *next_page;
1265 struct buffer_page *to_remove_page, *tmp_iter_page;
1266 struct buffer_page *last_page, *first_page;
1267 unsigned int nr_removed;
1268 unsigned long head_bit;
1269 int page_entries;
1271 head_bit = 0;
1273 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1274 atomic_inc(&cpu_buffer->record_disabled);
1276 * We don't race with the readers since we have acquired the reader
1277 * lock. We also don't race with writers after disabling recording.
1278 * This makes it easy to figure out the first and the last page to be
1279 * removed from the list. We unlink all the pages in between including
1280 * the first and last pages. This is done in a busy loop so that we
1281 * lose the least number of traces.
1282 * The pages are freed after we restart recording and unlock readers.
1284 tail_page = &cpu_buffer->tail_page->list;
1287 * tail page might be on reader page, we remove the next page
1288 * from the ring buffer
1290 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1291 tail_page = rb_list_head(tail_page->next);
1292 to_remove = tail_page;
1294 /* start of pages to remove */
1295 first_page = list_entry(rb_list_head(to_remove->next),
1296 struct buffer_page, list);
1298 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1299 to_remove = rb_list_head(to_remove)->next;
1300 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1303 next_page = rb_list_head(to_remove)->next;
1306 * Now we remove all pages between tail_page and next_page.
1307 * Make sure that we have head_bit value preserved for the
1308 * next page
1310 tail_page->next = (struct list_head *)((unsigned long)next_page |
1311 head_bit);
1312 next_page = rb_list_head(next_page);
1313 next_page->prev = tail_page;
1315 /* make sure pages points to a valid page in the ring buffer */
1316 cpu_buffer->pages = next_page;
1318 /* update head page */
1319 if (head_bit)
1320 cpu_buffer->head_page = list_entry(next_page,
1321 struct buffer_page, list);
1324 * change read pointer to make sure any read iterators reset
1325 * themselves
1327 cpu_buffer->read = 0;
1329 /* pages are removed, resume tracing and then free the pages */
1330 atomic_dec(&cpu_buffer->record_disabled);
1331 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1333 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1335 /* last buffer page to remove */
1336 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1337 list);
1338 tmp_iter_page = first_page;
1340 do {
1341 to_remove_page = tmp_iter_page;
1342 rb_inc_page(cpu_buffer, &tmp_iter_page);
1344 /* update the counters */
1345 page_entries = rb_page_entries(to_remove_page);
1346 if (page_entries) {
1348 * If something was added to this page, it was full
1349 * since it is not the tail page. So we deduct the
1350 * bytes consumed in ring buffer from here.
1351 * Increment overrun to account for the lost events.
1353 local_add(page_entries, &cpu_buffer->overrun);
1354 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1358 * We have already removed references to this list item, just
1359 * free up the buffer_page and its page
1361 free_buffer_page(to_remove_page);
1362 nr_removed--;
1364 } while (to_remove_page != last_page);
1366 RB_WARN_ON(cpu_buffer, nr_removed);
1368 return nr_removed == 0;
1371 static int
1372 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1374 struct list_head *pages = &cpu_buffer->new_pages;
1375 int retries, success;
1377 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1379 * We are holding the reader lock, so the reader page won't be swapped
1380 * in the ring buffer. Now we are racing with the writer trying to
1381 * move head page and the tail page.
1382 * We are going to adapt the reader page update process where:
1383 * 1. We first splice the start and end of list of new pages between
1384 * the head page and its previous page.
1385 * 2. We cmpxchg the prev_page->next to point from head page to the
1386 * start of new pages list.
1387 * 3. Finally, we update the head->prev to the end of new list.
1389 * We will try this process 10 times, to make sure that we don't keep
1390 * spinning.
1392 retries = 10;
1393 success = 0;
1394 while (retries--) {
1395 struct list_head *head_page, *prev_page, *r;
1396 struct list_head *last_page, *first_page;
1397 struct list_head *head_page_with_bit;
1399 head_page = &rb_set_head_page(cpu_buffer)->list;
1400 if (!head_page)
1401 break;
1402 prev_page = head_page->prev;
1404 first_page = pages->next;
1405 last_page = pages->prev;
1407 head_page_with_bit = (struct list_head *)
1408 ((unsigned long)head_page | RB_PAGE_HEAD);
1410 last_page->next = head_page_with_bit;
1411 first_page->prev = prev_page;
1413 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1415 if (r == head_page_with_bit) {
1417 * yay, we replaced the page pointer to our new list,
1418 * now, we just have to update to head page's prev
1419 * pointer to point to end of list
1421 head_page->prev = last_page;
1422 success = 1;
1423 break;
1427 if (success)
1428 INIT_LIST_HEAD(pages);
1430 * If we weren't successful in adding in new pages, warn and stop
1431 * tracing
1433 RB_WARN_ON(cpu_buffer, !success);
1434 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1436 /* free pages if they weren't inserted */
1437 if (!success) {
1438 struct buffer_page *bpage, *tmp;
1439 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1440 list) {
1441 list_del_init(&bpage->list);
1442 free_buffer_page(bpage);
1445 return success;
1448 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1450 int success;
1452 if (cpu_buffer->nr_pages_to_update > 0)
1453 success = rb_insert_pages(cpu_buffer);
1454 else
1455 success = rb_remove_pages(cpu_buffer,
1456 -cpu_buffer->nr_pages_to_update);
1458 if (success)
1459 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1462 static void update_pages_handler(struct work_struct *work)
1464 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1465 struct ring_buffer_per_cpu, update_pages_work);
1466 rb_update_pages(cpu_buffer);
1467 complete(&cpu_buffer->update_done);
1471 * ring_buffer_resize - resize the ring buffer
1472 * @buffer: the buffer to resize.
1473 * @size: the new size.
1475 * Minimum size is 2 * BUF_PAGE_SIZE.
1477 * Returns 0 on success and < 0 on failure.
1479 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1480 int cpu_id)
1482 struct ring_buffer_per_cpu *cpu_buffer;
1483 unsigned nr_pages;
1484 int cpu, err = 0;
1487 * Always succeed at resizing a non-existent buffer:
1489 if (!buffer)
1490 return size;
1492 /* Make sure the requested buffer exists */
1493 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1494 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1495 return size;
1497 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1498 size *= BUF_PAGE_SIZE;
1500 /* we need a minimum of two pages */
1501 if (size < BUF_PAGE_SIZE * 2)
1502 size = BUF_PAGE_SIZE * 2;
1504 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1507 * Don't succeed if resizing is disabled, as a reader might be
1508 * manipulating the ring buffer and is expecting a sane state while
1509 * this is true.
1511 if (atomic_read(&buffer->resize_disabled))
1512 return -EBUSY;
1514 /* prevent another thread from changing buffer sizes */
1515 mutex_lock(&buffer->mutex);
1517 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1518 /* calculate the pages to update */
1519 for_each_buffer_cpu(buffer, cpu) {
1520 cpu_buffer = buffer->buffers[cpu];
1522 cpu_buffer->nr_pages_to_update = nr_pages -
1523 cpu_buffer->nr_pages;
1525 * nothing more to do for removing pages or no update
1527 if (cpu_buffer->nr_pages_to_update <= 0)
1528 continue;
1530 * to add pages, make sure all new pages can be
1531 * allocated without receiving ENOMEM
1533 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1534 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1535 &cpu_buffer->new_pages, cpu)) {
1536 /* not enough memory for new pages */
1537 err = -ENOMEM;
1538 goto out_err;
1542 get_online_cpus();
1544 * Fire off all the required work handlers
1545 * We can't schedule on offline CPUs, but it's not necessary
1546 * since we can change their buffer sizes without any race.
1548 for_each_buffer_cpu(buffer, cpu) {
1549 cpu_buffer = buffer->buffers[cpu];
1550 if (!cpu_buffer->nr_pages_to_update)
1551 continue;
1553 if (cpu_online(cpu))
1554 schedule_work_on(cpu,
1555 &cpu_buffer->update_pages_work);
1556 else
1557 rb_update_pages(cpu_buffer);
1560 /* wait for all the updates to complete */
1561 for_each_buffer_cpu(buffer, cpu) {
1562 cpu_buffer = buffer->buffers[cpu];
1563 if (!cpu_buffer->nr_pages_to_update)
1564 continue;
1566 if (cpu_online(cpu))
1567 wait_for_completion(&cpu_buffer->update_done);
1568 cpu_buffer->nr_pages_to_update = 0;
1571 put_online_cpus();
1572 } else {
1573 /* Make sure this CPU has been intitialized */
1574 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1575 goto out;
1577 cpu_buffer = buffer->buffers[cpu_id];
1579 if (nr_pages == cpu_buffer->nr_pages)
1580 goto out;
1582 cpu_buffer->nr_pages_to_update = nr_pages -
1583 cpu_buffer->nr_pages;
1585 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1586 if (cpu_buffer->nr_pages_to_update > 0 &&
1587 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1588 &cpu_buffer->new_pages, cpu_id)) {
1589 err = -ENOMEM;
1590 goto out_err;
1593 get_online_cpus();
1595 if (cpu_online(cpu_id)) {
1596 schedule_work_on(cpu_id,
1597 &cpu_buffer->update_pages_work);
1598 wait_for_completion(&cpu_buffer->update_done);
1599 } else
1600 rb_update_pages(cpu_buffer);
1602 cpu_buffer->nr_pages_to_update = 0;
1603 put_online_cpus();
1606 out:
1608 * The ring buffer resize can happen with the ring buffer
1609 * enabled, so that the update disturbs the tracing as little
1610 * as possible. But if the buffer is disabled, we do not need
1611 * to worry about that, and we can take the time to verify
1612 * that the buffer is not corrupt.
1614 if (atomic_read(&buffer->record_disabled)) {
1615 atomic_inc(&buffer->record_disabled);
1617 * Even though the buffer was disabled, we must make sure
1618 * that it is truly disabled before calling rb_check_pages.
1619 * There could have been a race between checking
1620 * record_disable and incrementing it.
