thinkpad-acpi: make driver events work in NVRAM poll mode
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sys.c
blobce17760d9c516720af8dcf1522b47da937ba0023
1 /*
2 * linux/kernel/sys.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/smp_lock.h>
12 #include <linux/notifier.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
16 #include <linux/fs.h>
17 #include <linux/perf_event.h>
18 #include <linux/resource.h>
19 #include <linux/kernel.h>
20 #include <linux/kexec.h>
21 #include <linux/workqueue.h>
22 #include <linux/capability.h>
23 #include <linux/device.h>
24 #include <linux/key.h>
25 #include <linux/times.h>
26 #include <linux/posix-timers.h>
27 #include <linux/security.h>
28 #include <linux/dcookies.h>
29 #include <linux/suspend.h>
30 #include <linux/tty.h>
31 #include <linux/signal.h>
32 #include <linux/cn_proc.h>
33 #include <linux/getcpu.h>
34 #include <linux/task_io_accounting_ops.h>
35 #include <linux/seccomp.h>
36 #include <linux/cpu.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
40 #include <linux/compat.h>
41 #include <linux/syscalls.h>
42 #include <linux/kprobes.h>
43 #include <linux/user_namespace.h>
45 #include <asm/uaccess.h>
46 #include <asm/io.h>
47 #include <asm/unistd.h>
49 #ifndef SET_UNALIGN_CTL
50 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
51 #endif
52 #ifndef GET_UNALIGN_CTL
53 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
54 #endif
55 #ifndef SET_FPEMU_CTL
56 # define SET_FPEMU_CTL(a,b) (-EINVAL)
57 #endif
58 #ifndef GET_FPEMU_CTL
59 # define GET_FPEMU_CTL(a,b) (-EINVAL)
60 #endif
61 #ifndef SET_FPEXC_CTL
62 # define SET_FPEXC_CTL(a,b) (-EINVAL)
63 #endif
64 #ifndef GET_FPEXC_CTL
65 # define GET_FPEXC_CTL(a,b) (-EINVAL)
66 #endif
67 #ifndef GET_ENDIAN
68 # define GET_ENDIAN(a,b) (-EINVAL)
69 #endif
70 #ifndef SET_ENDIAN
71 # define SET_ENDIAN(a,b) (-EINVAL)
72 #endif
73 #ifndef GET_TSC_CTL
74 # define GET_TSC_CTL(a) (-EINVAL)
75 #endif
76 #ifndef SET_TSC_CTL
77 # define SET_TSC_CTL(a) (-EINVAL)
78 #endif
81 * this is where the system-wide overflow UID and GID are defined, for
82 * architectures that now have 32-bit UID/GID but didn't in the past
85 int overflowuid = DEFAULT_OVERFLOWUID;
86 int overflowgid = DEFAULT_OVERFLOWGID;
88 #ifdef CONFIG_UID16
89 EXPORT_SYMBOL(overflowuid);
90 EXPORT_SYMBOL(overflowgid);
91 #endif
94 * the same as above, but for filesystems which can only store a 16-bit
95 * UID and GID. as such, this is needed on all architectures
98 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
99 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
101 EXPORT_SYMBOL(fs_overflowuid);
102 EXPORT_SYMBOL(fs_overflowgid);
105 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
108 int C_A_D = 1;
109 struct pid *cad_pid;
110 EXPORT_SYMBOL(cad_pid);
113 * If set, this is used for preparing the system to power off.
116 void (*pm_power_off_prepare)(void);
119 * set the priority of a task
120 * - the caller must hold the RCU read lock
122 static int set_one_prio(struct task_struct *p, int niceval, int error)
124 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
125 int no_nice;
127 if (pcred->uid != cred->euid &&
128 pcred->euid != cred->euid && !capable(CAP_SYS_NICE)) {
129 error = -EPERM;
130 goto out;
132 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
133 error = -EACCES;
134 goto out;
136 no_nice = security_task_setnice(p, niceval);
137 if (no_nice) {
138 error = no_nice;
139 goto out;
141 if (error == -ESRCH)
142 error = 0;
143 set_user_nice(p, niceval);
144 out:
145 return error;
148 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
150 struct task_struct *g, *p;
151 struct user_struct *user;
152 const struct cred *cred = current_cred();
153 int error = -EINVAL;
154 struct pid *pgrp;
156 if (which > PRIO_USER || which < PRIO_PROCESS)
157 goto out;
159 /* normalize: avoid signed division (rounding problems) */
160 error = -ESRCH;
161 if (niceval < -20)
162 niceval = -20;
163 if (niceval > 19)
164 niceval = 19;
166 read_lock(&tasklist_lock);
167 switch (which) {
168 case PRIO_PROCESS:
169 if (who)
170 p = find_task_by_vpid(who);
171 else
172 p = current;
173 if (p)
174 error = set_one_prio(p, niceval, error);
175 break;
176 case PRIO_PGRP:
177 if (who)
178 pgrp = find_vpid(who);
179 else
180 pgrp = task_pgrp(current);
181 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
182 error = set_one_prio(p, niceval, error);
183 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
184 break;
185 case PRIO_USER:
186 user = (struct user_struct *) cred->user;
187 if (!who)
188 who = cred->uid;
189 else if ((who != cred->uid) &&
190 !(user = find_user(who)))
191 goto out_unlock; /* No processes for this user */
193 do_each_thread(g, p)
194 if (__task_cred(p)->uid == who)
195 error = set_one_prio(p, niceval, error);
196 while_each_thread(g, p);
197 if (who != cred->uid)
198 free_uid(user); /* For find_user() */
199 break;
201 out_unlock:
202 read_unlock(&tasklist_lock);
203 out:
204 return error;
208 * Ugh. To avoid negative return values, "getpriority()" will
209 * not return the normal nice-value, but a negated value that
210 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
211 * to stay compatible.
