stmmac: fix platform driver unregistering
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / posix-cpu-timers.c
blobd73840271dcee993936b48cc9e7f7d5f66a5c546
1 /*
2 * Implement CPU time clocks for the POSIX clock interface.
3 */
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
14 * Called after updating RLIMIT_CPU to run cpu timer and update
15 * tsk->signal->cputime_expires expiration cache if necessary. Needs
16 * siglock protection since other code may update expiration cache as
17 * well.
19 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
21 cputime_t cputime = secs_to_cputime(rlim_new);
23 spin_lock_irq(&task->sighand->siglock);
24 set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
25 spin_unlock_irq(&task->sighand->siglock);
28 static int check_clock(const clockid_t which_clock)
30 int error = 0;
31 struct task_struct *p;
32 const pid_t pid = CPUCLOCK_PID(which_clock);
34 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
35 return -EINVAL;
37 if (pid == 0)
38 return 0;
40 rcu_read_lock();
41 p = find_task_by_vpid(pid);
42 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
43 same_thread_group(p, current) : has_group_leader_pid(p))) {
44 error = -EINVAL;
46 rcu_read_unlock();
48 return error;
51 static inline union cpu_time_count
52 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
54 union cpu_time_count ret;
55 ret.sched = 0; /* high half always zero when .cpu used */
56 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
57 ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
58 } else {
59 ret.cpu = timespec_to_cputime(tp);
61 return ret;
64 static void sample_to_timespec(const clockid_t which_clock,
65 union cpu_time_count cpu,
66 struct timespec *tp)
68 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
69 *tp = ns_to_timespec(cpu.sched);
70 else
71 cputime_to_timespec(cpu.cpu, tp);
74 static inline int cpu_time_before(const clockid_t which_clock,
75 union cpu_time_count now,
76 union cpu_time_count then)
78 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
79 return now.sched < then.sched;
80 } else {
81 return now.cpu < then.cpu;
84 static inline void cpu_time_add(const clockid_t which_clock,
85 union cpu_time_count *acc,
86 union cpu_time_count val)
88 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
89 acc->sched += val.sched;
90 } else {
91 acc->cpu += val.cpu;
94 static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
95 union cpu_time_count a,
96 union cpu_time_count b)
98 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
99 a.sched -= b.sched;
100 } else {
101 a.cpu -= b.cpu;
103 return a;
107 * Update expiry time from increment, and increase overrun count,
108 * given the current clock sample.
110 static void bump_cpu_timer(struct k_itimer *timer,
111 union cpu_time_count now)
113 int i;
115 if (timer->it.cpu.incr.sched == 0)
116 return;
118 if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
119 unsigned long long delta, incr;
121 if (now.sched < timer->it.cpu.expires.sched)
122 return;
123 incr = timer->it.cpu.incr.sched;
124 delta = now.sched + incr - timer->it.cpu.expires.sched;
125 /* Don't use (incr*2 < delta), incr*2 might overflow. */
126 for (i = 0; incr < delta - incr; i++)
127 incr = incr << 1;
128 for (; i >= 0; incr >>= 1, i--) {
129 if (delta < incr)
130 continue;
131 timer->it.cpu.expires.sched += incr;
132 timer->it_overrun += 1 << i;
133 delta -= incr;
135 } else {
136 cputime_t delta, incr;
138 if (now.cpu < timer->it.cpu.expires.cpu)
139 return;
140 incr = timer->it.cpu.incr.cpu;
141 delta = now.cpu + incr - timer->it.cpu.expires.cpu;
142 /* Don't use (incr*2 < delta), incr*2 might overflow. */
143 for (i = 0; incr < delta - incr; i++)
144 incr += incr;
145 for (; i >= 0; incr = incr >> 1, i--) {
146 if (delta < incr)
147 continue;
148 timer->it.cpu.expires.cpu += incr;
149 timer->it_overrun += 1 << i;
150 delta -= incr;
155 static inline cputime_t prof_ticks(struct task_struct *p)
157 return p->utime + p->stime;
159 static inline cputime_t virt_ticks(struct task_struct *p)
161 return p->utime;
164 static int
165 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
167 int error = check_clock(which_clock);
168 if (!error) {
169 tp->tv_sec = 0;
170 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
171 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
173 * If sched_clock is using a cycle counter, we
174 * don't have any idea of its true resolution
175 * exported, but it is much more than 1s/HZ.
177 tp->tv_nsec = 1;
180 return error;
183 static int
184 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
187 * You can never reset a CPU clock, but we check for other errors
188 * in the call before failing with EPERM.
190 int error = check_clock(which_clock);
191 if (error == 0) {
192 error = -EPERM;
194 return error;
199 * Sample a per-thread clock for the given task.
201 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
202 union cpu_time_count *cpu)
204 switch (CPUCLOCK_WHICH(which_clock)) {
205 default:
206 return -EINVAL;
207 case CPUCLOCK_PROF:
208 cpu->cpu = prof_ticks(p);
209 break;
210 case CPUCLOCK_VIRT:
211 cpu->cpu = virt_ticks(p);
212 break;
213 case CPUCLOCK_SCHED:
214 cpu->sched = task_sched_runtime(p);
215 break;
217 return 0;
220 static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
222 if (b->utime > a->utime)
223 a->utime = b->utime;
225 if (b->stime > a->stime)
226 a->stime = b->stime;
228 if (b->sum_exec_runtime > a->sum_exec_runtime)
229 a->sum_exec_runtime = b->sum_exec_runtime;
232 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
234 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
235 struct task_cputime sum;
236 unsigned long flags;
238 if (!cputimer->running) {
240 * The POSIX timer interface allows for absolute time expiry
241 * values through the TIMER_ABSTIME flag, therefore we have
242 * to synchronize the timer to the clock every time we start
243 * it.