1622 synchronize_sched();
1623 for_each_buffer_cpu(buffer, cpu) {
1624 cpu_buffer = buffer->buffers[cpu];
1625 rb_check_pages(cpu_buffer);
1627 atomic_dec(&buffer->record_disabled);
1630 mutex_unlock(&buffer->mutex);
1631 return size;
1633 out_err:
1634 for_each_buffer_cpu(buffer, cpu) {
1635 struct buffer_page *bpage, *tmp;
1637 cpu_buffer = buffer->buffers[cpu];
1638 cpu_buffer->nr_pages_to_update = 0;
1640 if (list_empty(&cpu_buffer->new_pages))
1641 continue;
1643 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1644 list) {
1645 list_del_init(&bpage->list);
1646 free_buffer_page(bpage);
1649 mutex_unlock(&buffer->mutex);
1650 return err;
1652 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1654 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1656 mutex_lock(&buffer->mutex);
1657 if (val)
1658 buffer->flags |= RB_FL_OVERWRITE;
1659 else
1660 buffer->flags &= ~RB_FL_OVERWRITE;
1661 mutex_unlock(&buffer->mutex);
1663 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1665 static inline void *
1666 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1668 return bpage->data + index;
1671 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1673 return bpage->page->data + index;
1676 static inline struct ring_buffer_event *
1677 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1679 return __rb_page_index(cpu_buffer->reader_page,
1680 cpu_buffer->reader_page->read);
1683 static inline struct ring_buffer_event *
1684 rb_iter_head_event(struct ring_buffer_iter *iter)
1686 return __rb_page_index(iter->head_page, iter->head);
1689 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1691 return local_read(&bpage->page->commit);
1694 /* Size is determined by what has been committed */
1695 static inline unsigned rb_page_size(struct buffer_page *bpage)
1697 return rb_page_commit(bpage);
1700 static inline unsigned
1701 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1703 return rb_page_commit(cpu_buffer->commit_page);
1706 static inline unsigned
1707 rb_event_index(struct ring_buffer_event *event)
1709 unsigned long addr = (unsigned long)event;
1711 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1714 static inline int
1715 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1716 struct ring_buffer_event *event)
1718 unsigned long addr = (unsigned long)event;
1719 unsigned long index;
1721 index = rb_event_index(event);
1722 addr &= PAGE_MASK;
1724 return cpu_buffer->commit_page->page == (void *)addr &&
1725 rb_commit_index(cpu_buffer) == index;
1728 static void
1729 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1731 unsigned long max_count;
1734 * We only race with interrupts and NMIs on this CPU.
1735 * If we own the commit event, then we can commit
1736 * all others that interrupted us, since the interruptions
1737 * are in stack format (they finish before they come
1738 * back to us). This allows us to do a simple loop to
1739 * assign the commit to the tail.
1741 again:
1742 max_count = cpu_buffer->nr_pages * 100;
1744 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1745 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1746 return;
1747 if (RB_WARN_ON(cpu_buffer,
1748 rb_is_reader_page(cpu_buffer->tail_page)))
1749 return;
1750 local_set(&cpu_buffer->commit_page->page->commit,
1751 rb_page_write(cpu_buffer->commit_page));
1752 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1753 cpu_buffer->write_stamp =
1754 cpu_buffer->commit_page->page->time_stamp;
1755 /* add barrier to keep gcc from optimizing too much */
1756 barrier();
1758 while (rb_commit_index(cpu_buffer) !=
1759 rb_page_write(cpu_buffer->commit_page)) {
1761 local_set(&cpu_buffer->commit_page->page->commit,
1762 rb_page_write(cpu_buffer->commit_page));
1763 RB_WARN_ON(cpu_buffer,
1764 local_read(&cpu_buffer->commit_page->page->commit) &
1765 ~RB_WRITE_MASK);
1766 barrier();
1769 /* again, keep gcc from optimizing */
1770 barrier();
1773 * If an interrupt came in just after the first while loop
1774 * and pushed the tail page forward, we will be left with
1775 * a dangling commit that will never go forward.
1777 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1778 goto again;
1781 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1783 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1784 cpu_buffer->reader_page->read = 0;
1787 static void rb_inc_iter(struct ring_buffer_iter *iter)
1789 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1792 * The iterator could be on the reader page (it starts there).
1793 * But the head could have moved, since the reader was
1794 * found. Check for this case and assign the iterator
1795 * to the head page instead of next.
1797 if (iter->head_page == cpu_buffer->reader_page)
1798 iter->head_page = rb_set_head_page(cpu_buffer);
1799 else
1800 rb_inc_page(cpu_buffer, &iter->head_page);
1802 iter->read_stamp = iter->head_page->page->time_stamp;
1803 iter->head = 0;
1806 /* Slow path, do not inline */
1807 static noinline struct ring_buffer_event *
1808 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1810 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1812 /* Not the first event on the page? */
1813 if (rb_event_index(event)) {
1814 event->time_delta = delta & TS_MASK;
1815 event->array[0] = delta >> TS_SHIFT;
1816 } else {
1817 /* nope, just zero it */
1818 event->time_delta = 0;
1819 event->array[0] = 0;
1822 return skip_time_extend(event);
1826 * rb_update_event - update event type and data
1827 * @event: the even to update
1828 * @type: the type of event
1829 * @length: the size of the event field in the ring buffer
1831 * Update the type and data fields of the event. The length
1832 * is the actual size that is written to the ring buffer,
1833 * and with this, we can determine what to place into the
1834 * data field.
1836 static void
1837 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1838 struct ring_buffer_event *event, unsigned length,
1839 int add_timestamp, u64 delta)
1841 /* Only a commit updates the timestamp */
1842 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1843 delta = 0;
1846 * If we need to add a timestamp, then we
1847 * add it to the start of the resevered space.
1849 if (unlikely(add_timestamp)) {
1850 event = rb_add_time_stamp(event, delta);
1851 length -= RB_LEN_TIME_EXTEND;
1852 delta = 0;
1855 event->time_delta = delta;
1856 length -= RB_EVNT_HDR_SIZE;
1857 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1858 event->type_len = 0;
1859 event->array[0] = length;
1860 } else
1861 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1865 * rb_handle_head_page - writer hit the head page
1867 * Returns: +1 to retry page
1868 * 0 to continue
1869 * -1 on error
1871 static int
1872 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1873 struct buffer_page *tail_page,
1874 struct buffer_page *next_page)
1876 struct buffer_page *new_head;
1877 int entries;
1878 int type;
1879 int ret;
1881 entries = rb_page_entries(next_page);
1884 * The hard part is here. We need to move the head
1885 * forward, and protect against both readers on
1886 * other CPUs and writers coming in via interrupts.
1888 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1889 RB_PAGE_HEAD);
1892 * type can be one of four:
1893 * NORMAL - an interrupt already moved it for us
1894 * HEAD - we are the first to get here.
1895 * UPDATE - we are the interrupt interrupting
1896 * a current move.
1897 * MOVED - a reader on another CPU moved the next
1898 * pointer to its reader page. Give up
1899 * and try again.
1902 switch (type) {
1903 case RB_PAGE_HEAD:
1905 * We changed the head to UPDATE, thus
1906 * it is our responsibility to update
1907 * the counters.
1909 local_add(entries, &cpu_buffer->overrun);
1910 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1913 * The entries will be zeroed out when we move the
1914 * tail page.
1917 /* still more to do */
1918 break;
1920 case RB_PAGE_UPDATE:
1922 * This is an interrupt that interrupt the
1923 * previous update. Still more to do.
1925 break;
1926 case RB_PAGE_NORMAL:
1928 * An interrupt came in before the update
1929 * and processed this for us.
1930 * Nothing left to do.
1932 return 1;
1933 case RB_PAGE_MOVED:
1935 * The reader is on another CPU and just did
1936 * a swap with our next_page.
1937 * Try again.
1939 return 1;
1940 default:
1941 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1942 return -1;
1946 * Now that we are here, the old head pointer is
1947 * set to UPDATE. This will keep the reader from
1948 * swapping the head page with the reader page.
1949 * The reader (on another CPU) will spin till
1950 * we are finished.
1952 * We just need to protect against interrupts
1953 * doing the job. We will set the next pointer
1954 * to HEAD. After that, we set the old pointer
1955 * to NORMAL, but only if it was HEAD before.
1956 * otherwise we are an interrupt, and only
1957 * want the outer most commit to reset it.
1959 new_head = next_page;
1960 rb_inc_page(cpu_buffer, &new_head);
1962 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1963 RB_PAGE_NORMAL);
1966 * Valid returns are:
1967 * HEAD - an interrupt came in and already set it.
1968 * NORMAL - One of two things:
1969 * 1) We really set it.
1970 * 2) A bunch of interrupts came in and moved
1971 * the page forward again.
1973 switch (ret) {
1974 case RB_PAGE_HEAD:
1975 case RB_PAGE_NORMAL:
1976 /* OK */
1977 break;
1978 default:
1979 RB_WARN_ON(cpu_buffer, 1);
1980 return -1;
1984 * It is possible that an interrupt came in,
1985 * set the head up, then more interrupts came in
1986 * and moved it again. When we get back here,
1987 * the page would have been set to NORMAL but we
1988 * just set it back to HEAD.
1990 * How do you detect this? Well, if that happened
1991 * the tail page would have moved.
1993 if (ret == RB_PAGE_NORMAL) {
1995 * If the tail had moved passed next, then we need
1996 * to reset the pointer.
1998 if (cpu_buffer->tail_page != tail_page &&
1999 cpu_buffer->tail_page != next_page)
2000 rb_head_page_set_normal(cpu_buffer, new_head,
2001 next_page,
2002 RB_PAGE_HEAD);
2006 * If this was the outer most commit (the one that
2007 * changed the original pointer from HEAD to UPDATE),
2008 * then it is up to us to reset it to NORMAL.
2010 if (type == RB_PAGE_HEAD) {
2011 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2012 tail_page,
2013 RB_PAGE_UPDATE);
2014 if (RB_WARN_ON(cpu_buffer,
2015 ret != RB_PAGE_UPDATE))
2016 return -1;
2019 return 0;
2022 static unsigned rb_calculate_event_length(unsigned length)
2024 struct ring_buffer_event event; /* Used only for sizeof array */
2026 /* zero length can cause confusions */
2027 if (!length)
2028 length = 1;
2030 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2031 length += sizeof(event.array[0]);
2033 length += RB_EVNT_HDR_SIZE;
2034 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2036 return length;
2039 static inline void
2040 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2041 struct buffer_page *tail_page,
2042 unsigned long tail, unsigned long length)
2044 struct ring_buffer_event *event;
2047 * Only the event that crossed the page boundary
2048 * must fill the old tail_page with padding.
