2 * processor_idle - idle state submodule to the ACPI processor driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h> /* need_resched() */
41 #include <linux/latency.h>
42 #include <linux/clockchips.h>
45 * Include the apic definitions for x86 to have the APIC timer related defines
46 * available also for UP (on SMP it gets magically included via linux/smp.h).
47 * asm/acpi.h is not an option, as it would require more include magic. Also
48 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
55 #include <asm/uaccess.h>
57 #include <acpi/acpi_bus.h>
58 #include <acpi/processor.h>
60 #define ACPI_PROCESSOR_COMPONENT 0x01000000
61 #define ACPI_PROCESSOR_CLASS "processor"
62 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
63 ACPI_MODULE_NAME("processor_idle");
64 #define ACPI_PROCESSOR_FILE_POWER "power"
65 #define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
66 #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
67 #define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */
68 #define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */
69 static void (*pm_idle_save
) (void) __read_mostly
;
70 module_param(max_cstate
, uint
, 0644);
72 static unsigned int nocst __read_mostly
;
73 module_param(nocst
, uint
, 0000);
76 * bm_history -- bit-mask with a bit per jiffy of bus-master activity
77 * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
78 * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
79 * 100 HZ: 0x0000000F: 4 jiffies = 40ms
80 * reduce history for more aggressive entry into C3
82 static unsigned int bm_history __read_mostly
=
83 (HZ
>= 800 ? 0xFFFFFFFF : ((1U << (HZ
/ 25)) - 1));
84 module_param(bm_history
, uint
, 0644);
85 /* --------------------------------------------------------------------------
87 -------------------------------------------------------------------------- */
90 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
91 * For now disable this. Probably a bug somewhere else.
93 * To skip this limit, boot/load with a large max_cstate limit.
95 static int set_max_cstate(struct dmi_system_id
*id
)
97 if (max_cstate
> ACPI_PROCESSOR_MAX_POWER
)
100 printk(KERN_NOTICE PREFIX
"%s detected - limiting to C%ld max_cstate."
101 " Override with \"processor.max_cstate=%d\"\n", id
->ident
,
102 (long)id
->driver_data
, ACPI_PROCESSOR_MAX_POWER
+ 1);
104 max_cstate
= (long)id
->driver_data
;
109 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
110 callers to only run once -AK */
111 static struct dmi_system_id __cpuinitdata processor_power_dmi_table
[] = {
112 { set_max_cstate
, "IBM ThinkPad R40e", {
113 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
114 DMI_MATCH(DMI_BIOS_VERSION
,"1SET70WW")}, (void *)1},
115 { set_max_cstate
, "IBM ThinkPad R40e", {
116 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
117 DMI_MATCH(DMI_BIOS_VERSION
,"1SET60WW")}, (void *)1},
118 { set_max_cstate
, "IBM ThinkPad R40e", {
119 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
120 DMI_MATCH(DMI_BIOS_VERSION
,"1SET43WW") }, (void*)1},
121 { set_max_cstate
, "IBM ThinkPad R40e", {
122 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
123 DMI_MATCH(DMI_BIOS_VERSION
,"1SET45WW") }, (void*)1},
124 { set_max_cstate
, "IBM ThinkPad R40e", {
125 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
126 DMI_MATCH(DMI_BIOS_VERSION
,"1SET47WW") }, (void*)1},
127 { set_max_cstate
, "IBM ThinkPad R40e", {
128 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
129 DMI_MATCH(DMI_BIOS_VERSION
,"1SET50WW") }, (void*)1},
130 { set_max_cstate
, "IBM ThinkPad R40e", {
131 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
132 DMI_MATCH(DMI_BIOS_VERSION
,"1SET52WW") }, (void*)1},
133 { set_max_cstate
, "IBM ThinkPad R40e", {
134 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
135 DMI_MATCH(DMI_BIOS_VERSION
,"1SET55WW") }, (void*)1},
136 { set_max_cstate
, "IBM ThinkPad R40e", {
137 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
138 DMI_MATCH(DMI_BIOS_VERSION
,"1SET56WW") }, (void*)1},
139 { set_max_cstate