213 SYSCALL_DEFINE2(getpriority, int, which, int, who)
215 struct task_struct *g, *p;
216 struct user_struct *user;
217 const struct cred *cred = current_cred();
218 long niceval, retval = -ESRCH;
219 struct pid *pgrp;
221 if (which > PRIO_USER || which < PRIO_PROCESS)
222 return -EINVAL;
224 read_lock(&tasklist_lock);
225 switch (which) {
226 case PRIO_PROCESS:
227 if (who)
228 p = find_task_by_vpid(who);
229 else
230 p = current;
231 if (p) {
232 niceval = 20 - task_nice(p);
233 if (niceval > retval)
234 retval = niceval;
236 break;
237 case PRIO_PGRP:
238 if (who)
239 pgrp = find_vpid(who);
240 else
241 pgrp = task_pgrp(current);
242 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
243 niceval = 20 - task_nice(p);
244 if (niceval > retval)
245 retval = niceval;
246 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
247 break;
248 case PRIO_USER:
249 user = (struct user_struct *) cred->user;
250 if (!who)
251 who = cred->uid;
252 else if ((who != cred->uid) &&
253 !(user = find_user(who)))
254 goto out_unlock; /* No processes for this user */
256 do_each_thread(g, p)
257 if (__task_cred(p)->uid == who) {
258 niceval = 20 - task_nice(p);
259 if (niceval > retval)
260 retval = niceval;
262 while_each_thread(g, p);
263 if (who != cred->uid)
264 free_uid(user); /* for find_user() */
265 break;
267 out_unlock:
268 read_unlock(&tasklist_lock);
270 return retval;
274 * emergency_restart - reboot the system
276 * Without shutting down any hardware or taking any locks
277 * reboot the system. This is called when we know we are in
278 * trouble so this is our best effort to reboot. This is
279 * safe to call in interrupt context.
281 void emergency_restart(void)
283 machine_emergency_restart();
285 EXPORT_SYMBOL_GPL(emergency_restart);
287 void kernel_restart_prepare(char *cmd)
289 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
290 system_state = SYSTEM_RESTART;
291 device_shutdown();
292 sysdev_shutdown();
296 * kernel_restart - reboot the system
297 * @cmd: pointer to buffer containing command to execute for restart
298 * or %NULL
300 * Shutdown everything and perform a clean reboot.
301 * This is not safe to call in interrupt context.
303 void kernel_restart(char *cmd)
305 kernel_restart_prepare(cmd);
306 if (!cmd)
307 printk(KERN_EMERG "Restarting system.\n");
308 else
309 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
310 machine_restart(cmd);
312 EXPORT_SYMBOL_GPL(kernel_restart);
314 static void kernel_shutdown_prepare(enum system_states state)
316 blocking_notifier_call_chain(&reboot_notifier_list,
317 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
318 system_state = state;
319 device_shutdown();
322 * kernel_halt - halt the system
324 * Shutdown everything and perform a clean system halt.
326 void kernel_halt(void)
328 kernel_shutdown_prepare(SYSTEM_HALT);
329 sysdev_shutdown();
330 printk(KERN_EMERG "System halted.\n");
331 machine_halt();
334 EXPORT_SYMBOL_GPL(kernel_halt);
337 * kernel_power_off - power_off the system
339 * Shutdown everything and perform a clean system power_off.
341 void kernel_power_off(void)
343 kernel_shutdown_prepare(SYSTEM_POWER_OFF);
344 if (pm_power_off_prepare)
345 pm_power_off_prepare();
346 disable_nonboot_cpus();
347 sysdev_shutdown();
348 printk(KERN_EMERG "Power down.\n");
349 machine_power_off();
351 EXPORT_SYMBOL_GPL(kernel_power_off);
353 * Reboot system call: for obvious reasons only root may call it,
354 * and even root needs to set up some magic numbers in the registers
355 * so that some mistake won't make this reboot the whole machine.
356 * You can also set the meaning of the ctrl-alt-del-key here.
358 * reboot doesn't sync: do that yourself before calling this.
360 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
361 void __user *, arg)
363 char buffer[256];
364 int ret = 0;
366 /* We only trust the superuser with rebooting the system. */
367 if (!capable(CAP_SYS_BOOT))
368 return -EPERM;
370 /* For safety, we require "magic" arguments. */
371 if (magic1 != LINUX_REBOOT_MAGIC1 ||
372 (magic2 != LINUX_REBOOT_MAGIC2 &&
373 magic2 != LINUX_REBOOT_MAGIC2A &&
374 magic2 != LINUX_REBOOT_MAGIC2B &&
375 magic2 != LINUX_REBOOT_MAGIC2C))
376 return -EINVAL;
378 /* Instead of trying to make the power_off code look like
379 * halt when pm_power_off is not set do it the easy way.
