[PATCH] x86_64: Fix the node cpumask of a cpu going down
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86_64 / mm / fault.c
blob2e7c3c8ffe035d0981b29fd052da25cb86e21d41
1 /*
2 * linux/arch/x86-64/mm/fault.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 2001,2002 Andi Kleen, SuSE Labs.
6 */
8 #include <linux/config.h>
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/interrupt.h>
21 #include <linux/init.h>
22 #include <linux/tty.h>
23 #include <linux/vt_kern.h> /* For unblank_screen() */
24 #include <linux/compiler.h>
25 #include <linux/module.h>
26 #include <linux/kprobes.h>
28 #include <asm/system.h>
29 #include <asm/uaccess.h>
30 #include <asm/pgalloc.h>
31 #include <asm/smp.h>
32 #include <asm/tlbflush.h>
33 #include <asm/proto.h>
34 #include <asm/kdebug.h>
35 #include <asm-generic/sections.h>
37 /* Page fault error code bits */
38 #define PF_PROT (1<<0) /* or no page found */
39 #define PF_WRITE (1<<1)
40 #define PF_USER (1<<2)
41 #define PF_RSVD (1<<3)
42 #define PF_INSTR (1<<4)
44 void bust_spinlocks(int yes)
46 int loglevel_save = console_loglevel;
47 if (yes) {
48 oops_in_progress = 1;
49 } else {
50 #ifdef CONFIG_VT
51 unblank_screen();
52 #endif
53 oops_in_progress = 0;
55 * OK, the message is on the console. Now we call printk()
56 * without oops_in_progress set so that printk will give klogd
57 * a poke. Hold onto your hats...
59 console_loglevel = 15; /* NMI oopser may have shut the console up */
60 printk(" ");
61 console_loglevel = loglevel_save;
65 /* Sometimes the CPU reports invalid exceptions on prefetch.
66 Check that here and ignore.
67 Opcode checker based on code by Richard Brunner */
68 static noinline int is_prefetch(struct pt_regs *regs, unsigned long addr,
69 unsigned long error_code)
71 unsigned char *instr;
72 int scan_more = 1;
73 int prefetch = 0;
74 unsigned char *max_instr;
76 /* If it was a exec fault ignore */
77 if (error_code & PF_INSTR)
78 return 0;
80 instr = (unsigned char *)convert_rip_to_linear(current, regs);
81 max_instr = instr + 15;
83 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
84 return 0;
86 while (scan_more && instr < max_instr) {
87 unsigned char opcode;
88 unsigned char instr_hi;
89 unsigned char instr_lo;
91 if (__get_user(opcode, instr))
92 break;
94 instr_hi = opcode & 0xf0;
95 instr_lo = opcode & 0x0f;
96 instr++;
98 switch (instr_hi) {
99 case 0x20:
100 case 0x30:
101 /* Values 0x26,0x2E,0x36,0x3E are valid x86
102 prefixes. In long mode, the CPU will signal
103 invalid opcode if some of these prefixes are
104 present so we will never get here anyway */
105 scan_more = ((instr_lo & 7) == 0x6);
106 break;
108 case 0x40:
109 /* In AMD64 long mode, 0x40 to 0x4F are valid REX prefixes
110 Need to figure out under what instruction mode the
111 instruction was issued ... */
112 /* Could check the LDT for lm, but for now it's good
113 enough to assume that long mode only uses well known
114 segments or kernel. */
115 scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS);
116 break;
118 case 0x60:
119 /* 0x64 thru 0x67 are valid prefixes in all modes. */
120 scan_more = (instr_lo & 0xC) == 0x4;
121 break;
122 case 0xF0:
123 /* 0xF0, 0xF2, and 0xF3 are valid prefixes in all modes. */
124 scan_more = !instr_lo || (instr_lo>>1) == 1;
125 break;
126 case 0x00:
127 /* Prefetch instruction is 0x0F0D or 0x0F18 */
128 scan_more = 0;
129 if (__get_user(opcode, instr))
130 break;
131 prefetch = (instr_lo == 0xF) &&
132 (opcode == 0x0D || opcode == 0x18);
133 break;
134 default:
135 scan_more = 0;
136 break;
139 return prefetch;
142 static int bad_address(void *p)
144 unsigned long dummy;
145 return __get_user(dummy, (unsigned long *)p);
148 void dump_pagetable(unsigned long address)
150 pgd_t *pgd;
151 pud_t *pud;
152 pmd_t *pmd;
153 pte_t *pte;
155 asm("movq %%cr3,%0" : "=r" (pgd));
157 pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
158 pgd += pgd_index(address);
159 if (bad_address(pgd)) goto bad;
160 printk("PGD %lx ", pgd_val(*pgd));
161 if (!pgd_present(*pgd)) goto ret;
163 pud = __pud_offset_k((pud_t *)pgd_page(*pgd), address);
164 if (bad_address(pud)) goto bad;
165 printk("PUD %lx ", pud_val(*pud));
166 if (!pud_present(*pud)) goto ret;
168 pmd = pmd_offset(pud, address);
169 if (bad_address(pmd)) goto bad;
170 printk("PMD %lx ", pmd_val(*pmd));
171 if (!pmd_present(*pmd)) goto ret;
173 pte = pte_offset_kernel(pmd, address);
174 if (bad_address(pte)) goto bad;
175 printk("PTE %lx", pte_val(*pte));
176 ret:
177 printk("\n");
178 return;
179 bad:
180 printk("BAD\n");
183 static const char errata93_warning[] =
184 KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
185 KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
186 KERN_ERR "******* Please consider a BIOS update.\n"
187 KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
189 /* Workaround for K8 erratum #93 & buggy BIOS.