, "IBM ThinkPad R40e", {
140 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
141 DMI_MATCH(DMI_BIOS_VERSION
,"1SET59WW") }, (void*)1},
142 { set_max_cstate
, "IBM ThinkPad R40e", {
143 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
144 DMI_MATCH(DMI_BIOS_VERSION
,"1SET60WW") }, (void*)1},
145 { set_max_cstate
, "IBM ThinkPad R40e", {
146 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
147 DMI_MATCH(DMI_BIOS_VERSION
,"1SET61WW") }, (void*)1},
148 { set_max_cstate
, "IBM ThinkPad R40e", {
149 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
150 DMI_MATCH(DMI_BIOS_VERSION
,"1SET62WW") }, (void*)1},
151 { set_max_cstate
, "IBM ThinkPad R40e", {
152 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
153 DMI_MATCH(DMI_BIOS_VERSION
,"1SET64WW") }, (void*)1},
154 { set_max_cstate
, "IBM ThinkPad R40e", {
155 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
156 DMI_MATCH(DMI_BIOS_VERSION
,"1SET65WW") }, (void*)1},
157 { set_max_cstate
, "IBM ThinkPad R40e", {
158 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
159 DMI_MATCH(DMI_BIOS_VERSION
,"1SET68WW") }, (void*)1},
160 { set_max_cstate
, "Medion 41700", {
161 DMI_MATCH(DMI_BIOS_VENDOR
,"Phoenix Technologies LTD"),
162 DMI_MATCH(DMI_BIOS_VERSION
,"R01-A1J")}, (void *)1},
163 { set_max_cstate
, "Clevo 5600D", {
164 DMI_MATCH(DMI_BIOS_VENDOR
,"Phoenix Technologies LTD"),
165 DMI_MATCH(DMI_BIOS_VERSION
,"SHE845M0.86C.0013.D.0302131307")},
170 static inline u32
ticks_elapsed(u32 t1
, u32 t2
)
174 else if (!(acpi_gbl_FADT
.flags
& ACPI_FADT_32BIT_TIMER
))
175 return (((0x00FFFFFF - t1
) + t2
) & 0x00FFFFFF);
177 return ((0xFFFFFFFF - t1
) + t2
);
181 acpi_processor_power_activate(struct acpi_processor
*pr
,
182 struct acpi_processor_cx
*new)
184 struct acpi_processor_cx
*old
;
189 old
= pr
->power
.state
;
192 old
->promotion
.count
= 0;
193 new->demotion
.count
= 0;
195 /* Cleanup from old state. */
199 /* Disable bus master reload */
200 if (new->type
!= ACPI_STATE_C3
&& pr
->flags
.bm_check
)
201 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD
, 0);
206 /* Prepare to use new state. */
209 /* Enable bus master reload */
210 if (old
->type
!= ACPI_STATE_C3
&& pr
->flags
.bm_check
)
211 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD
, 1);
215 pr
->power
.state
= new;
220 static void acpi_safe_halt(void)
222 current_thread_info()->status
&= ~TS_POLLING
;
224 * TS_POLLING-cleared state must be visible before we
230 current_thread_info()->status
|= TS_POLLING
;
233 static atomic_t c3_cpu_count
;
235 /* Common C-state entry for C2, C3, .. */
236 static void acpi_cstate_enter(struct acpi_processor_cx
*cstate
)
238 if (cstate
->space_id
== ACPI_CSTATE_FFH
) {
239 /* Call into architectural FFH based C-state */
240 acpi_processor_ffh_cstate_enter(cstate
);
243 /* IO port based C-state */
244 inb(cstate
->address
);
245 /* Dummy wait op - must do something useless after P_LVL2 read
246 because chipsets cannot guarantee that STPCLK# signal
247 gets asserted in time to freeze execution properly. */
248 unused
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
252 #ifdef ARCH_APICTIMER_STOPS_ON_C3
255 * Some BIOS implementations switch to C3 in the published C2 state.
256 * This seems to be a common problem on AMD boxen, but other vendors
257 * are affected too. We pick the most conservative approach: we assume
258 * that the local APIC stops in both C2 and C3.
260 static void acpi_timer_check_state(int state
, struct acpi_processor
*pr
,
261 struct acpi_processor_cx
*cx
)
263 struct acpi_processor_power
*pwr
= &pr
->power
;
264 u8 type
= local_apic_timer_c2_ok
? ACPI_STATE_C3
: ACPI_STATE_C2
;
267 * Check, if one of the previous states already marked the lapic
270 if (pwr
->timer_broadcast_on_state
< state
)
273 if (cx
->type
>= type
)
274 pr
->power
.timer_broadcast_on_state
= state
;
277 static void acpi_propagate_timer_broadcast(struct acpi_processor
*pr
)
279 #ifdef CONFIG_GENERIC_CLOCKEVENTS
280 unsigned long reason
;
282 reason
= pr
->power
.timer_broadcast_on_state
< INT_MAX
?
