thinkpad-acpi: make driver events work in NVRAM poll mode
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sched.c
blob60d74cc721cc8bdb30abc0e7222c5196c2a09afc
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
78 #include "sched_cpupri.h"
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102 * Helpers for converting nanosecond timing to jiffy resolution
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110 * These are the 'tuning knobs' of the scheduler:
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
115 #define DEF_TIMESLICE (100 * HZ / 1000)
118 * single value that denotes runtime == period, ie unlimited time.
120 #define RUNTIME_INF ((u64)~0ULL)
122 static inline int rt_policy(int policy)
124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 return 1;
126 return 0;
129 static inline int task_has_rt_policy(struct task_struct *p)
131 return rt_policy(p->policy);
135 * This is the priority-queue data structure of the RT scheduling class:
137 struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
142 struct rt_bandwidth {
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
150 static struct rt_bandwidth def_rt_bandwidth;
152 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
154 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
166 if (!overrun)
167 break;
169 idle = do_sched_rt_period_timer(rt_b, overrun);
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175 static
176 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
181 spin_lock_init(&rt_b->rt_runtime_lock);
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
188 static inline int rt_bandwidth_enabled(void)
190 return sysctl_sched_rt_runtime >= 0;
193 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
195 ktime_t now;
197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 return;
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
205 unsigned long delta;
206 ktime_t soft, hard;
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218 HRTIMER_MODE_ABS_PINNED, 0);
220 spin_unlock(&rt_b->rt_runtime_lock);
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
226 hrtimer_cancel(&rt_b->rt_period_timer);
228 #endif
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
234 static DEFINE_MUTEX(sched_domains_mutex);
236 #ifdef CONFIG_GROUP_SCHED
238 #include <linux/cgroup.h>
240 struct cfs_rq;
242 static LIST_HEAD(task_groups);
244 /* task group related information */
245 struct task_group {
246 #ifdef CONFIG_CGROUP_SCHED
247 struct cgroup_subsys_state css;
248 #endif
250 #ifdef CONFIG_USER_SCHED
251 uid_t uid;
252 #endif
254 #ifdef CONFIG_FAIR_GROUP_SCHED
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
260 #endif
262 #ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
266 struct rt_bandwidth rt_bandwidth;
267 #endif
269 struct rcu_head rcu;
270 struct list_head list;
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
277 #ifdef CONFIG_USER_SCHED
279 /* Helper function to pass uid information to create_sched_user() */
280 void set_tg_uid(struct user_struct *user)
282 user->tg->uid = user->uid;
286 * Root task group.
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
290 struct task_group root_task_group;
292 #ifdef CONFIG_FAIR_GROUP_SCHED
293 /* Default task group's sched entity on each cpu */
294 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295 /* Default task group's cfs_rq on each cpu */
296 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
297 #endif /* CONFIG_FAIR_GROUP_SCHED */
299 #ifdef CONFIG_RT_GROUP_SCHED
300 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
302 #endif /* CONFIG_RT_GROUP_SCHED */
303 #else /* !CONFIG_USER_SCHED */
304 #define root_task_group init_task_group
305 #endif /* CONFIG_USER_SCHED */
307 /* task_group_lock serializes add/remove of task groups and also changes to
308 * a task group's cpu shares.
310 static DEFINE_SPINLOCK(task_group_lock);
312 #ifdef CONFIG_FAIR_GROUP_SCHED
314 #ifdef CONFIG_SMP
315 static int root_task_group_empty(void)
317 return list_empty(&root_task_group.children);
319 #endif
321 #ifdef CONFIG_USER_SCHED
322 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
323 #else /* !CONFIG_USER_SCHED */
324 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
325 #endif /* CONFIG_USER_SCHED */
328 * A weight of 0 or 1 can cause arithmetics problems.
329 * A weight of a cfs_rq is the sum of weights of which entities
330 * are queued on this cfs_rq, so a weight of a entity should not be
331 * too large, so as the shares value of a task group.
332 * (The default weight is 1024 - so there's no practical
333 * limitation from this.)
335 #define MIN_SHARES 2
336 #define MAX_SHARES (1UL << 18)
338 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
339 #endif
341 /* Default task group.
342 * Every task in system belong to this group at bootup.
344 struct task_group init_task_group;
346 /* return group to which a task belongs */
347 static inline struct task_group *task_group(struct task_struct *p)
349 struct task_group *tg;
351 #ifdef CONFIG_USER_SCHED
352 rcu_read_lock();
353 tg = __task_cred(p)->user->tg;
354 rcu_read_unlock();
355 #elif defined(CONFIG_CGROUP_SCHED)
356 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
357 struct task_group, css);
358 #else
359 tg = &init_task_group;
360 #endif
361 return tg;
364 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
365 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
367 #ifdef CONFIG_FAIR_GROUP_SCHED
368 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
369 p->se.parent = task_group(p)->se[cpu];
370 #endif
372 #ifdef CONFIG_RT_GROUP_SCHED
373 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
374 p->rt.parent = task_group(p)->rt_se[cpu];
375 #endif
378 #else
380 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
381 static inline struct task_group *task_group(struct task_struct *p)
383 return NULL;
386 #endif /* CONFIG_GROUP_SCHED */
388 /* CFS-related fields in a runqueue */
389 struct cfs_rq {
390 struct load_weight load;
391 unsigned long nr_running;
393 u64 exec_clock;
394 u64 min_vruntime;
396 struct rb_root tasks_timeline;
397 struct rb_node *rb_leftmost;
399 struct list_head tasks;
400 struct list_head *balance_iterator;
403 * 'curr' points to currently running entity on this cfs_rq.
404 * It is set to NULL otherwise (i.e when none are currently running).
406 struct sched_entity *curr, *next, *last;
408 unsigned int nr_spread_over;
410 #ifdef CONFIG_FAIR_GROUP_SCHED
411 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
414 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
415 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
416 * (like users, containers etc.)
418 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
419 * list is used during load balance.
421 struct list_head leaf_cfs_rq_list;
422 struct task_group *tg; /* group that "owns" this runqueue */
424 #ifdef CONFIG_SMP
426 * the part of load.weight contributed by tasks
428 unsigned long task_weight;
431 * h_load = weight * f(tg)
433 * Where f(tg) is the recursive weight fraction assigned to
434 * this group.
436 unsigned long h_load;
439 * this cpu's part of tg->shares
441 unsigned long shares;
444 * load.weight at the time we set shares
446 unsigned long rq_weight;
447 #endif
448 #endif
451 /* Real-Time classes' related field in a runqueue: */
452 struct rt_rq {
453 struct rt_prio_array active;
454 unsigned long rt_nr_running;
455 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
456 struct {
457 int curr; /* highest queued rt task prio */
458 #ifdef CONFIG_SMP
459 int next; /* next highest */
460 #endif
461 } highest_prio;
462 #endif
463 #ifdef CONFIG_SMP
464 unsigned long rt_nr_migratory;
465 unsigned long rt_nr_total;
466 int overloaded;
467 struct plist_head pushable_tasks;
468 #endif
469 int rt_throttled;
470 u64 rt_time;
471 u64 rt_runtime;
472 /* Nests inside the rq lock: */
473 spinlock_t rt_runtime_lock;
475 #ifdef CONFIG_RT_GROUP_SCHED
476 unsigned long rt_nr_boosted;
478 struct rq *rq;
479 struct list_head leaf_rt_rq_list;
480 struct task_group *tg;
481 struct sched_rt_entity *rt_se;
482 #endif
485 #ifdef CONFIG_SMP
488 * We add the notion of a root-domain which will be used to define per-domain
489 * variables. Each exclusive cpuset essentially defines an island domain by
490 * fully partitioning the member cpus from any other cpuset. Whenever a new
491 * exclusive cpuset is created, we also create and attach a new root-domain
492 * object.
495 struct root_domain {
496 atomic_t refcount;
497 cpumask_var_t span;
498 cpumask_var_t online;
501 * The "RT overload" flag: it gets set if a CPU has more than
502 * one runnable RT task.
504 cpumask_var_t rto_mask;
505 atomic_t rto_count;
506 #ifdef CONFIG_SMP
507 struct cpupri cpupri;
508 #endif
512 * By default the system creates a single root-domain with all cpus as
513 * members (mimicking the global state we have today).
515 static struct root_domain def_root_domain;
517 #endif
520 * This is the main, per-CPU runqueue data structure.
522 * Locking rule: those places that want to lock multiple runqueues
523 * (such as the load balancing or the thread migration code), lock
524 * acquire operations must be ordered by ascending &runqueue.
526 struct rq {
527 /* runqueue lock: */
528 spinlock_t lock;
531 * nr_running and cpu_load should be in the same cacheline because
532 * remote CPUs use both these fields when doing load calculation.
534 unsigned long nr_running;
535 #define CPU_LOAD_IDX_MAX 5
536 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
537 #ifdef CONFIG_NO_HZ
538 unsigned long last_tick_seen;
539 unsigned char in_nohz_recently;
540 #endif
541 /* capture load from *all* tasks on this cpu: */
542 struct load_weight load;
543 unsigned long nr_load_updates;
544 u64 nr_switches;
545 u64 nr_migrations_in;
547 struct cfs_rq cfs;
548 struct rt_rq rt;
550 #ifdef CONFIG_FAIR_GROUP_SCHED
551 /* list of leaf cfs_rq on this cpu: */
552 struct list_head leaf_cfs_rq_list;
553 #endif
554 #ifdef CONFIG_RT_GROUP_SCHED
555 struct list_head leaf_rt_rq_list;
556 #endif
559 * This is part of a global counter where only the total sum
560 * over all CPUs matters. A task can increase this counter on
561 * one CPU and if it got migrated afterwards it may decrease
562 * it on another CPU. Always updated under the runqueue lock:
564 unsigned long nr_uninterruptible;
566 struct task_struct *curr, *idle;
567 unsigned long next_balance;
568 struct mm_struct *prev_mm;
570 u64 clock;
572 atomic_t nr_iowait;
574 #ifdef CONFIG_SMP
575 struct root_domain *rd;
576 struct sched_domain *sd;
578 unsigned char idle_at_tick;
579 /* For active balancing */
580 int post_schedule;
581 int active_balance;
582 int push_cpu;
583 /* cpu of this runqueue: */
584 int cpu;
585 int online;
587 unsigned long avg_load_per_task;
589 struct task_struct *migration_thread;
590 struct list_head migration_queue;
592 u64 rt_avg;
593 u64 age_stamp;
594 u64 idle_stamp;
595 u64 avg_idle;
596 #endif
598 /* calc_load related fields */
599 unsigned long calc_load_update;
600 long calc_load_active;
602 #ifdef CONFIG_SCHED_HRTICK
603 #ifdef CONFIG_SMP
604 int hrtick_csd_pending;
605 struct call_single_data hrtick_csd;
606 #endif
607 struct hrtimer hrtick_timer;
608 #endif
610 #ifdef CONFIG_SCHEDSTATS
611 /* latency stats */
612 struct sched_info rq_sched_info;
613 unsigned long long rq_cpu_time;
614 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
616 /* sys_sched_yield() stats */
617 unsigned int yld_count;
619 /* schedule() stats */
620 unsigned int sched_switch;
621 unsigned int sched_count;
622 unsigned int sched_goidle;
624 /* try_to_wake_up() stats */
625 unsigned int ttwu_count;
626 unsigned int ttwu_local;
628 /* BKL stats */
629 unsigned int bkl_count;
630 #endif
633 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
635 static inline
636 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
638 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
641 static inline int cpu_of(struct rq *rq)
643 #ifdef CONFIG_SMP
644 return rq->cpu;
645 #else
646 return 0;
647 #endif
651 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
652 * See detach_destroy_domains: synchronize_sched for details.
654 * The domain tree of any CPU may only be accessed from within
655 * preempt-disabled sections.
657 #define for_each_domain(cpu, __sd) \
658 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
660 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
661 #define this_rq() (&__get_cpu_var(runqueues))
662 #define task_rq(p) cpu_rq(task_cpu(p))
663 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
664 #define raw_rq() (&__raw_get_cpu_var(runqueues))
666 inline void update_rq_clock(struct rq *rq)
668 rq->clock = sched_clock_cpu(cpu_of(rq));
672 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
674 #ifdef CONFIG_SCHED_DEBUG
675 # define const_debug __read_mostly
676 #else
677 # define const_debug static const
678 #endif
681 * runqueue_is_locked
682 * @cpu: the processor in question.
684 * Returns true if the current cpu runqueue is locked.
685 * This interface allows printk to be called with the runqueue lock
686 * held and know whether or not it is OK to wake up the klogd.