245 thread_group_cputime(tsk, &sum);
246 raw_spin_lock_irqsave(&cputimer->lock, flags);
247 cputimer->running = 1;
248 update_gt_cputime(&cputimer->cputime, &sum);
249 } else
250 raw_spin_lock_irqsave(&cputimer->lock, flags);
251 *times = cputimer->cputime;
252 raw_spin_unlock_irqrestore(&cputimer->lock, flags);
256 * Sample a process (thread group) clock for the given group_leader task.
257 * Must be called with tasklist_lock held for reading.
259 static int cpu_clock_sample_group(const clockid_t which_clock,
260 struct task_struct *p,
261 union cpu_time_count *cpu)
263 struct task_cputime cputime;
265 switch (CPUCLOCK_WHICH(which_clock)) {
266 default:
267 return -EINVAL;
268 case CPUCLOCK_PROF:
269 thread_group_cputime(p, &cputime);
270 cpu->cpu = cputime.utime + cputime.stime;
271 break;
272 case CPUCLOCK_VIRT:
273 thread_group_cputime(p, &cputime);
274 cpu->cpu = cputime.utime;
275 break;
276 case CPUCLOCK_SCHED:
277 thread_group_cputime(p, &cputime);
278 cpu->sched = cputime.sum_exec_runtime;
279 break;
281 return 0;
285 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
287 const pid_t pid = CPUCLOCK_PID(which_clock);
288 int error = -EINVAL;
289 union cpu_time_count rtn;
291 if (pid == 0) {
293 * Special case constant value for our own clocks.
294 * We don't have to do any lookup to find ourselves.
296 if (CPUCLOCK_PERTHREAD(which_clock)) {
298 * Sampling just ourselves we can do with no locking.
300 error = cpu_clock_sample(which_clock,
301 current, &rtn);
302 } else {
303 read_lock(&tasklist_lock);
304 error = cpu_clock_sample_group(which_clock,
305 current, &rtn);
306 read_unlock(&tasklist_lock);
308 } else {
310 * Find the given PID, and validate that the caller
311 * should be able to see it.
313 struct task_struct *p;
314 rcu_read_lock();
315 p = find_task_by_vpid(pid);
316 if (p) {
317 if (CPUCLOCK_PERTHREAD(which_clock)) {
318 if (same_thread_group(p, current)) {
319 error = cpu_clock_sample(which_clock,
320 p, &rtn);
322 } else {
323 read_lock(&tasklist_lock);
324 if (thread_group_leader(p) && p->sighand) {
325 error =
326 cpu_clock_sample_group(which_clock,
327 p, &rtn);
329 read_unlock(&tasklist_lock);
332 rcu_read_unlock();
335 if (error)
336 return error;
337 sample_to_timespec(which_clock, rtn, tp);
338 return 0;
343 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
344 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
345 * new timer already all-zeros initialized.
347 static int posix_cpu_timer_create(struct k_itimer *new_timer)
349 int ret = 0;
350 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
351 struct task_struct *p;
353 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
354 return -EINVAL;
356 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
358 rcu_read_lock();
359 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
360 if (pid == 0) {
361 p = current;
362 } else {
363 p = find_task_by_vpid(pid);
364 if (p && !same_thread_group(p, current))
365 p = NULL;
367 } else {
368 if (pid == 0) {
369 p = current->group_leader;
370 } else {
371 p = find_task_by_vpid(pid);
372 if (p && !has_group_leader_pid(p))
373 p = NULL;
376 new_timer->it.cpu.task = p;
377 if (p) {
378 get_task_struct(p);
379 } else {
380 ret = -EINVAL;
382 rcu_read_unlock();
384 return ret;
388 * Clean up a CPU-clock timer that is about to be destroyed.
389 * This is called from timer deletion with the timer already locked.
390 * If we return TIMER_RETRY, it's necessary to release the timer's lock
391 * and try again. (This happens when the timer is in the middle of firing.)
393 static int posix_cpu_timer_del(struct k_itimer *timer)
395 struct task_struct *p = timer->it.cpu.task;
396 int ret = 0;
398 if (likely(p != NULL)) {
399 read_lock(&tasklist_lock);
400 if (unlikely(p->sighand == NULL)) {
402 * We raced with the reaping of the task.
403 * The deletion should have cleared us off the list.
405 BUG_ON(!list_empty(&timer->it.cpu.entry));
406 } else {
407 spin_lock(&p->sighand->siglock);
408 if (timer->it.cpu.firing)
409 ret = TIMER_RETRY;
410 else
411 list_del(&timer->it.cpu.entry);
412 spin_unlock(&p->sighand->siglock);
414 read_unlock(&tasklist_lock);
416 if (!ret)
417 put_task_struct(p);
420 return ret;
424 * Clean out CPU timers still ticking when a thread exited. The task
425 * pointer is cleared, and the expiry time is replaced with the residual
426 * time for later timer_gettime calls to return.
427 * This must be called with the siglock held.