283 CLOCK_EVT_NOTIFY_BROADCAST_ON
: CLOCK_EVT_NOTIFY_BROADCAST_OFF
;
285 clockevents_notify(reason
, &pr
->id
);
287 cpumask_t mask
= cpumask_of_cpu(pr
->id
);
289 if (pr
->power
.timer_broadcast_on_state
< INT_MAX
)
290 on_each_cpu(switch_APIC_timer_to_ipi
, &mask
, 1, 1);
292 on_each_cpu(switch_ipi_to_APIC_timer
, &mask
, 1, 1);
296 /* Power(C) State timer broadcast control */
297 static void acpi_state_timer_broadcast(struct acpi_processor
*pr
,
298 struct acpi_processor_cx
*cx
,
301 #ifdef CONFIG_GENERIC_CLOCKEVENTS
303 int state
= cx
- pr
->power
.states
;
305 if (state
>= pr
->power
.timer_broadcast_on_state
) {
306 unsigned long reason
;
308 reason
= broadcast
? CLOCK_EVT_NOTIFY_BROADCAST_ENTER
:
309 CLOCK_EVT_NOTIFY_BROADCAST_EXIT
;
310 clockevents_notify(reason
, &pr
->id
);
317 static void acpi_timer_check_state(int state
, struct acpi_processor
*pr
,
318 struct acpi_processor_cx
*cstate
) { }
319 static void acpi_propagate_timer_broadcast(struct acpi_processor
*pr
) { }
320 static void acpi_state_timer_broadcast(struct acpi_processor
*pr
,
321 struct acpi_processor_cx
*cx
,
329 * Suspend / resume control
331 static int acpi_idle_suspend
;
333 int acpi_processor_suspend(struct acpi_device
* device
, pm_message_t state
)
335 acpi_idle_suspend
= 1;
339 int acpi_processor_resume(struct acpi_device
* device
)
341 acpi_idle_suspend
= 0;
345 static void acpi_processor_idle(void)
347 struct acpi_processor
*pr
= NULL
;
348 struct acpi_processor_cx
*cx
= NULL
;
349 struct acpi_processor_cx
*next_state
= NULL
;
354 * Interrupts must be disabled during bus mastering calculations and
355 * for C2/C3 transitions.
359 pr
= processors
[smp_processor_id()];
366 * Check whether we truly need to go idle, or should
369 if (unlikely(need_resched())) {
374 cx
= pr
->power
.state
;
375 if (!cx
|| acpi_idle_suspend
) {
386 * Check for bus mastering activity (if required), record, and check
389 if (pr
->flags
.bm_check
) {
391 unsigned long diff
= jiffies
- pr
->power
.bm_check_timestamp
;
396 pr
->power
.bm_activity
<<= diff
;
398 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS
, &bm_status
);
400 pr
->power
.bm_activity
|= 0x1;
401 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS
, 1);
404 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
405 * the true state of bus mastering activity; forcing us to
406 * manually check the BMIDEA bit of each IDE channel.
408 else if (errata
.piix4
.bmisx
) {
409 if ((inb_p(errata
.piix4
.bmisx
+ 0x02) & 0x01)
410 || (inb_p(errata
.piix4
.bmisx
+ 0x0A) & 0x01))
411 pr
->power
.bm_activity
|= 0x1;
414 pr
->power
.bm_check_timestamp
= jiffies
;
417 * If bus mastering is or was active this jiffy, demote
418 * to avoid a faulty transition. Note that the processor
419 * won't enter a low-power state during this call (to this
420 * function) but should upon the next.
422 * TBD: A better policy might be to fallback to the demotion
423 * state (use it for this quantum only) istead of
424 * demoting -- and rely on duration as our sole demotion
425 * qualification. This may, however, introduce DMA
426 * issues (e.g. floppy DMA transfer overrun/underrun).
428 if ((pr
->power
.bm_activity
& 0x1) &&
429 cx
->demotion
.threshold
.bm
) {
431 next_state
= cx
->demotion
.state
;
436 #ifdef CONFIG_HOTPLUG_CPU
438 * Check for P_LVL2_UP flag before entering C2 and above on
439 * an SMP system. We do it here instead of doing it at _CST/P_LVL
440 * detection phase, to work cleanly with logical CPU hotplug.
442 if ((cx
->type
!= ACPI_STATE_C1
) && (num_online_cpus() > 1) &&
443 !pr
->flags
.has_cst
&& !(acpi_gbl_FADT
.flags
& ACPI_FADT_C2_MP_SUPPORTED
))
444 cx
= &pr
->power
.states
[ACPI_STATE_C1
];
450 * Invoke the current Cx state to put the processor to sleep.
452 if (cx
->type
== ACPI_STATE_C2
|| cx
->type
== ACPI_STATE_C3
) {
453 current_thread_info()->status
&= ~TS_POLLING
;
455 * TS_POLLING-cleared state must be visible before we
459 if (need_resched()) {
460 current_thread_info()->status
|= TS_POLLING
;
471 * Use the appropriate idle routine, the one that would
472 * be used without acpi C-states.
480 * TBD: Can't get time duration while in C1, as resumes
481 * go to an ISR rather than here. Need to instrument
482 * base interrupt handler.