381 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
382 cmd = LINUX_REBOOT_CMD_HALT;
384 lock_kernel();
385 switch (cmd) {
386 case LINUX_REBOOT_CMD_RESTART:
387 kernel_restart(NULL);
388 break;
390 case LINUX_REBOOT_CMD_CAD_ON:
391 C_A_D = 1;
392 break;
394 case LINUX_REBOOT_CMD_CAD_OFF:
395 C_A_D = 0;
396 break;
398 case LINUX_REBOOT_CMD_HALT:
399 kernel_halt();
400 unlock_kernel();
401 do_exit(0);
402 panic("cannot halt");
404 case LINUX_REBOOT_CMD_POWER_OFF:
405 kernel_power_off();
406 unlock_kernel();
407 do_exit(0);
408 break;
410 case LINUX_REBOOT_CMD_RESTART2:
411 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
412 unlock_kernel();
413 return -EFAULT;
415 buffer[sizeof(buffer) - 1] = '\0';
417 kernel_restart(buffer);
418 break;
420 #ifdef CONFIG_KEXEC
421 case LINUX_REBOOT_CMD_KEXEC:
422 ret = kernel_kexec();
423 break;
424 #endif
426 #ifdef CONFIG_HIBERNATION
427 case LINUX_REBOOT_CMD_SW_SUSPEND:
428 ret = hibernate();
429 break;
430 #endif
432 default:
433 ret = -EINVAL;
434 break;
436 unlock_kernel();
437 return ret;
440 static void deferred_cad(struct work_struct *dummy)
442 kernel_restart(NULL);
446 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
447 * As it's called within an interrupt, it may NOT sync: the only choice
448 * is whether to reboot at once, or just ignore the ctrl-alt-del.
450 void ctrl_alt_del(void)
452 static DECLARE_WORK(cad_work, deferred_cad);
454 if (C_A_D)
455 schedule_work(&cad_work);
456 else
457 kill_cad_pid(SIGINT, 1);
461 * Unprivileged users may change the real gid to the effective gid
462 * or vice versa. (BSD-style)
464 * If you set the real gid at all, or set the effective gid to a value not
465 * equal to the real gid, then the saved gid is set to the new effective gid.
467 * This makes it possible for a setgid program to completely drop its
468 * privileges, which is often a useful assertion to make when you are doing
469 * a security audit over a program.
471 * The general idea is that a program which uses just setregid() will be
472 * 100% compatible with BSD. A program which uses just setgid() will be
473 * 100% compatible with POSIX with saved IDs.
475 * SMP: There are not races, the GIDs are checked only by filesystem
476 * operations (as far as semantic preservation is concerned).
478 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
480 const struct cred *old;
481 struct cred *new;
482 int retval;
484 new = prepare_creds();
485 if (!new)
486 return -ENOMEM;
487 old = current_cred();
489 retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
490 if (retval)
491 goto error;
493 retval = -EPERM;
494 if (rgid != (gid_t) -1) {
495 if (old->gid == rgid ||
496 old->egid == rgid ||
497 capable(CAP_SETGID))
498 new->gid = rgid;
499 else
500 goto error;
502 if (egid != (gid_t) -1) {
503 if (old->gid == egid ||
504 old->egid == egid ||
505 old->sgid == egid ||
506 capable(CAP_SETGID))
507 new->egid = egid;
508 else
509 goto error;
512 if (rgid != (gid_t) -1 ||
513 (egid != (gid_t) -1 && egid != old->gid))
514 new->sgid = new->egid;
515 new->fsgid = new->egid;
517 return commit_creds(new);
519 error:
520 abort_creds(new);
521 return retval;
525 * setgid() is implemented like SysV w/ SAVED_IDS
527 * SMP: Same implicit races as above.
529 SYSCALL_DEFINE1(setgid, gid_t, gid)
531 const struct cred *old;
532 struct cred *new;
533 int retval;
535 new = prepare_creds();
536 if (!new)
537 return -ENOMEM;
538 old = current_cred();
540 retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
541 if (retval)
542 goto error;
544 retval = -EPERM;
545 if (capable(CAP_SETGID))
546 new->gid = new->egid = new->sgid = new->fsgid = gid;
547 else if (gid == old->gid || gid == old->sgid)
548 new->egid = new->fsgid = gid;
549 else
550 goto error;
552 return commit_creds(new);
554 error:
555 abort_creds(new);
556 return retval;
560 * change the user struct in a credentials set to match the new UID
562 static int set_user(struct cred *new)
564 struct user_struct *new_user;
566 new_user = alloc_uid(current_user_ns(), new->uid);
567 if (!new_user)
568 return -EAGAIN;
570 if (!task_can_switch_user(new_user, current)) {
571 free_uid(new_user);
572 return -EINVAL;
575 if (atomic_read(&new_user->processes) >=
576 current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
577 new_user != INIT_USER) {
578 free_uid(new_user);
579 return -EAGAIN;
582 free_uid(new->user);
583 new->user = new_user;
584 return 0;
588 * Unprivileged users may change the real uid to the effective uid
589 * or vice versa. (BSD-style)
591 * If you set the real uid at all, or set the effective uid to a value not
592 * equal to the real uid, then the saved uid is set to the new effective uid.
594 * This makes it possible for a setuid program to completely drop its
595 * privileges, which is often a useful assertion to make when you are doing
596 * a security audit over a program.
598 * The general idea is that a program which uses just setreuid() will be
599 * 100% compatible with BSD. A program which uses just setuid() will be
600 * 100% compatible with POSIX with saved IDs.