2050 if (tail >= BUF_PAGE_SIZE) {
2052 * If the page was filled, then we still need
2053 * to update the real_end. Reset it to zero
2054 * and the reader will ignore it.
2056 if (tail == BUF_PAGE_SIZE)
2057 tail_page->real_end = 0;
2059 local_sub(length, &tail_page->write);
2060 return;
2063 event = __rb_page_index(tail_page, tail);
2064 kmemcheck_annotate_bitfield(event, bitfield);
2066 /* account for padding bytes */
2067 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2070 * Save the original length to the meta data.
2071 * This will be used by the reader to add lost event
2072 * counter.
2074 tail_page->real_end = tail;
2077 * If this event is bigger than the minimum size, then
2078 * we need to be careful that we don't subtract the
2079 * write counter enough to allow another writer to slip
2080 * in on this page.
2081 * We put in a discarded commit instead, to make sure
2082 * that this space is not used again.
2084 * If we are less than the minimum size, we don't need to
2085 * worry about it.
2087 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2088 /* No room for any events */
2090 /* Mark the rest of the page with padding */
2091 rb_event_set_padding(event);
2093 /* Set the write back to the previous setting */
2094 local_sub(length, &tail_page->write);
2095 return;
2098 /* Put in a discarded event */
2099 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2100 event->type_len = RINGBUF_TYPE_PADDING;
2101 /* time delta must be non zero */
2102 event->time_delta = 1;
2104 /* Set write to end of buffer */
2105 length = (tail + length) - BUF_PAGE_SIZE;
2106 local_sub(length, &tail_page->write);
2110 * This is the slow path, force gcc not to inline it.
2112 static noinline struct ring_buffer_event *
2113 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2114 unsigned long length, unsigned long tail,
2115 struct buffer_page *tail_page, u64 ts)
2117 struct buffer_page *commit_page = cpu_buffer->commit_page;
2118 struct ring_buffer *buffer = cpu_buffer->buffer;
2119 struct buffer_page *next_page;
2120 int ret;
2122 next_page = tail_page;
2124 rb_inc_page(cpu_buffer, &next_page);
2127 * If for some reason, we had an interrupt storm that made
2128 * it all the way around the buffer, bail, and warn
2129 * about it.
2131 if (unlikely(next_page == commit_page)) {
2132 local_inc(&cpu_buffer->commit_overrun);
2133 goto out_reset;
2137 * This is where the fun begins!
2139 * We are fighting against races between a reader that
2140 * could be on another CPU trying to swap its reader
2141 * page with the buffer head.
2143 * We are also fighting against interrupts coming in and
2144 * moving the head or tail on us as well.
2146 * If the next page is the head page then we have filled
2147 * the buffer, unless the commit page is still on the
2148 * reader page.
2150 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2153 * If the commit is not on the reader page, then
2154 * move the header page.
2156 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2158 * If we are not in overwrite mode,
2159 * this is easy, just stop here.
2161 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2162 local_inc(&cpu_buffer->dropped_events);
2163 goto out_reset;
2166 ret = rb_handle_head_page(cpu_buffer,
2167 tail_page,
2168 next_page);
2169 if (ret < 0)
2170 goto out_reset;
2171 if (ret)
2172 goto out_again;
2173 } else {
2175 * We need to be careful here too. The
2176 * commit page could still be on the reader
2177 * page. We could have a small buffer, and
2178 * have filled up the buffer with events
2179 * from interrupts and such, and wrapped.
2181 * Note, if the tail page is also the on the
2182 * reader_page, we let it move out.
2184 if (unlikely((cpu_buffer->commit_page !=
2185 cpu_buffer->tail_page) &&
2186 (cpu_buffer->commit_page ==
2187 cpu_buffer->reader_page))) {
2188 local_inc(&cpu_buffer->commit_overrun);
2189 goto out_reset;
2194 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2195 if (ret) {
2197 * Nested commits always have zero deltas, so
2198 * just reread the time stamp
2200 ts = rb_time_stamp(buffer);
2201 next_page->page->time_stamp = ts;
2204 out_again:
2206 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2208 /* fail and let the caller try again */
2209 return ERR_PTR(-EAGAIN);
2211 out_reset:
2212 /* reset write */
2213 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2215 return NULL;
2218 static struct ring_buffer_event *
2219 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2220 unsigned long length, u64 ts,
2221 u64 delta, int add_timestamp)
2223 struct buffer_page *tail_page;
2224 struct ring_buffer_event *event;
2225 unsigned long tail, write;
2228 * If the time delta since the last event is too big to
2229 * hold in the time field of the event, then we append a
2230 * TIME EXTEND event ahead of the data event.
2232 if (unlikely(add_timestamp))
2233 length += RB_LEN_TIME_EXTEND;
2235 tail_page = cpu_buffer->tail_page;
2236 write = local_add_return(length, &tail_page->write);
2238 /* set write to only the index of the write */
2239 write &= RB_WRITE_MASK;
2240 tail = write - length;
2242 /* See if we shot pass the end of this buffer page */
2243 if (unlikely(write > BUF_PAGE_SIZE))
2244 return rb_move_tail(cpu_buffer, length, tail,
2245 tail_page, ts);
2247 /* We reserved something on the buffer */
2249 event = __rb_page_index(tail_page, tail);
2250 kmemcheck_annotate_bitfield(event, bitfield);
2251 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2253 local_inc(&tail_page->entries);
2256 * If this is the first commit on the page, then update
2257 * its timestamp.
2259 if (!tail)
2260 tail_page->page->time_stamp = ts;
2262 /* account for these added bytes */
2263 local_add(length, &cpu_buffer->entries_bytes);
2265 return event;
2268 static inline int
2269 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2270 struct ring_buffer_event *event)
2272 unsigned long new_index, old_index;
2273 struct buffer_page *bpage;
2274 unsigned long index;
2275 unsigned long addr;
2277 new_index = rb_event_index(event);
2278 old_index = new_index + rb_event_ts_length(event);
2279 addr = (unsigned long)event;
2280 addr &= PAGE_MASK;
2282 bpage = cpu_buffer->tail_page;
2284 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2285 unsigned long write_mask =
2286 local_read(&bpage->write) & ~RB_WRITE_MASK;
2287 unsigned long event_length = rb_event_length(event);
2289 * This is on the tail page. It is possible that
2290 * a write could come in and move the tail page
2291 * and write to the next page. That is fine
2292 * because we just shorten what is on this page.
2294 old_index += write_mask;
2295 new_index += write_mask;
2296 index = local_cmpxchg(&bpage->write, old_index, new_index);
2297 if (index == old_index) {
2298 /* update counters */
2299 local_sub(event_length, &cpu_buffer->entries_bytes);
2300 return 1;
2304 /* could not discard */
2305 return 0;
2308 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2310 local_inc(&cpu_buffer->committing);
2311 local_inc(&cpu_buffer->commits);
2314 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2316 unsigned long commits;
2318 if (RB_WARN_ON(cpu_buffer,
2319 !local_read(&cpu_buffer->committing)))
2320 return;
2322 again:
2323 commits = local_read(&cpu_buffer->commits);
2324 /* synchronize with interrupts */
2325 barrier();
2326 if (local_read(&cpu_buffer->committing) == 1)
2327 rb_set_commit_to_write(cpu_buffer);
2329 local_dec(&cpu_buffer->committing);
2331 /* synchronize with interrupts */
2332 barrier();
2335 * Need to account for interrupts coming in between the
2336 * updating of the commit page and the clearing of the
2337 * committing counter.
2339 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2340 !local_read(&cpu_buffer->committing)) {
2341 local_inc(&cpu_buffer->committing);
2342 goto again;
2346 static struct ring_buffer_event *
2347 rb_reserve_next_event(struct ring_buffer *buffer,
2348 struct ring_buffer_per_cpu *cpu_buffer,
2349 unsigned long length)
2351 struct ring_buffer_event *event;
2352 u64 ts, delta;
2353 int nr_loops = 0;
2354 int add_timestamp;
2355 u64 diff;
2357 rb_start_commit(cpu_buffer);
2359 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2361 * Due to the ability to swap a cpu buffer from a buffer
2362 * it is possible it was swapped before we committed.
2363 * (committing stops a swap). We check for it here and
2364 * if it happened, we have to fail the write.
2366 barrier();
2367 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2368 local_dec(&cpu_buffer->committing);
2369 local_dec(&cpu_buffer->commits);
2370 return NULL;
2372 #endif
2374 length = rb_calculate_event_length(length);
2375 again:
2376 add_timestamp = 0;
2377 delta = 0;
2380 * We allow for interrupts to reenter here and do a trace.
2381 * If one does, it will cause this original code to loop
2382 * back here. Even with heavy interrupts happening, this
2383 * should only happen a few times in a row. If this happens
2384 * 1000 times in a row, there must be either an interrupt
2385 * storm or we have something buggy.
2386 * Bail!
2388 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2389 goto out_fail;
2391 ts = rb_time_stamp(cpu_buffer->buffer);
2392 diff = ts - cpu_buffer->write_stamp;
2394 /* make sure this diff is calculated here */
2395 barrier();
2397 /* Did the write stamp get updated already? */
2398 if (likely(ts >= cpu_buffer->write_stamp)) {
2399 delta = diff;
2400 if (unlikely(test_time_stamp(delta))) {
2401 int local_clock_stable = 1;
2402 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2403 local_clock_stable = sched_clock_stable;
2404 #endif
2405 WARN_ONCE(delta > (1ULL << 59),
2406 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2407 (unsigned long long)delta,
2408 (unsigned long long)ts,
2409 (unsigned long long)cpu_buffer->write_stamp,
2410 local_clock_stable ? "" :
2411 "If you just came from a suspend/resume,\n"
2412 "please switch to the trace global clock:\n"
2413 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2414 add_timestamp = 1;
2418 event = __rb_reserve_next(cpu_buffer, length, ts,
2419 delta, add_timestamp);
2420 if (unlikely(PTR_ERR(event) == -EAGAIN))
2421 goto again;
2423 if (!event)
2424 goto out_fail;
2426 return event;
2428 out_fail:
2429 rb_end_commit(cpu_buffer);
2430 return NULL;
2433 #ifdef CONFIG_TRACING
2435 #define TRACE_RECURSIVE_DEPTH 16
2437 /* Keep this code out of the fast path cache */
2438 static noinline void trace_recursive_fail(void)
2440 /* Disable all tracing before we do anything else */
2441 tracing_off_permanent();
2443 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2444 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2445 trace_recursion_buffer(),
2446 hardirq_count() >> HARDIRQ_SHIFT,
2447 softirq_count() >> SOFTIRQ_SHIFT,
2448 in_nmi());
2450 WARN_ON_ONCE(1);
2453 static inline int trace_recursive_lock(void)
2455 trace_recursion_inc();
2457 if (likely(trace_recursion_buffer() < TRACE_RECURSIVE_DEPTH))
2458 return 0;
2460 trace_recursive_fail();
2462 return -1;
2465 static inline void trace_recursive_unlock(void)
2467 WARN_ON_ONCE(!trace_recursion_buffer());
2469 trace_recursion_dec();
2472 #else
2474 #define trace_recursive_lock() (0)
2475 #define trace_recursive_unlock() do { } while (0)
2477 #endif
2480 * ring_buffer_lock_reserve - reserve a part of the buffer
2481 * @buffer: the ring buffer to reserve from
2482 * @length: the length of the data to reserve (excluding event header)
2484 * Returns a reseverd event on the ring buffer to copy directly to.