688 int runqueue_is_locked(int cpu)
690 return spin_is_locked(&cpu_rq(cpu)->lock);
694 * Debugging: various feature bits
697 #define SCHED_FEAT(name, enabled) \
698 __SCHED_FEAT_##name ,
700 enum {
701 #include "sched_features.h"
704 #undef SCHED_FEAT
706 #define SCHED_FEAT(name, enabled) \
707 (1UL << __SCHED_FEAT_##name) * enabled |
709 const_debug unsigned int sysctl_sched_features =
710 #include "sched_features.h"
713 #undef SCHED_FEAT
715 #ifdef CONFIG_SCHED_DEBUG
716 #define SCHED_FEAT(name, enabled) \
717 #name ,
719 static __read_mostly char *sched_feat_names[] = {
720 #include "sched_features.h"
721 NULL
724 #undef SCHED_FEAT
726 static int sched_feat_show(struct seq_file *m, void *v)
728 int i;
730 for (i = 0; sched_feat_names[i]; i++) {
731 if (!(sysctl_sched_features & (1UL << i)))
732 seq_puts(m, "NO_");
733 seq_printf(m, "%s ", sched_feat_names[i]);
735 seq_puts(m, "\n");
737 return 0;
740 static ssize_t
741 sched_feat_write(struct file *filp, const char __user *ubuf,
742 size_t cnt, loff_t *ppos)
744 char buf[64];
745 char *cmp = buf;
746 int neg = 0;
747 int i;
749 if (cnt > 63)
750 cnt = 63;
752 if (copy_from_user(&buf, ubuf, cnt))
753 return -EFAULT;
755 buf[cnt] = 0;
757 if (strncmp(buf, "NO_", 3) == 0) {
758 neg = 1;
759 cmp += 3;
762 for (i = 0; sched_feat_names[i]; i++) {
763 int len = strlen(sched_feat_names[i]);
765 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
766 if (neg)
767 sysctl_sched_features &= ~(1UL << i);
768 else
769 sysctl_sched_features |= (1UL << i);
770 break;
774 if (!sched_feat_names[i])
775 return -EINVAL;
777 filp->f_pos += cnt;
779 return cnt;
782 static int sched_feat_open(struct inode *inode, struct file *filp)
784 return single_open(filp, sched_feat_show, NULL);
787 static const struct file_operations sched_feat_fops = {
788 .open = sched_feat_open,
789 .write = sched_feat_write,
790 .read = seq_read,
791 .llseek = seq_lseek,
792 .release = single_release,
795 static __init int sched_init_debug(void)
797 debugfs_create_file("sched_features", 0644, NULL, NULL,
798 &sched_feat_fops);
800 return 0;
802 late_initcall(sched_init_debug);
804 #endif
806 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
809 * Number of tasks to iterate in a single balance run.
810 * Limited because this is done with IRQs disabled.
812 const_debug unsigned int sysctl_sched_nr_migrate = 32;
815 * ratelimit for updating the group shares.
816 * default: 0.25ms
818 unsigned int sysctl_sched_shares_ratelimit = 250000;
819 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
822 * Inject some fuzzyness into changing the per-cpu group shares
823 * this avoids remote rq-locks at the expense of fairness.
824 * default: 4
826 unsigned int sysctl_sched_shares_thresh = 4;
829 * period over which we average the RT time consumption, measured
830 * in ms.
832 * default: 1s
834 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
837 * period over which we measure -rt task cpu usage in us.
838 * default: 1s
840 unsigned int sysctl_sched_rt_period = 1000000;
842 static __read_mostly int scheduler_running;
845 * part of the period that we allow rt tasks to run in us.
846 * default: 0.95s
848 int sysctl_sched_rt_runtime = 950000;
850 static inline u64 global_rt_period(void)
852 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
855 static inline u64 global_rt_runtime(void)
857 if (sysctl_sched_rt_runtime < 0)
858 return RUNTIME_INF;
860 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
863 #ifndef prepare_arch_switch
864 # define prepare_arch_switch(next) do { } while (0)
865 #endif
866 #ifndef finish_arch_switch
867 # define finish_arch_switch(prev) do { } while (0)
868 #endif
870 static inline int task_current(struct rq *rq, struct task_struct *p)
872 return rq->curr == p;
875 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
876 static inline int task_running(struct rq *rq, struct task_struct *p)
878 return task_current(rq, p);
881 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
885 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
887 #ifdef CONFIG_DEBUG_SPINLOCK
888 /* this is a valid case when another task releases the spinlock */
889 rq->lock.owner = current;
890 #endif
892 * If we are tracking spinlock dependencies then we have to
893 * fix up the runqueue lock - which gets 'carried over' from
894 * prev into current:
896 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
898 spin_unlock_irq(&rq->lock);
901 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
902 static inline int task_running(struct rq *rq, struct task_struct *p)
904 #ifdef CONFIG_SMP
905 return p->oncpu;
906 #else
907 return task_current(rq, p);
908 #endif
911 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
913 #ifdef CONFIG_SMP
915 * We can optimise this out completely for !SMP, because the
916 * SMP rebalancing from interrupt is the only thing that cares
917 * here.
919 next->oncpu = 1;
920 #endif
921 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
922 spin_unlock_irq(&rq->lock);
923 #else
924 spin_unlock(&rq->lock);
925 #endif
928 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
930 #ifdef CONFIG_SMP
932 * After ->oncpu is cleared, the task can be moved to a different CPU.
933 * We must ensure this doesn't happen until the switch is completely
934 * finished.
936 smp_wmb();
937 prev->oncpu = 0;
938 #endif
939 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
940 local_irq_enable();
941 #endif
943 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
946 * __task_rq_lock - lock the runqueue a given task resides on.
947 * Must be called interrupts disabled.
949 static inline struct rq *__task_rq_lock(struct task_struct *p)
950 __acquires(rq->lock)
952 for (;;) {
953 struct rq *rq = task_rq(p);
954 spin_lock(&rq->lock);
955 if (likely(rq == task_rq(p)))
956 return rq;
957 spin_unlock(&rq->lock);
962 * task_rq_lock - lock the runqueue a given task resides on and disable
963 * interrupts. Note the ordering: we can safely lookup the task_rq without
964 * explicitly disabling preemption.
966 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
967 __acquires(rq->lock)
969 struct rq *rq;
971 for (;;) {
972 local_irq_save(*flags);
973 rq = task_rq(p);
974 spin_lock(&rq->lock);
975 if (likely(rq == task_rq(p)))
976 return rq;
977 spin_unlock_irqrestore(&rq->lock, *flags);
981 void task_rq_unlock_wait(struct task_struct *p)
983 struct rq *rq = task_rq(p);
985 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
986 spin_unlock_wait(&rq->lock);
989 static void __task_rq_unlock(struct rq *rq)
990 __releases(rq->lock)
992 spin_unlock(&rq->lock);
995 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
996 __releases(rq->lock)
998 spin_unlock_irqrestore(&rq->lock, *flags);
1002 * this_rq_lock - lock this runqueue and disable interrupts.
1004 static struct rq *this_rq_lock(void)
1005 __acquires(rq->lock)
1007 struct rq *rq;
1009 local_irq_disable();
1010 rq = this_rq();
1011 spin_lock(&rq->lock);
1013 return rq;
1016 #ifdef CONFIG_SCHED_HRTICK
1018 * Use HR-timers to deliver accurate preemption points.
1020 * Its all a bit involved since we cannot program an hrt while holding the
1021 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1022 * reschedule event.
1024 * When we get rescheduled we reprogram the hrtick_timer outside of the
1025 * rq->lock.
1029 * Use hrtick when:
1030 * - enabled by features
1031 * - hrtimer is actually high res
1033 static inline int hrtick_enabled(struct rq *rq)
1035 if (!sched_feat(HRTICK))
1036 return 0;
1037 if (!cpu_active(cpu_of(rq)))
1038 return 0;
1039 return hrtimer_is_hres_active(&rq->hrtick_timer);
1042 static void hrtick_clear(struct rq *rq)
1044 if (hrtimer_active(&rq->hrtick_timer))
1045 hrtimer_cancel(&rq->hrtick_timer);
1049 * High-resolution timer tick.
1050 * Runs from hardirq context with interrupts disabled.
1052 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1054 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1056 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1058 spin_lock(&rq->lock);
1059 update_rq_clock(rq);
1060 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1061 spin_unlock(&rq->lock);
1063 return HRTIMER_NORESTART;
1066 #ifdef CONFIG_SMP
1068 * called from hardirq (IPI) context
1070 static void __hrtick_start(void *arg)
1072 struct rq *rq = arg;
1074 spin_lock(&rq->lock);
1075 hrtimer_restart(&rq->hrtick_timer);
1076 rq->hrtick_csd_pending = 0;
1077 spin_unlock(&rq->lock);
1081 * Called to set the hrtick timer state.
1083 * called with rq->lock held and irqs disabled
1085 static void hrtick_start(struct rq *rq, u64 delay)
1087 struct hrtimer *timer = &rq->hrtick_timer;
1088 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1090 hrtimer_set_expires(timer, time);
1092 if (rq == this_rq()) {
1093 hrtimer_restart(timer);
1094 } else if (!rq->hrtick_csd_pending) {
1095 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1096 rq->hrtick_csd_pending = 1;
1100 static int
1101 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1103 int cpu = (int)(long)hcpu;
1105 switch (action) {
1106 case CPU_UP_CANCELED:
1107 case CPU_UP_CANCELED_FROZEN:
1108 case CPU_DOWN_PREPARE:
1109 case CPU_DOWN_PREPARE_FROZEN:
1110 case CPU_DEAD:
1111 case CPU_DEAD_FROZEN:
1112 hrtick_clear(cpu_rq(cpu));
1113 return NOTIFY_OK;
1116 return NOTIFY_DONE;
1119 static __init void init_hrtick(void)
1121 hotcpu_notifier(hotplug_hrtick, 0);
1123 #else
1125 * Called to set the hrtick timer state.
1127 * called with rq->lock held and irqs disabled
1129 static void hrtick_start(struct rq *rq, u64 delay)
1131 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1132 HRTIMER_MODE_REL_PINNED, 0);
1135 static inline void init_hrtick(void)
1138 #endif /* CONFIG_SMP */
1140 static void init_rq_hrtick(struct rq *rq)
1142 #ifdef CONFIG_SMP
1143 rq->hrtick_csd_pending = 0;
1145 rq->hrtick_csd.flags = 0;
1146 rq->hrtick_csd.func = __hrtick_start;
1147 rq->hrtick_csd.info = rq;
1148 #endif
1150 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1151 rq->hrtick_timer.function = hrtick;
1153 #else /* CONFIG_SCHED_HRTICK */
1154 static inline void hrtick_clear(struct rq *rq)
1158 static inline void init_rq_hrtick(struct rq *rq)
1162 static inline void init_hrtick(void)
1165 #endif /* CONFIG_SCHED_HRTICK */
1168 * resched_task - mark a task 'to be rescheduled now'.
1170 * On UP this means the setting of the need_resched flag, on SMP it
1171 * might also involve a cross-CPU call to trigger the scheduler on
1172 * the target CPU.
1174 #ifdef CONFIG_SMP
1176 #ifndef tsk_is_polling
1177 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1178 #endif
1180 static void resched_task(struct task_struct *p)
1182 int cpu;
1184 assert_spin_locked(&task_rq(p)->lock);
1186 if (test_tsk_need_resched(p))
1187 return;
1189 set_tsk_need_resched(p);
1191 cpu = task_cpu(p);
1192 if (cpu == smp_processor_id())
1193 return;
1195 /* NEED_RESCHED must be visible before we test polling */
1196 smp_mb();
1197 if (!tsk_is_polling(p))
1198 smp_send_reschedule(cpu);
1201 static void resched_cpu(int cpu)
1203 struct rq *rq = cpu_rq(cpu);
1204 unsigned long flags;
1206 if (!spin_trylock_irqsave(&rq->lock, flags))
1207 return;
1208 resched_task(cpu_curr(cpu));
1209 spin_unlock_irqrestore(&rq->lock, flags);
1212 #ifdef CONFIG_NO_HZ
1214 * When add_timer_on() enqueues a timer into the timer wheel of an
1215 * idle CPU then this timer might expire before the next timer event
1216 * which is scheduled to wake up that CPU. In case of a completely
1217 * idle system the next event might even be infinite time into the
1218 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1219 * leaves the inner idle loop so the newly added timer is taken into
1220 * account when the CPU goes back to idle and evaluates the timer
1221 * wheel for the next timer event.
1223 void wake_up_idle_cpu(int cpu)
1225 struct rq *rq = cpu_rq(cpu);
1227 if (cpu == smp_processor_id())
1228 return;
1231 * This is safe, as this function is called with the timer
1232 * wheel base lock of (cpu) held. When the CPU is on the way
1233 * to idle and has not yet set rq->curr to idle then it will
1234 * be serialized on the timer wheel base lock and take the new
1235 * timer into account automatically.
1237 if (rq->curr != rq->idle)
1238 return;
1241 * We can set TIF_RESCHED on the idle task of the other CPU
1242 * lockless. The worst case is that the other CPU runs the
1243 * idle task through an additional NOOP schedule()
1245 set_tsk_need_resched(rq->idle);
1247 /* NEED_RESCHED must be visible before we test polling */
1248 smp_mb();
1249 if (!tsk_is_polling(rq->idle))
1250 smp_send_reschedule(cpu);
1252 #endif /* CONFIG_NO_HZ */
1254 static u64 sched_avg_period(void)
1256 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1259 static void sched_avg_update(struct rq *rq)
1261 s64 period = sched_avg_period();
1263 while ((s64)(rq->clock - rq->age_stamp) > period) {
1264 rq->age_stamp += period;
1265 rq->rt_avg /= 2;
1269 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1271 rq->rt_avg += rt_delta;
1272 sched_avg_update(rq);
1275 #else /* !CONFIG_SMP */
1276 static void resched_task(struct task_struct *p)
1278 assert_spin_locked(&task_rq(p)->lock);
1279 set_tsk_need_resched(p);
1282 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1285 #endif /* CONFIG_SMP */
1287 #if BITS_PER_LONG == 32
1288 # define WMULT_CONST (~0UL)
1289 #else
1290 # define WMULT_CONST (1UL << 32)
1291 #endif
1293 #define WMULT_SHIFT 32
1296 * Shift right and round:
1298 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1301 * delta *= weight / lw
1303 static unsigned long
1304 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1305 struct load_weight *lw)
1307 u64 tmp;
1309 if (!lw->inv_weight) {
1310 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1311 lw->inv_weight = 1;
1312 else
1313 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1314 / (lw->weight+1);
1317 tmp = (u64)delta_exec * weight;
1319 * Check whether we'd overflow the 64-bit multiplication:
1321 if (unlikely(tmp > WMULT_CONST))
1322 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1323 WMULT_SHIFT/2);
1324 else
1325 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1327 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1330 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1332 lw->weight += inc;
1333 lw->inv_weight = 0;
1336 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1338 lw->weight -= dec;
1339 lw->inv_weight = 0;
1343 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1344 * of tasks with abnormal "nice" values across CPUs the contribution that
1345 * each task makes to its run queue's load is weighted according to its
1346 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1347 * scaled version of the new time slice allocation that they receive on time
1348 * slice expiry etc.