602 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
604 const struct cred *old;
605 struct cred *new;
606 int retval;
608 new = prepare_creds();
609 if (!new)
610 return -ENOMEM;
611 old = current_cred();
613 retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
614 if (retval)
615 goto error;
617 retval = -EPERM;
618 if (ruid != (uid_t) -1) {
619 new->uid = ruid;
620 if (old->uid != ruid &&
621 old->euid != ruid &&
622 !capable(CAP_SETUID))
623 goto error;
626 if (euid != (uid_t) -1) {
627 new->euid = euid;
628 if (old->uid != euid &&
629 old->euid != euid &&
630 old->suid != euid &&
631 !capable(CAP_SETUID))
632 goto error;
635 if (new->uid != old->uid) {
636 retval = set_user(new);
637 if (retval < 0)
638 goto error;
640 if (ruid != (uid_t) -1 ||
641 (euid != (uid_t) -1 && euid != old->uid))
642 new->suid = new->euid;
643 new->fsuid = new->euid;
645 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
646 if (retval < 0)
647 goto error;
649 return commit_creds(new);
651 error:
652 abort_creds(new);
653 return retval;
657 * setuid() is implemented like SysV with SAVED_IDS
659 * Note that SAVED_ID's is deficient in that a setuid root program
660 * like sendmail, for example, cannot set its uid to be a normal
661 * user and then switch back, because if you're root, setuid() sets
662 * the saved uid too. If you don't like this, blame the bright people
663 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
664 * will allow a root program to temporarily drop privileges and be able to
665 * regain them by swapping the real and effective uid.
667 SYSCALL_DEFINE1(setuid, uid_t, uid)
669 const struct cred *old;
670 struct cred *new;
671 int retval;
673 new = prepare_creds();
674 if (!new)
675 return -ENOMEM;
676 old = current_cred();
678 retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
679 if (retval)
680 goto error;
682 retval = -EPERM;
683 if (capable(CAP_SETUID)) {
684 new->suid = new->uid = uid;
685 if (uid != old->uid) {
686 retval = set_user(new);
687 if (retval < 0)
688 goto error;
690 } else if (uid != old->uid && uid != new->suid) {
691 goto error;
694 new->fsuid = new->euid = uid;
696 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
697 if (retval < 0)
698 goto error;
700 return commit_creds(new);
702 error:
703 abort_creds(new);
704 return retval;
709 * This function implements a generic ability to update ruid, euid,
710 * and suid. This allows you to implement the 4.4 compatible seteuid().
712 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
714 const struct cred *old;
715 struct cred *new;
716 int retval;
718 new = prepare_creds();
719 if (!new)
720 return -ENOMEM;
722 retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
723 if (retval)
724 goto error;
725 old = current_cred();
727 retval = -EPERM;
728 if (!capable(CAP_SETUID)) {
729 if (ruid != (uid_t) -1 && ruid != old->uid &&
730 ruid != old->euid && ruid != old->suid)
731 goto error;
732 if (euid != (uid_t) -1 && euid != old->uid &&
733 euid != old->euid && euid != old->suid)
734 goto error;
735 if (suid != (uid_t) -1 && suid != old->uid &&
736 suid != old->euid && suid != old->suid)
737 goto error;
740 if (ruid != (uid_t) -1) {
741 new->uid = ruid;
742 if (ruid != old->uid) {
743 retval = set_user(new);
744 if (retval < 0)
745 goto error;
748 if (euid != (uid_t) -1)
749 new->euid = euid;
750 if (suid != (uid_t) -1)
751 new->suid = suid;
752 new->fsuid = new->euid;
754 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
755 if (retval < 0)
756 goto error;
758 return commit_creds(new);
760 error:
761 abort_creds(new);
762 return retval;
765 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
767 const struct cred *cred = current_cred();
768 int retval;
770 if (!(retval = put_user(cred->uid, ruid)) &&
771 !(retval = put_user(cred->euid, euid)))
772 retval = put_user(cred->suid, suid);
774 return retval;
778 * Same as above, but for rgid, egid, sgid.
780 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
782 const struct cred *old;
783 struct cred *new;
784 int retval;
786 new = prepare_creds();
787 if (!new)
788 return -ENOMEM;
789 old = current_cred();
791 retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
792 if (retval)
793 goto error;
795 retval = -EPERM;
796 if (!capable(CAP_SETGID)) {
797 if (rgid != (gid_t) -1 && rgid != old->gid &&
798 rgid != old->egid && rgid != old->sgid)
799 goto error;
800 if (egid != (gid_t) -1 && egid != old->gid &&
801 egid != old->egid && egid != old->sgid)
802 goto error;
803 if (sgid != (gid_t) -1 && sgid != old->gid &&
804 sgid != old->egid && sgid != old->sgid)
805 goto error;
808 if (rgid != (gid_t) -1)
809 new->gid = rgid;
810 if (egid != (gid_t) -1)
811 new->egid = egid;
812 if (sgid != (gid_t) -1)
813 new->sgid = sgid;
814 new->fsgid = new->egid;
816 return commit_creds(new);
818 error:
819 abort_creds(new);
820 return retval;
823 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
825 const struct cred *cred = current_cred();
826 int retval;
828 if (!(retval = put_user(cred->gid, rgid)) &&
829 !(retval = put_user(cred->egid, egid)))
830 retval = put_user(cred->sgid, sgid);
832 return retval;
837 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
838 * is used for "access()" and for the NFS daemon (letting nfsd stay at
839 * whatever uid it wants to). It normally shadows "euid", except when
840 * explicitly set by setfsuid() or for access..
842 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
844 const struct cred *old;
845 struct cred *new;
846 uid_t old_fsuid;
848 new = prepare_creds();
849 if (!new)
850 return current_fsuid();
851 old = current_cred();
852 old_fsuid = old->fsuid;
854 if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS) < 0)
855 goto error;
857 if (uid == old->uid || uid == old->euid ||
858 uid == old->suid || uid == old->fsuid ||
859 capable(CAP_SETUID)) {
860 if (uid != old_fsuid) {
861 new->fsuid = uid;
862 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
863 goto change_okay;
867 error:
868 abort_creds(new);
869 return old_fsuid;
871 change_okay:
872 commit_creds(new);
873 return old_fsuid;
877 * Samma på svenska..