2485 * The user of this interface will need to get the body to write into
2486 * and can use the ring_buffer_event_data() interface.
2488 * The length is the length of the data needed, not the event length
2489 * which also includes the event header.
2491 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2492 * If NULL is returned, then nothing has been allocated or locked.
2494 struct ring_buffer_event *
2495 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2497 struct ring_buffer_per_cpu *cpu_buffer;
2498 struct ring_buffer_event *event;
2499 int cpu;
2501 if (ring_buffer_flags != RB_BUFFERS_ON)
2502 return NULL;
2504 /* If we are tracing schedule, we don't want to recurse */
2505 preempt_disable_notrace();
2507 if (atomic_read(&buffer->record_disabled))
2508 goto out_nocheck;
2510 if (trace_recursive_lock())
2511 goto out_nocheck;
2513 cpu = raw_smp_processor_id();
2515 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2516 goto out;
2518 cpu_buffer = buffer->buffers[cpu];
2520 if (atomic_read(&cpu_buffer->record_disabled))
2521 goto out;
2523 if (length > BUF_MAX_DATA_SIZE)
2524 goto out;
2526 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2527 if (!event)
2528 goto out;
2530 return event;
2532 out:
2533 trace_recursive_unlock();
2535 out_nocheck:
2536 preempt_enable_notrace();
2537 return NULL;
2539 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2541 static void
2542 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2543 struct ring_buffer_event *event)
2545 u64 delta;
2548 * The event first in the commit queue updates the
2549 * time stamp.
2551 if (rb_event_is_commit(cpu_buffer, event)) {
2553 * A commit event that is first on a page
2554 * updates the write timestamp with the page stamp
2556 if (!rb_event_index(event))
2557 cpu_buffer->write_stamp =
2558 cpu_buffer->commit_page->page->time_stamp;
2559 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2560 delta = event->array[0];
2561 delta <<= TS_SHIFT;
2562 delta += event->time_delta;
2563 cpu_buffer->write_stamp += delta;
2564 } else
2565 cpu_buffer->write_stamp += event->time_delta;
2569 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2570 struct ring_buffer_event *event)
2572 local_inc(&cpu_buffer->entries);
2573 rb_update_write_stamp(cpu_buffer, event);
2574 rb_end_commit(cpu_buffer);
2578 * ring_buffer_unlock_commit - commit a reserved
2579 * @buffer: The buffer to commit to
2580 * @event: The event pointer to commit.
2582 * This commits the data to the ring buffer, and releases any locks held.
2584 * Must be paired with ring_buffer_lock_reserve.
2586 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2587 struct ring_buffer_event *event)
2589 struct ring_buffer_per_cpu *cpu_buffer;
2590 int cpu = raw_smp_processor_id();
2592 cpu_buffer = buffer->buffers[cpu];
2594 rb_commit(cpu_buffer, event);
2596 trace_recursive_unlock();
2598 preempt_enable_notrace();
2600 return 0;
2602 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2604 static inline void rb_event_discard(struct ring_buffer_event *event)
2606 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2607 event = skip_time_extend(event);
2609 /* array[0] holds the actual length for the discarded event */
2610 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2611 event->type_len = RINGBUF_TYPE_PADDING;
2612 /* time delta must be non zero */
2613 if (!event->time_delta)
2614 event->time_delta = 1;
2618 * Decrement the entries to the page that an event is on.
2619 * The event does not even need to exist, only the pointer
2620 * to the page it is on. This may only be called before the commit
2621 * takes place.
2623 static inline void
2624 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2625 struct ring_buffer_event *event)
2627 unsigned long addr = (unsigned long)event;
2628 struct buffer_page *bpage = cpu_buffer->commit_page;
2629 struct buffer_page *start;
2631 addr &= PAGE_MASK;
2633 /* Do the likely case first */
2634 if (likely(bpage->page == (void *)addr)) {
2635 local_dec(&bpage->entries);
2636 return;
2640 * Because the commit page may be on the reader page we
2641 * start with the next page and check the end loop there.
2643 rb_inc_page(cpu_buffer, &bpage);
2644 start = bpage;
2645 do {
2646 if (bpage->page == (void *)addr) {
2647 local_dec(&bpage->entries);
2648 return;
2650 rb_inc_page(cpu_buffer, &bpage);
2651 } while (bpage != start);
2653 /* commit not part of this buffer?? */
2654 RB_WARN_ON(cpu_buffer, 1);
2658 * ring_buffer_commit_discard - discard an event that has not been committed
2659 * @buffer: the ring buffer
2660 * @event: non committed event to discard
2662 * Sometimes an event that is in the ring buffer needs to be ignored.
2663 * This function lets the user discard an event in the ring buffer
2664 * and then that event will not be read later.
2666 * This function only works if it is called before the the item has been
2667 * committed. It will try to free the event from the ring buffer
2668 * if another event has not been added behind it.
2670 * If another event has been added behind it, it will set the event
2671 * up as discarded, and perform the commit.
2673 * If this function is called, do not call ring_buffer_unlock_commit on
2674 * the event.
2676 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2677 struct ring_buffer_event *event)
2679 struct ring_buffer_per_cpu *cpu_buffer;
2680 int cpu;
2682 /* The event is discarded regardless */
2683 rb_event_discard(event);
2685 cpu = smp_processor_id();
2686 cpu_buffer = buffer->buffers[cpu];
2689 * This must only be called if the event has not been
2690 * committed yet. Thus we can assume that preemption
2691 * is still disabled.
2693 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2695 rb_decrement_entry(cpu_buffer, event);
2696 if (rb_try_to_discard(cpu_buffer, event))
2697 goto out;
2700 * The commit is still visible by the reader, so we
2701 * must still update the timestamp.
2703 rb_update_write_stamp(cpu_buffer, event);
2704 out:
2705 rb_end_commit(cpu_buffer);
2707 trace_recursive_unlock();
2709 preempt_enable_notrace();
2712 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2715 * ring_buffer_write - write data to the buffer without reserving
2716 * @buffer: The ring buffer to write to.
2717 * @length: The length of the data being written (excluding the event header)
2718 * @data: The data to write to the buffer.
2720 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2721 * one function. If you already have the data to write to the buffer, it
2722 * may be easier to simply call this function.
2724 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2725 * and not the length of the event which would hold the header.
2727 int ring_buffer_write(struct ring_buffer *buffer,
2728 unsigned long length,
2729 void *data)
2731 struct ring_buffer_per_cpu *cpu_buffer;
2732 struct ring_buffer_event *event;
2733 void *body;
2734 int ret = -EBUSY;
2735 int cpu;
2737 if (ring_buffer_flags != RB_BUFFERS_ON)
2738 return -EBUSY;
2740 preempt_disable_notrace();
2742 if (atomic_read(&buffer->record_disabled))
2743 goto out;
2745 cpu = raw_smp_processor_id();
2747 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2748 goto out;
2750 cpu_buffer = buffer->buffers[cpu];
2752 if (atomic_read(&cpu_buffer->record_disabled))
2753 goto out;
2755 if (length > BUF_MAX_DATA_SIZE)
2756 goto out;
2758 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2759 if (!event)
2760 goto out;
2762 body = rb_event_data(event);
2764 memcpy(body, data, length);
2766 rb_commit(cpu_buffer, event);
2768 ret = 0;
2769 out:
2770 preempt_enable_notrace();
2772 return ret;
2774 EXPORT_SYMBOL_GPL(ring_buffer_write);
2776 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2778 struct buffer_page *reader = cpu_buffer->reader_page;
2779 struct buffer_page *head = rb_set_head_page(cpu_buffer);
2780 struct buffer_page *commit = cpu_buffer->commit_page;
2782 /* In case of error, head will be NULL */
2783 if (unlikely(!head))
2784 return 1;
2786 return reader->read == rb_page_commit(reader) &&
2787 (commit == reader ||
2788 (commit == head &&
2789 head->read == rb_page_commit(commit)));
2793 * ring_buffer_record_disable - stop all writes into the buffer
2794 * @buffer: The ring buffer to stop writes to.
2796 * This prevents all writes to the buffer. Any attempt to write
2797 * to the buffer after this will fail and return NULL.
2799 * The caller should call synchronize_sched() after this.
2801 void ring_buffer_record_disable(struct ring_buffer *buffer)
2803 atomic_inc(&buffer->record_disabled);
2805 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2808 * ring_buffer_record_enable - enable writes to the buffer
2809 * @buffer: The ring buffer to enable writes
2811 * Note, multiple disables will need the same number of enables
2812 * to truly enable the writing (much like preempt_disable).
2814 void ring_buffer_record_enable(struct ring_buffer *buffer)
2816 atomic_dec(&buffer->record_disabled);
2818 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2821 * ring_buffer_record_off - stop all writes into the buffer
2822 * @buffer: The ring buffer to stop writes to.
2824 * This prevents all writes to the buffer. Any attempt to write
2825 * to the buffer after this will fail and return NULL.
2827 * This is different than ring_buffer_record_disable() as
2828 * it works like an on/off switch, where as the disable() version
2829 * must be paired with a enable().
2831 void ring_buffer_record_off(struct ring_buffer *buffer)
2833 unsigned int rd;
2834 unsigned int new_rd;
2836 do {
2837 rd = atomic_read(&buffer->record_disabled);
2838 new_rd = rd | RB_BUFFER_OFF;
2839 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2841 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
2844 * ring_buffer_record_on - restart writes into the buffer
2845 * @buffer: The ring buffer to start writes to.