484 * Note: the TSC better not stop in C1, sched_clock() will
487 sleep_ticks
= 0xFFFFFFFF;
491 /* Get start time (ticks) */
492 t1
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
493 /* Tell the scheduler that we are going deep-idle: */
494 sched_clock_idle_sleep_event();
496 acpi_state_timer_broadcast(pr
, cx
, 1);
497 acpi_cstate_enter(cx
);
498 /* Get end time (ticks) */
499 t2
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
501 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
502 /* TSC halts in C2, so notify users */
503 mark_tsc_unstable("possible TSC halt in C2");
505 /* Compute time (ticks) that we were actually asleep */
506 sleep_ticks
= ticks_elapsed(t1
, t2
);
508 /* Tell the scheduler how much we idled: */
509 sched_clock_idle_wakeup_event(sleep_ticks
*PM_TIMER_TICK_NS
);
511 /* Re-enable interrupts */
513 /* Do not account our idle-switching overhead: */
514 sleep_ticks
-= cx
->latency_ticks
+ C2_OVERHEAD
;
516 current_thread_info()->status
|= TS_POLLING
;
517 acpi_state_timer_broadcast(pr
, cx
, 0);
523 * bm_check implies we need ARB_DIS
524 * !bm_check implies we need cache flush
525 * bm_control implies whether we can do ARB_DIS
527 * That leaves a case where bm_check is set and bm_control is
528 * not set. In that case we cannot do much, we enter C3
529 * without doing anything.
531 if (pr
->flags
.bm_check
&& pr
->flags
.bm_control
) {
532 if (atomic_inc_return(&c3_cpu_count
) ==
535 * All CPUs are trying to go to C3
536 * Disable bus master arbitration
538 acpi_set_register(ACPI_BITREG_ARB_DISABLE
, 1);
540 } else if (!pr
->flags
.bm_check
) {
541 /* SMP with no shared cache... Invalidate cache */
542 ACPI_FLUSH_CPU_CACHE();
545 /* Get start time (ticks) */
546 t1
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
548 acpi_state_timer_broadcast(pr
, cx
, 1);
549 /* Tell the scheduler that we are going deep-idle: */
550 sched_clock_idle_sleep_event();
551 acpi_cstate_enter(cx
);
552 /* Get end time (ticks) */
553 t2
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
554 if (pr
->flags
.bm_check
&& pr
->flags
.bm_control
) {
555 /* Enable bus master arbitration */
556 atomic_dec(&c3_cpu_count
);
557 acpi_set_register(ACPI_BITREG_ARB_DISABLE
, 0);
560 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
561 /* TSC halts in C3, so notify users */
562 mark_tsc_unstable("TSC halts in C3");
564 /* Compute time (ticks) that we were actually asleep */
565 sleep_ticks
= ticks_elapsed(t1
, t2
);
566 /* Tell the scheduler how much we idled: */
567 sched_clock_idle_wakeup_event(sleep_ticks
*PM_TIMER_TICK_NS
);
569 /* Re-enable interrupts */
571 /* Do not account our idle-switching overhead: */
572 sleep_ticks
-= cx
->latency_ticks
+ C3_OVERHEAD
;
574 current_thread_info()->status
|= TS_POLLING
;
575 acpi_state_timer_broadcast(pr
, cx
, 0);
583 if ((cx
->type
!= ACPI_STATE_C1
) && (sleep_ticks
> 0))
584 cx
->time
+= sleep_ticks
;
586 next_state
= pr
->power
.state
;
588 #ifdef CONFIG_HOTPLUG_CPU
589 /* Don't do promotion/demotion */
590 if ((cx
->type
== ACPI_STATE_C1
) && (num_online_cpus() > 1) &&
591 !pr
->flags
.has_cst
&& !(acpi_gbl_FADT
.flags
& ACPI_FADT_C2_MP_SUPPORTED
)) {
600 * Track the number of longs (time asleep is greater than threshold)
601 * and promote when the count threshold is reached. Note that bus
602 * mastering activity may prevent promotions.
603 * Do not promote above max_cstate.
605 if (cx
->promotion
.state
&&
606 ((cx
->promotion
.state
- pr
->power
.states
) <= max_cstate
)) {
607 if (sleep_ticks
> cx
->promotion
.threshold
.ticks
&&
608 cx
->promotion
.state
->latency
<= system_latency_constraint()) {
609 cx
->promotion
.count
++;
610 cx
->demotion
.count
= 0;
611 if (cx
->promotion
.count
>=
612 cx
->promotion
.threshold
.count
) {
613 if (pr
->flags
.bm_check
) {
615 (pr
->power
.bm_activity
& cx
->
616 promotion
.threshold
.bm
)) {
622 next_state
= cx
->promotion
.state
;
632 * Track the number of shorts (time asleep is less than time threshold)
633 * and demote when the usage threshold is reached.
635 if (cx
->demotion
.state
) {
636 if (sleep_ticks
< cx
->demotion
.threshold
.ticks
) {
637 cx
->demotion
.count
++;
638 cx
->promotion
.count
= 0;
639 if (cx
->demotion
.count
>= cx
->demotion
.threshold
.count
) {
640 next_state
= cx
->demotion
.state
;
648 * Demote if current state exceeds max_cstate
649 * or if the latency of the current state is unacceptable
651 if ((pr
->power
.state
- pr
->power
.states
) > max_cstate
||
652 pr
->power
.state
->latency
> system_latency_constraint()) {
653 if (cx
->demotion
.state
)
654 next_state
= cx
->demotion
.state
;
660 * If we're going to start using a new Cx state we must clean up
661 * from the previous and prepare to use the new.