190 BIOS SMM functions are required to use a specific workaround
191 to avoid corruption of the 64bit RIP register on C stepping K8.
192 A lot of BIOS that didn't get tested properly miss this.
193 The OS sees this as a page fault with the upper 32bits of RIP cleared.
194 Try to work around it here.
195 Note we only handle faults in kernel here. */
197 static int is_errata93(struct pt_regs *regs, unsigned long address)
199 static int warned;
200 if (address != regs->rip)
201 return 0;
202 if ((address >> 32) != 0)
203 return 0;
204 address |= 0xffffffffUL << 32;
205 if ((address >= (u64)_stext && address <= (u64)_etext) ||
206 (address >= MODULES_VADDR && address <= MODULES_END)) {
207 if (!warned) {
208 printk(errata93_warning);
209 warned = 1;
211 regs->rip = address;
212 return 1;
214 return 0;
217 int unhandled_signal(struct task_struct *tsk, int sig)
219 if (tsk->pid == 1)
220 return 1;
221 if (tsk->ptrace & PT_PTRACED)
222 return 0;
223 return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) ||
224 (tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL);
227 static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs,
228 unsigned long error_code)
230 unsigned long flags = oops_begin();
231 struct task_struct *tsk;
233 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
234 current->comm, address);
235 dump_pagetable(address);
236 tsk = current;
237 tsk->thread.cr2 = address;
238 tsk->thread.trap_no = 14;
239 tsk->thread.error_code = error_code;
240 __die("Bad pagetable", regs, error_code);
241 oops_end(flags);
242 do_exit(SIGKILL);
246 * Handle a fault on the vmalloc area
248 * This assumes no large pages in there.
250 static int vmalloc_fault(unsigned long address)
252 pgd_t *pgd, *pgd_ref;
253 pud_t *pud, *pud_ref;
254 pmd_t *pmd, *pmd_ref;
255 pte_t *pte, *pte_ref;
257 /* Copy kernel mappings over when needed. This can also
258 happen within a race in page table update. In the later
259 case just flush. */
261 pgd = pgd_offset(current->mm ?: &init_mm, address);
262 pgd_ref = pgd_offset_k(address);
263 if (pgd_none(*pgd_ref))
264 return -1;
265 if (pgd_none(*pgd))
266 set_pgd(pgd, *pgd_ref);
268 /* Below here mismatches are bugs because these lower tables
269 are shared */
271 pud = pud_offset(pgd, address);
272 pud_ref = pud_offset(pgd_ref, address);
273 if (pud_none(*pud_ref))
274 return -1;
275 if (pud_none(*pud) || pud_page(*pud) != pud_page(*pud_ref))
276 BUG();
277 pmd = pmd_offset(pud, address);
278 pmd_ref = pmd_offset(pud_ref, address);
279 if (pmd_none(*pmd_ref))
280 return -1;
281 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
282 BUG();
283 pte_ref = pte_offset_kernel(pmd_ref, address);
284 if (!pte_present(*pte_ref))
285 return -1;
286 pte = pte_offset_kernel(pmd, address);
287 /* Don't use pte_page here, because the mappings can point
288 outside mem_map, and the NUMA hash lookup cannot handle
289 that. */
290 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
291 BUG();
292 return 0;
295 int page_fault_trace = 0;
296 int exception_trace = 1;
299 * This routine handles page faults. It determines the address,
300 * and the problem, and then passes it off to one of the appropriate
301 * routines.