2847 * This enables all writes to the buffer that was disabled by
2848 * ring_buffer_record_off().
2850 * This is different than ring_buffer_record_enable() as
2851 * it works like an on/off switch, where as the enable() version
2852 * must be paired with a disable().
2854 void ring_buffer_record_on(struct ring_buffer *buffer)
2856 unsigned int rd;
2857 unsigned int new_rd;
2859 do {
2860 rd = atomic_read(&buffer->record_disabled);
2861 new_rd = rd & ~RB_BUFFER_OFF;
2862 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2864 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
2867 * ring_buffer_record_is_on - return true if the ring buffer can write
2868 * @buffer: The ring buffer to see if write is enabled
2870 * Returns true if the ring buffer is in a state that it accepts writes.
2872 int ring_buffer_record_is_on(struct ring_buffer *buffer)
2874 return !atomic_read(&buffer->record_disabled);
2878 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2879 * @buffer: The ring buffer to stop writes to.
2880 * @cpu: The CPU buffer to stop
2882 * This prevents all writes to the buffer. Any attempt to write
2883 * to the buffer after this will fail and return NULL.
2885 * The caller should call synchronize_sched() after this.
2887 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2889 struct ring_buffer_per_cpu *cpu_buffer;
2891 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2892 return;
2894 cpu_buffer = buffer->buffers[cpu];
2895 atomic_inc(&cpu_buffer->record_disabled);
2897 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2900 * ring_buffer_record_enable_cpu - enable writes to the buffer
2901 * @buffer: The ring buffer to enable writes
2902 * @cpu: The CPU to enable.
2904 * Note, multiple disables will need the same number of enables
2905 * to truly enable the writing (much like preempt_disable).
2907 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2909 struct ring_buffer_per_cpu *cpu_buffer;
2911 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2912 return;
2914 cpu_buffer = buffer->buffers[cpu];
2915 atomic_dec(&cpu_buffer->record_disabled);
2917 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2920 * The total entries in the ring buffer is the running counter
2921 * of entries entered into the ring buffer, minus the sum of
2922 * the entries read from the ring buffer and the number of
2923 * entries that were overwritten.
2925 static inline unsigned long
2926 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2928 return local_read(&cpu_buffer->entries) -
2929 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2933 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
2934 * @buffer: The ring buffer
2935 * @cpu: The per CPU buffer to read from.
2937 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
2939 unsigned long flags;
2940 struct ring_buffer_per_cpu *cpu_buffer;
2941 struct buffer_page *bpage;
2942 u64 ret = 0;
2944 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2945 return 0;
2947 cpu_buffer = buffer->buffers[cpu];
2948 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2950 * if the tail is on reader_page, oldest time stamp is on the reader
2951 * page
2953 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2954 bpage = cpu_buffer->reader_page;
2955 else
2956 bpage = rb_set_head_page(cpu_buffer);
2957 if (bpage)
2958 ret = bpage->page->time_stamp;
2959 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2961 return ret;
2963 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
2966 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
2967 * @buffer: The ring buffer
2968 * @cpu: The per CPU buffer to read from.
2970 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
2972 struct ring_buffer_per_cpu *cpu_buffer;
2973 unsigned long ret;
2975 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2976 return 0;
2978 cpu_buffer = buffer->buffers[cpu];
2979 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
2981 return ret;
2983 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
2986 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2987 * @buffer: The ring buffer
2988 * @cpu: The per CPU buffer to get the entries from.
2990 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2992 struct ring_buffer_per_cpu *cpu_buffer;
2994 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2995 return 0;
2997 cpu_buffer = buffer->buffers[cpu];
2999 return rb_num_of_entries(cpu_buffer);
3001 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3004 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3005 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3006 * @buffer: The ring buffer
3007 * @cpu: The per CPU buffer to get the number of overruns from
3009 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3011 struct ring_buffer_per_cpu *cpu_buffer;
3012 unsigned long ret;
3014 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3015 return 0;
3017 cpu_buffer = buffer->buffers[cpu];
3018 ret = local_read(&cpu_buffer->overrun);
3020 return ret;
3022 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3025 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3026 * commits failing due to the buffer wrapping around while there are uncommitted
3027 * events, such as during an interrupt storm.
3028 * @buffer: The ring buffer
3029 * @cpu: The per CPU buffer to get the number of overruns from
3031 unsigned long
3032 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3034 struct ring_buffer_per_cpu *cpu_buffer;
3035 unsigned long ret;
3037 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3038 return 0;
3040 cpu_buffer = buffer->buffers[cpu];
3041 ret = local_read(&cpu_buffer->commit_overrun);
3043 return ret;
3045 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3048 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3049 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3050 * @buffer: The ring buffer
3051 * @cpu: The per CPU buffer to get the number of overruns from
3053 unsigned long
3054 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3056 struct ring_buffer_per_cpu *cpu_buffer;
3057 unsigned long ret;
3059 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3060 return 0;
3062 cpu_buffer = buffer->buffers[cpu];
3063 ret = local_read(&cpu_buffer->dropped_events);
3065 return ret;
3067 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3070 * ring_buffer_entries - get the number of entries in a buffer
3071 * @buffer: The ring buffer
3073 * Returns the total number of entries in the ring buffer
3074 * (all CPU entries)
3076 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3078 struct ring_buffer_per_cpu *cpu_buffer;
3079 unsigned long entries = 0;
3080 int cpu;
3082 /* if you care about this being correct, lock the buffer */
3083 for_each_buffer_cpu(buffer, cpu) {
3084 cpu_buffer = buffer->buffers[cpu];
3085 entries += rb_num_of_entries(cpu_buffer);
3088 return entries;
3090 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3093 * ring_buffer_overruns - get the number of overruns in buffer
3094 * @buffer: The ring buffer
3096 * Returns the total number of overruns in the ring buffer
3097 * (all CPU entries)
3099 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3101 struct ring_buffer_per_cpu *cpu_buffer;
3102 unsigned long overruns = 0;
3103 int cpu;
3105 /* if you care about this being correct, lock the buffer */
3106 for_each_buffer_cpu(buffer, cpu) {
3107 cpu_buffer = buffer->buffers[cpu];
3108 overruns += local_read(&cpu_buffer->overrun);
3111 return overruns;
3113 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3115 static void rb_iter_reset(struct ring_buffer_iter *iter)
3117 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3119 /* Iterator usage is expected to have record disabled */
3120 if (list_empty(&cpu_buffer->reader_page->list)) {
3121 iter->head_page = rb_set_head_page(cpu_buffer);
3122 if (unlikely(!iter->head_page))
3123 return;
3124 iter->head = iter->head_page->read;
3125 } else {
3126 iter->head_page = cpu_buffer->reader_page;
3127 iter->head = cpu_buffer->reader_page->read;
3129 if (iter->head)
3130 iter->read_stamp = cpu_buffer->read_stamp;
3131 else
3132 iter->read_stamp = iter->head_page->page->time_stamp;
3133 iter->cache_reader_page = cpu_buffer->reader_page;
3134 iter->cache_read = cpu_buffer->read;
3138 * ring_buffer_iter_reset - reset an iterator
3139 * @iter: The iterator to reset
3141 * Resets the iterator, so that it will start from the beginning
3142 * again.
3144 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3146 struct ring_buffer_per_cpu *cpu_buffer;
3147 unsigned long flags;
3149 if (!iter)
3150 return;
3152 cpu_buffer = iter->cpu_buffer;
3154 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3155 rb_iter_reset(iter);
3156 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3158 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3161 * ring_buffer_iter_empty - check if an iterator has no more to read
3162 * @iter: The iterator to check
3164 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3166 struct ring_buffer_per_cpu *cpu_buffer;
3168 cpu_buffer = iter->cpu_buffer;
3170 return iter->head_page == cpu_buffer->commit_page &&
3171 iter->head == rb_commit_index(cpu_buffer);
3173 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3175 static void
3176 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3177 struct ring_buffer_event *event)
3179 u64 delta;
3181 switch (event->type_len) {
3182 case RINGBUF_TYPE_PADDING:
3183 return;
3185 case RINGBUF_TYPE_TIME_EXTEND:
3186 delta = event->array[0];
3187 delta <<= TS_SHIFT;
3188 delta += event->time_delta;
3189 cpu_buffer->read_stamp += delta;
3190 return;
3192 case RINGBUF_TYPE_TIME_STAMP:
3193 /* FIXME: not implemented */
3194 return;
3196 case RINGBUF_TYPE_DATA:
3197 cpu_buffer->read_stamp += event->time_delta;
3198 return;
3200 default:
3201 BUG();
3203 return;
3206 static void
3207 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3208 struct ring_buffer_event *event)
3210 u64 delta;
3212 switch (event->type_len) {
3213 case RINGBUF_TYPE_PADDING:
3214 return;
3216 case RINGBUF_TYPE_TIME_EXTEND:
3217 delta = event->array[0];
3218 delta <<= TS_SHIFT;
3219 delta += event->time_delta;
3220 iter->read_stamp += delta;
3221 return;
3223 case RINGBUF_TYPE_TIME_STAMP:
3224 /* FIXME: not implemented */
3225 return;
3227 case RINGBUF_TYPE_DATA:
3228 iter->read_stamp += event->time_delta;
3229 return;
3231 default:
3232 BUG();
3234 return;
3237 static struct buffer_page *
3238 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3240 struct buffer_page *reader = NULL;
3241 unsigned long overwrite;
3242 unsigned long flags;
3243 int nr_loops = 0;
3244 int ret;
3246 local_irq_save(flags);
3247 arch_spin_lock(&cpu_buffer->lock);
3249 again:
3251 * This should normally only loop twice. But because the
3252 * start of the reader inserts an empty page, it causes
3253 * a case where we will loop three times. There should be no
3254 * reason to loop four times (that I know of).
3256 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3257 reader = NULL;
3258 goto out;
3261 reader = cpu_buffer->reader_page;
3263 /* If there's more to read, return this page */
3264 if (cpu_buffer->reader_page->read < rb_page_size(reader))
3265 goto out;
3267 /* Never should we have an index greater than the size */
3268 if (RB_WARN_ON(cpu_buffer,
3269 cpu_buffer->reader_page->read > rb_page_size(reader)))
3270 goto out;
3272 /* check if we caught up to the tail */
3273 reader = NULL;
3274 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3275 goto out;
3277 /* Don't bother swapping if the ring buffer is empty */
3278 if (rb_num_of_entries(cpu_buffer) == 0)
3279 goto out;
3282 * Reset the reader page to size zero.