1351 #define WEIGHT_IDLEPRIO 3
1352 #define WMULT_IDLEPRIO 1431655765
1355 * Nice levels are multiplicative, with a gentle 10% change for every
1356 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1357 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1358 * that remained on nice 0.
1360 * The "10% effect" is relative and cumulative: from _any_ nice level,
1361 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1362 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1363 * If a task goes up by ~10% and another task goes down by ~10% then
1364 * the relative distance between them is ~25%.)
1366 static const int prio_to_weight[40] = {
1367 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1368 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1369 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1370 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1371 /* 0 */ 1024, 820, 655, 526, 423,
1372 /* 5 */ 335, 272, 215, 172, 137,
1373 /* 10 */ 110, 87, 70, 56, 45,
1374 /* 15 */ 36, 29, 23, 18, 15,
1378 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1380 * In cases where the weight does not change often, we can use the
1381 * precalculated inverse to speed up arithmetics by turning divisions
1382 * into multiplications:
1384 static const u32 prio_to_wmult[40] = {
1385 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1386 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1387 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1388 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1389 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1390 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1391 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1392 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1395 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1398 * runqueue iterator, to support SMP load-balancing between different
1399 * scheduling classes, without having to expose their internal data
1400 * structures to the load-balancing proper:
1402 struct rq_iterator {
1403 void *arg;
1404 struct task_struct *(*start)(void *);
1405 struct task_struct *(*next)(void *);
1408 #ifdef CONFIG_SMP
1409 static unsigned long
1410 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1411 unsigned long max_load_move, struct sched_domain *sd,
1412 enum cpu_idle_type idle, int *all_pinned,
1413 int *this_best_prio, struct rq_iterator *iterator);
1415 static int
1416 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1417 struct sched_domain *sd, enum cpu_idle_type idle,
1418 struct rq_iterator *iterator);
1419 #endif
1421 /* Time spent by the tasks of the cpu accounting group executing in ... */
1422 enum cpuacct_stat_index {
1423 CPUACCT_STAT_USER, /* ... user mode */
1424 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1426 CPUACCT_STAT_NSTATS,
1429 #ifdef CONFIG_CGROUP_CPUACCT
1430 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1431 static void cpuacct_update_stats(struct task_struct *tsk,
1432 enum cpuacct_stat_index idx, cputime_t val);
1433 #else
1434 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1435 static inline void cpuacct_update_stats(struct task_struct *tsk,
1436 enum cpuacct_stat_index idx, cputime_t val) {}
1437 #endif
1439 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1441 update_load_add(&rq->load, load);
1444 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1446 update_load_sub(&rq->load, load);
1449 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1450 typedef int (*tg_visitor)(struct task_group *, void *);
1453 * Iterate the full tree, calling @down when first entering a node and @up when
1454 * leaving it for the final time.
1456 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1458 struct task_group *parent, *child;
1459 int ret;
1461 rcu_read_lock();
1462 parent = &root_task_group;
1463 down:
1464 ret = (*down)(parent, data);
1465 if (ret)
1466 goto out_unlock;
1467 list_for_each_entry_rcu(child, &parent->children, siblings) {
1468 parent = child;
1469 goto down;
1472 continue;
1474 ret = (*up)(parent, data);
1475 if (ret)
1476 goto out_unlock;
1478 child = parent;
1479 parent = parent->parent;
1480 if (parent)
1481 goto up;
1482 out_unlock:
1483 rcu_read_unlock();
1485 return ret;
1488 static int tg_nop(struct task_group *tg, void *data)
1490 return 0;
1492 #endif
1494 #ifdef CONFIG_SMP
1495 /* Used instead of source_load when we know the type == 0 */
1496 static unsigned long weighted_cpuload(const int cpu)
1498 return cpu_rq(cpu)->load.weight;
1502 * Return a low guess at the load of a migration-source cpu weighted
1503 * according to the scheduling class and "nice" value.
1505 * We want to under-estimate the load of migration sources, to
1506 * balance conservatively.
1508 static unsigned long source_load(int cpu, int type)
1510 struct rq *rq = cpu_rq(cpu);
1511 unsigned long total = weighted_cpuload(cpu);
1513 if (type == 0 || !sched_feat(LB_BIAS))
1514 return total;
1516 return min(rq->cpu_load[type-1], total);
1520 * Return a high guess at the load of a migration-target cpu weighted
1521 * according to the scheduling class and "nice" value.
1523 static unsigned long target_load(int cpu, int type)
1525 struct rq *rq = cpu_rq(cpu);
1526 unsigned long total = weighted_cpuload(cpu);
1528 if (type == 0 || !sched_feat(LB_BIAS))
1529 return total;
1531 return max(rq->cpu_load[type-1], total);
1534 static struct sched_group *group_of(int cpu)
1536 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1538 if (!sd)
1539 return NULL;
1541 return sd->groups;
1544 static unsigned long power_of(int cpu)
1546 struct sched_group *group = group_of(cpu);
1548 if (!group)
1549 return SCHED_LOAD_SCALE;
1551 return group->cpu_power;
1554 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1556 static unsigned long cpu_avg_load_per_task(int cpu)
1558 struct rq *rq = cpu_rq(cpu);
1559 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1561 if (nr_running)
1562 rq->avg_load_per_task = rq->load.weight / nr_running;
1563 else
1564 rq->avg_load_per_task = 0;
1566 return rq->avg_load_per_task;
1569 #ifdef CONFIG_FAIR_GROUP_SCHED
1571 static __read_mostly unsigned long *update_shares_data;
1573 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1576 * Calculate and set the cpu's group shares.
1578 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1579 unsigned long sd_shares,
1580 unsigned long sd_rq_weight,
1581 unsigned long *usd_rq_weight)
1583 unsigned long shares, rq_weight;
1584 int boost = 0;
1586 rq_weight = usd_rq_weight[cpu];
1587 if (!rq_weight) {
1588 boost = 1;
1589 rq_weight = NICE_0_LOAD;
1593 * \Sum_j shares_j * rq_weight_i
1594 * shares_i = -----------------------------
1595 * \Sum_j rq_weight_j
1597 shares = (sd_shares * rq_weight) / sd_rq_weight;
1598 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1600 if (abs(shares - tg->se[cpu]->load.weight) >
1601 sysctl_sched_shares_thresh) {
1602 struct rq *rq = cpu_rq(cpu);
1603 unsigned long flags;
1605 spin_lock_irqsave(&rq->lock, flags);
1606 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1607 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1608 __set_se_shares(tg->se[cpu], shares);
1609 spin_unlock_irqrestore(&rq->lock, flags);
1614 * Re-compute the task group their per cpu shares over the given domain.
1615 * This needs to be done in a bottom-up fashion because the rq weight of a
1616 * parent group depends on the shares of its child groups.
1618 static int tg_shares_up(struct task_group *tg, void *data)
1620 unsigned long weight, rq_weight = 0, shares = 0;
1621 unsigned long *usd_rq_weight;
1622 struct sched_domain *sd = data;
1623 unsigned long flags;
1624 int i;
1626 if (!tg->se[0])
1627 return 0;
1629 local_irq_save(flags);
1630 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1632 for_each_cpu(i, sched_domain_span(sd)) {
1633 weight = tg->cfs_rq[i]->load.weight;
1634 usd_rq_weight[i] = weight;
1637 * If there are currently no tasks on the cpu pretend there
1638 * is one of average load so that when a new task gets to
1639 * run here it will not get delayed by group starvation.
1641 if (!weight)
1642 weight = NICE_0_LOAD;
1644 rq_weight += weight;
1645 shares += tg->cfs_rq[i]->shares;
1648 if ((!shares && rq_weight) || shares > tg->shares)
1649 shares = tg->shares;
1651 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1652 shares = tg->shares;
1654 for_each_cpu(i, sched_domain_span(sd))
1655 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1657 local_irq_restore(flags);
1659 return 0;
1663 * Compute the cpu's hierarchical load factor for each task group.
1664 * This needs to be done in a top-down fashion because the load of a child
1665 * group is a fraction of its parents load.
1667 static int tg_load_down(struct task_group *tg, void *data)
1669 unsigned long load;
1670 long cpu = (long)data;
1672 if (!tg->parent) {
1673 load = cpu_rq(cpu)->load.weight;
1674 } else {
1675 load = tg->parent->cfs_rq[cpu]->h_load;
1676 load *= tg->cfs_rq[cpu]->shares;
1677 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1680 tg->cfs_rq[cpu]->h_load = load;
1682 return 0;
1685 static void update_shares(struct sched_domain *sd)
1687 s64 elapsed;
1688 u64 now;
1690 if (root_task_group_empty())
1691 return;
1693 now = cpu_clock(raw_smp_processor_id());
1694 elapsed = now - sd->last_update;
1696 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1697 sd->last_update = now;
1698 walk_tg_tree(tg_nop, tg_shares_up, sd);
1702 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1704 if (root_task_group_empty())
1705 return;
1707 spin_unlock(&rq->lock);
1708 update_shares(sd);
1709 spin_lock(&rq->lock);
1712 static void update_h_load(long cpu)
1714 if (root_task_group_empty())
1715 return;
1717 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1720 #else
1722 static inline void update_shares(struct sched_domain *sd)
1726 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1730 #endif
1732 #ifdef CONFIG_PREEMPT
1734 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1737 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1738 * way at the expense of forcing extra atomic operations in all
1739 * invocations. This assures that the double_lock is acquired using the
1740 * same underlying policy as the spinlock_t on this architecture, which
1741 * reduces latency compared to the unfair variant below. However, it
1742 * also adds more overhead and therefore may reduce throughput.
1744 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1745 __releases(this_rq->lock)
1746 __acquires(busiest->lock)
1747 __acquires(this_rq->lock)
1749 spin_unlock(&this_rq->lock);
1750 double_rq_lock(this_rq, busiest);
1752 return 1;
1755 #else
1757 * Unfair double_lock_balance: Optimizes throughput at the expense of
1758 * latency by eliminating extra atomic operations when the locks are
1759 * already in proper order on entry. This favors lower cpu-ids and will
1760 * grant the double lock to lower cpus over higher ids under contention,
1761 * regardless of entry order into the function.
1763 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1764 __releases(this_rq->lock)
1765 __acquires(busiest->lock)
1766 __acquires(this_rq->lock)
1768 int ret = 0;
1770 if (unlikely(!spin_trylock(&busiest->lock))) {
1771 if (busiest < this_rq) {
1772 spin_unlock(&this_rq->lock);
1773 spin_lock(&busiest->lock);
1774 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1775 ret = 1;
1776 } else
1777 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1779 return ret;
1782 #endif /* CONFIG_PREEMPT */
1785 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1787 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1789 if (unlikely(!irqs_disabled())) {
1790 /* printk() doesn't work good under rq->lock */
1791 spin_unlock(&this_rq->lock);
1792 BUG_ON(1);
1795 return _double_lock_balance(this_rq, busiest);
1798 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1799 __releases(busiest->lock)
1801 spin_unlock(&busiest->lock);
1802 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1804 #endif
1806 #ifdef CONFIG_FAIR_GROUP_SCHED
1807 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1809 #ifdef CONFIG_SMP
1810 cfs_rq->shares = shares;
1811 #endif
1813 #endif
1815 static void calc_load_account_active(struct rq *this_rq);
1816 static void update_sysctl(void);
1818 #include "sched_stats.h"
1819 #include "sched_idletask.c"
1820 #include "sched_fair.c"
1821 #include "sched_rt.c"
1822 #ifdef CONFIG_SCHED_DEBUG
1823 # include "sched_debug.c"
1824 #endif
1826 #define sched_class_highest (&rt_sched_class)
1827 #define for_each_class(class) \
1828 for (class = sched_class_highest; class; class = class->next)
1830 static void inc_nr_running(struct rq *rq)
1832 rq->nr_running++;
1835 static void dec_nr_running(struct rq *rq)
1837 rq->nr_running--;
1840 static void set_load_weight(struct task_struct *p)
1842 if (task_has_rt_policy(p)) {
1843 p->se.load.weight = prio_to_weight[0] * 2;
1844 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1845 return;
1849 * SCHED_IDLE tasks get minimal weight:
1851 if (p->policy == SCHED_IDLE) {
1852 p->se.load.weight = WEIGHT_IDLEPRIO;
1853 p->se.load.inv_weight = WMULT_IDLEPRIO;
1854 return;
1857 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1858 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1861 static void update_avg(u64 *avg, u64 sample)
1863 s64 diff = sample - *avg;
1864 *avg += diff >> 3;
1867 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1869 if (wakeup)
1870 p->se.start_runtime = p->se.sum_exec_runtime;
1872 sched_info_queued(p);
1873 p->sched_class->enqueue_task(rq, p, wakeup);
1874 p->se.on_rq = 1;
1877 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1879 if (sleep) {
1880 if (p->se.last_wakeup) {
1881 update_avg(&p->se.avg_overlap,
1882 p->se.sum_exec_runtime - p->se.last_wakeup);
1883 p->se.last_wakeup = 0;
1884 } else {
1885 update_avg(&p->se.avg_wakeup,
1886 sysctl_sched_wakeup_granularity);
1890 sched_info_dequeued(p);
1891 p->sched_class->dequeue_task(rq, p, sleep);
1892 p->se.on_rq = 0;
1896 * __normal_prio - return the priority that is based on the static prio
1898 static inline int __normal_prio(struct task_struct *p)
1900 return p->static_prio;
1904 * Calculate the expected normal priority: i.e. priority
1905 * without taking RT-inheritance into account. Might be
1906 * boosted by interactivity modifiers. Changes upon fork,
1907 * setprio syscalls, and whenever the interactivity
1908 * estimator recalculates.