663 if (next_state
!= pr
->power
.state
)
664 acpi_processor_power_activate(pr
, next_state
);
667 static int acpi_processor_set_power_policy(struct acpi_processor
*pr
)
670 unsigned int state_is_set
= 0;
671 struct acpi_processor_cx
*lower
= NULL
;
672 struct acpi_processor_cx
*higher
= NULL
;
673 struct acpi_processor_cx
*cx
;
680 * This function sets the default Cx state policy (OS idle handler).
681 * Our scheme is to promote quickly to C2 but more conservatively
682 * to C3. We're favoring C2 for its characteristics of low latency
683 * (quick response), good power savings, and ability to allow bus
684 * mastering activity. Note that the Cx state policy is completely
685 * customizable and can be altered dynamically.
689 for (i
= 1; i
< ACPI_PROCESSOR_MAX_POWER
; i
++) {
690 cx
= &pr
->power
.states
[i
];
695 pr
->power
.state
= cx
;
704 for (i
= 1; i
< ACPI_PROCESSOR_MAX_POWER
; i
++) {
705 cx
= &pr
->power
.states
[i
];
710 cx
->demotion
.state
= lower
;
711 cx
->demotion
.threshold
.ticks
= cx
->latency_ticks
;
712 cx
->demotion
.threshold
.count
= 1;
713 if (cx
->type
== ACPI_STATE_C3
)
714 cx
->demotion
.threshold
.bm
= bm_history
;
721 for (i
= (ACPI_PROCESSOR_MAX_POWER
- 1); i
> 0; i
--) {
722 cx
= &pr
->power
.states
[i
];
727 cx
->promotion
.state
= higher
;
728 cx
->promotion
.threshold
.ticks
= cx
->latency_ticks
;
729 if (cx
->type
>= ACPI_STATE_C2
)
730 cx
->promotion
.threshold
.count
= 4;
732 cx
->promotion
.threshold
.count
= 10;
733 if (higher
->type
== ACPI_STATE_C3
)
734 cx
->promotion
.threshold
.bm
= bm_history
;
743 static int acpi_processor_get_power_info_fadt(struct acpi_processor
*pr
)
752 /* if info is obtained from pblk/fadt, type equals state */
753 pr
->power
.states
[ACPI_STATE_C2
].type
= ACPI_STATE_C2
;
754 pr
->power
.states
[ACPI_STATE_C3
].type
= ACPI_STATE_C3
;
756 #ifndef CONFIG_HOTPLUG_CPU
758 * Check for P_LVL2_UP flag before entering C2 and above on
761 if ((num_online_cpus() > 1) &&
762 !(acpi_gbl_FADT
.flags
& ACPI_FADT_C2_MP_SUPPORTED
))
766 /* determine C2 and C3 address from pblk */
767 pr
->power
.states
[ACPI_STATE_C2
].address
= pr
->pblk
+ 4;
768 pr
->power
.states
[ACPI_STATE_C3
].address
= pr
->pblk
+ 5;
770 /* determine latencies from FADT */
771 pr
->power
.states
[ACPI_STATE_C2
].latency
= acpi_gbl_FADT
.C2latency
;
772 pr
->power
.states
[ACPI_STATE_C3
].latency
= acpi_gbl_FADT
.C3latency
;
774 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
775 "lvl2[0x%08x] lvl3[0x%08x]\n",
776 pr
->power
.states
[ACPI_STATE_C2
].address
,
777 pr
->power
.states
[ACPI_STATE_C3
].address
));
782 static int acpi_processor_get_power_info_default(struct acpi_processor
*pr
)
784 if (!pr
->power
.states
[ACPI_STATE_C1
].valid
) {
785 /* set the first C-State to C1 */
786 /* all processors need to support C1 */
787 pr
->power
.states
[ACPI_STATE_C1
].type
= ACPI_STATE_C1
;
788 pr
->power
.states
[ACPI_STATE_C1
].valid
= 1;
790 /* the C0 state only exists as a filler in our array */
791 pr
->power
.states
[ACPI_STATE_C0
].valid
= 1;
795 static int acpi_processor_get_power_info_cst(struct acpi_processor
*pr
)
797 acpi_status status
= 0;
801 struct acpi_buffer buffer
= { ACPI_ALLOCATE_BUFFER
, NULL
};
802 union acpi_object
*cst
;
810 status
= acpi_evaluate_object(pr
->handle
, "_CST", NULL
, &buffer
);
811 if (ACPI_FAILURE(status
)) {
812 ACPI_DEBUG_PRINT((ACPI_DB_INFO
, "No _CST, giving up\n"));
816 cst
= buffer
.pointer
;
818 /* There must be at least 2 elements */
819 if (!cst
|| (cst
->type
!= ACPI_TYPE_PACKAGE
) || cst
->package
.count
< 2) {
820 printk(KERN_ERR PREFIX
"not enough elements in _CST\n");
825 count
= cst
->package
.elements
[0].integer
.value
;