3284 local_set(&cpu_buffer->reader_page->write, 0);
3285 local_set(&cpu_buffer->reader_page->entries, 0);
3286 local_set(&cpu_buffer->reader_page->page->commit, 0);
3287 cpu_buffer->reader_page->real_end = 0;
3289 spin:
3291 * Splice the empty reader page into the list around the head.
3293 reader = rb_set_head_page(cpu_buffer);
3294 if (!reader)
3295 goto out;
3296 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3297 cpu_buffer->reader_page->list.prev = reader->list.prev;
3300 * cpu_buffer->pages just needs to point to the buffer, it
3301 * has no specific buffer page to point to. Lets move it out
3302 * of our way so we don't accidentally swap it.
3304 cpu_buffer->pages = reader->list.prev;
3306 /* The reader page will be pointing to the new head */
3307 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3310 * We want to make sure we read the overruns after we set up our
3311 * pointers to the next object. The writer side does a
3312 * cmpxchg to cross pages which acts as the mb on the writer
3313 * side. Note, the reader will constantly fail the swap
3314 * while the writer is updating the pointers, so this
3315 * guarantees that the overwrite recorded here is the one we
3316 * want to compare with the last_overrun.
3318 smp_mb();
3319 overwrite = local_read(&(cpu_buffer->overrun));
3322 * Here's the tricky part.
3324 * We need to move the pointer past the header page.
3325 * But we can only do that if a writer is not currently
3326 * moving it. The page before the header page has the
3327 * flag bit '1' set if it is pointing to the page we want.
3328 * but if the writer is in the process of moving it
3329 * than it will be '2' or already moved '0'.
3332 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3335 * If we did not convert it, then we must try again.
3337 if (!ret)
3338 goto spin;
3341 * Yeah! We succeeded in replacing the page.
3343 * Now make the new head point back to the reader page.
3345 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3346 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3348 /* Finally update the reader page to the new head */
3349 cpu_buffer->reader_page = reader;
3350 rb_reset_reader_page(cpu_buffer);
3352 if (overwrite != cpu_buffer->last_overrun) {
3353 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3354 cpu_buffer->last_overrun = overwrite;
3357 goto again;
3359 out:
3360 arch_spin_unlock(&cpu_buffer->lock);
3361 local_irq_restore(flags);
3363 return reader;
3366 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3368 struct ring_buffer_event *event;
3369 struct buffer_page *reader;
3370 unsigned length;
3372 reader = rb_get_reader_page(cpu_buffer);
3374 /* This function should not be called when buffer is empty */
3375 if (RB_WARN_ON(cpu_buffer, !reader))
3376 return;
3378 event = rb_reader_event(cpu_buffer);
3380 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3381 cpu_buffer->read++;
3383 rb_update_read_stamp(cpu_buffer, event);
3385 length = rb_event_length(event);
3386 cpu_buffer->reader_page->read += length;
3389 static void rb_advance_iter(struct ring_buffer_iter *iter)
3391 struct ring_buffer_per_cpu *cpu_buffer;
3392 struct ring_buffer_event *event;
3393 unsigned length;
3395 cpu_buffer = iter->cpu_buffer;
3398 * Check if we are at the end of the buffer.
3400 if (iter->head >= rb_page_size(iter->head_page)) {
3401 /* discarded commits can make the page empty */
3402 if (iter->head_page == cpu_buffer->commit_page)
3403 return;
3404 rb_inc_iter(iter);
3405 return;
3408 event = rb_iter_head_event(iter);
3410 length = rb_event_length(event);
3413 * This should not be called to advance the header if we are
3414 * at the tail of the buffer.
3416 if (RB_WARN_ON(cpu_buffer,
3417 (iter->head_page == cpu_buffer->commit_page) &&
3418 (iter->head + length > rb_commit_index(cpu_buffer))))
3419 return;
3421 rb_update_iter_read_stamp(iter, event);
3423 iter->head += length;
3425 /* check for end of page padding */
3426 if ((iter->head >= rb_page_size(iter->head_page)) &&
3427 (iter->head_page != cpu_buffer->commit_page))
3428 rb_advance_iter(iter);
3431 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3433 return cpu_buffer->lost_events;
3436 static struct ring_buffer_event *
3437 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3438 unsigned long *lost_events)
3440 struct ring_buffer_event *event;
3441 struct buffer_page *reader;
3442 int nr_loops = 0;
3444 again:
3446 * We repeat when a time extend is encountered.
3447 * Since the time extend is always attached to a data event,
3448 * we should never loop more than once.
3449 * (We never hit the following condition more than twice).
3451 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3452 return NULL;
3454 reader = rb_get_reader_page(cpu_buffer);
3455 if (!reader)
3456 return NULL;
3458 event = rb_reader_event(cpu_buffer);
3460 switch (event->type_len) {
3461 case RINGBUF_TYPE_PADDING:
3462 if (rb_null_event(event))
3463 RB_WARN_ON(cpu_buffer, 1);
3465 * Because the writer could be discarding every
3466 * event it creates (which would probably be bad)
3467 * if we were to go back to "again" then we may never
3468 * catch up, and will trigger the warn on, or lock
3469 * the box. Return the padding, and we will release
3470 * the current locks, and try again.
3472 return event;
3474 case RINGBUF_TYPE_TIME_EXTEND:
3475 /* Internal data, OK to advance */
3476 rb_advance_reader(cpu_buffer);
3477 goto again;
3479 case RINGBUF_TYPE_TIME_STAMP:
3480 /* FIXME: not implemented */
3481 rb_advance_reader(cpu_buffer);
3482 goto again;
3484 case RINGBUF_TYPE_DATA:
3485 if (ts) {
3486 *ts = cpu_buffer->read_stamp + event->time_delta;
3487 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3488 cpu_buffer->cpu, ts);
3490 if (lost_events)
3491 *lost_events = rb_lost_events(cpu_buffer);
3492 return event;
3494 default:
3495 BUG();
3498 return NULL;
3500 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3502 static struct ring_buffer_event *
3503 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3505 struct ring_buffer *buffer;
3506 struct ring_buffer_per_cpu *cpu_buffer;
3507 struct ring_buffer_event *event;
3508 int nr_loops = 0;
3510 cpu_buffer = iter->cpu_buffer;
3511 buffer = cpu_buffer->buffer;
3514 * Check if someone performed a consuming read to
3515 * the buffer. A consuming read invalidates the iterator
3516 * and we need to reset the iterator in this case.
3518 if (unlikely(iter->cache_read != cpu_buffer->read ||
3519 iter->cache_reader_page != cpu_buffer->reader_page))
3520 rb_iter_reset(iter);
3522 again:
3523 if (ring_buffer_iter_empty(iter))
3524 return NULL;
3527 * We repeat when a time extend is encountered.
3528 * Since the time extend is always attached to a data event,
3529 * we should never loop more than once.
3530 * (We never hit the following condition more than twice).
3532 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3533 return NULL;
3535 if (rb_per_cpu_empty(cpu_buffer))
3536 return NULL;
3538 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3539 rb_inc_iter(iter);
3540 goto again;
3543 event = rb_iter_head_event(iter);
3545 switch (event->type_len) {
3546 case RINGBUF_TYPE_PADDING:
3547 if (rb_null_event(event)) {
3548 rb_inc_iter(iter);
3549 goto again;
3551 rb_advance_iter(iter);
3552 return event;
3554 case RINGBUF_TYPE_TIME_EXTEND:
3555 /* Internal data, OK to advance */
3556 rb_advance_iter(iter);
3557 goto again;
3559 case RINGBUF_TYPE_TIME_STAMP:
3560 /* FIXME: not implemented */
3561 rb_advance_iter(iter);
3562 goto again;
3564 case RINGBUF_TYPE_DATA:
3565 if (ts) {
3566 *ts = iter->read_stamp + event->time_delta;
3567 ring_buffer_normalize_time_stamp(buffer,
3568 cpu_buffer->cpu, ts);
3570 return event;
3572 default:
3573 BUG();
3576 return NULL;
3578 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3580 static inline int rb_ok_to_lock(void)
3583 * If an NMI die dumps out the content of the ring buffer
3584 * do not grab locks. We also permanently disable the ring
3585 * buffer too. A one time deal is all you get from reading
3586 * the ring buffer from an NMI.
3588 if (likely(!in_nmi()))
3589 return 1;
3591 tracing_off_permanent();
3592 return 0;
3596 * ring_buffer_peek - peek at the next event to be read
3597 * @buffer: The ring buffer to read
3598 * @cpu: The cpu to peak at
3599 * @ts: The timestamp counter of this event.
3600 * @lost_events: a variable to store if events were lost (may be NULL)
3602 * This will return the event that will be read next, but does
3603 * not consume the data.
3605 struct ring_buffer_event *
3606 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3607 unsigned long *lost_events)
3609 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3610 struct ring_buffer_event *event;
3611 unsigned long flags;
3612 int dolock;
3614 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3615 return NULL;
3617 dolock = rb_ok_to_lock();
3618 again:
3619 local_irq_save(flags);
3620 if (dolock)
3621 raw_spin_lock(&cpu_buffer->reader_lock);
3622 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3623 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3624 rb_advance_reader(cpu_buffer);
3625 if (dolock)
3626 raw_spin_unlock(&cpu_buffer->reader_lock);
3627 local_irq_restore(flags);
3629 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3630 goto again;
3632 return event;
3636 * ring_buffer_iter_peek - peek at the next event to be read
3637 * @iter: The ring buffer iterator
3638 * @ts: The timestamp counter of this event.
3640 * This will return the event that will be read next, but does
3641 * not increment the iterator.
3643 struct ring_buffer_event *
3644 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3646 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3647 struct ring_buffer_event *event;
3648 unsigned long flags;
3650 again:
3651 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3652 event = rb_iter_peek(iter, ts);
3653 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3655 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3656 goto again;
3658 return event;
3662 * ring_buffer_consume - return an event and consume it
3663 * @buffer: The ring buffer to get the next event from
3664 * @cpu: the cpu to read the buffer from
3665 * @ts: a variable to store the timestamp (may be NULL)
3666 * @lost_events: a variable to store if events were lost (may be NULL)
3668 * Returns the next event in the ring buffer, and that event is consumed.