1910 static inline int normal_prio(struct task_struct *p)
1912 int prio;
1914 if (task_has_rt_policy(p))
1915 prio = MAX_RT_PRIO-1 - p->rt_priority;
1916 else
1917 prio = __normal_prio(p);
1918 return prio;
1922 * Calculate the current priority, i.e. the priority
1923 * taken into account by the scheduler. This value might
1924 * be boosted by RT tasks, or might be boosted by
1925 * interactivity modifiers. Will be RT if the task got
1926 * RT-boosted. If not then it returns p->normal_prio.
1928 static int effective_prio(struct task_struct *p)
1930 p->normal_prio = normal_prio(p);
1932 * If we are RT tasks or we were boosted to RT priority,
1933 * keep the priority unchanged. Otherwise, update priority
1934 * to the normal priority:
1936 if (!rt_prio(p->prio))
1937 return p->normal_prio;
1938 return p->prio;
1942 * activate_task - move a task to the runqueue.
1944 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1946 if (task_contributes_to_load(p))
1947 rq->nr_uninterruptible--;
1949 enqueue_task(rq, p, wakeup);
1950 inc_nr_running(rq);
1954 * deactivate_task - remove a task from the runqueue.
1956 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1958 if (task_contributes_to_load(p))
1959 rq->nr_uninterruptible++;
1961 dequeue_task(rq, p, sleep);
1962 dec_nr_running(rq);
1966 * task_curr - is this task currently executing on a CPU?
1967 * @p: the task in question.
1969 inline int task_curr(const struct task_struct *p)
1971 return cpu_curr(task_cpu(p)) == p;
1974 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1976 set_task_rq(p, cpu);
1977 #ifdef CONFIG_SMP
1979 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1980 * successfuly executed on another CPU. We must ensure that updates of
1981 * per-task data have been completed by this moment.
1983 smp_wmb();
1984 task_thread_info(p)->cpu = cpu;
1985 #endif
1988 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1989 const struct sched_class *prev_class,
1990 int oldprio, int running)
1992 if (prev_class != p->sched_class) {
1993 if (prev_class->switched_from)
1994 prev_class->switched_from(rq, p, running);
1995 p->sched_class->switched_to(rq, p, running);
1996 } else
1997 p->sched_class->prio_changed(rq, p, oldprio, running);
2001 * kthread_bind - bind a just-created kthread to a cpu.
2002 * @p: thread created by kthread_create().
2003 * @cpu: cpu (might not be online, must be possible) for @k to run on.
2005 * Description: This function is equivalent to set_cpus_allowed(),
2006 * except that @cpu doesn't need to be online, and the thread must be
2007 * stopped (i.e., just returned from kthread_create()).
2009 * Function lives here instead of kthread.c because it messes with
2010 * scheduler internals which require locking.
2012 void kthread_bind(struct task_struct *p, unsigned int cpu)
2014 struct rq *rq = cpu_rq(cpu);
2015 unsigned long flags;
2017 /* Must have done schedule() in kthread() before we set_task_cpu */
2018 if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
2019 WARN_ON(1);
2020 return;
2023 spin_lock_irqsave(&rq->lock, flags);
2024 set_task_cpu(p, cpu);
2025 p->cpus_allowed = cpumask_of_cpu(cpu);
2026 p->rt.nr_cpus_allowed = 1;
2027 p->flags |= PF_THREAD_BOUND;
2028 spin_unlock_irqrestore(&rq->lock, flags);
2030 EXPORT_SYMBOL(kthread_bind);
2032 #ifdef CONFIG_SMP
2034 * Is this task likely cache-hot:
2036 static int
2037 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2039 s64 delta;
2041 if (p->sched_class != &fair_sched_class)
2042 return 0;
2045 * Buddy candidates are cache hot:
2047 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2048 (&p->se == cfs_rq_of(&p->se)->next ||
2049 &p->se == cfs_rq_of(&p->se)->last))
2050 return 1;
2052 if (sysctl_sched_migration_cost == -1)
2053 return 1;
2054 if (sysctl_sched_migration_cost == 0)
2055 return 0;
2057 delta = now - p->se.exec_start;
2059 return delta < (s64)sysctl_sched_migration_cost;
2063 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2065 int old_cpu = task_cpu(p);
2066 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2067 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2068 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2069 u64 clock_offset;
2071 clock_offset = old_rq->clock - new_rq->clock;
2073 trace_sched_migrate_task(p, new_cpu);
2075 #ifdef CONFIG_SCHEDSTATS
2076 if (p->se.wait_start)
2077 p->se.wait_start -= clock_offset;
2078 if (p->se.sleep_start)
2079 p->se.sleep_start -= clock_offset;
2080 if (p->se.block_start)
2081 p->se.block_start -= clock_offset;
2082 #endif
2083 if (old_cpu != new_cpu) {
2084 p->se.nr_migrations++;
2085 new_rq->nr_migrations_in++;
2086 #ifdef CONFIG_SCHEDSTATS
2087 if (task_hot(p, old_rq->clock, NULL))
2088 schedstat_inc(p, se.nr_forced2_migrations);
2089 #endif
2090 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2091 1, 1, NULL, 0);
2093 p->se.vruntime -= old_cfsrq->min_vruntime -
2094 new_cfsrq->min_vruntime;
2096 __set_task_cpu(p, new_cpu);
2099 struct migration_req {
2100 struct list_head list;
2102 struct task_struct *task;
2103 int dest_cpu;
2105 struct completion done;
2109 * The task's runqueue lock must be held.
2110 * Returns true if you have to wait for migration thread.
2112 static int
2113 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2115 struct rq *rq = task_rq(p);
2118 * If the task is not on a runqueue (and not running), then
2119 * it is sufficient to simply update the task's cpu field.
2121 if (!p->se.on_rq && !task_running(rq, p)) {
2122 set_task_cpu(p, dest_cpu);
2123 return 0;
2126 init_completion(&req->done);
2127 req->task = p;
2128 req->dest_cpu = dest_cpu;
2129 list_add(&req->list, &rq->migration_queue);
2131 return 1;
2135 * wait_task_context_switch - wait for a thread to complete at least one
2136 * context switch.
2138 * @p must not be current.
2140 void wait_task_context_switch(struct task_struct *p)
2142 unsigned long nvcsw, nivcsw, flags;
2143 int running;
2144 struct rq *rq;
2146 nvcsw = p->nvcsw;
2147 nivcsw = p->nivcsw;
2148 for (;;) {
2150 * The runqueue is assigned before the actual context
2151 * switch. We need to take the runqueue lock.
2153 * We could check initially without the lock but it is
2154 * very likely that we need to take the lock in every
2155 * iteration.
2157 rq = task_rq_lock(p, &flags);
2158 running = task_running(rq, p);
2159 task_rq_unlock(rq, &flags);
2161 if (likely(!running))
2162 break;
2164 * The switch count is incremented before the actual
2165 * context switch. We thus wait for two switches to be
2166 * sure at least one completed.
2168 if ((p->nvcsw - nvcsw) > 1)
2169 break;
2170 if ((p->nivcsw - nivcsw) > 1)
2171 break;
2173 cpu_relax();
2178 * wait_task_inactive - wait for a thread to unschedule.
2180 * If @match_state is nonzero, it's the @p->state value just checked and
2181 * not expected to change. If it changes, i.e. @p might have woken up,
2182 * then return zero. When we succeed in waiting for @p to be off its CPU,
2183 * we return a positive number (its total switch count). If a second call
2184 * a short while later returns the same number, the caller can be sure that
2185 * @p has remained unscheduled the whole time.
2187 * The caller must ensure that the task *will* unschedule sometime soon,
2188 * else this function might spin for a *long* time. This function can't
2189 * be called with interrupts off, or it may introduce deadlock with
2190 * smp_call_function() if an IPI is sent by the same process we are
2191 * waiting to become inactive.
2193 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2195 unsigned long flags;
2196 int running, on_rq;
2197 unsigned long ncsw;
2198 struct rq *rq;
2200 for (;;) {
2202 * We do the initial early heuristics without holding
2203 * any task-queue locks at all. We'll only try to get
2204 * the runqueue lock when things look like they will
2205 * work out!
2207 rq = task_rq(p);
2210 * If the task is actively running on another CPU
2211 * still, just relax and busy-wait without holding
2212 * any locks.
2214 * NOTE! Since we don't hold any locks, it's not
2215 * even sure that "rq" stays as the right runqueue!
2216 * But we don't care, since "task_running()" will
2217 * return false if the runqueue has changed and p
2218 * is actually now running somewhere else!
2220 while (task_running(rq, p)) {
2221 if (match_state && unlikely(p->state != match_state))
2222 return 0;
2223 cpu_relax();
2227 * Ok, time to look more closely! We need the rq
2228 * lock now, to be *sure*. If we're wrong, we'll
2229 * just go back and repeat.
2231 rq = task_rq_lock(p, &flags);
2232 trace_sched_wait_task(rq, p);
2233 running = task_running(rq, p);
2234 on_rq = p->se.on_rq;
2235 ncsw = 0;
2236 if (!match_state || p->state == match_state)
2237 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2238 task_rq_unlock(rq, &flags);
2241 * If it changed from the expected state, bail out now.
2243 if (unlikely(!ncsw))
2244 break;
2247 * Was it really running after all now that we
2248 * checked with the proper locks actually held?
2250 * Oops. Go back and try again..
2252 if (unlikely(running)) {
2253 cpu_relax();
2254 continue;
2258 * It's not enough that it's not actively running,
2259 * it must be off the runqueue _entirely_, and not
2260 * preempted!
2262 * So if it was still runnable (but just not actively
2263 * running right now), it's preempted, and we should
2264 * yield - it could be a while.
2266 if (unlikely(on_rq)) {
2267 schedule_timeout_uninterruptible(1);
2268 continue;
2272 * Ahh, all good. It wasn't running, and it wasn't
2273 * runnable, which means that it will never become
2274 * running in the future either. We're all done!
2276 break;
2279 return ncsw;
2282 /***
2283 * kick_process - kick a running thread to enter/exit the kernel
2284 * @p: the to-be-kicked thread
2286 * Cause a process which is running on another CPU to enter
2287 * kernel-mode, without any delay. (to get signals handled.)
2289 * NOTE: this function doesnt have to take the runqueue lock,
2290 * because all it wants to ensure is that the remote task enters
2291 * the kernel. If the IPI races and the task has been migrated
2292 * to another CPU then no harm is done and the purpose has been
2293 * achieved as well.
2295 void kick_process(struct task_struct *p)
2297 int cpu;
2299 preempt_disable();
2300 cpu = task_cpu(p);
2301 if ((cpu != smp_processor_id()) && task_curr(p))
2302 smp_send_reschedule(cpu);
2303 preempt_enable();
2305 EXPORT_SYMBOL_GPL(kick_process);
2306 #endif /* CONFIG_SMP */
2309 * task_oncpu_function_call - call a function on the cpu on which a task runs
2310 * @p: the task to evaluate
2311 * @func: the function to be called
2312 * @info: the function call argument
2314 * Calls the function @func when the task is currently running. This might
2315 * be on the current CPU, which just calls the function directly
2317 void task_oncpu_function_call(struct task_struct *p,
2318 void (*func) (void *info), void *info)
2320 int cpu;
2322 preempt_disable();
2323 cpu = task_cpu(p);
2324 if (task_curr(p))
2325 smp_call_function_single(cpu, func, info, 1);
2326 preempt_enable();
2329 /***
2330 * try_to_wake_up - wake up a thread
2331 * @p: the to-be-woken-up thread
2332 * @state: the mask of task states that can be woken
2333 * @sync: do a synchronous wakeup?
2335 * Put it on the run-queue if it's not already there. The "current"
2336 * thread is always on the run-queue (except when the actual
2337 * re-schedule is in progress), and as such you're allowed to do
2338 * the simpler "current->state = TASK_RUNNING" to mark yourself
2339 * runnable without the overhead of this.
2341 * returns failure only if the task is already active.
2343 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2344 int wake_flags)
2346 int cpu, orig_cpu, this_cpu, success = 0;
2347 unsigned long flags;
2348 struct rq *rq, *orig_rq;
2350 if (!sched_feat(SYNC_WAKEUPS))
2351 wake_flags &= ~WF_SYNC;
2353 this_cpu = get_cpu();
2355 smp_wmb();
2356 rq = orig_rq = task_rq_lock(p, &flags);
2357 update_rq_clock(rq);
2358 if (!(p->state & state))
2359 goto out;
2361 if (p->se.on_rq)
2362 goto out_running;
2364 cpu = task_cpu(p);
2365 orig_cpu = cpu;
2367 #ifdef CONFIG_SMP
2368 if (unlikely(task_running(rq, p)))
2369 goto out_activate;
2372 * In order to handle concurrent wakeups and release the rq->lock
2373 * we put the task in TASK_WAKING state.
2375 * First fix up the nr_uninterruptible count:
2377 if (task_contributes_to_load(p))
2378 rq->nr_uninterruptible--;
2379 p->state = TASK_WAKING;
2380 task_rq_unlock(rq, &flags);
2382 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2383 if (cpu != orig_cpu)
2384 set_task_cpu(p, cpu);
2386 rq = task_rq_lock(p, &flags);
2388 if (rq != orig_rq)
2389 update_rq_clock(rq);
2391 WARN_ON(p->state != TASK_WAKING);
2392 cpu = task_cpu(p);
2394 #ifdef CONFIG_SCHEDSTATS
2395 schedstat_inc(rq, ttwu_count);
2396 if (cpu == this_cpu)
2397 schedstat_inc(rq, ttwu_local);
2398 else {
2399 struct sched_domain *sd;
2400 for_each_domain(this_cpu, sd) {
2401 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2402 schedstat_inc(sd, ttwu_wake_remote);
2403 break;
2407 #endif /* CONFIG_SCHEDSTATS */
2409 out_activate:
2410 #endif /* CONFIG_SMP */
2411 schedstat_inc(p, se.nr_wakeups);
2412 if (wake_flags & WF_SYNC)
2413 schedstat_inc(p, se.nr_wakeups_sync);
2414 if (orig_cpu != cpu)
2415 schedstat_inc(p, se.nr_wakeups_migrate);
2416 if (cpu == this_cpu)
2417 schedstat_inc(p, se.nr_wakeups_local);
2418 else
2419 schedstat_inc(p, se.nr_wakeups_remote);
2420 activate_task(rq, p, 1);
2421 success = 1;
2424 * Only attribute actual wakeups done by this task.