429 static void cleanup_timers(struct list_head *head,
430 cputime_t utime, cputime_t stime,
431 unsigned long long sum_exec_runtime)
433 struct cpu_timer_list *timer, *next;
434 cputime_t ptime = utime + stime;
436 list_for_each_entry_safe(timer, next, head, entry) {
437 list_del_init(&timer->entry);
438 if (timer->expires.cpu < ptime) {
439 timer->expires.cpu = 0;
440 } else {
441 timer->expires.cpu -= ptime;
445 ++head;
446 list_for_each_entry_safe(timer, next, head, entry) {
447 list_del_init(&timer->entry);
448 if (timer->expires.cpu < utime) {
449 timer->expires.cpu = 0;
450 } else {
451 timer->expires.cpu -= utime;
455 ++head;
456 list_for_each_entry_safe(timer, next, head, entry) {
457 list_del_init(&timer->entry);
458 if (timer->expires.sched < sum_exec_runtime) {
459 timer->expires.sched = 0;
460 } else {
461 timer->expires.sched -= sum_exec_runtime;
467 * These are both called with the siglock held, when the current thread
468 * is being reaped. When the final (leader) thread in the group is reaped,
469 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
471 void posix_cpu_timers_exit(struct task_struct *tsk)
473 cleanup_timers(tsk->cpu_timers,
474 tsk->utime, tsk->stime, tsk->se.sum_exec_runtime);
477 void posix_cpu_timers_exit_group(struct task_struct *tsk)
479 struct signal_struct *const sig = tsk->signal;
481 cleanup_timers(tsk->signal->cpu_timers,
482 tsk->utime + sig->utime, tsk->stime + sig->stime,
483 tsk->se.sum_exec_runtime + sig->sum_sched_runtime);
486 static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
489 * That's all for this thread or process.
490 * We leave our residual in expires to be reported.
492 put_task_struct(timer->it.cpu.task);
493 timer->it.cpu.task = NULL;
494 timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
495 timer->it.cpu.expires,
496 now);
499 static inline int expires_gt(cputime_t expires, cputime_t new_exp)
501 return expires == 0 || expires > new_exp;
505 * Insert the timer on the appropriate list before any timers that
506 * expire later. This must be called with the tasklist_lock held
507 * for reading, interrupts disabled and p->sighand->siglock taken.
509 static void arm_timer(struct k_itimer *timer)
511 struct task_struct *p = timer->it.cpu.task;
512 struct list_head *head, *listpos;
513 struct task_cputime *cputime_expires;
514 struct cpu_timer_list *const nt = &timer->it.cpu;
515 struct cpu_timer_list *next;
517 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
518 head = p->cpu_timers;
519 cputime_expires = &p->cputime_expires;
520 } else {
521 head = p->signal->cpu_timers;
522 cputime_expires = &p->signal->cputime_expires;
524 head += CPUCLOCK_WHICH(timer->it_clock);
526 listpos = head;
527 list_for_each_entry(next, head, entry) {
528 if (cpu_time_before(timer->it_clock, nt->expires, next->expires))
529 break;
530 listpos = &next->entry;
532 list_add(&nt->entry, listpos);
534 if (listpos == head) {
535 union cpu_time_count *exp = &nt->expires;
538 * We are the new earliest-expiring POSIX 1.b timer, hence
539 * need to update expiration cache. Take into account that
540 * for process timers we share expiration cache with itimers
541 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
544 switch (CPUCLOCK_WHICH(timer->it_clock)) {
545 case CPUCLOCK_PROF:
546 if (expires_gt(cputime_expires->prof_exp, exp->cpu))
547 cputime_expires->prof_exp = exp->cpu;
548 break;
549 case CPUCLOCK_VIRT:
550 if (expires_gt(cputime_expires->virt_exp, exp->cpu))
551 cputime_expires->virt_exp = exp->cpu;
552 break;
553 case CPUCLOCK_SCHED:
554 if (cputime_expires->sched_exp == 0 ||
555 cputime_expires->sched_exp > exp->sched)
556 cputime_expires->sched_exp = exp->sched;
557 break;
563 * The timer is locked, fire it and arrange for its reload.
565 static void cpu_timer_fire(struct k_itimer *timer)
567 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
569 * User don't want any signal.
571 timer->it.cpu.expires.sched = 0;
572 } else if (unlikely(timer->sigq == NULL)) {
574 * This a special case for clock_nanosleep,
575 * not a normal timer from sys_timer_create.
577 wake_up_process(timer->it_process);
578 timer->it.cpu.expires.sched = 0;
579 } else if (timer->it.cpu.incr.sched == 0) {
581 * One-shot timer. Clear it as soon as it's fired.
583 posix_timer_event(timer, 0);
584 timer->it.cpu.expires.sched = 0;
585 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
587 * The signal did not get queued because the signal
588 * was ignored, so we won't get any callback to
589 * reload the timer. But we need to keep it
590 * ticking in case the signal is deliverable next time.
592 posix_cpu_timer_schedule(timer);
597 * Sample a process (thread group) timer for the given group_leader task.
598 * Must be called with tasklist_lock held for reading.
600 static int cpu_timer_sample_group(const clockid_t which_clock,
601 struct task_struct *p,
602 union cpu_time_count *cpu)
604 struct task_cputime cputime;
606 thread_group_cputimer(p, &cputime);
607 switch (CPUCLOCK_WHICH(which_clock)) {
608 default:
609 return -EINVAL;
610 case CPUCLOCK_PROF:
611 cpu->cpu = cputime.utime + cputime.stime;
612 break;
613 case CPUCLOCK_VIRT:
614 cpu->cpu = cputime.utime;
615 break;
616 case CPUCLOCK_SCHED:
617 cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p);
618 break;
620 return 0;
624 * Guts of sys_timer_settime for CPU timers.