879 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
881 const struct cred *old;
882 struct cred *new;
883 gid_t old_fsgid;
885 new = prepare_creds();
886 if (!new)
887 return current_fsgid();
888 old = current_cred();
889 old_fsgid = old->fsgid;
891 if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
892 goto error;
894 if (gid == old->gid || gid == old->egid ||
895 gid == old->sgid || gid == old->fsgid ||
896 capable(CAP_SETGID)) {
897 if (gid != old_fsgid) {
898 new->fsgid = gid;
899 goto change_okay;
903 error:
904 abort_creds(new);
905 return old_fsgid;
907 change_okay:
908 commit_creds(new);
909 return old_fsgid;
912 void do_sys_times(struct tms *tms)
914 struct task_cputime cputime;
915 cputime_t cutime, cstime;
917 thread_group_cputime(current, &cputime);
918 spin_lock_irq(&current->sighand->siglock);
919 cutime = current->signal->cutime;
920 cstime = current->signal->cstime;
921 spin_unlock_irq(&current->sighand->siglock);
922 tms->tms_utime = cputime_to_clock_t(cputime.utime);
923 tms->tms_stime = cputime_to_clock_t(cputime.stime);
924 tms->tms_cutime = cputime_to_clock_t(cutime);
925 tms->tms_cstime = cputime_to_clock_t(cstime);
928 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
930 if (tbuf) {
931 struct tms tmp;
933 do_sys_times(&tmp);
934 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
935 return -EFAULT;
937 force_successful_syscall_return();
938 return (long) jiffies_64_to_clock_t(get_jiffies_64());
942 * This needs some heavy checking ...
943 * I just haven't the stomach for it. I also don't fully
944 * understand sessions/pgrp etc. Let somebody who does explain it.
946 * OK, I think I have the protection semantics right.... this is really
947 * only important on a multi-user system anyway, to make sure one user
948 * can't send a signal to a process owned by another. -TYT, 12/12/91
950 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
951 * LBT 04.03.94
953 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
955 struct task_struct *p;
956 struct task_struct *group_leader = current->group_leader;
957 struct pid *pgrp;
958 int err;
960 if (!pid)
961 pid = task_pid_vnr(group_leader);
962 if (!pgid)
963 pgid = pid;
964 if (pgid < 0)
965 return -EINVAL;
967 /* From this point forward we keep holding onto the tasklist lock
968 * so that our parent does not change from under us. -DaveM
970 write_lock_irq(&tasklist_lock);
972 err = -ESRCH;
973 p = find_task_by_vpid(pid);
974 if (!p)
975 goto out;
977 err = -EINVAL;
978 if (!thread_group_leader(p))
979 goto out;
981 if (same_thread_group(p->real_parent, group_leader)) {
982 err = -EPERM;
983 if (task_session(p) != task_session(group_leader))
984 goto out;
985 err = -EACCES;
986 if (p->did_exec)
987 goto out;
988 } else {
989 err = -ESRCH;
990 if (p != group_leader)
991 goto out;
994 err = -EPERM;
995 if (p->signal->leader)
996 goto out;
998 pgrp = task_pid(p);
999 if (pgid != pid) {
1000 struct task_struct *g;
1002 pgrp = find_vpid(pgid);
1003 g = pid_task(pgrp, PIDTYPE_PGID);
1004 if (!g || task_session(g) != task_session(group_leader))
1005 goto out;
1008 err = security_task_setpgid(p, pgid);
1009 if (err)
1010 goto out;
1012 if (task_pgrp(p) != pgrp)
1013 change_pid(p, PIDTYPE_PGID, pgrp);
1015 err = 0;
1016 out:
1017 /* All paths lead to here, thus we are safe. -DaveM */
1018 write_unlock_irq(&tasklist_lock);
1019 return err;
1022 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1024 struct task_struct *p;
1025 struct pid *grp;
1026 int retval;
1028 rcu_read_lock();
1029 if (!pid)
1030 grp = task_pgrp(current);
1031 else {
1032 retval = -ESRCH;
1033 p = find_task_by_vpid(pid);
1034 if (!p)
1035 goto out;
1036 grp = task_pgrp(p);
1037 if (!grp)
1038 goto out;
1040 retval = security_task_getpgid(p);
1041 if (retval)
1042 goto out;
1044 retval = pid_vnr(grp);
1045 out:
1046 rcu_read_unlock();
1047 return retval;
1050 #ifdef __ARCH_WANT_SYS_GETPGRP
1052 SYSCALL_DEFINE0(getpgrp)
1054 return sys_getpgid(0);
1057 #endif
1059 SYSCALL_DEFINE1(getsid, pid_t, pid)
1061 struct task_struct *p;
1062 struct pid *sid;
1063 int retval;
1065 rcu_read_lock();
1066 if (!pid)
1067 sid = task_session(current);
1068 else {
1069 retval = -ESRCH;
1070 p = find_task_by_vpid(pid);
1071 if (!p)
1072 goto out;
1073 sid = task_session(p);
1074 if (!sid)
1075 goto out;
1077 retval = security_task_getsid(p);
1078 if (retval)
1079 goto out;
1081 retval = pid_vnr(sid);
1082 out:
1083 rcu_read_unlock();
1084 return retval;
1087 SYSCALL_DEFINE0(setsid)
1089 struct task_struct *group_leader = current->group_leader;
1090 struct pid *sid = task_pid(group_leader);
1091 pid_t session = pid_vnr(sid);
1092 int err = -EPERM;
1094 write_lock_irq(&tasklist_lock);
1095 /* Fail if I am already a session leader */
1096 if (group_leader->signal->leader)
1097 goto out;
1099 /* Fail if a process group id already exists that equals the
1100 * proposed session id.