3669 * Meaning, that sequential reads will keep returning a different event,
3670 * and eventually empty the ring buffer if the producer is slower.
3672 struct ring_buffer_event *
3673 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3674 unsigned long *lost_events)
3676 struct ring_buffer_per_cpu *cpu_buffer;
3677 struct ring_buffer_event *event = NULL;
3678 unsigned long flags;
3679 int dolock;
3681 dolock = rb_ok_to_lock();
3683 again:
3684 /* might be called in atomic */
3685 preempt_disable();
3687 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3688 goto out;
3690 cpu_buffer = buffer->buffers[cpu];
3691 local_irq_save(flags);
3692 if (dolock)
3693 raw_spin_lock(&cpu_buffer->reader_lock);
3695 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3696 if (event) {
3697 cpu_buffer->lost_events = 0;
3698 rb_advance_reader(cpu_buffer);
3701 if (dolock)
3702 raw_spin_unlock(&cpu_buffer->reader_lock);
3703 local_irq_restore(flags);
3705 out:
3706 preempt_enable();
3708 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3709 goto again;
3711 return event;
3713 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3716 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3717 * @buffer: The ring buffer to read from
3718 * @cpu: The cpu buffer to iterate over
3720 * This performs the initial preparations necessary to iterate
3721 * through the buffer. Memory is allocated, buffer recording
3722 * is disabled, and the iterator pointer is returned to the caller.
3724 * Disabling buffer recordng prevents the reading from being
3725 * corrupted. This is not a consuming read, so a producer is not
3726 * expected.
3728 * After a sequence of ring_buffer_read_prepare calls, the user is
3729 * expected to make at least one call to ring_buffer_prepare_sync.
3730 * Afterwards, ring_buffer_read_start is invoked to get things going
3731 * for real.
3733 * This overall must be paired with ring_buffer_finish.
3735 struct ring_buffer_iter *
3736 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3738 struct ring_buffer_per_cpu *cpu_buffer;
3739 struct ring_buffer_iter *iter;
3741 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3742 return NULL;
3744 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3745 if (!iter)
3746 return NULL;
3748 cpu_buffer = buffer->buffers[cpu];
3750 iter->cpu_buffer = cpu_buffer;
3752 atomic_inc(&buffer->resize_disabled);
3753 atomic_inc(&cpu_buffer->record_disabled);
3755 return iter;
3757 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3760 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3762 * All previously invoked ring_buffer_read_prepare calls to prepare
3763 * iterators will be synchronized. Afterwards, read_buffer_read_start
3764 * calls on those iterators are allowed.
3766 void
3767 ring_buffer_read_prepare_sync(void)
3769 synchronize_sched();
3771 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3774 * ring_buffer_read_start - start a non consuming read of the buffer
3775 * @iter: The iterator returned by ring_buffer_read_prepare
3777 * This finalizes the startup of an iteration through the buffer.
3778 * The iterator comes from a call to ring_buffer_read_prepare and
3779 * an intervening ring_buffer_read_prepare_sync must have been
3780 * performed.
3782 * Must be paired with ring_buffer_finish.
3784 void
3785 ring_buffer_read_start(struct ring_buffer_iter *iter)
3787 struct ring_buffer_per_cpu *cpu_buffer;
3788 unsigned long flags;
3790 if (!iter)
3791 return;
3793 cpu_buffer = iter->cpu_buffer;
3795 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3796 arch_spin_lock(&cpu_buffer->lock);
3797 rb_iter_reset(iter);
3798 arch_spin_unlock(&cpu_buffer->lock);
3799 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3801 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3804 * ring_buffer_finish - finish reading the iterator of the buffer
3805 * @iter: The iterator retrieved by ring_buffer_start
3807 * This re-enables the recording to the buffer, and frees the
3808 * iterator.
3810 void
3811 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3813 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3814 unsigned long flags;
3817 * Ring buffer is disabled from recording, here's a good place
3818 * to check the integrity of the ring buffer.
3819 * Must prevent readers from trying to read, as the check
3820 * clears the HEAD page and readers require it.
3822 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3823 rb_check_pages(cpu_buffer);
3824 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3826 atomic_dec(&cpu_buffer->record_disabled);
3827 atomic_dec(&cpu_buffer->buffer->resize_disabled);
3828 kfree(iter);
3830 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3833 * ring_buffer_read - read the next item in the ring buffer by the iterator
3834 * @iter: The ring buffer iterator
3835 * @ts: The time stamp of the event read.
3837 * This reads the next event in the ring buffer and increments the iterator.
3839 struct ring_buffer_event *
3840 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3842 struct ring_buffer_event *event;
3843 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3844 unsigned long flags;
3846 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3847 again:
3848 event = rb_iter_peek(iter, ts);
3849 if (!event)
3850 goto out;
3852 if (event->type_len == RINGBUF_TYPE_PADDING)
3853 goto again;
3855 rb_advance_iter(iter);
3856 out:
3857 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3859 return event;
3861 EXPORT_SYMBOL_GPL(ring_buffer_read);
3864 * ring_buffer_size - return the size of the ring buffer (in bytes)
3865 * @buffer: The ring buffer.
3867 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
3870 * Earlier, this method returned
3871 * BUF_PAGE_SIZE * buffer->nr_pages
3872 * Since the nr_pages field is now removed, we have converted this to
3873 * return the per cpu buffer value.
3875 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3876 return 0;
3878 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
3880 EXPORT_SYMBOL_GPL(ring_buffer_size);
3882 static void
3883 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3885 rb_head_page_deactivate(cpu_buffer);
3887 cpu_buffer->head_page
3888 = list_entry(cpu_buffer->pages, struct buffer_page, list);
3889 local_set(&cpu_buffer->head_page->write, 0);
3890 local_set(&cpu_buffer->head_page->entries, 0);
3891 local_set(&cpu_buffer->head_page->page->commit, 0);
3893 cpu_buffer->head_page->read = 0;
3895 cpu_buffer->tail_page = cpu_buffer->head_page;
3896 cpu_buffer->commit_page = cpu_buffer->head_page;
3898 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3899 INIT_LIST_HEAD(&cpu_buffer->new_pages);
3900 local_set(&cpu_buffer->reader_page->write, 0);
3901 local_set(&cpu_buffer->reader_page->entries, 0);
3902 local_set(&cpu_buffer->reader_page->page->commit, 0);
3903 cpu_buffer->reader_page->read = 0;
3905 local_set(&cpu_buffer->entries_bytes, 0);
3906 local_set(&cpu_buffer->overrun, 0);
3907 local_set(&cpu_buffer->commit_overrun, 0);
3908 local_set(&cpu_buffer->dropped_events, 0);
3909 local_set(&cpu_buffer->entries, 0);
3910 local_set(&cpu_buffer->committing, 0);
3911 local_set(&cpu_buffer->commits, 0);
3912 cpu_buffer->read = 0;
3913 cpu_buffer->read_bytes = 0;
3915 cpu_buffer->write_stamp = 0;
3916 cpu_buffer->read_stamp = 0;
3918 cpu_buffer->lost_events = 0;
3919 cpu_buffer->last_overrun = 0;
3921 rb_head_page_activate(cpu_buffer);
3925 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3926 * @buffer: The ring buffer to reset a per cpu buffer of
3927 * @cpu: The CPU buffer to be reset
3929 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3931 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3932 unsigned long flags;
3934 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3935 return;
3937 atomic_inc(&buffer->resize_disabled);
3938 atomic_inc(&cpu_buffer->record_disabled);
3940 /* Make sure all commits have finished */
3941 synchronize_sched();
3943 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3945 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3946 goto out;
3948 arch_spin_lock(&cpu_buffer->lock);
3950 rb_reset_cpu(cpu_buffer);
3952 arch_spin_unlock(&cpu_buffer->lock);
3954 out:
3955 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3957 atomic_dec(&cpu_buffer->record_disabled);
3958 atomic_dec(&buffer->resize_disabled);
3960 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3963 * ring_buffer_reset - reset a ring buffer
3964 * @buffer: The ring buffer to reset all cpu buffers
3966 void ring_buffer_reset(struct ring_buffer *buffer)
3968 int cpu;
3970 for_each_buffer_cpu(buffer, cpu)
3971 ring_buffer_reset_cpu(buffer, cpu);
3973 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3976 * rind_buffer_empty - is the ring buffer empty?
3977 * @buffer: The ring buffer to test
3979 int ring_buffer_empty(struct ring_buffer *buffer)
3981 struct ring_buffer_per_cpu *cpu_buffer;
3982 unsigned long flags;
3983 int dolock;
3984 int cpu;
3985 int ret;
3987 dolock = rb_ok_to_lock();
3989 /* yes this is racy, but if you don't like the race, lock the buffer */
3990 for_each_buffer_cpu(buffer, cpu) {
3991 cpu_buffer = buffer->buffers[cpu];
3992 local_irq_save(flags);
3993 if (dolock)
3994 raw_spin_lock(&cpu_buffer->reader_lock);
3995 ret = rb_per_cpu_empty(cpu_buffer);
3996 if (dolock)
3997 raw_spin_unlock(&cpu_buffer->reader_lock);
3998 local_irq_restore(flags);
4000 if (!ret)
4001 return 0;
4004 return 1;
4006 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4009 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4010 * @buffer: The ring buffer
4011 * @cpu: The CPU buffer to test
4013 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4015 struct ring_buffer_per_cpu *cpu_buffer;
4016 unsigned long flags;
4017 int dolock;
4018 int ret;
4020 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4021 return 1;
4023 dolock = rb_ok_to_lock();
4025 cpu_buffer = buffer->buffers[cpu];
4026 local_irq_save(flags);
4027 if (dolock)
4028 raw_spin_lock(&cpu_buffer->reader_lock);
4029 ret = rb_per_cpu_empty(cpu_buffer);
4030 if (dolock)
4031 raw_spin_unlock(&cpu_buffer->reader_lock);
4032 local_irq_restore(flags);
4034 return ret;
4036 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4038 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4040 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4041 * @buffer_a: One buffer to swap with
4042 * @buffer_b: The other buffer to swap with
4044 * This function is useful for tracers that want to take a "snapshot"
4045 * of a CPU buffer and has another back up buffer lying around.
4046 * it is expected that the tracer handles the cpu buffer not being
4047 * used at the moment.