625 * This is called with the timer locked and interrupts disabled.
626 * If we return TIMER_RETRY, it's necessary to release the timer's lock
627 * and try again. (This happens when the timer is in the middle of firing.)
629 static int posix_cpu_timer_set(struct k_itimer *timer, int flags,
630 struct itimerspec *new, struct itimerspec *old)
632 struct task_struct *p = timer->it.cpu.task;
633 union cpu_time_count old_expires, new_expires, old_incr, val;
634 int ret;
636 if (unlikely(p == NULL)) {
638 * Timer refers to a dead task's clock.
640 return -ESRCH;
643 new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
645 read_lock(&tasklist_lock);
647 * We need the tasklist_lock to protect against reaping that
648 * clears p->sighand. If p has just been reaped, we can no
649 * longer get any information about it at all.
651 if (unlikely(p->sighand == NULL)) {
652 read_unlock(&tasklist_lock);
653 put_task_struct(p);
654 timer->it.cpu.task = NULL;
655 return -ESRCH;
659 * Disarm any old timer after extracting its expiry time.
661 BUG_ON(!irqs_disabled());
663 ret = 0;
664 old_incr = timer->it.cpu.incr;
665 spin_lock(&p->sighand->siglock);
666 old_expires = timer->it.cpu.expires;
667 if (unlikely(timer->it.cpu.firing)) {
668 timer->it.cpu.firing = -1;
669 ret = TIMER_RETRY;
670 } else
671 list_del_init(&timer->it.cpu.entry);
674 * We need to sample the current value to convert the new
675 * value from to relative and absolute, and to convert the
676 * old value from absolute to relative. To set a process
677 * timer, we need a sample to balance the thread expiry
678 * times (in arm_timer). With an absolute time, we must
679 * check if it's already passed. In short, we need a sample.
681 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
682 cpu_clock_sample(timer->it_clock, p, &val);
683 } else {
684 cpu_timer_sample_group(timer->it_clock, p, &val);
687 if (old) {
688 if (old_expires.sched == 0) {
689 old->it_value.tv_sec = 0;
690 old->it_value.tv_nsec = 0;
691 } else {
693 * Update the timer in case it has
694 * overrun already. If it has,
695 * we'll report it as having overrun
696 * and with the next reloaded timer
697 * already ticking, though we are
698 * swallowing that pending
699 * notification here to install the
700 * new setting.
702 bump_cpu_timer(timer, val);
703 if (cpu_time_before(timer->it_clock, val,
704 timer->it.cpu.expires)) {
705 old_expires = cpu_time_sub(
706 timer->it_clock,
707 timer->it.cpu.expires, val);
708 sample_to_timespec(timer->it_clock,
709 old_expires,
710 &old->it_value);
711 } else {
712 old->it_value.tv_nsec = 1;
713 old->it_value.tv_sec = 0;
718 if (unlikely(ret)) {
720 * We are colliding with the timer actually firing.
721 * Punt after filling in the timer's old value, and
722 * disable this firing since we are already reporting
723 * it as an overrun (thanks to bump_cpu_timer above).
725 spin_unlock(&p->sighand->siglock);
726 read_unlock(&tasklist_lock);
727 goto out;
730 if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
731 cpu_time_add(timer->it_clock, &new_expires, val);
735 * Install the new expiry time (or zero).
736 * For a timer with no notification action, we don't actually
737 * arm the timer (we'll just fake it for timer_gettime).
739 timer->it.cpu.expires = new_expires;
740 if (new_expires.sched != 0 &&
741 cpu_time_before(timer->it_clock, val, new_expires)) {
742 arm_timer(timer);
745 spin_unlock(&p->sighand->siglock);
746 read_unlock(&tasklist_lock);
749 * Install the new reload setting, and
750 * set up the signal and overrun bookkeeping.
752 timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
753 &new->it_interval);
756 * This acts as a modification timestamp for the timer,
757 * so any automatic reload attempt will punt on seeing
758 * that we have reset the timer manually.
760 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
761 ~REQUEUE_PENDING;
762 timer->it_overrun_last = 0;
763 timer->it_overrun = -1;
765 if (new_expires.sched != 0 &&
766 !cpu_time_before(timer->it_clock, val, new_expires)) {
768 * The designated time already passed, so we notify
769 * immediately, even if the thread never runs to
770 * accumulate more time on this clock.
772 cpu_timer_fire(timer);
775 ret = 0;
776 out:
777 if (old) {
778 sample_to_timespec(timer->it_clock,
779 old_incr, &old->it_interval);
781 return ret;
784 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
786 union cpu_time_count now;
787 struct task_struct *p = timer->it.cpu.task;
788 int clear_dead;
791 * Easy part: convert the reload time.
793 sample_to_timespec(timer->it_clock,
794 timer->it.cpu.incr, &itp->it_interval);
796 if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all. */
797 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
798 return;
801 if (unlikely(p == NULL)) {
803 * This task already died and the timer will never fire.
804 * In this case, expires is actually the dead value.
806 dead:
807 sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
808 &itp->it_value);
809 return;
813 * Sample the clock to take the difference with the expiry time.