1102 if (pid_task(sid, PIDTYPE_PGID))
1103 goto out;
1105 group_leader->signal->leader = 1;
1106 __set_special_pids(sid);
1108 proc_clear_tty(group_leader);
1110 err = session;
1111 out:
1112 write_unlock_irq(&tasklist_lock);
1113 if (err > 0)
1114 proc_sid_connector(group_leader);
1115 return err;
1118 DECLARE_RWSEM(uts_sem);
1120 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1122 int errno = 0;
1124 down_read(&uts_sem);
1125 if (copy_to_user(name, utsname(), sizeof *name))
1126 errno = -EFAULT;
1127 up_read(&uts_sem);
1128 return errno;
1131 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1133 int errno;
1134 char tmp[__NEW_UTS_LEN];
1136 if (!capable(CAP_SYS_ADMIN))
1137 return -EPERM;
1138 if (len < 0 || len > __NEW_UTS_LEN)
1139 return -EINVAL;
1140 down_write(&uts_sem);
1141 errno = -EFAULT;
1142 if (!copy_from_user(tmp, name, len)) {
1143 struct new_utsname *u = utsname();
1145 memcpy(u->nodename, tmp, len);
1146 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1147 errno = 0;
1149 up_write(&uts_sem);
1150 return errno;
1153 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1155 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1157 int i, errno;
1158 struct new_utsname *u;
1160 if (len < 0)
1161 return -EINVAL;
1162 down_read(&uts_sem);
1163 u = utsname();
1164 i = 1 + strlen(u->nodename);
1165 if (i > len)
1166 i = len;
1167 errno = 0;
1168 if (copy_to_user(name, u->nodename, i))
1169 errno = -EFAULT;
1170 up_read(&uts_sem);
1171 return errno;
1174 #endif
1177 * Only setdomainname; getdomainname can be implemented by calling
1178 * uname()
1180 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1182 int errno;
1183 char tmp[__NEW_UTS_LEN];
1185 if (!capable(CAP_SYS_ADMIN))
1186 return -EPERM;
1187 if (len < 0 || len > __NEW_UTS_LEN)
1188 return -EINVAL;
1190 down_write(&uts_sem);
1191 errno = -EFAULT;
1192 if (!copy_from_user(tmp, name, len)) {
1193 struct new_utsname *u = utsname();
1195 memcpy(u->domainname, tmp, len);
1196 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1197 errno = 0;
1199 up_write(&uts_sem);
1200 return errno;
1203 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1205 if (resource >= RLIM_NLIMITS)
1206 return -EINVAL;
1207 else {
1208 struct rlimit value;
1209 task_lock(current->group_leader);
1210 value = current->signal->rlim[resource];
1211 task_unlock(current->group_leader);
1212 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1216 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1219 * Back compatibility for getrlimit. Needed for some apps.
1222 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1223 struct rlimit __user *, rlim)
1225 struct rlimit x;
1226 if (resource >= RLIM_NLIMITS)
1227 return -EINVAL;
1229 task_lock(current->group_leader);
1230 x = current->signal->rlim[resource];
1231 task_unlock(current->group_leader);
1232 if (x.rlim_cur > 0x7FFFFFFF)
1233 x.rlim_cur = 0x7FFFFFFF;
1234 if (x.rlim_max > 0x7FFFFFFF)
1235 x.rlim_max = 0x7FFFFFFF;
1236 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1239 #endif
1241 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1243 struct rlimit new_rlim, *old_rlim;
1244 int retval;
1246 if (resource >= RLIM_NLIMITS)
1247 return -EINVAL;
1248 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1249 return -EFAULT;
1250 if (new_rlim.rlim_cur > new_rlim.rlim_max)
1251 return -EINVAL;
1252 old_rlim = current->signal->rlim + resource;
1253 if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1254 !capable(CAP_SYS_RESOURCE))
1255 return -EPERM;
1256 if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > sysctl_nr_open)
1257 return -EPERM;
1259 retval = security_task_setrlimit(resource, &new_rlim);
1260 if (retval)
1261 return retval;
1263 if (resource == RLIMIT_CPU && new_rlim.rlim_cur == 0) {
1265 * The caller is asking for an immediate RLIMIT_CPU
1266 * expiry. But we use the zero value to mean "it was
1267 * never set". So let's cheat and make it one second
1268 * instead
1270 new_rlim.rlim_cur = 1;
1273 task_lock(current->group_leader);
1274 *old_rlim = new_rlim;
1275 task_unlock(current->group_leader);
1277 if (resource != RLIMIT_CPU)
1278 goto out;
1281 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1282 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1283 * very long-standing error, and fixing it now risks breakage of
1284 * applications, so we live with it
1286 if (new_rlim.rlim_cur == RLIM_INFINITY)
1287 goto out;
1289 update_rlimit_cpu(new_rlim.rlim_cur);
1290 out:
1291 return 0;
1295 * It would make sense to put struct rusage in the task_struct,
1296 * except that would make the task_struct be *really big*. After
1297 * task_struct gets moved into malloc'ed memory, it would
1298 * make sense to do this. It will make moving the rest of the information
1299 * a lot simpler! (Which we're not doing right now because we're not
1300 * measuring them yet).
1302 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1303 * races with threads incrementing their own counters. But since word
1304 * reads are atomic, we either get new values or old values and we don't
1305 * care which for the sums. We always take the siglock to protect reading
1306 * the c* fields from p->signal from races with exit.c updating those
1307 * fields when reaping, so a sample either gets all the additions of a
1308 * given child after it's reaped, or none so this sample is before reaping.