2426 if (!in_interrupt()) {
2427 struct sched_entity *se = &current->se;
2428 u64 sample = se->sum_exec_runtime;
2430 if (se->last_wakeup)
2431 sample -= se->last_wakeup;
2432 else
2433 sample -= se->start_runtime;
2434 update_avg(&se->avg_wakeup, sample);
2436 se->last_wakeup = se->sum_exec_runtime;
2439 out_running:
2440 trace_sched_wakeup(rq, p, success);
2441 check_preempt_curr(rq, p, wake_flags);
2443 p->state = TASK_RUNNING;
2444 #ifdef CONFIG_SMP
2445 if (p->sched_class->task_wake_up)
2446 p->sched_class->task_wake_up(rq, p);
2448 if (unlikely(rq->idle_stamp)) {
2449 u64 delta = rq->clock - rq->idle_stamp;
2450 u64 max = 2*sysctl_sched_migration_cost;
2452 if (delta > max)
2453 rq->avg_idle = max;
2454 else
2455 update_avg(&rq->avg_idle, delta);
2456 rq->idle_stamp = 0;
2458 #endif
2459 out:
2460 task_rq_unlock(rq, &flags);
2461 put_cpu();
2463 return success;
2467 * wake_up_process - Wake up a specific process
2468 * @p: The process to be woken up.
2470 * Attempt to wake up the nominated process and move it to the set of runnable
2471 * processes. Returns 1 if the process was woken up, 0 if it was already
2472 * running.
2474 * It may be assumed that this function implies a write memory barrier before
2475 * changing the task state if and only if any tasks are woken up.
2477 int wake_up_process(struct task_struct *p)
2479 return try_to_wake_up(p, TASK_ALL, 0);
2481 EXPORT_SYMBOL(wake_up_process);
2483 int wake_up_state(struct task_struct *p, unsigned int state)
2485 return try_to_wake_up(p, state, 0);
2489 * Perform scheduler related setup for a newly forked process p.
2490 * p is forked by current.
2492 * __sched_fork() is basic setup used by init_idle() too:
2494 static void __sched_fork(struct task_struct *p)
2496 p->se.exec_start = 0;
2497 p->se.sum_exec_runtime = 0;
2498 p->se.prev_sum_exec_runtime = 0;
2499 p->se.nr_migrations = 0;
2500 p->se.last_wakeup = 0;
2501 p->se.avg_overlap = 0;
2502 p->se.start_runtime = 0;
2503 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2504 p->se.avg_running = 0;
2506 #ifdef CONFIG_SCHEDSTATS
2507 p->se.wait_start = 0;
2508 p->se.wait_max = 0;
2509 p->se.wait_count = 0;
2510 p->se.wait_sum = 0;
2512 p->se.sleep_start = 0;
2513 p->se.sleep_max = 0;
2514 p->se.sum_sleep_runtime = 0;
2516 p->se.block_start = 0;
2517 p->se.block_max = 0;
2518 p->se.exec_max = 0;
2519 p->se.slice_max = 0;
2521 p->se.nr_migrations_cold = 0;
2522 p->se.nr_failed_migrations_affine = 0;
2523 p->se.nr_failed_migrations_running = 0;
2524 p->se.nr_failed_migrations_hot = 0;
2525 p->se.nr_forced_migrations = 0;
2526 p->se.nr_forced2_migrations = 0;
2528 p->se.nr_wakeups = 0;
2529 p->se.nr_wakeups_sync = 0;
2530 p->se.nr_wakeups_migrate = 0;
2531 p->se.nr_wakeups_local = 0;
2532 p->se.nr_wakeups_remote = 0;
2533 p->se.nr_wakeups_affine = 0;
2534 p->se.nr_wakeups_affine_attempts = 0;
2535 p->se.nr_wakeups_passive = 0;
2536 p->se.nr_wakeups_idle = 0;
2538 #endif
2540 INIT_LIST_HEAD(&p->rt.run_list);
2541 p->se.on_rq = 0;
2542 INIT_LIST_HEAD(&p->se.group_node);
2544 #ifdef CONFIG_PREEMPT_NOTIFIERS
2545 INIT_HLIST_HEAD(&p->preempt_notifiers);
2546 #endif
2549 * We mark the process as running here, but have not actually
2550 * inserted it onto the runqueue yet. This guarantees that
2551 * nobody will actually run it, and a signal or other external
2552 * event cannot wake it up and insert it on the runqueue either.
2554 p->state = TASK_RUNNING;
2558 * fork()/clone()-time setup:
2560 void sched_fork(struct task_struct *p, int clone_flags)
2562 int cpu = get_cpu();
2564 __sched_fork(p);
2567 * Revert to default priority/policy on fork if requested.
2569 if (unlikely(p->sched_reset_on_fork)) {
2570 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2571 p->policy = SCHED_NORMAL;
2572 p->normal_prio = p->static_prio;
2575 if (PRIO_TO_NICE(p->static_prio) < 0) {
2576 p->static_prio = NICE_TO_PRIO(0);
2577 p->normal_prio = p->static_prio;
2578 set_load_weight(p);
2582 * We don't need the reset flag anymore after the fork. It has
2583 * fulfilled its duty:
2585 p->sched_reset_on_fork = 0;
2589 * Make sure we do not leak PI boosting priority to the child.
2591 p->prio = current->normal_prio;
2593 if (!rt_prio(p->prio))
2594 p->sched_class = &fair_sched_class;
2596 #ifdef CONFIG_SMP
2597 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
2598 #endif
2599 set_task_cpu(p, cpu);
2601 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2602 if (likely(sched_info_on()))
2603 memset(&p->sched_info, 0, sizeof(p->sched_info));
2604 #endif
2605 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2606 p->oncpu = 0;
2607 #endif
2608 #ifdef CONFIG_PREEMPT
2609 /* Want to start with kernel preemption disabled. */
2610 task_thread_info(p)->preempt_count = 1;
2611 #endif
2612 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2614 put_cpu();
2618 * wake_up_new_task - wake up a newly created task for the first time.
2620 * This function will do some initial scheduler statistics housekeeping
2621 * that must be done for every newly created context, then puts the task
2622 * on the runqueue and wakes it.
2624 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2626 unsigned long flags;
2627 struct rq *rq;
2629 rq = task_rq_lock(p, &flags);
2630 BUG_ON(p->state != TASK_RUNNING);
2631 update_rq_clock(rq);
2633 if (!p->sched_class->task_new || !current->se.on_rq) {
2634 activate_task(rq, p, 0);
2635 } else {
2637 * Let the scheduling class do new task startup
2638 * management (if any):
2640 p->sched_class->task_new(rq, p);
2641 inc_nr_running(rq);
2643 trace_sched_wakeup_new(rq, p, 1);
2644 check_preempt_curr(rq, p, WF_FORK);
2645 #ifdef CONFIG_SMP
2646 if (p->sched_class->task_wake_up)
2647 p->sched_class->task_wake_up(rq, p);
2648 #endif
2649 task_rq_unlock(rq, &flags);
2652 #ifdef CONFIG_PREEMPT_NOTIFIERS
2655 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2656 * @notifier: notifier struct to register
2658 void preempt_notifier_register(struct preempt_notifier *notifier)
2660 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2662 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2665 * preempt_notifier_unregister - no longer interested in preemption notifications
2666 * @notifier: notifier struct to unregister
2668 * This is safe to call from within a preemption notifier.
2670 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2672 hlist_del(&notifier->link);
2674 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2676 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2678 struct preempt_notifier *notifier;
2679 struct hlist_node *node;
2681 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2682 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2685 static void
2686 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2687 struct task_struct *next)
2689 struct preempt_notifier *notifier;
2690 struct hlist_node *node;
2692 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2693 notifier->ops->sched_out(notifier, next);
2696 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2698 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2702 static void
2703 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2704 struct task_struct *next)
2708 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2711 * prepare_task_switch - prepare to switch tasks
2712 * @rq: the runqueue preparing to switch
2713 * @prev: the current task that is being switched out
2714 * @next: the task we are going to switch to.
2716 * This is called with the rq lock held and interrupts off. It must
2717 * be paired with a subsequent finish_task_switch after the context
2718 * switch.
2720 * prepare_task_switch sets up locking and calls architecture specific
2721 * hooks.
2723 static inline void
2724 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2725 struct task_struct *next)
2727 fire_sched_out_preempt_notifiers(prev, next);
2728 prepare_lock_switch(rq, next);
2729 prepare_arch_switch(next);
2733 * finish_task_switch - clean up after a task-switch
2734 * @rq: runqueue associated with task-switch
2735 * @prev: the thread we just switched away from.
2737 * finish_task_switch must be called after the context switch, paired
2738 * with a prepare_task_switch call before the context switch.
2739 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2740 * and do any other architecture-specific cleanup actions.
2742 * Note that we may have delayed dropping an mm in context_switch(). If
2743 * so, we finish that here outside of the runqueue lock. (Doing it
2744 * with the lock held can cause deadlocks; see schedule() for
2745 * details.)
2747 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2748 __releases(rq->lock)
2750 struct mm_struct *mm = rq->prev_mm;
2751 long prev_state;
2753 rq->prev_mm = NULL;
2756 * A task struct has one reference for the use as "current".
2757 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2758 * schedule one last time. The schedule call will never return, and
2759 * the scheduled task must drop that reference.
2760 * The test for TASK_DEAD must occur while the runqueue locks are
2761 * still held, otherwise prev could be scheduled on another cpu, die
2762 * there before we look at prev->state, and then the reference would
2763 * be dropped twice.
2764 * Manfred Spraul <manfred@colorfullife.com>
2766 prev_state = prev->state;
2767 finish_arch_switch(prev);
2768 perf_event_task_sched_in(current, cpu_of(rq));
2769 finish_lock_switch(rq, prev);
2771 fire_sched_in_preempt_notifiers(current);
2772 if (mm)
2773 mmdrop(mm);
2774 if (unlikely(prev_state == TASK_DEAD)) {
2776 * Remove function-return probe instances associated with this
2777 * task and put them back on the free list.
2779 kprobe_flush_task(prev);
2780 put_task_struct(prev);
2784 #ifdef CONFIG_SMP
2786 /* assumes rq->lock is held */
2787 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2789 if (prev->sched_class->pre_schedule)
2790 prev->sched_class->pre_schedule(rq, prev);
2793 /* rq->lock is NOT held, but preemption is disabled */
2794 static inline void post_schedule(struct rq *rq)
2796 if (rq->post_schedule) {
2797 unsigned long flags;
2799 spin_lock_irqsave(&rq->lock, flags);
2800 if (rq->curr->sched_class->post_schedule)
2801 rq->curr->sched_class->post_schedule(rq);
2802 spin_unlock_irqrestore(&rq->lock, flags);
2804 rq->post_schedule = 0;
2808 #else
2810 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2814 static inline void post_schedule(struct rq *rq)
2818 #endif
2821 * schedule_tail - first thing a freshly forked thread must call.
2822 * @prev: the thread we just switched away from.
2824 asmlinkage void schedule_tail(struct task_struct *prev)
2825 __releases(rq->lock)
2827 struct rq *rq = this_rq();
2829 finish_task_switch(rq, prev);
2832 * FIXME: do we need to worry about rq being invalidated by the
2833 * task_switch?
2835 post_schedule(rq);
2837 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2838 /* In this case, finish_task_switch does not reenable preemption */
2839 preempt_enable();
2840 #endif
2841 if (current->set_child_tid)
2842 put_user(task_pid_vnr(current), current->set_child_tid);
2846 * context_switch - switch to the new MM and the new
2847 * thread's register state.
2849 static inline void
2850 context_switch(struct rq *rq, struct task_struct *prev,
2851 struct task_struct *next)
2853 struct mm_struct *mm, *oldmm;
2855 prepare_task_switch(rq, prev, next);
2856 trace_sched_switch(rq, prev, next);
2857 mm = next->mm;
2858 oldmm = prev->active_mm;
2860 * For paravirt, this is coupled with an exit in switch_to to
2861 * combine the page table reload and the switch backend into
2862 * one hypercall.
2864 arch_start_context_switch(prev);
2866 if (unlikely(!mm)) {
2867 next->active_mm = oldmm;
2868 atomic_inc(&oldmm->mm_count);
2869 enter_lazy_tlb(oldmm, next);
2870 } else
2871 switch_mm(oldmm, mm, next);
2873 if (unlikely(!prev->mm)) {
2874 prev->active_mm = NULL;
2875 rq->prev_mm = oldmm;
2878 * Since the runqueue lock will be released by the next
2879 * task (which is an invalid locking op but in the case
2880 * of the scheduler it's an obvious special-case), so we
2881 * do an early lockdep release here:
2883 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2884 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2885 #endif
2887 /* Here we just switch the register state and the stack. */
2888 switch_to(prev, next, prev);
2890 barrier();
2892 * this_rq must be evaluated again because prev may have moved
2893 * CPUs since it called schedule(), thus the 'rq' on its stack
2894 * frame will be invalid.
2896 finish_task_switch(this_rq(), prev);
2900 * nr_running, nr_uninterruptible and nr_context_switches:
2902 * externally visible scheduler statistics: current number of runnable
2903 * threads, current number of uninterruptible-sleeping threads, total
2904 * number of context switches performed since bootup.