815 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
816 cpu_clock_sample(timer->it_clock, p, &now);
817 clear_dead = p->exit_state;
818 } else {
819 read_lock(&tasklist_lock);
820 if (unlikely(p->sighand == NULL)) {
822 * The process has been reaped.
823 * We can't even collect a sample any more.
824 * Call the timer disarmed, nothing else to do.
826 put_task_struct(p);
827 timer->it.cpu.task = NULL;
828 timer->it.cpu.expires.sched = 0;
829 read_unlock(&tasklist_lock);
830 goto dead;
831 } else {
832 cpu_timer_sample_group(timer->it_clock, p, &now);
833 clear_dead = (unlikely(p->exit_state) &&
834 thread_group_empty(p));
836 read_unlock(&tasklist_lock);
839 if (unlikely(clear_dead)) {
841 * We've noticed that the thread is dead, but
842 * not yet reaped. Take this opportunity to
843 * drop our task ref.
845 clear_dead_task(timer, now);
846 goto dead;
849 if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
850 sample_to_timespec(timer->it_clock,
851 cpu_time_sub(timer->it_clock,
852 timer->it.cpu.expires, now),
853 &itp->it_value);
854 } else {
856 * The timer should have expired already, but the firing
857 * hasn't taken place yet. Say it's just about to expire.
859 itp->it_value.tv_nsec = 1;
860 itp->it_value.tv_sec = 0;
865 * Check for any per-thread CPU timers that have fired and move them off
866 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
867 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
869 static void check_thread_timers(struct task_struct *tsk,
870 struct list_head *firing)
872 int maxfire;
873 struct list_head *timers = tsk->cpu_timers;
874 struct signal_struct *const sig = tsk->signal;
875 unsigned long soft;
877 maxfire = 20;
878 tsk->cputime_expires.prof_exp = 0;
879 while (!list_empty(timers)) {
880 struct cpu_timer_list *t = list_first_entry(timers,
881 struct cpu_timer_list,
882 entry);
883 if (!--maxfire || prof_ticks(tsk) < t->expires.cpu) {
884 tsk->cputime_expires.prof_exp = t->expires.cpu;
885 break;
887 t->firing = 1;
888 list_move_tail(&t->entry, firing);
891 ++timers;
892 maxfire = 20;
893 tsk->cputime_expires.virt_exp = 0;
894 while (!list_empty(timers)) {
895 struct cpu_timer_list *t = list_first_entry(timers,
896 struct cpu_timer_list,
897 entry);
898 if (!--maxfire || virt_ticks(tsk) < t->expires.cpu) {
899 tsk->cputime_expires.virt_exp = t->expires.cpu;
900 break;
902 t->firing = 1;
903 list_move_tail(&t->entry, firing);
906 ++timers;
907 maxfire = 20;
908 tsk->cputime_expires.sched_exp = 0;
909 while (!list_empty(timers)) {
910 struct cpu_timer_list *t = list_first_entry(timers,
911 struct cpu_timer_list,
912 entry);
913 if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
914 tsk->cputime_expires.sched_exp = t->expires.sched;
915 break;
917 t->firing = 1;
918 list_move_tail(&t->entry, firing);
922 * Check for the special case thread timers.
924 soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
925 if (soft != RLIM_INFINITY) {
926 unsigned long hard =
927 ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
929 if (hard != RLIM_INFINITY &&
930 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
932 * At the hard limit, we just die.
933 * No need to calculate anything else now.
935 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
936 return;
938 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
940 * At the soft limit, send a SIGXCPU every second.
942 if (soft < hard) {
943 soft += USEC_PER_SEC;
944 sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
946 printk(KERN_INFO
947 "RT Watchdog Timeout: %s[%d]\n",
948 tsk->comm, task_pid_nr(tsk));
949 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
954 static void stop_process_timers(struct signal_struct *sig)
956 struct thread_group_cputimer *cputimer = &sig->cputimer;
957 unsigned long flags;
959 raw_spin_lock_irqsave(&cputimer->lock, flags);
960 cputimer->running = 0;
961 raw_spin_unlock_irqrestore(&cputimer->lock, flags);
964 static u32 onecputick;
966 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
967 cputime_t *expires, cputime_t cur_time, int signo)
969 if (!it->expires)
970 return;
972 if (cur_time >= it->expires) {
973 if (it->incr) {
974 it->expires += it->incr;
975 it->error += it->incr_error;
976 if (it->error >= onecputick) {
977 it->expires -= cputime_one_jiffy;
978 it->error -= onecputick;
980 } else {
981 it->expires = 0;
984 trace_itimer_expire(signo == SIGPROF ?
985 ITIMER_PROF : ITIMER_VIRTUAL,
986 tsk->signal->leader_pid, cur_time);
987 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
990 if (it->expires && (!*expires || it->expires < *expires)) {
991 *expires = it->expires;
996 * task_cputime_zero - Check a task_cputime struct for all zero fields.
998 * @cputime: The struct to compare.
1000 * Checks @cputime to see if all fields are zero. Returns true if all fields
1001 * are zero, false if any field is nonzero.
1003 static inline int task_cputime_zero(const struct task_cputime *cputime)
1005 if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
1006 return 1;
1007 return 0;
1011 * Check for any per-thread CPU timers that have fired and move them
1012 * off the tsk->*_timers list onto the firing list. Per-thread timers
1013 * have already been taken off.