1310 * Locking:
1311 * We need to take the siglock for CHILDEREN, SELF and BOTH
1312 * for the cases current multithreaded, non-current single threaded
1313 * non-current multithreaded. Thread traversal is now safe with
1314 * the siglock held.
1315 * Strictly speaking, we donot need to take the siglock if we are current and
1316 * single threaded, as no one else can take our signal_struct away, no one
1317 * else can reap the children to update signal->c* counters, and no one else
1318 * can race with the signal-> fields. If we do not take any lock, the
1319 * signal-> fields could be read out of order while another thread was just
1320 * exiting. So we should place a read memory barrier when we avoid the lock.
1321 * On the writer side, write memory barrier is implied in __exit_signal
1322 * as __exit_signal releases the siglock spinlock after updating the signal->
1323 * fields. But we don't do this yet to keep things simple.
1327 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1329 r->ru_nvcsw += t->nvcsw;
1330 r->ru_nivcsw += t->nivcsw;
1331 r->ru_minflt += t->min_flt;
1332 r->ru_majflt += t->maj_flt;
1333 r->ru_inblock += task_io_get_inblock(t);
1334 r->ru_oublock += task_io_get_oublock(t);
1337 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1339 struct task_struct *t;
1340 unsigned long flags;
1341 cputime_t utime, stime;
1342 struct task_cputime cputime;
1343 unsigned long maxrss = 0;
1345 memset((char *) r, 0, sizeof *r);
1346 utime = stime = cputime_zero;
1348 if (who == RUSAGE_THREAD) {
1349 utime = task_utime(current);
1350 stime = task_stime(current);
1351 accumulate_thread_rusage(p, r);
1352 maxrss = p->signal->maxrss;
1353 goto out;
1356 if (!lock_task_sighand(p, &flags))
1357 return;
1359 switch (who) {
1360 case RUSAGE_BOTH:
1361 case RUSAGE_CHILDREN:
1362 utime = p->signal->cutime;
1363 stime = p->signal->cstime;
1364 r->ru_nvcsw = p->signal->cnvcsw;
1365 r->ru_nivcsw = p->signal->cnivcsw;
1366 r->ru_minflt = p->signal->cmin_flt;
1367 r->ru_majflt = p->signal->cmaj_flt;
1368 r->ru_inblock = p->signal->cinblock;
1369 r->ru_oublock = p->signal->coublock;
1370 maxrss = p->signal->cmaxrss;
1372 if (who == RUSAGE_CHILDREN)
1373 break;
1375 case RUSAGE_SELF:
1376 thread_group_cputime(p, &cputime);
1377 utime = cputime_add(utime, cputime.utime);
1378 stime = cputime_add(stime, cputime.stime);
1379 r->ru_nvcsw += p->signal->nvcsw;
1380 r->ru_nivcsw += p->signal->nivcsw;
1381 r->ru_minflt += p->signal->min_flt;
1382 r->ru_majflt += p->signal->maj_flt;
1383 r->ru_inblock += p->signal->inblock;
1384 r->ru_oublock += p->signal->oublock;
1385 if (maxrss < p->signal->maxrss)
1386 maxrss = p->signal->maxrss;
1387 t = p;
1388 do {
1389 accumulate_thread_rusage(t, r);
1390 t = next_thread(t);
1391 } while (t != p);
1392 break;
1394 default:
1395 BUG();
1397 unlock_task_sighand(p, &flags);
1399 out:
1400 cputime_to_timeval(utime, &r->ru_utime);
1401 cputime_to_timeval(stime, &r->ru_stime);
1403 if (who != RUSAGE_CHILDREN) {
1404 struct mm_struct *mm = get_task_mm(p);
1405 if (mm) {
1406 setmax_mm_hiwater_rss(&maxrss, mm);
1407 mmput(mm);
1410 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1413 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1415 struct rusage r;
1416 k_getrusage(p, who, &r);
1417 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1420 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1422 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1423 who != RUSAGE_THREAD)
1424 return -EINVAL;
1425 return getrusage(current, who, ru);
1428 SYSCALL_DEFINE1(umask, int, mask)
1430 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1431 return mask;
1434 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1435 unsigned long, arg4, unsigned long, arg5)
1437 struct task_struct *me = current;
1438 unsigned char comm[sizeof(me->comm)];
1439 long error;
1441 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1442 if (error != -ENOSYS)
1443 return error;
1445 error = 0;
1446 switch (option) {
1447 case PR_SET_PDEATHSIG:
1448 if (!valid_signal(arg2)) {
1449 error = -EINVAL;
1450 break;
1452 me->pdeath_signal = arg2;
1453 error = 0;
1454 break;
1455 case PR_GET_PDEATHSIG:
1456 error = put_user(me->pdeath_signal, (int __user *)arg2);
1457 break;
1458 case PR_GET_DUMPABLE:
1459 error = get_dumpable(me->mm);
1460 break;
1461 case PR_SET_DUMPABLE:
1462 if (arg2 < 0 || arg2 > 1) {
1463 error = -EINVAL;
1464 break;
1466 set_dumpable(me->mm, arg2);
1467 error = 0;
1468 break;
1470 case PR_SET_UNALIGN:
1471 error = SET_UNALIGN_CTL(me, arg2);
1472 break;