2906 unsigned long nr_running(void)
2908 unsigned long i, sum = 0;
2910 for_each_online_cpu(i)
2911 sum += cpu_rq(i)->nr_running;
2913 return sum;
2916 unsigned long nr_uninterruptible(void)
2918 unsigned long i, sum = 0;
2920 for_each_possible_cpu(i)
2921 sum += cpu_rq(i)->nr_uninterruptible;
2924 * Since we read the counters lockless, it might be slightly
2925 * inaccurate. Do not allow it to go below zero though:
2927 if (unlikely((long)sum < 0))
2928 sum = 0;
2930 return sum;
2933 unsigned long long nr_context_switches(void)
2935 int i;
2936 unsigned long long sum = 0;
2938 for_each_possible_cpu(i)
2939 sum += cpu_rq(i)->nr_switches;
2941 return sum;
2944 unsigned long nr_iowait(void)
2946 unsigned long i, sum = 0;
2948 for_each_possible_cpu(i)
2949 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2951 return sum;
2954 unsigned long nr_iowait_cpu(void)
2956 struct rq *this = this_rq();
2957 return atomic_read(&this->nr_iowait);
2960 unsigned long this_cpu_load(void)
2962 struct rq *this = this_rq();
2963 return this->cpu_load[0];
2967 /* Variables and functions for calc_load */
2968 static atomic_long_t calc_load_tasks;
2969 static unsigned long calc_load_update;
2970 unsigned long avenrun[3];
2971 EXPORT_SYMBOL(avenrun);
2974 * get_avenrun - get the load average array
2975 * @loads: pointer to dest load array
2976 * @offset: offset to add
2977 * @shift: shift count to shift the result left
2979 * These values are estimates at best, so no need for locking.
2981 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2983 loads[0] = (avenrun[0] + offset) << shift;
2984 loads[1] = (avenrun[1] + offset) << shift;
2985 loads[2] = (avenrun[2] + offset) << shift;
2988 static unsigned long
2989 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2991 load *= exp;
2992 load += active * (FIXED_1 - exp);
2993 return load >> FSHIFT;
2997 * calc_load - update the avenrun load estimates 10 ticks after the
2998 * CPUs have updated calc_load_tasks.
3000 void calc_global_load(void)
3002 unsigned long upd = calc_load_update + 10;
3003 long active;
3005 if (time_before(jiffies, upd))
3006 return;
3008 active = atomic_long_read(&calc_load_tasks);
3009 active = active > 0 ? active * FIXED_1 : 0;
3011 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3012 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3013 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3015 calc_load_update += LOAD_FREQ;
3019 * Either called from update_cpu_load() or from a cpu going idle
3021 static void calc_load_account_active(struct rq *this_rq)
3023 long nr_active, delta;
3025 nr_active = this_rq->nr_running;
3026 nr_active += (long) this_rq->nr_uninterruptible;
3028 if (nr_active != this_rq->calc_load_active) {
3029 delta = nr_active - this_rq->calc_load_active;
3030 this_rq->calc_load_active = nr_active;
3031 atomic_long_add(delta, &calc_load_tasks);
3036 * Externally visible per-cpu scheduler statistics:
3037 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3039 u64 cpu_nr_migrations(int cpu)
3041 return cpu_rq(cpu)->nr_migrations_in;
3045 * Update rq->cpu_load[] statistics. This function is usually called every
3046 * scheduler tick (TICK_NSEC).
3048 static void update_cpu_load(struct rq *this_rq)
3050 unsigned long this_load = this_rq->load.weight;
3051 int i, scale;
3053 this_rq->nr_load_updates++;
3055 /* Update our load: */
3056 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3057 unsigned long old_load, new_load;
3059 /* scale is effectively 1 << i now, and >> i divides by scale */
3061 old_load = this_rq->cpu_load[i];
3062 new_load = this_load;
3064 * Round up the averaging division if load is increasing. This
3065 * prevents us from getting stuck on 9 if the load is 10, for
3066 * example.
3068 if (new_load > old_load)
3069 new_load += scale-1;
3070 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3073 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3074 this_rq->calc_load_update += LOAD_FREQ;
3075 calc_load_account_active(this_rq);
3079 #ifdef CONFIG_SMP
3082 * double_rq_lock - safely lock two runqueues
3084 * Note this does not disable interrupts like task_rq_lock,
3085 * you need to do so manually before calling.
3087 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3088 __acquires(rq1->lock)
3089 __acquires(rq2->lock)
3091 BUG_ON(!irqs_disabled());
3092 if (rq1 == rq2) {
3093 spin_lock(&rq1->lock);
3094 __acquire(rq2->lock); /* Fake it out ;) */
3095 } else {
3096 if (rq1 < rq2) {
3097 spin_lock(&rq1->lock);
3098 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3099 } else {
3100 spin_lock(&rq2->lock);
3101 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3104 update_rq_clock(rq1);
3105 update_rq_clock(rq2);
3109 * double_rq_unlock - safely unlock two runqueues
3111 * Note this does not restore interrupts like task_rq_unlock,
3112 * you need to do so manually after calling.
3114 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3115 __releases(rq1->lock)
3116 __releases(rq2->lock)
3118 spin_unlock(&rq1->lock);
3119 if (rq1 != rq2)
3120 spin_unlock(&rq2->lock);
3121 else
3122 __release(rq2->lock);
3126 * If dest_cpu is allowed for this process, migrate the task to it.
3127 * This is accomplished by forcing the cpu_allowed mask to only
3128 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3129 * the cpu_allowed mask is restored.
3131 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3133 struct migration_req req;
3134 unsigned long flags;
3135 struct rq *rq;
3137 rq = task_rq_lock(p, &flags);
3138 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3139 || unlikely(!cpu_active(dest_cpu)))
3140 goto out;
3142 /* force the process onto the specified CPU */
3143 if (migrate_task(p, dest_cpu, &req)) {
3144 /* Need to wait for migration thread (might exit: take ref). */
3145 struct task_struct *mt = rq->migration_thread;
3147 get_task_struct(mt);
3148 task_rq_unlock(rq, &flags);
3149 wake_up_process(mt);
3150 put_task_struct(mt);
3151 wait_for_completion(&req.done);
3153 return;
3155 out:
3156 task_rq_unlock(rq, &flags);
3160 * sched_exec - execve() is a valuable balancing opportunity, because at
3161 * this point the task has the smallest effective memory and cache footprint.
3163 void sched_exec(void)
3165 int new_cpu, this_cpu = get_cpu();
3166 new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
3167 put_cpu();
3168 if (new_cpu != this_cpu)
3169 sched_migrate_task(current, new_cpu);
3173 * pull_task - move a task from a remote runqueue to the local runqueue.
3174 * Both runqueues must be locked.
3176 static void pull_task(struct rq *src_rq, struct task_struct *p,
3177 struct rq *this_rq, int this_cpu)
3179 deactivate_task(src_rq, p, 0);
3180 set_task_cpu(p, this_cpu);
3181 activate_task(this_rq, p, 0);
3182 check_preempt_curr(this_rq, p, 0);
3186 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3188 static
3189 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3190 struct sched_domain *sd, enum cpu_idle_type idle,
3191 int *all_pinned)
3193 int tsk_cache_hot = 0;
3195 * We do not migrate tasks that are:
3196 * 1) running (obviously), or
3197 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3198 * 3) are cache-hot on their current CPU.
3200 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3201 schedstat_inc(p, se.nr_failed_migrations_affine);
3202 return 0;
3204 *all_pinned = 0;
3206 if (task_running(rq, p)) {
3207 schedstat_inc(p, se.nr_failed_migrations_running);
3208 return 0;
3212 * Aggressive migration if:
3213 * 1) task is cache cold, or
3214 * 2) too many balance attempts have failed.
3217 tsk_cache_hot = task_hot(p, rq->clock, sd);
3218 if (!tsk_cache_hot ||
3219 sd->nr_balance_failed > sd->cache_nice_tries) {
3220 #ifdef CONFIG_SCHEDSTATS
3221 if (tsk_cache_hot) {
3222 schedstat_inc(sd, lb_hot_gained[idle]);
3223 schedstat_inc(p, se.nr_forced_migrations);
3225 #endif
3226 return 1;
3229 if (tsk_cache_hot) {
3230 schedstat_inc(p, se.nr_failed_migrations_hot);
3231 return 0;
3233 return 1;
3236 static unsigned long
3237 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3238 unsigned long max_load_move, struct sched_domain *sd,
3239 enum cpu_idle_type idle, int *all_pinned,
3240 int *this_best_prio, struct rq_iterator *iterator)
3242 int loops = 0, pulled = 0, pinned = 0;
3243 struct task_struct *p;
3244 long rem_load_move = max_load_move;
3246 if (max_load_move == 0)
3247 goto out;
3249 pinned = 1;
3252 * Start the load-balancing iterator:
3254 p = iterator->start(iterator->arg);
3255 next:
3256 if (!p || loops++ > sysctl_sched_nr_migrate)
3257 goto out;
3259 if ((p->se.load.weight >> 1) > rem_load_move ||
3260 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3261 p = iterator->next(iterator->arg);
3262 goto next;
3265 pull_task(busiest, p, this_rq, this_cpu);
3266 pulled++;
3267 rem_load_move -= p->se.load.weight;
3269 #ifdef CONFIG_PREEMPT
3271 * NEWIDLE balancing is a source of latency, so preemptible kernels
3272 * will stop after the first task is pulled to minimize the critical
3273 * section.
3275 if (idle == CPU_NEWLY_IDLE)
3276 goto out;
3277 #endif
3280 * We only want to steal up to the prescribed amount of weighted load.
3282 if (rem_load_move > 0) {
3283 if (p->prio < *this_best_prio)
3284 *this_best_prio = p->prio;
3285 p = iterator->next(iterator->arg);
3286 goto next;
3288 out:
3290 * Right now, this is one of only two places pull_task() is called,
3291 * so we can safely collect pull_task() stats here rather than
3292 * inside pull_task().
3294 schedstat_add(sd, lb_gained[idle], pulled);
3296 if (all_pinned)
3297 *all_pinned = pinned;
3299 return max_load_move - rem_load_move;
3303 * move_tasks tries to move up to max_load_move weighted load from busiest to
3304 * this_rq, as part of a balancing operation within domain "sd".
3305 * Returns 1 if successful and 0 otherwise.
3307 * Called with both runqueues locked.
3309 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3310 unsigned long max_load_move,
3311 struct sched_domain *sd, enum cpu_idle_type idle,
3312 int *all_pinned)
3314 const struct sched_class *class = sched_class_highest;
3315 unsigned long total_load_moved = 0;
3316 int this_best_prio = this_rq->curr->prio;
3318 do {
3319 total_load_moved +=
3320 class->load_balance(this_rq, this_cpu, busiest,
3321 max_load_move - total_load_moved,
3322 sd, idle, all_pinned, &this_best_prio);
3323 class = class->next;
3325 #ifdef CONFIG_PREEMPT
3327 * NEWIDLE balancing is a source of latency, so preemptible
3328 * kernels will stop after the first task is pulled to minimize
3329 * the critical section.
3331 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3332 break;
3333 #endif
3334 } while (class && max_load_move > total_load_moved);
3336 return total_load_moved > 0;
3339 static int
3340 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3341 struct sched_domain *sd, enum cpu_idle_type idle,
3342 struct rq_iterator *iterator)
3344 struct task_struct *p = iterator->start(iterator->arg);
3345 int pinned = 0;
3347 while (p) {
3348 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3349 pull_task(busiest, p, this_rq, this_cpu);
3351 * Right now, this is only the second place pull_task()
3352 * is called, so we can safely collect pull_task()
3353 * stats here rather than inside pull_task().
3355 schedstat_inc(sd, lb_gained[idle]);
3357 return 1;
3359 p = iterator->next(iterator->arg);
3362 return 0;
3366 * move_one_task tries to move exactly one task from busiest to this_rq, as
3367 * part of active balancing operations within "domain".
3368 * Returns 1 if successful and 0 otherwise.
3370 * Called with both runqueues locked.
3372 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3373 struct sched_domain *sd, enum cpu_idle_type idle)
3375 const struct sched_class *class;
3377 for_each_class(class) {
3378 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3379 return 1;
3382 return 0;
3384 /********** Helpers for find_busiest_group ************************/
3386 * sd_lb_stats - Structure to store the statistics of a sched_domain
3387 * during load balancing.
3389 struct sd_lb_stats {
3390 struct sched_group *busiest; /* Busiest group in this sd */
3391 struct sched_group *this; /* Local group in this sd */
3392 unsigned long total_load; /* Total load of all groups in sd */
3393 unsigned long total_pwr; /* Total power of all groups in sd */
3394 unsigned long avg_load; /* Average load across all groups in sd */
3396 /** Statistics of this group */
3397 unsigned long this_load;
3398 unsigned long this_load_per_task;
3399 unsigned long this_nr_running;
3401 /* Statistics of the busiest group */
3402 unsigned long max_load;
3403 unsigned long busiest_load_per_task;
3404 unsigned long busiest_nr_running;
3406 int group_imb; /* Is there imbalance in this sd */
3407 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3408 int power_savings_balance; /* Is powersave balance needed for this sd */
3409 struct sched_group *group_min; /* Least loaded group in sd */
3410 struct sched_group *group_leader; /* Group which relieves group_min */
3411 unsigned long min_load_per_task; /* load_per_task in group_min */
3412 unsigned long leader_nr_running; /* Nr running of group_leader */
3413 unsigned long min_nr_running; /* Nr running of group_min */
3414 #endif
3418 * sg_lb_stats - stats of a sched_group required for load_balancing
3420 struct sg_lb_stats {
3421 unsigned long avg_load; /*Avg load across the CPUs of the group */
3422 unsigned long group_load; /* Total load over the CPUs of the group */
3423 unsigned long sum_nr_running; /* Nr tasks running in the group */
3424 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3425 unsigned long group_capacity;
3426 int group_imb; /* Is there an imbalance in the group ? */
3430 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3431 * @group: The group whose first cpu is to be returned.
3433 static inline unsigned int group_first_cpu(struct sched_group *group)
3435 return cpumask_first(sched_group_cpus(group));
3439 * get_sd_load_idx - Obtain the load index for a given sched domain.