4049 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4050 struct ring_buffer *buffer_b, int cpu)
4052 struct ring_buffer_per_cpu *cpu_buffer_a;
4053 struct ring_buffer_per_cpu *cpu_buffer_b;
4054 int ret = -EINVAL;
4056 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4057 !cpumask_test_cpu(cpu, buffer_b->cpumask))
4058 goto out;
4060 cpu_buffer_a = buffer_a->buffers[cpu];
4061 cpu_buffer_b = buffer_b->buffers[cpu];
4063 /* At least make sure the two buffers are somewhat the same */
4064 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4065 goto out;
4067 ret = -EAGAIN;
4069 if (ring_buffer_flags != RB_BUFFERS_ON)
4070 goto out;
4072 if (atomic_read(&buffer_a->record_disabled))
4073 goto out;
4075 if (atomic_read(&buffer_b->record_disabled))
4076 goto out;
4078 if (atomic_read(&cpu_buffer_a->record_disabled))
4079 goto out;
4081 if (atomic_read(&cpu_buffer_b->record_disabled))
4082 goto out;
4085 * We can't do a synchronize_sched here because this
4086 * function can be called in atomic context.
4087 * Normally this will be called from the same CPU as cpu.
4088 * If not it's up to the caller to protect this.
4090 atomic_inc(&cpu_buffer_a->record_disabled);
4091 atomic_inc(&cpu_buffer_b->record_disabled);
4093 ret = -EBUSY;
4094 if (local_read(&cpu_buffer_a->committing))
4095 goto out_dec;
4096 if (local_read(&cpu_buffer_b->committing))
4097 goto out_dec;
4099 buffer_a->buffers[cpu] = cpu_buffer_b;
4100 buffer_b->buffers[cpu] = cpu_buffer_a;
4102 cpu_buffer_b->buffer = buffer_a;
4103 cpu_buffer_a->buffer = buffer_b;
4105 ret = 0;
4107 out_dec:
4108 atomic_dec(&cpu_buffer_a->record_disabled);
4109 atomic_dec(&cpu_buffer_b->record_disabled);
4110 out:
4111 return ret;
4113 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4114 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4117 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4118 * @buffer: the buffer to allocate for.
4120 * This function is used in conjunction with ring_buffer_read_page.
4121 * When reading a full page from the ring buffer, these functions
4122 * can be used to speed up the process. The calling function should
4123 * allocate a few pages first with this function. Then when it
4124 * needs to get pages from the ring buffer, it passes the result
4125 * of this function into ring_buffer_read_page, which will swap
4126 * the page that was allocated, with the read page of the buffer.
4128 * Returns:
4129 * The page allocated, or NULL on error.
4131 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4133 struct buffer_data_page *bpage;
4134 struct page *page;
4136 page = alloc_pages_node(cpu_to_node(cpu),
4137 GFP_KERNEL | __GFP_NORETRY, 0);
4138 if (!page)
4139 return NULL;
4141 bpage = page_address(page);
4143 rb_init_page(bpage);
4145 return bpage;
4147 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4150 * ring_buffer_free_read_page - free an allocated read page
4151 * @buffer: the buffer the page was allocate for
4152 * @data: the page to free
4154 * Free a page allocated from ring_buffer_alloc_read_page.
4156 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4158 free_page((unsigned long)data);
4160 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4163 * ring_buffer_read_page - extract a page from the ring buffer
4164 * @buffer: buffer to extract from
4165 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4166 * @len: amount to extract
4167 * @cpu: the cpu of the buffer to extract
4168 * @full: should the extraction only happen when the page is full.
4170 * This function will pull out a page from the ring buffer and consume it.
4171 * @data_page must be the address of the variable that was returned
4172 * from ring_buffer_alloc_read_page. This is because the page might be used
4173 * to swap with a page in the ring buffer.
4175 * for example:
4176 * rpage = ring_buffer_alloc_read_page(buffer);
4177 * if (!rpage)
4178 * return error;
4179 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4180 * if (ret >= 0)
4181 * process_page(rpage, ret);
4183 * When @full is set, the function will not return true unless
4184 * the writer is off the reader page.
4186 * Note: it is up to the calling functions to handle sleeps and wakeups.
4187 * The ring buffer can be used anywhere in the kernel and can not
4188 * blindly call wake_up. The layer that uses the ring buffer must be
4189 * responsible for that.
4191 * Returns:
4192 * >=0 if data has been transferred, returns the offset of consumed data.
4193 * <0 if no data has been transferred.
4195 int ring_buffer_read_page(struct ring_buffer *buffer,
4196 void **data_page, size_t len, int cpu, int full)
4198 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4199 struct ring_buffer_event *event;
4200 struct buffer_data_page *bpage;
4201 struct buffer_page *reader;
4202 unsigned long missed_events;
4203 unsigned long flags;
4204 unsigned int commit;
4205 unsigned int read;
4206 u64 save_timestamp;
4207 int ret = -1;
4209 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4210 goto out;
4213 * If len is not big enough to hold the page header, then
4214 * we can not copy anything.
4216 if (len <= BUF_PAGE_HDR_SIZE)
4217 goto out;
4219 len -= BUF_PAGE_HDR_SIZE;
4221 if (!data_page)
4222 goto out;
4224 bpage = *data_page;
4225 if (!bpage)
4226 goto out;
4228 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4230 reader = rb_get_reader_page(cpu_buffer);
4231 if (!reader)
4232 goto out_unlock;
4234 event = rb_reader_event(cpu_buffer);
4236 read = reader->read;
4237 commit = rb_page_commit(reader);
4239 /* Check if any events were dropped */
4240 missed_events = cpu_buffer->lost_events;
4243 * If this page has been partially read or
4244 * if len is not big enough to read the rest of the page or
4245 * a writer is still on the page, then
4246 * we must copy the data from the page to the buffer.
4247 * Otherwise, we can simply swap the page with the one passed in.
4249 if (read || (len < (commit - read)) ||
4250 cpu_buffer->reader_page == cpu_buffer->commit_page) {
4251 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4252 unsigned int rpos = read;
4253 unsigned int pos = 0;
4254 unsigned int size;
4256 if (full)
4257 goto out_unlock;
4259 if (len > (commit - read))
4260 len = (commit - read);
4262 /* Always keep the time extend and data together */
4263 size = rb_event_ts_length(event);
4265 if (len < size)
4266 goto out_unlock;
4268 /* save the current timestamp, since the user will need it */
4269 save_timestamp = cpu_buffer->read_stamp;
4271 /* Need to copy one event at a time */
4272 do {
4273 /* We need the size of one event, because
4274 * rb_advance_reader only advances by one event,
4275 * whereas rb_event_ts_length may include the size of
4276 * one or two events.
4277 * We have already ensured there's enough space if this
4278 * is a time extend. */
4279 size = rb_event_length(event);
4280 memcpy(bpage->data + pos, rpage->data + rpos, size);
4282 len -= size;
4284 rb_advance_reader(cpu_buffer);
4285 rpos = reader->read;
4286 pos += size;
4288 if (rpos >= commit)
4289 break;
4291 event = rb_reader_event(cpu_buffer);
4292 /* Always keep the time extend and data together */
4293 size = rb_event_ts_length(event);
4294 } while (len >= size);
4296 /* update bpage */
4297 local_set(&bpage->commit, pos);
4298 bpage->time_stamp = save_timestamp;
4300 /* we copied everything to the beginning */
4301 read = 0;
4302 } else {
4303 /* update the entry counter */
4304 cpu_buffer->read += rb_page_entries(reader);
4305 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4307 /* swap the pages */
4308 rb_init_page(bpage);
4309 bpage = reader->page;
4310 reader->page = *data_page;
4311 local_set(&reader->write, 0);
4312 local_set(&reader->entries, 0);
4313 reader->read = 0;
4314 *data_page = bpage;
4317 * Use the real_end for the data size,
4318 * This gives us a chance to store the lost events
4319 * on the page.
4321 if (reader->real_end)
4322 local_set(&bpage->commit, reader->real_end);
4324 ret = read;
4326 cpu_buffer->lost_events = 0;
4328 commit = local_read(&bpage->commit);
4330 * Set a flag in the commit field if we lost events
4332 if (missed_events) {
4333 /* If there is room at the end of the page to save the
4334 * missed events, then record it there.
4336 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4337 memcpy(&bpage->data[commit], &missed_events,
4338 sizeof(missed_events));
4339 local_add(RB_MISSED_STORED, &bpage->commit);
4340 commit += sizeof(missed_events);
4342 local_add(RB_MISSED_EVENTS, &bpage->commit);
4346 * This page may be off to user land. Zero it out here.
4348 if (commit < BUF_PAGE_SIZE)
4349 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4351 out_unlock:
4352 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4354 out:
4355 return ret;
4357 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4359 #ifdef CONFIG_HOTPLUG_CPU
4360 static int rb_cpu_notify(struct notifier_block *self,
4361 unsigned long action, void *hcpu)
4363 struct ring_buffer *buffer =
4364 container_of(self, struct ring_buffer, cpu_notify);
4365 long cpu = (long)hcpu;
4366 int cpu_i, nr_pages_same;
4367 unsigned int nr_pages;
4369 switch (action) {
4370 case CPU_UP_PREPARE:
4371 case CPU_UP_PREPARE_FROZEN:
4372 if (cpumask_test_cpu(cpu, buffer->cpumask))
4373 return NOTIFY_OK;
4375 nr_pages = 0;
4376 nr_pages_same = 1;
4377 /* check if all cpu sizes are same */
4378 for_each_buffer_cpu(buffer, cpu_i) {
4379 /* fill in the size from first enabled cpu */
4380 if (nr_pages == 0)
4381 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4382 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4383 nr_pages_same = 0;
4384 break;
4387 /* allocate minimum pages, user can later expand it */
4388 if (!nr_pages_same)
4389 nr_pages = 2;
4390 buffer->buffers[cpu] =
4391 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4392 if (!buffer->buffers[cpu]) {
4393 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4394 cpu);
4395 return NOTIFY_OK;
4397 smp_wmb();
4398 cpumask_set_cpu(cpu, buffer->cpumask);
4399 break;
4400 case CPU_DOWN_PREPARE:
4401 case CPU_DOWN_PREPARE_FROZEN:
4403 * Do nothing.
4404 * If we were to free the buffer, then the user would
4405 * lose any trace that was in the buffer.
4407 break;
4408 default:
4409 break;
4411 return NOTIFY_OK;
4413 #endif