1015 static void check_process_timers(struct task_struct *tsk,
1016 struct list_head *firing)
1018 int maxfire;
1019 struct signal_struct *const sig = tsk->signal;
1020 cputime_t utime, ptime, virt_expires, prof_expires;
1021 unsigned long long sum_sched_runtime, sched_expires;
1022 struct list_head *timers = sig->cpu_timers;
1023 struct task_cputime cputime;
1024 unsigned long soft;
1027 * Collect the current process totals.
1029 thread_group_cputimer(tsk, &cputime);
1030 utime = cputime.utime;
1031 ptime = utime + cputime.stime;
1032 sum_sched_runtime = cputime.sum_exec_runtime;
1033 maxfire = 20;
1034 prof_expires = 0;
1035 while (!list_empty(timers)) {
1036 struct cpu_timer_list *tl = list_first_entry(timers,
1037 struct cpu_timer_list,
1038 entry);
1039 if (!--maxfire || ptime < tl->expires.cpu) {
1040 prof_expires = tl->expires.cpu;
1041 break;
1043 tl->firing = 1;
1044 list_move_tail(&tl->entry, firing);
1047 ++timers;
1048 maxfire = 20;
1049 virt_expires = 0;
1050 while (!list_empty(timers)) {
1051 struct cpu_timer_list *tl = list_first_entry(timers,
1052 struct cpu_timer_list,
1053 entry);
1054 if (!--maxfire || utime < tl->expires.cpu) {
1055 virt_expires = tl->expires.cpu;
1056 break;
1058 tl->firing = 1;
1059 list_move_tail(&tl->entry, firing);
1062 ++timers;
1063 maxfire = 20;
1064 sched_expires = 0;
1065 while (!list_empty(timers)) {
1066 struct cpu_timer_list *tl = list_first_entry(timers,
1067 struct cpu_timer_list,
1068 entry);
1069 if (!--maxfire || sum_sched_runtime < tl->expires.sched) {
1070 sched_expires = tl->expires.sched;
1071 break;
1073 tl->firing = 1;
1074 list_move_tail(&tl->entry, firing);
1078 * Check for the special case process timers.
1080 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
1081 SIGPROF);
1082 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
1083 SIGVTALRM);
1084 soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1085 if (soft != RLIM_INFINITY) {
1086 unsigned long psecs = cputime_to_secs(ptime);
1087 unsigned long hard =
1088 ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
1089 cputime_t x;
1090 if (psecs >= hard) {
1092 * At the hard limit, we just die.
1093 * No need to calculate anything else now.
1095 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1096 return;
1098 if (psecs >= soft) {
1100 * At the soft limit, send a SIGXCPU every second.
1102 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1103 if (soft < hard) {
1104 soft++;
1105 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
1108 x = secs_to_cputime(soft);
1109 if (!prof_expires || x < prof_expires) {
1110 prof_expires = x;
1114 sig->cputime_expires.prof_exp = prof_expires;
1115 sig->cputime_expires.virt_exp = virt_expires;
1116 sig->cputime_expires.sched_exp = sched_expires;
1117 if (task_cputime_zero(&sig->cputime_expires))
1118 stop_process_timers(sig);
1122 * This is called from the signal code (via do_schedule_next_timer)
1123 * when the last timer signal was delivered and we have to reload the timer.
1125 void posix_cpu_timer_schedule(struct k_itimer *timer)
1127 struct task_struct *p = timer->it.cpu.task;
1128 union cpu_time_count now;
1130 if (unlikely(p == NULL))
1132 * The task was cleaned up already, no future firings.
1134 goto out;
1137 * Fetch the current sample and update the timer's expiry time.
1139 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1140 cpu_clock_sample(timer->it_clock, p, &now);
1141 bump_cpu_timer(timer, now);
1142 if (unlikely(p->exit_state)) {
1143 clear_dead_task(timer, now);
1144 goto out;
1146 read_lock(&tasklist_lock); /* arm_timer needs it. */
1147 spin_lock(&p->sighand->siglock);
1148 } else {
1149 read_lock(&tasklist_lock);
1150 if (unlikely(p->sighand == NULL)) {
1152 * The process has been reaped.
1153 * We can't even collect a sample any more.
1155 put_task_struct(p);
1156 timer->it.cpu.task = p = NULL;
1157 timer->it.cpu.expires.sched = 0;
1158 goto out_unlock;
1159 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1161 * We've noticed that the thread is dead, but
1162 * not yet reaped. Take this opportunity to
1163 * drop our task ref.
1165 clear_dead_task(timer, now);
1166 goto out_unlock;
1168 spin_lock(&p->sighand->siglock);
1169 cpu_timer_sample_group(timer->it_clock, p, &now);
1170 bump_cpu_timer(timer, now);
1171 /* Leave the tasklist_lock locked for the call below. */
1175 * Now re-arm for the new expiry time.
1177 BUG_ON(!irqs_disabled());
1178 arm_timer(timer);
1179 spin_unlock(&p->sighand->siglock);
1181 out_unlock:
1182 read_unlock(&tasklist_lock);
1184 out:
1185 timer->it_overrun_last = timer->it_overrun;
1186 timer->it_overrun = -1;
1187 ++timer->it_requeue_pending;
1191 * task_cputime_expired - Compare two task_cputime entities.
1193 * @sample: The task_cputime structure to be checked for expiration.
1194 * @expires: Expiration times, against which @sample will be checked.