3440 * @sd: The sched_domain whose load_idx is to be obtained.
3441 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3443 static inline int get_sd_load_idx(struct sched_domain *sd,
3444 enum cpu_idle_type idle)
3446 int load_idx;
3448 switch (idle) {
3449 case CPU_NOT_IDLE:
3450 load_idx = sd->busy_idx;
3451 break;
3453 case CPU_NEWLY_IDLE:
3454 load_idx = sd->newidle_idx;
3455 break;
3456 default:
3457 load_idx = sd->idle_idx;
3458 break;
3461 return load_idx;
3465 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3467 * init_sd_power_savings_stats - Initialize power savings statistics for
3468 * the given sched_domain, during load balancing.
3470 * @sd: Sched domain whose power-savings statistics are to be initialized.
3471 * @sds: Variable containing the statistics for sd.
3472 * @idle: Idle status of the CPU at which we're performing load-balancing.
3474 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3475 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3478 * Busy processors will not participate in power savings
3479 * balance.
3481 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3482 sds->power_savings_balance = 0;
3483 else {
3484 sds->power_savings_balance = 1;
3485 sds->min_nr_running = ULONG_MAX;
3486 sds->leader_nr_running = 0;
3491 * update_sd_power_savings_stats - Update the power saving stats for a
3492 * sched_domain while performing load balancing.
3494 * @group: sched_group belonging to the sched_domain under consideration.
3495 * @sds: Variable containing the statistics of the sched_domain
3496 * @local_group: Does group contain the CPU for which we're performing
3497 * load balancing ?
3498 * @sgs: Variable containing the statistics of the group.
3500 static inline void update_sd_power_savings_stats(struct sched_group *group,
3501 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3504 if (!sds->power_savings_balance)
3505 return;
3508 * If the local group is idle or completely loaded
3509 * no need to do power savings balance at this domain
3511 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3512 !sds->this_nr_running))
3513 sds->power_savings_balance = 0;
3516 * If a group is already running at full capacity or idle,
3517 * don't include that group in power savings calculations
3519 if (!sds->power_savings_balance ||
3520 sgs->sum_nr_running >= sgs->group_capacity ||
3521 !sgs->sum_nr_running)
3522 return;
3525 * Calculate the group which has the least non-idle load.
3526 * This is the group from where we need to pick up the load
3527 * for saving power
3529 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3530 (sgs->sum_nr_running == sds->min_nr_running &&
3531 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3532 sds->group_min = group;
3533 sds->min_nr_running = sgs->sum_nr_running;
3534 sds->min_load_per_task = sgs->sum_weighted_load /
3535 sgs->sum_nr_running;
3539 * Calculate the group which is almost near its
3540 * capacity but still has some space to pick up some load
3541 * from other group and save more power
3543 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3544 return;
3546 if (sgs->sum_nr_running > sds->leader_nr_running ||
3547 (sgs->sum_nr_running == sds->leader_nr_running &&
3548 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3549 sds->group_leader = group;
3550 sds->leader_nr_running = sgs->sum_nr_running;
3555 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3556 * @sds: Variable containing the statistics of the sched_domain
3557 * under consideration.
3558 * @this_cpu: Cpu at which we're currently performing load-balancing.
3559 * @imbalance: Variable to store the imbalance.
3561 * Description:
3562 * Check if we have potential to perform some power-savings balance.
3563 * If yes, set the busiest group to be the least loaded group in the
3564 * sched_domain, so that it's CPUs can be put to idle.
3566 * Returns 1 if there is potential to perform power-savings balance.
3567 * Else returns 0.
3569 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3570 int this_cpu, unsigned long *imbalance)
3572 if (!sds->power_savings_balance)
3573 return 0;
3575 if (sds->this != sds->group_leader ||
3576 sds->group_leader == sds->group_min)
3577 return 0;
3579 *imbalance = sds->min_load_per_task;
3580 sds->busiest = sds->group_min;
3582 return 1;
3585 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3586 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3587 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3589 return;
3592 static inline void update_sd_power_savings_stats(struct sched_group *group,
3593 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3595 return;
3598 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3599 int this_cpu, unsigned long *imbalance)
3601 return 0;
3603 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3606 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3608 return SCHED_LOAD_SCALE;
3611 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3613 return default_scale_freq_power(sd, cpu);
3616 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3618 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3619 unsigned long smt_gain = sd->smt_gain;
3621 smt_gain /= weight;
3623 return smt_gain;
3626 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3628 return default_scale_smt_power(sd, cpu);
3631 unsigned long scale_rt_power(int cpu)
3633 struct rq *rq = cpu_rq(cpu);
3634 u64 total, available;
3636 sched_avg_update(rq);
3638 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3639 available = total - rq->rt_avg;
3641 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3642 total = SCHED_LOAD_SCALE;
3644 total >>= SCHED_LOAD_SHIFT;
3646 return div_u64(available, total);
3649 static void update_cpu_power(struct sched_domain *sd, int cpu)
3651 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3652 unsigned long power = SCHED_LOAD_SCALE;
3653 struct sched_group *sdg = sd->groups;
3655 if (sched_feat(ARCH_POWER))
3656 power *= arch_scale_freq_power(sd, cpu);
3657 else
3658 power *= default_scale_freq_power(sd, cpu);
3660 power >>= SCHED_LOAD_SHIFT;
3662 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3663 if (sched_feat(ARCH_POWER))
3664 power *= arch_scale_smt_power(sd, cpu);
3665 else
3666 power *= default_scale_smt_power(sd, cpu);
3668 power >>= SCHED_LOAD_SHIFT;
3671 power *= scale_rt_power(cpu);
3672 power >>= SCHED_LOAD_SHIFT;
3674 if (!power)
3675 power = 1;
3677 sdg->cpu_power = power;
3680 static void update_group_power(struct sched_domain *sd, int cpu)
3682 struct sched_domain *child = sd->child;
3683 struct sched_group *group, *sdg = sd->groups;
3684 unsigned long power;
3686 if (!child) {
3687 update_cpu_power(sd, cpu);
3688 return;
3691 power = 0;
3693 group = child->groups;
3694 do {
3695 power += group->cpu_power;
3696 group = group->next;
3697 } while (group != child->groups);
3699 sdg->cpu_power = power;
3703 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3704 * @sd: The sched_domain whose statistics are to be updated.
3705 * @group: sched_group whose statistics are to be updated.
3706 * @this_cpu: Cpu for which load balance is currently performed.
3707 * @idle: Idle status of this_cpu
3708 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3709 * @sd_idle: Idle status of the sched_domain containing group.
3710 * @local_group: Does group contain this_cpu.
3711 * @cpus: Set of cpus considered for load balancing.
3712 * @balance: Should we balance.
3713 * @sgs: variable to hold the statistics for this group.
3715 static inline void update_sg_lb_stats(struct sched_domain *sd,
3716 struct sched_group *group, int this_cpu,
3717 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3718 int local_group, const struct cpumask *cpus,
3719 int *balance, struct sg_lb_stats *sgs)
3721 unsigned long load, max_cpu_load, min_cpu_load;
3722 int i;
3723 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3724 unsigned long sum_avg_load_per_task;
3725 unsigned long avg_load_per_task;
3727 if (local_group) {
3728 balance_cpu = group_first_cpu(group);
3729 if (balance_cpu == this_cpu)
3730 update_group_power(sd, this_cpu);
3733 /* Tally up the load of all CPUs in the group */
3734 sum_avg_load_per_task = avg_load_per_task = 0;
3735 max_cpu_load = 0;
3736 min_cpu_load = ~0UL;
3738 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3739 struct rq *rq = cpu_rq(i);
3741 if (*sd_idle && rq->nr_running)
3742 *sd_idle = 0;
3744 /* Bias balancing toward cpus of our domain */
3745 if (local_group) {
3746 if (idle_cpu(i) && !first_idle_cpu) {
3747 first_idle_cpu = 1;
3748 balance_cpu = i;
3751 load = target_load(i, load_idx);
3752 } else {
3753 load = source_load(i, load_idx);
3754 if (load > max_cpu_load)
3755 max_cpu_load = load;
3756 if (min_cpu_load > load)
3757 min_cpu_load = load;
3760 sgs->group_load += load;
3761 sgs->sum_nr_running += rq->nr_running;
3762 sgs->sum_weighted_load += weighted_cpuload(i);
3764 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3768 * First idle cpu or the first cpu(busiest) in this sched group
3769 * is eligible for doing load balancing at this and above
3770 * domains. In the newly idle case, we will allow all the cpu's
3771 * to do the newly idle load balance.
3773 if (idle != CPU_NEWLY_IDLE && local_group &&
3774 balance_cpu != this_cpu && balance) {
3775 *balance = 0;
3776 return;
3779 /* Adjust by relative CPU power of the group */
3780 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3784 * Consider the group unbalanced when the imbalance is larger
3785 * than the average weight of two tasks.
3787 * APZ: with cgroup the avg task weight can vary wildly and
3788 * might not be a suitable number - should we keep a
3789 * normalized nr_running number somewhere that negates
3790 * the hierarchy?
3792 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3793 group->cpu_power;
3795 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3796 sgs->group_imb = 1;
3798 sgs->group_capacity =
3799 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3803 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3804 * @sd: sched_domain whose statistics are to be updated.
3805 * @this_cpu: Cpu for which load balance is currently performed.
3806 * @idle: Idle status of this_cpu
3807 * @sd_idle: Idle status of the sched_domain containing group.
3808 * @cpus: Set of cpus considered for load balancing.
3809 * @balance: Should we balance.
3810 * @sds: variable to hold the statistics for this sched_domain.
3812 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3813 enum cpu_idle_type idle, int *sd_idle,
3814 const struct cpumask *cpus, int *balance,
3815 struct sd_lb_stats *sds)
3817 struct sched_domain *child = sd->child;
3818 struct sched_group *group = sd->groups;
3819 struct sg_lb_stats sgs;
3820 int load_idx, prefer_sibling = 0;
3822 if (child && child->flags & SD_PREFER_SIBLING)
3823 prefer_sibling = 1;
3825 init_sd_power_savings_stats(sd, sds, idle);
3826 load_idx = get_sd_load_idx(sd, idle);
3828 do {
3829 int local_group;
3831 local_group = cpumask_test_cpu(this_cpu,
3832 sched_group_cpus(group));
3833 memset(&sgs, 0, sizeof(sgs));
3834 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3835 local_group, cpus, balance, &sgs);
3837 if (local_group && balance && !(*balance))
3838 return;
3840 sds->total_load += sgs.group_load;
3841 sds->total_pwr += group->cpu_power;
3844 * In case the child domain prefers tasks go to siblings
3845 * first, lower the group capacity to one so that we'll try
3846 * and move all the excess tasks away.
3848 if (prefer_sibling)
3849 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3851 if (local_group) {
3852 sds->this_load = sgs.avg_load;
3853 sds->this = group;
3854 sds->this_nr_running = sgs.sum_nr_running;
3855 sds->this_load_per_task = sgs.sum_weighted_load;
3856 } else if (sgs.avg_load > sds->max_load &&
3857 (sgs.sum_nr_running > sgs.group_capacity ||
3858 sgs.group_imb)) {
3859 sds->max_load = sgs.avg_load;
3860 sds->busiest = group;
3861 sds->busiest_nr_running = sgs.sum_nr_running;
3862 sds->busiest_load_per_task = sgs.sum_weighted_load;
3863 sds->group_imb = sgs.group_imb;
3866 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3867 group = group->next;
3868 } while (group != sd->groups);
3872 * fix_small_imbalance - Calculate the minor imbalance that exists
3873 * amongst the groups of a sched_domain, during
3874 * load balancing.
3875 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3876 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3877 * @imbalance: Variable to store the imbalance.
3879 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3880 int this_cpu, unsigned long *imbalance)
3882 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3883 unsigned int imbn = 2;
3885 if (sds->this_nr_running) {
3886 sds->this_load_per_task /= sds->this_nr_running;
3887 if (sds->busiest_load_per_task >
3888 sds->this_load_per_task)
3889 imbn = 1;
3890 } else
3891 sds->this_load_per_task =
3892 cpu_avg_load_per_task(this_cpu);
3894 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3895 sds->busiest_load_per_task * imbn) {
3896 *imbalance = sds->busiest_load_per_task;
3897 return;
3901 * OK, we don't have enough imbalance to justify moving tasks,
3902 * however we may be able to increase total CPU power used by
3903 * moving them.
3906 pwr_now += sds->busiest->cpu_power *
3907 min(sds->busiest_load_per_task, sds->max_load);
3908 pwr_now += sds->this->cpu_power *
3909 min(sds->this_load_per_task, sds->this_load);
3910 pwr_now /= SCHED_LOAD_SCALE;
3912 /* Amount of load we'd subtract */
3913 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3914 sds->busiest->cpu_power;
3915 if (sds->max_load > tmp)
3916 pwr_move += sds->busiest->cpu_power *
3917 min(sds->busiest_load_per_task, sds->max_load - tmp);
3919 /* Amount of load we'd add */
3920 if (sds->max_load * sds->busiest->cpu_power <
3921 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3922 tmp = (sds->max_load * sds->busiest->cpu_power) /
3923 sds->this->cpu_power;
3924 else
3925 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3926 sds->this->cpu_power;
3927 pwr_move += sds->this->cpu_power *
3928 min(sds->this_load_per_task, sds->this_load + tmp);
3929 pwr_move /= SCHED_LOAD_SCALE;
3931 /* Move if we gain throughput */
3932 if (pwr_move > pwr_now)
3933 *imbalance = sds->busiest_load_per_task;
3937 * calculate_imbalance - Calculate the amount of imbalance present within the
3938 * groups of a given sched_domain during load balance.
3939 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3940 * @this_cpu: Cpu for which currently load balance is being performed.
3941 * @imbalance: The variable to store the imbalance.