827 /* Validate number of power states. */
828 if (count
< 1 || count
!= cst
->package
.count
- 1) {
829 printk(KERN_ERR PREFIX
"count given by _CST is not valid\n");
834 /* Tell driver that at least _CST is supported. */
835 pr
->flags
.has_cst
= 1;
837 for (i
= 1; i
<= count
; i
++) {
838 union acpi_object
*element
;
839 union acpi_object
*obj
;
840 struct acpi_power_register
*reg
;
841 struct acpi_processor_cx cx
;
843 memset(&cx
, 0, sizeof(cx
));
845 element
= &(cst
->package
.elements
[i
]);
846 if (element
->type
!= ACPI_TYPE_PACKAGE
)
849 if (element
->package
.count
!= 4)
852 obj
= &(element
->package
.elements
[0]);
854 if (obj
->type
!= ACPI_TYPE_BUFFER
)
857 reg
= (struct acpi_power_register
*)obj
->buffer
.pointer
;
859 if (reg
->space_id
!= ACPI_ADR_SPACE_SYSTEM_IO
&&
860 (reg
->space_id
!= ACPI_ADR_SPACE_FIXED_HARDWARE
))
863 /* There should be an easy way to extract an integer... */
864 obj
= &(element
->package
.elements
[1]);
865 if (obj
->type
!= ACPI_TYPE_INTEGER
)
868 cx
.type
= obj
->integer
.value
;
870 * Some buggy BIOSes won't list C1 in _CST -
871 * Let acpi_processor_get_power_info_default() handle them later
873 if (i
== 1 && cx
.type
!= ACPI_STATE_C1
)
876 cx
.address
= reg
->address
;
877 cx
.index
= current_count
+ 1;
879 cx
.space_id
= ACPI_CSTATE_SYSTEMIO
;
880 if (reg
->space_id
== ACPI_ADR_SPACE_FIXED_HARDWARE
) {
881 if (acpi_processor_ffh_cstate_probe
882 (pr
->id
, &cx
, reg
) == 0) {
883 cx
.space_id
= ACPI_CSTATE_FFH
;
884 } else if (cx
.type
!= ACPI_STATE_C1
) {
886 * C1 is a special case where FIXED_HARDWARE
887 * can be handled in non-MWAIT way as well.
888 * In that case, save this _CST entry info.
889 * That is, we retain space_id of SYSTEM_IO for
891 * Otherwise, ignore this info and continue.
897 obj
= &(element
->package
.elements
[2]);
898 if (obj
->type
!= ACPI_TYPE_INTEGER
)
901 cx
.latency
= obj
->integer
.value
;
903 obj
= &(element
->package
.elements
[3]);
904 if (obj
->type
!= ACPI_TYPE_INTEGER
)
907 cx
.power
= obj
->integer
.value
;
910 memcpy(&(pr
->power
.states
[current_count
]), &cx
, sizeof(cx
));
913 * We support total ACPI_PROCESSOR_MAX_POWER - 1
914 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
916 if (current_count
>= (ACPI_PROCESSOR_MAX_POWER
- 1)) {
918 "Limiting number of power states to max (%d)\n",
919 ACPI_PROCESSOR_MAX_POWER
);
921 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
926 ACPI_DEBUG_PRINT((ACPI_DB_INFO
, "Found %d power states\n",
929 /* Validate number of power states discovered */
930 if (current_count
< 2)
934 kfree(buffer
.pointer
);
939 static void acpi_processor_power_verify_c2(struct acpi_processor_cx
*cx
)
946 * C2 latency must be less than or equal to 100
949 else if (cx
->latency
> ACPI_PROCESSOR_MAX_C2_LATENCY
) {
950 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
951 "latency too large [%d]\n", cx
->latency
));
956 * Otherwise we've met all of our C2 requirements.
957 * Normalize the C2 latency to expidite policy
960 cx
->latency_ticks
= US_TO_PM_TIMER_TICKS(cx
->latency
);
965 static void acpi_processor_power_verify_c3(struct acpi_processor
*pr
,
966 struct acpi_processor_cx
*cx
)
968 static int bm_check_flag
;
975 * C3 latency must be less than or equal to 1000
978 else if (cx
->latency
> ACPI_PROCESSOR_MAX_C3_LATENCY
) {
979 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
980 "latency too large [%d]\n", cx
->latency
));
985 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
986 * DMA transfers are used by any ISA device to avoid livelock.
987 * Note that we could disable Type-F DMA (as recommended by
988 * the erratum), but this is known to disrupt certain ISA
989 * devices thus we take the conservative approach.