303 asmlinkage void __kprobes do_page_fault(struct pt_regs *regs,
304 unsigned long error_code)
306 struct task_struct *tsk;
307 struct mm_struct *mm;
308 struct vm_area_struct * vma;
309 unsigned long address;
310 const struct exception_table_entry *fixup;
311 int write;
312 unsigned long flags;
313 siginfo_t info;
315 /* get the address */
316 __asm__("movq %%cr2,%0":"=r" (address));
317 if (notify_die(DIE_PAGE_FAULT, "page fault", regs, error_code, 14,
318 SIGSEGV) == NOTIFY_STOP)
319 return;
321 if (likely(regs->eflags & X86_EFLAGS_IF))
322 local_irq_enable();
324 if (unlikely(page_fault_trace))
325 printk("pagefault rip:%lx rsp:%lx cs:%lu ss:%lu address %lx error %lx\n",
326 regs->rip,regs->rsp,regs->cs,regs->ss,address,error_code);
328 tsk = current;
329 mm = tsk->mm;
330 info.si_code = SEGV_MAPERR;
334 * We fault-in kernel-space virtual memory on-demand. The
335 * 'reference' page table is init_mm.pgd.
337 * NOTE! We MUST NOT take any locks for this case. We may
338 * be in an interrupt or a critical region, and should
339 * only copy the information from the master page table,
340 * nothing more.
342 * This verifies that the fault happens in kernel space
343 * (error_code & 4) == 0, and that the fault was not a
344 * protection error (error_code & 9) == 0.
346 if (unlikely(address >= TASK_SIZE64)) {
348 * Don't check for the module range here: its PML4
349 * is always initialized because it's shared with the main
350 * kernel text. Only vmalloc may need PML4 syncups.
352 if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
353 ((address >= VMALLOC_START && address < VMALLOC_END))) {
354 if (vmalloc_fault(address) < 0)
355 goto bad_area_nosemaphore;
356 return;
359 * Don't take the mm semaphore here. If we fixup a prefetch
360 * fault we could otherwise deadlock.
362 goto bad_area_nosemaphore;
365 if (unlikely(error_code & PF_RSVD))
366 pgtable_bad(address, regs, error_code);
369 * If we're in an interrupt or have no user
370 * context, we must not take the fault..
372 if (unlikely(in_atomic() || !mm))
373 goto bad_area_nosemaphore;
375 again:
376 /* When running in the kernel we expect faults to occur only to
377 * addresses in user space. All other faults represent errors in the
378 * kernel and should generate an OOPS. Unfortunatly, in the case of an
379 * erroneous fault occuring in a code path which already holds mmap_sem
380 * we will deadlock attempting to validate the fault against the
381 * address space. Luckily the kernel only validly references user
382 * space from well defined areas of code, which are listed in the
383 * exceptions table.
385 * As the vast majority of faults will be valid we will only perform
386 * the source reference check when there is a possibilty of a deadlock.
387 * Attempt to lock the address space, if we cannot we then validate the
388 * source. If this is invalid we can skip the address space check,
389 * thus avoiding the deadlock.
391 if (!down_read_trylock(&mm->mmap_sem)) {
392 if ((error_code & PF_USER) == 0 &&
393 !search_exception_tables(regs->rip))
394 goto bad_area_nosemaphore;
395 down_read(&mm->mmap_sem);
398 vma = find_vma(mm, address);
399 if (!vma)
400 goto bad_area;
401 if (likely(vma->vm_start <= address))
402 goto good_area;
403 if (!(vma->vm_flags & VM_GROWSDOWN))
404 goto bad_area;
405 if (error_code & 4) {
406 // XXX: align red zone size with ABI
407 if (address + 128 < regs->rsp)
408 goto bad_area;
410 if (expand_stack(vma, address))
411 goto bad_area;
413 * Ok, we have a good vm_area for this memory access, so
414 * we can handle it..
416 good_area:
417 info.si_code = SEGV_ACCERR;
418 write = 0;
419 switch (error_code & (PF_PROT|PF_WRITE)) {
420 default: /* 3: write, present */
421 /* fall through */
422 case PF_WRITE: /* write, not present */
423 if (!(vma->vm_flags & VM_WRITE))
424 goto bad_area;
425 write++;
426 break;
427 case PF_PROT: /* read, present */
428 goto bad_area;
429 case 0: /* read, not present */
430 if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
431 goto bad_area;
435 * If for any reason at all we couldn't handle the fault,
436 * make sure we exit gracefully rather than endlessly redo
437 * the fault.