1196 * Checks @sample against @expires to see if any field of @sample has expired.
1197 * Returns true if any field of the former is greater than the corresponding
1198 * field of the latter if the latter field is set. Otherwise returns false.
1200 static inline int task_cputime_expired(const struct task_cputime *sample,
1201 const struct task_cputime *expires)
1203 if (expires->utime && sample->utime >= expires->utime)
1204 return 1;
1205 if (expires->stime && sample->utime + sample->stime >= expires->stime)
1206 return 1;
1207 if (expires->sum_exec_runtime != 0 &&
1208 sample->sum_exec_runtime >= expires->sum_exec_runtime)
1209 return 1;
1210 return 0;
1214 * fastpath_timer_check - POSIX CPU timers fast path.
1216 * @tsk: The task (thread) being checked.
1218 * Check the task and thread group timers. If both are zero (there are no
1219 * timers set) return false. Otherwise snapshot the task and thread group
1220 * timers and compare them with the corresponding expiration times. Return
1221 * true if a timer has expired, else return false.
1223 static inline int fastpath_timer_check(struct task_struct *tsk)
1225 struct signal_struct *sig;
1227 if (!task_cputime_zero(&tsk->cputime_expires)) {
1228 struct task_cputime task_sample = {
1229 .utime = tsk->utime,
1230 .stime = tsk->stime,
1231 .sum_exec_runtime = tsk->se.sum_exec_runtime
1234 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1235 return 1;
1238 sig = tsk->signal;
1239 if (sig->cputimer.running) {
1240 struct task_cputime group_sample;
1242 raw_spin_lock(&sig->cputimer.lock);
1243 group_sample = sig->cputimer.cputime;
1244 raw_spin_unlock(&sig->cputimer.lock);
1246 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1247 return 1;
1250 return 0;
1254 * This is called from the timer interrupt handler. The irq handler has
1255 * already updated our counts. We need to check if any timers fire now.
1256 * Interrupts are disabled.
1258 void run_posix_cpu_timers(struct task_struct *tsk)
1260 LIST_HEAD(firing);
1261 struct k_itimer *timer, *next;
1262 unsigned long flags;
1264 BUG_ON(!irqs_disabled());
1267 * The fast path checks that there are no expired thread or thread
1268 * group timers. If that's so, just return.
1270 if (!fastpath_timer_check(tsk))
1271 return;
1273 if (!lock_task_sighand(tsk, &flags))
1274 return;
1276 * Here we take off tsk->signal->cpu_timers[N] and
1277 * tsk->cpu_timers[N] all the timers that are firing, and
1278 * put them on the firing list.
1280 check_thread_timers(tsk, &firing);
1282 * If there are any active process wide timers (POSIX 1.b, itimers,
1283 * RLIMIT_CPU) cputimer must be running.
1285 if (tsk->signal->cputimer.running)
1286 check_process_timers(tsk, &firing);
1289 * We must release these locks before taking any timer's lock.
1290 * There is a potential race with timer deletion here, as the
1291 * siglock now protects our private firing list. We have set
1292 * the firing flag in each timer, so that a deletion attempt
1293 * that gets the timer lock before we do will give it up and
1294 * spin until we've taken care of that timer below.
1296 unlock_task_sighand(tsk, &flags);
1299 * Now that all the timers on our list have the firing flag,
1300 * no one will touch their list entries but us. We'll take
1301 * each timer's lock before clearing its firing flag, so no
1302 * timer call will interfere.
1304 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1305 int cpu_firing;
1307 spin_lock(&timer->it_lock);
1308 list_del_init(&timer->it.cpu.entry);
1309 cpu_firing = timer->it.cpu.firing;
1310 timer->it.cpu.firing = 0;
1312 * The firing flag is -1 if we collided with a reset
1313 * of the timer, which already reported this
1314 * almost-firing as an overrun. So don't generate an event.
1316 if (likely(cpu_firing >= 0))
1317 cpu_timer_fire(timer);
1318 spin_unlock(&timer->it_lock);
1323 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1324 * The tsk->sighand->siglock must be held by the caller.
1326 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1327 cputime_t *newval, cputime_t *oldval)
1329 union cpu_time_count now;
1331 BUG_ON(clock_idx == CPUCLOCK_SCHED);
1332 cpu_timer_sample_group(clock_idx, tsk, &now);
1334 if (oldval) {
1336 * We are setting itimer. The *oldval is absolute and we update
1337 * it to be relative, *newval argument is relative and we update
1338 * it to be absolute.
1340 if (*oldval) {
1341 if (*oldval <= now.cpu) {
1342 /* Just about to fire. */
1343 *oldval = cputime_one_jiffy;
1344 } else {
1345 *oldval -= now.cpu;
1349 if (!*newval)
1350 return;
1351 *newval += now.cpu;
1355 * Update expiration cache if we are the earliest timer, or eventually
1356 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1358 switch (clock_idx) {
1359 case CPUCLOCK_PROF:
1360 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1361 tsk->signal->cputime_expires.prof_exp = *newval;
1362 break;
1363 case CPUCLOCK_VIRT:
1364 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1365 tsk->signal->cputime_expires.virt_exp = *newval;
1366 break;
1370 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1371 struct timespec *rqtp, struct itimerspec *it)
1373 struct k_itimer timer;
1374 int error;
1377 * Set up a temporary timer and then wait for it to go off.