991 else if (errata
.piix4
.fdma
) {
992 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
993 "C3 not supported on PIIX4 with Type-F DMA\n"));
997 /* All the logic here assumes flags.bm_check is same across all CPUs */
998 if (!bm_check_flag
) {
999 /* Determine whether bm_check is needed based on CPU */
1000 acpi_processor_power_init_bm_check(&(pr
->flags
), pr
->id
);
1001 bm_check_flag
= pr
->flags
.bm_check
;
1003 pr
->flags
.bm_check
= bm_check_flag
;
1006 if (pr
->flags
.bm_check
) {
1007 if (!pr
->flags
.bm_control
) {
1008 if (pr
->flags
.has_cst
!= 1) {
1009 /* bus mastering control is necessary */
1010 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
1011 "C3 support requires BM control\n"));
1014 /* Here we enter C3 without bus mastering */
1015 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
1016 "C3 support without BM control\n"));
1021 * WBINVD should be set in fadt, for C3 state to be
1022 * supported on when bm_check is not required.
1024 if (!(acpi_gbl_FADT
.flags
& ACPI_FADT_WBINVD
)) {
1025 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
1026 "Cache invalidation should work properly"
1027 " for C3 to be enabled on SMP systems\n"));
1030 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD
, 0);
1034 * Otherwise we've met all of our C3 requirements.
1035 * Normalize the C3 latency to expidite policy. Enable
1036 * checking of bus mastering status (bm_check) so we can
1037 * use this in our C3 policy
1040 cx
->latency_ticks
= US_TO_PM_TIMER_TICKS(cx
->latency
);
1045 static int acpi_processor_power_verify(struct acpi_processor
*pr
)
1048 unsigned int working
= 0;
1050 pr
->power
.timer_broadcast_on_state
= INT_MAX
;
1052 for (i
= 1; i
< ACPI_PROCESSOR_MAX_POWER
; i
++) {
1053 struct acpi_processor_cx
*cx
= &pr
->power
.states
[i
];
1061 acpi_processor_power_verify_c2(cx
);
1063 acpi_timer_check_state(i
, pr
, cx
);
1067 acpi_processor_power_verify_c3(pr
, cx
);
1069 acpi_timer_check_state(i
, pr
, cx
);
1077 acpi_propagate_timer_broadcast(pr
);
1082 static int acpi_processor_get_power_info(struct acpi_processor
*pr
)
1088 /* NOTE: the idle thread may not be running while calling
1091 /* Zero initialize all the C-states info. */
1092 memset(pr
->power
.states
, 0, sizeof(pr
->power
.states
));
1094 result
= acpi_processor_get_power_info_cst(pr
);
1095 if (result
== -ENODEV
)
1096 result
= acpi_processor_get_power_info_fadt(pr
);
1101 acpi_processor_get_power_info_default(pr
);
1103 pr
->power
.count
= acpi_processor_power_verify(pr
);
1106 * Set Default Policy
1107 * ------------------
1108 * Now that we know which states are supported, set the default
1109 * policy. Note that this policy can be changed dynamically
1110 * (e.g. encourage deeper sleeps to conserve battery life when
1113 result
= acpi_processor_set_power_policy(pr
);
1118 * if one state of type C2 or C3 is available, mark this
1119 * CPU as being "idle manageable"
1121 for (i
= 1; i
< ACPI_PROCESSOR_MAX_POWER
; i
++) {
1122 if (pr
->power
.states
[i
].valid
) {
1123 pr
->power
.count
= i
;
1124 if (pr
->power
.states
[i
].type
>= ACPI_STATE_C2
)
1125 pr
->flags
.power
= 1;
1132 int acpi_processor_cst_has_changed(struct acpi_processor
*pr
)
1144 if (!pr
->flags
.power_setup_done
)
1147 /* Fall back to the default idle loop */
1148 pm_idle
= pm_idle_save
;
1149 synchronize_sched(); /* Relies on interrupts forcing exit from idle. */
1151 pr
->flags
.power
= 0;
1152 result
= acpi_processor_get_power_info(pr
);
1153 if ((pr
->flags
.power
== 1) && (pr
->flags
.power_setup_done
))
1154 pm_idle
= acpi_processor_idle
;
1159 /* proc interface */
1161 static int acpi_processor_power_seq_show(struct seq_file
*seq
, void *offset
)
1163 struct acpi_processor
*pr
= seq
->private;
1170 seq_printf(seq
, "active state: C%zd\n"
1172 "bus master activity: %08x\n"
1173 "maximum allowed latency: %d usec\n",
1174 pr
->power
.state
? pr
->power
.state
- pr
->power
.states
: 0,
1175 max_cstate
, (unsigned)pr
->power
.bm_activity
,
1176 system_latency_constraint());
1178 seq_puts(seq
, "states:\n");
1180 for (i
= 1; i