439 switch (handle_mm_fault(mm, vma, address, write)) {
440 case VM_FAULT_MINOR:
441 tsk->min_flt++;
442 break;
443 case VM_FAULT_MAJOR:
444 tsk->maj_flt++;
445 break;
446 case VM_FAULT_SIGBUS:
447 goto do_sigbus;
448 default:
449 goto out_of_memory;
452 up_read(&mm->mmap_sem);
453 return;
456 * Something tried to access memory that isn't in our memory map..
457 * Fix it, but check if it's kernel or user first..
459 bad_area:
460 up_read(&mm->mmap_sem);
462 bad_area_nosemaphore:
463 /* User mode accesses just cause a SIGSEGV */
464 if (error_code & PF_USER) {
465 if (is_prefetch(regs, address, error_code))
466 return;
468 /* Work around K8 erratum #100 K8 in compat mode
469 occasionally jumps to illegal addresses >4GB. We
470 catch this here in the page fault handler because
471 these addresses are not reachable. Just detect this
472 case and return. Any code segment in LDT is
473 compatibility mode. */
474 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) &&
475 (address >> 32))
476 return;
478 if (exception_trace && unhandled_signal(tsk, SIGSEGV)) {
479 printk(
480 "%s%s[%d]: segfault at %016lx rip %016lx rsp %016lx error %lx\n",
481 tsk->pid > 1 ? KERN_INFO : KERN_EMERG,
482 tsk->comm, tsk->pid, address, regs->rip,
483 regs->rsp, error_code);
486 tsk->thread.cr2 = address;
487 /* Kernel addresses are always protection faults */
488 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
489 tsk->thread.trap_no = 14;
490 info.si_signo = SIGSEGV;
491 info.si_errno = 0;
492 /* info.si_code has been set above */
493 info.si_addr = (void __user *)address;
494 force_sig_info(SIGSEGV, &info, tsk);
495 return;
498 no_context:
500 /* Are we prepared to handle this kernel fault? */
501 fixup = search_exception_tables(regs->rip);
502 if (fixup) {
503 regs->rip = fixup->fixup;
504 return;
508 * Hall of shame of CPU/BIOS bugs.
511 if (is_prefetch(regs, address, error_code))
512 return;
514 if (is_errata93(regs, address))
515 return;
518 * Oops. The kernel tried to access some bad page. We'll have to
519 * terminate things with extreme prejudice.
522 flags = oops_begin();
524 if (address < PAGE_SIZE)
525 printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference");
526 else
527 printk(KERN_ALERT "Unable to handle kernel paging request");
528 printk(" at %016lx RIP: \n" KERN_ALERT,address);
529 printk_address(regs->rip);
530 printk("\n");
531 dump_pagetable(address);
532 tsk->thread.cr2 = address;
533 tsk->thread.trap_no = 14;
534 tsk->thread.error_code = error_code;
535 __die("Oops", regs, error_code);
536 /* Executive summary in case the body of the oops scrolled away */
537 printk(KERN_EMERG "CR2: %016lx\n", address);
538 oops_end(flags);
539 do_exit(SIGKILL);
542 * We ran out of memory, or some other thing happened to us that made
543 * us unable to handle the page fault gracefully.
545 out_of_memory:
546 up_read(&mm->mmap_sem);
547 if (current->pid == 1) {
548 yield();
549 goto again;
551 printk("VM: killing process %s\n", tsk->comm);
552 if (error_code & 4)
553 do_exit(SIGKILL);
554 goto no_context;
556 do_sigbus:
557 up_read(&mm->mmap_sem);
559 /* Kernel mode? Handle exceptions or die */
560 if (!(error_code & PF_USER))
561 goto no_context;
563 tsk->thread.cr2 = address;
564 tsk->thread.error_code = error_code;
565 tsk->thread.trap_no = 14;
566 info.si_signo = SIGBUS;
567 info.si_errno = 0;
568 info.si_code = BUS_ADRERR;
569 info.si_addr = (void __user *)address;
570 force_sig_info(SIGBUS, &info, tsk);
571 return;
574 static int __init enable_pagefaulttrace(char *str)
576 page_fault_trace = 1;
577 return 0;
579 __setup("pagefaulttrace", enable_pagefaulttrace);