1379 memset(&timer, 0, sizeof timer);
1380 spin_lock_init(&timer.it_lock);
1381 timer.it_clock = which_clock;
1382 timer.it_overrun = -1;
1383 error = posix_cpu_timer_create(&timer);
1384 timer.it_process = current;
1385 if (!error) {
1386 static struct itimerspec zero_it;
1388 memset(it, 0, sizeof *it);
1389 it->it_value = *rqtp;
1391 spin_lock_irq(&timer.it_lock);
1392 error = posix_cpu_timer_set(&timer, flags, it, NULL);
1393 if (error) {
1394 spin_unlock_irq(&timer.it_lock);
1395 return error;
1398 while (!signal_pending(current)) {
1399 if (timer.it.cpu.expires.sched == 0) {
1401 * Our timer fired and was reset.
1403 spin_unlock_irq(&timer.it_lock);
1404 return 0;
1408 * Block until cpu_timer_fire (or a signal) wakes us.
1410 __set_current_state(TASK_INTERRUPTIBLE);
1411 spin_unlock_irq(&timer.it_lock);
1412 schedule();
1413 spin_lock_irq(&timer.it_lock);
1417 * We were interrupted by a signal.
1419 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1420 posix_cpu_timer_set(&timer, 0, &zero_it, it);
1421 spin_unlock_irq(&timer.it_lock);
1423 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1425 * It actually did fire already.
1427 return 0;
1430 error = -ERESTART_RESTARTBLOCK;
1433 return error;
1436 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1438 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1439 struct timespec *rqtp, struct timespec __user *rmtp)
1441 struct restart_block *restart_block =
1442 &current_thread_info()->restart_block;
1443 struct itimerspec it;
1444 int error;
1447 * Diagnose required errors first.
1449 if (CPUCLOCK_PERTHREAD(which_clock) &&
1450 (CPUCLOCK_PID(which_clock) == 0 ||
1451 CPUCLOCK_PID(which_clock) == current->pid))
1452 return -EINVAL;
1454 error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1456 if (error == -ERESTART_RESTARTBLOCK) {
1458 if (flags & TIMER_ABSTIME)
1459 return -ERESTARTNOHAND;
1461 * Report back to the user the time still remaining.
1463 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1464 return -EFAULT;
1466 restart_block->fn = posix_cpu_nsleep_restart;
1467 restart_block->nanosleep.clockid = which_clock;
1468 restart_block->nanosleep.rmtp = rmtp;
1469 restart_block->nanosleep.expires = timespec_to_ns(rqtp);
1471 return error;
1474 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1476 clockid_t which_clock = restart_block->nanosleep.clockid;
1477 struct timespec t;
1478 struct itimerspec it;
1479 int error;
1481 t = ns_to_timespec(restart_block->nanosleep.expires);
1483 error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1485 if (error == -ERESTART_RESTARTBLOCK) {
1486 struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
1488 * Report back to the user the time still remaining.
1490 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1491 return -EFAULT;
1493 restart_block->nanosleep.expires = timespec_to_ns(&t);
1495 return error;
1499 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1500 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1502 static int process_cpu_clock_getres(const clockid_t which_clock,
1503 struct timespec *tp)
1505 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1507 static int process_cpu_clock_get(const clockid_t which_clock,
1508 struct timespec *tp)
1510 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1512 static int process_cpu_timer_create(struct k_itimer *timer)
1514 timer->it_clock = PROCESS_CLOCK;
1515 return posix_cpu_timer_create(timer);
1517 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1518 struct timespec *rqtp,
1519 struct timespec __user *rmtp)
1521 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1523 static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1525 return -EINVAL;
1527 static int thread_cpu_clock_getres(const clockid_t which_clock,
1528 struct timespec *tp)
1530 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1532 static int thread_cpu_clock_get(const clockid_t which_clock,
1533 struct timespec *tp)
1535 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1537 static int thread_cpu_timer_create(struct k_itimer *timer)
1539 timer->it_clock = THREAD_CLOCK;
1540 return posix_cpu_timer_create(timer);
1543 struct k_clock clock_posix_cpu = {
1544 .clock_getres = posix_cpu_clock_getres,
1545 .clock_set = posix_cpu_clock_set,
1546 .clock_get = posix_cpu_clock_get,
1547 .timer_create = posix_cpu_timer_create,
1548 .nsleep = posix_cpu_nsleep,
1549 .nsleep_restart = posix_cpu_nsleep_restart,
1550 .timer_set = posix_cpu_timer_set,
1551 .timer_del = posix_cpu_timer_del,
1552 .timer_get = posix_cpu_timer_get,
1555 static __init int init_posix_cpu_timers(void)
1557 struct k_clock process = {
1558 .clock_getres = process_cpu_clock_getres,
1559 .clock_get = process_cpu_clock_get,
1560 .timer_create = process_cpu_timer_create,
1561 .nsleep = process_cpu_nsleep,
1562 .nsleep_restart = process_cpu_nsleep_restart,
1564 struct k_clock thread = {
1565 .clock_getres = thread_cpu_clock_getres,
1566 .clock_get = thread_cpu_clock_get,
1567 .timer_create = thread_cpu_timer_create,
1569 struct timespec ts;
1571 posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1572 posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1574 cputime_to_timespec(cputime_one_jiffy, &ts);
1575 onecputick = ts.tv_nsec;
1576 WARN_ON(ts.tv_sec != 0);
1578 return 0;
1580 __initcall(init_posix_cpu_timers);