<= pr
->power
.count
; i
++) {
1181 seq_printf(seq
, " %cC%d: ",
1182 (&pr
->power
.states
[i
] ==
1183 pr
->power
.state
? '*' : ' '), i
);
1185 if (!pr
->power
.states
[i
].valid
) {
1186 seq_puts(seq
, "<not supported>\n");
1190 switch (pr
->power
.states
[i
].type
) {
1192 seq_printf(seq
, "type[C1] ");
1195 seq_printf(seq
, "type[C2] ");
1198 seq_printf(seq
, "type[C3] ");
1201 seq_printf(seq
, "type[--] ");
1205 if (pr
->power
.states
[i
].promotion
.state
)
1206 seq_printf(seq
, "promotion[C%zd] ",
1207 (pr
->power
.states
[i
].promotion
.state
-
1210 seq_puts(seq
, "promotion[--] ");
1212 if (pr
->power
.states
[i
].demotion
.state
)
1213 seq_printf(seq
, "demotion[C%zd] ",
1214 (pr
->power
.states
[i
].demotion
.state
-
1217 seq_puts(seq
, "demotion[--] ");
1219 seq_printf(seq
, "latency[%03d] usage[%08d] duration[%020llu]\n",
1220 pr
->power
.states
[i
].latency
,
1221 pr
->power
.states
[i
].usage
,
1222 (unsigned long long)pr
->power
.states
[i
].time
);
1229 static int acpi_processor_power_open_fs(struct inode
*inode
, struct file
*file
)
1231 return single_open(file
, acpi_processor_power_seq_show
,
1235 static const struct file_operations acpi_processor_power_fops
= {
1236 .open
= acpi_processor_power_open_fs
,
1238 .llseek
= seq_lseek
,
1239 .release
= single_release
,
1243 static void smp_callback(void *v
)
1245 /* we already woke the CPU up, nothing more to do */
1249 * This function gets called when a part of the kernel has a new latency
1250 * requirement. This means we need to get all processors out of their C-state,
1251 * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1252 * wakes them all right up.
1254 static int acpi_processor_latency_notify(struct notifier_block
*b
,
1255 unsigned long l
, void *v
)
1257 smp_call_function(smp_callback
, NULL
, 0, 1);
1261 static struct notifier_block acpi_processor_latency_notifier
= {
1262 .notifier_call
= acpi_processor_latency_notify
,
1266 int __cpuinit
acpi_processor_power_init(struct acpi_processor
*pr
,
1267 struct acpi_device
*device
)
1269 acpi_status status
= 0;
1270 static int first_run
;
1271 struct proc_dir_entry
*entry
= NULL
;
1276 dmi_check_system(processor_power_dmi_table
);
1277 if (max_cstate
< ACPI_C_STATES_MAX
)
1279 "ACPI: processor limited to max C-state %d\n",
1283 register_latency_notifier(&acpi_processor_latency_notifier
);
1290 if (acpi_gbl_FADT
.cst_control
&& !nocst
) {
1292 acpi_os_write_port(acpi_gbl_FADT
.smi_command
, acpi_gbl_FADT
.cst_control
, 8);
1293 if (ACPI_FAILURE(status
)) {
1294 ACPI_EXCEPTION((AE_INFO
, status
,
1295 "Notifying BIOS of _CST ability failed"));
1299 acpi_processor_get_power_info(pr
);
1302 * Install the idle handler if processor power management is supported.
1303 * Note that we use previously set idle handler will be used on
1304 * platforms that only support C1.
1306 if ((pr
->flags
.power
) && (!boot_option_idle_override
)) {
1307 printk(KERN_INFO PREFIX
"CPU%d (power states:", pr
->id
);
1308 for (i
= 1; i
<= pr
->power
.count
; i
++)
1309 if (pr
->power
.states
[i
].valid
)
1310 printk(" C%d[C%d]", i
,
1311 pr
->power
.states
[i
].type
);
1315 pm_idle_save
= pm_idle
;
1316 pm_idle
= acpi_processor_idle
;
1321 entry
= create_proc_entry(ACPI_PROCESSOR_FILE_POWER
,
1322 S_IRUGO
, acpi_device_dir(device
));
1326 entry
->proc_fops
= &acpi_processor_power_fops
;
1327 entry
->data
= acpi_driver_data(device
);
1328 entry
->owner
= THIS_MODULE
;
1331 pr
->flags
.power_setup_done
= 1;
1336 int acpi_processor_power_exit(struct acpi_processor
*pr
,
1337 struct acpi_device
*device
)
1340 pr
->flags
.power_setup_done
= 0;
1342 if (acpi_device_dir(device
))
1343 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER
,
1344 acpi_device_dir(device
));
1346 /* Unregister the idle handler when processor #0 is removed. */
1348 pm_idle
= pm_idle_save
;
1351 * We are about to unload the current idle thread pm callback
1352 * (pm_idle), Wait for all processors to update cached/local
1353 * copies of pm_idle before proceeding.
1357 unregister_latency_notifier(&acpi_processor_latency_notifier
);