1473 case PR_GET_UNALIGN:
1474 error = GET_UNALIGN_CTL(me, arg2);
1475 break;
1476 case PR_SET_FPEMU:
1477 error = SET_FPEMU_CTL(me, arg2);
1478 break;
1479 case PR_GET_FPEMU:
1480 error = GET_FPEMU_CTL(me, arg2);
1481 break;
1482 case PR_SET_FPEXC:
1483 error = SET_FPEXC_CTL(me, arg2);
1484 break;
1485 case PR_GET_FPEXC:
1486 error = GET_FPEXC_CTL(me, arg2);
1487 break;
1488 case PR_GET_TIMING:
1489 error = PR_TIMING_STATISTICAL;
1490 break;
1491 case PR_SET_TIMING:
1492 if (arg2 != PR_TIMING_STATISTICAL)
1493 error = -EINVAL;
1494 else
1495 error = 0;
1496 break;
1498 case PR_SET_NAME:
1499 comm[sizeof(me->comm)-1] = 0;
1500 if (strncpy_from_user(comm, (char __user *)arg2,
1501 sizeof(me->comm) - 1) < 0)
1502 return -EFAULT;
1503 set_task_comm(me, comm);
1504 return 0;
1505 case PR_GET_NAME:
1506 get_task_comm(comm, me);
1507 if (copy_to_user((char __user *)arg2, comm,
1508 sizeof(comm)))
1509 return -EFAULT;
1510 return 0;
1511 case PR_GET_ENDIAN:
1512 error = GET_ENDIAN(me, arg2);
1513 break;
1514 case PR_SET_ENDIAN:
1515 error = SET_ENDIAN(me, arg2);
1516 break;
1518 case PR_GET_SECCOMP:
1519 error = prctl_get_seccomp();
1520 break;
1521 case PR_SET_SECCOMP:
1522 error = prctl_set_seccomp(arg2);
1523 break;
1524 case PR_GET_TSC:
1525 error = GET_TSC_CTL(arg2);
1526 break;
1527 case PR_SET_TSC:
1528 error = SET_TSC_CTL(arg2);
1529 break;
1530 case PR_TASK_PERF_EVENTS_DISABLE:
1531 error = perf_event_task_disable();
1532 break;
1533 case PR_TASK_PERF_EVENTS_ENABLE:
1534 error = perf_event_task_enable();
1535 break;
1536 case PR_GET_TIMERSLACK:
1537 error = current->timer_slack_ns;
1538 break;
1539 case PR_SET_TIMERSLACK:
1540 if (arg2 <= 0)
1541 current->timer_slack_ns =
1542 current->default_timer_slack_ns;
1543 else
1544 current->timer_slack_ns = arg2;
1545 error = 0;
1546 break;
1547 case PR_MCE_KILL:
1548 if (arg4 | arg5)
1549 return -EINVAL;
1550 switch (arg2) {
1551 case PR_MCE_KILL_CLEAR:
1552 if (arg3 != 0)
1553 return -EINVAL;
1554 current->flags &= ~PF_MCE_PROCESS;
1555 break;
1556 case PR_MCE_KILL_SET:
1557 current->flags |= PF_MCE_PROCESS;
1558 if (arg3 == PR_MCE_KILL_EARLY)
1559 current->flags |= PF_MCE_EARLY;
1560 else if (arg3 == PR_MCE_KILL_LATE)
1561 current->flags &= ~PF_MCE_EARLY;
1562 else if (arg3 == PR_MCE_KILL_DEFAULT)
1563 current->flags &=
1564 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
1565 else
1566 return -EINVAL;
1567 break;
1568 default:
1569 return -EINVAL;
1571 error = 0;
1572 break;
1573 case PR_MCE_KILL_GET:
1574 if (arg2 | arg3 | arg4 | arg5)
1575 return -EINVAL;
1576 if (current->flags & PF_MCE_PROCESS)
1577 error = (current->flags & PF_MCE_EARLY) ?
1578 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1579 else
1580 error = PR_MCE_KILL_DEFAULT;
1581 break;
1582 default:
1583 error = -EINVAL;
1584 break;
1586 return error;
1589 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
1590 struct getcpu_cache __user *, unused)
1592 int err = 0;
1593 int cpu = raw_smp_processor_id();
1594 if (cpup)
1595 err |= put_user(cpu, cpup);
1596 if (nodep)
1597 err |= put_user(cpu_to_node(cpu), nodep);
1598 return err ? -EFAULT : 0;
1601 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1603 static void argv_cleanup(char **argv, char **envp)
1605 argv_free(argv);
1609 * orderly_poweroff - Trigger an orderly system poweroff
1610 * @force: force poweroff if command execution fails
1612 * This may be called from any context to trigger a system shutdown.
1613 * If the orderly shutdown fails, it will force an immediate shutdown.
1615 int orderly_poweroff(bool force)
1617 int argc;
1618 char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1619 static char *envp[] = {
1620 "HOME=/",
1621 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1622 NULL
1624 int ret = -ENOMEM;
1625 struct subprocess_info *info;
1627 if (argv == NULL) {
1628 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1629 __func__, poweroff_cmd);
1630 goto out;
1633 info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
1634 if (info == NULL) {
1635 argv_free(argv);
1636 goto out;
1639 call_usermodehelper_setcleanup(info, argv_cleanup);
1641 ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
1643 out:
1644 if (ret && force) {
1645 printk(KERN_WARNING "Failed to start orderly shutdown: "
1646 "forcing the issue\n");
1648 /* I guess this should try to kick off some daemon to
1649 sync and poweroff asap. Or not even bother syncing
1650 if we're doing an emergency shutdown? */
1651 emergency_sync();
1652 kernel_power_off();
1655 return ret;
1657 EXPORT_SYMBOL_GPL(orderly_poweroff);