3943 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3944 unsigned long *imbalance)
3946 unsigned long max_pull;
3948 * In the presence of smp nice balancing, certain scenarios can have
3949 * max load less than avg load(as we skip the groups at or below
3950 * its cpu_power, while calculating max_load..)
3952 if (sds->max_load < sds->avg_load) {
3953 *imbalance = 0;
3954 return fix_small_imbalance(sds, this_cpu, imbalance);
3957 /* Don't want to pull so many tasks that a group would go idle */
3958 max_pull = min(sds->max_load - sds->avg_load,
3959 sds->max_load - sds->busiest_load_per_task);
3961 /* How much load to actually move to equalise the imbalance */
3962 *imbalance = min(max_pull * sds->busiest->cpu_power,
3963 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3964 / SCHED_LOAD_SCALE;
3967 * if *imbalance is less than the average load per runnable task
3968 * there is no gaurantee that any tasks will be moved so we'll have
3969 * a think about bumping its value to force at least one task to be
3970 * moved
3972 if (*imbalance < sds->busiest_load_per_task)
3973 return fix_small_imbalance(sds, this_cpu, imbalance);
3976 /******* find_busiest_group() helpers end here *********************/
3979 * find_busiest_group - Returns the busiest group within the sched_domain
3980 * if there is an imbalance. If there isn't an imbalance, and
3981 * the user has opted for power-savings, it returns a group whose
3982 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3983 * such a group exists.
3985 * Also calculates the amount of weighted load which should be moved
3986 * to restore balance.
3988 * @sd: The sched_domain whose busiest group is to be returned.
3989 * @this_cpu: The cpu for which load balancing is currently being performed.
3990 * @imbalance: Variable which stores amount of weighted load which should
3991 * be moved to restore balance/put a group to idle.
3992 * @idle: The idle status of this_cpu.
3993 * @sd_idle: The idleness of sd
3994 * @cpus: The set of CPUs under consideration for load-balancing.
3995 * @balance: Pointer to a variable indicating if this_cpu
3996 * is the appropriate cpu to perform load balancing at this_level.
3998 * Returns: - the busiest group if imbalance exists.
3999 * - If no imbalance and user has opted for power-savings balance,
4000 * return the least loaded group whose CPUs can be
4001 * put to idle by rebalancing its tasks onto our group.
4003 static struct sched_group *
4004 find_busiest_group(struct sched_domain *sd, int this_cpu,
4005 unsigned long *imbalance, enum cpu_idle_type idle,
4006 int *sd_idle, const struct cpumask *cpus, int *balance)
4008 struct sd_lb_stats sds;
4010 memset(&sds, 0, sizeof(sds));
4013 * Compute the various statistics relavent for load balancing at
4014 * this level.
4016 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
4017 balance, &sds);
4019 /* Cases where imbalance does not exist from POV of this_cpu */
4020 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4021 * at this level.
4022 * 2) There is no busy sibling group to pull from.
4023 * 3) This group is the busiest group.
4024 * 4) This group is more busy than the avg busieness at this
4025 * sched_domain.
4026 * 5) The imbalance is within the specified limit.
4027 * 6) Any rebalance would lead to ping-pong
4029 if (balance && !(*balance))
4030 goto ret;
4032 if (!sds.busiest || sds.busiest_nr_running == 0)
4033 goto out_balanced;
4035 if (sds.this_load >= sds.max_load)
4036 goto out_balanced;
4038 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
4040 if (sds.this_load >= sds.avg_load)
4041 goto out_balanced;
4043 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4044 goto out_balanced;
4046 sds.busiest_load_per_task /= sds.busiest_nr_running;
4047 if (sds.group_imb)
4048 sds.busiest_load_per_task =
4049 min(sds.busiest_load_per_task, sds.avg_load);
4052 * We're trying to get all the cpus to the average_load, so we don't
4053 * want to push ourselves above the average load, nor do we wish to
4054 * reduce the max loaded cpu below the average load, as either of these
4055 * actions would just result in more rebalancing later, and ping-pong
4056 * tasks around. Thus we look for the minimum possible imbalance.
4057 * Negative imbalances (*we* are more loaded than anyone else) will
4058 * be counted as no imbalance for these purposes -- we can't fix that
4059 * by pulling tasks to us. Be careful of negative numbers as they'll
4060 * appear as very large values with unsigned longs.
4062 if (sds.max_load <= sds.busiest_load_per_task)
4063 goto out_balanced;
4065 /* Looks like there is an imbalance. Compute it */
4066 calculate_imbalance(&sds, this_cpu, imbalance);
4067 return sds.busiest;
4069 out_balanced:
4071 * There is no obvious imbalance. But check if we can do some balancing
4072 * to save power.
4074 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4075 return sds.busiest;
4076 ret:
4077 *imbalance = 0;
4078 return NULL;
4082 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4084 static struct rq *
4085 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4086 unsigned long imbalance, const struct cpumask *cpus)
4088 struct rq *busiest = NULL, *rq;
4089 unsigned long max_load = 0;
4090 int i;
4092 for_each_cpu(i, sched_group_cpus(group)) {
4093 unsigned long power = power_of(i);
4094 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
4095 unsigned long wl;
4097 if (!cpumask_test_cpu(i, cpus))
4098 continue;
4100 rq = cpu_rq(i);
4101 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4102 wl /= power;
4104 if (capacity && rq->nr_running == 1 && wl > imbalance)
4105 continue;
4107 if (wl > max_load) {
4108 max_load = wl;
4109 busiest = rq;
4113 return busiest;
4117 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4118 * so long as it is large enough.
4120 #define MAX_PINNED_INTERVAL 512
4122 /* Working cpumask for load_balance and load_balance_newidle. */
4123 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4126 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4127 * tasks if there is an imbalance.
4129 static int load_balance(int this_cpu, struct rq *this_rq,
4130 struct sched_domain *sd, enum cpu_idle_type idle,
4131 int *balance)
4133 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4134 struct sched_group *group;
4135 unsigned long imbalance;
4136 struct rq *busiest;
4137 unsigned long flags;
4138 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4140 cpumask_copy(cpus, cpu_active_mask);
4143 * When power savings policy is enabled for the parent domain, idle
4144 * sibling can pick up load irrespective of busy siblings. In this case,
4145 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4146 * portraying it as CPU_NOT_IDLE.
4148 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4149 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4150 sd_idle = 1;
4152 schedstat_inc(sd, lb_count[idle]);
4154 redo:
4155 update_shares(sd);
4156 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4157 cpus, balance);
4159 if (*balance == 0)
4160 goto out_balanced;
4162 if (!group) {
4163 schedstat_inc(sd, lb_nobusyg[idle]);
4164 goto out_balanced;
4167 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4168 if (!busiest) {
4169 schedstat_inc(sd, lb_nobusyq[idle]);
4170 goto out_balanced;
4173 BUG_ON(busiest == this_rq);
4175 schedstat_add(sd, lb_imbalance[idle], imbalance);
4177 ld_moved = 0;
4178 if (busiest->nr_running > 1) {
4180 * Attempt to move tasks. If find_busiest_group has found
4181 * an imbalance but busiest->nr_running <= 1, the group is
4182 * still unbalanced. ld_moved simply stays zero, so it is
4183 * correctly treated as an imbalance.
4185 local_irq_save(flags);
4186 double_rq_lock(this_rq, busiest);
4187 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4188 imbalance, sd, idle, &all_pinned);
4189 double_rq_unlock(this_rq, busiest);
4190 local_irq_restore(flags);
4193 * some other cpu did the load balance for us.
4195 if (ld_moved && this_cpu != smp_processor_id())
4196 resched_cpu(this_cpu);
4198 /* All tasks on this runqueue were pinned by CPU affinity */
4199 if (unlikely(all_pinned)) {
4200 cpumask_clear_cpu(cpu_of(busiest), cpus);
4201 if (!cpumask_empty(cpus))
4202 goto redo;
4203 goto out_balanced;
4207 if (!ld_moved) {
4208 schedstat_inc(sd, lb_failed[idle]);
4209 sd->nr_balance_failed++;
4211 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4213 spin_lock_irqsave(&busiest->lock, flags);
4215 /* don't kick the migration_thread, if the curr
4216 * task on busiest cpu can't be moved to this_cpu
4218 if (!cpumask_test_cpu(this_cpu,
4219 &busiest->curr->cpus_allowed)) {
4220 spin_unlock_irqrestore(&busiest->lock, flags);
4221 all_pinned = 1;
4222 goto out_one_pinned;
4225 if (!busiest->active_balance) {
4226 busiest->active_balance = 1;
4227 busiest->push_cpu = this_cpu;
4228 active_balance = 1;
4230 spin_unlock_irqrestore(&busiest->lock, flags);
4231 if (active_balance)
4232 wake_up_process(busiest->migration_thread);
4235 * We've kicked active balancing, reset the failure
4236 * counter.
4238 sd->nr_balance_failed = sd->cache_nice_tries+1;
4240 } else
4241 sd->nr_balance_failed = 0;
4243 if (likely(!active_balance)) {
4244 /* We were unbalanced, so reset the balancing interval */
4245 sd->balance_interval = sd->min_interval;
4246 } else {
4248 * If we've begun active balancing, start to back off. This
4249 * case may not be covered by the all_pinned logic if there
4250 * is only 1 task on the busy runqueue (because we don't call
4251 * move_tasks).
4253 if (sd->balance_interval < sd->max_interval)
4254 sd->balance_interval *= 2;
4257 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4258 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4259 ld_moved = -1;
4261 goto out;
4263 out_balanced:
4264 schedstat_inc(sd, lb_balanced[idle]);
4266 sd->nr_balance_failed = 0;
4268 out_one_pinned:
4269 /* tune up the balancing interval */
4270 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4271 (sd->balance_interval < sd->max_interval))
4272 sd->balance_interval *= 2;
4274 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4275 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4276 ld_moved = -1;
4277 else
4278 ld_moved = 0;
4279 out:
4280 if (ld_moved)
4281 update_shares(sd);
4282 return ld_moved;
4286 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4287 * tasks if there is an imbalance.
4289 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4290 * this_rq is locked.
4292 static int
4293 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4295 struct sched_group *group;
4296 struct rq *busiest = NULL;
4297 unsigned long imbalance;
4298 int ld_moved = 0;
4299 int sd_idle = 0;
4300 int all_pinned = 0;
4301 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4303 cpumask_copy(cpus, cpu_active_mask);
4306 * When power savings policy is enabled for the parent domain, idle
4307 * sibling can pick up load irrespective of busy siblings. In this case,
4308 * let the state of idle sibling percolate up as IDLE, instead of
4309 * portraying it as CPU_NOT_IDLE.
4311 if (sd->flags & SD_SHARE_CPUPOWER &&
4312 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4313 sd_idle = 1;
4315 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4316 redo:
4317 update_shares_locked(this_rq, sd);
4318 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4319 &sd_idle, cpus, NULL);
4320 if (!group) {
4321 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4322 goto out_balanced;
4325 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4326 if (!busiest) {
4327 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4328 goto out_balanced;
4331 BUG_ON(busiest == this_rq);
4333 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4335 ld_moved = 0;
4336 if (busiest->nr_running > 1) {
4337 /* Attempt to move tasks */
4338 double_lock_balance(this_rq, busiest);
4339 /* this_rq->clock is already updated */
4340 update_rq_clock(busiest);
4341 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4342 imbalance, sd, CPU_NEWLY_IDLE,
4343 &all_pinned);
4344 double_unlock_balance(this_rq, busiest);
4346 if (unlikely(all_pinned)) {
4347 cpumask_clear_cpu(cpu_of(busiest), cpus);
4348 if (!cpumask_empty(cpus))
4349 goto redo;
4353 if (!ld_moved) {
4354 int active_balance = 0;
4356 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4357 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4358 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4359 return -1;
4361 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4362 return -1;
4364 if (sd->nr_balance_failed++ < 2)
4365 return -1;
4368 * The only task running in a non-idle cpu can be moved to this
4369 * cpu in an attempt to completely freeup the other CPU
4370 * package. The same method used to move task in load_balance()
4371 * have been extended for load_balance_newidle() to speedup
4372 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4374 * The package power saving logic comes from
4375 * find_busiest_group(). If there are no imbalance, then
4376 * f_b_g() will return NULL. However when sched_mc={1,2} then
4377 * f_b_g() will select a group from which a running task may be
4378 * pulled to this cpu in order to make the other package idle.
4379 * If there is no opportunity to make a package idle and if
4380 * there are no imbalance, then f_b_g() will return NULL and no
4381 * action will be taken in load_balance_newidle().
4383 * Under normal task pull operation due to imbalance, there
4384 * will be more than one task in the source run queue and
4385 * move_tasks() will succeed. ld_moved will be true and this
4386 * active balance code will not be triggered.
4389 /* Lock busiest in correct order while this_rq is held */
4390 double_lock_balance(this_rq, busiest);
4393 * don't kick the migration_thread, if the curr
4394 * task on busiest cpu can't be moved to this_cpu
4396 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4397 double_unlock_balance(this_rq, busiest);
4398 all_pinned = 1;
4399 return ld_moved;
4402 if (!busiest->active_balance) {
4403 busiest->active_balance = 1;
4404 busiest->push_cpu = this_cpu;
4405 active_balance = 1;
4408 double_unlock_balance(this_rq, busiest);
4410 * Should not call ttwu while holding a rq->lock
4412 spin_unlock(&this_rq->lock);
4413 if (active_balance)
4414 wake_up_process(busiest->migration_thread);
4415 spin_lock(&this_rq->lock);
4417 } else
4418 sd->nr_balance_failed = 0;
4420 update_shares_locked(this_rq, sd);
4421 return ld_moved;
4423 out_balanced:
4424 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4425 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4426 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4427 return -1;
4428 sd->nr_balance_failed = 0;
4430 return 0;
4434 * idle_balance is called by schedule() if this_cpu is about to become
4435 * idle. Attempts to pull tasks from other CPUs.
4437 static void idle_balance(int this_cpu, struct rq *this_rq)
4439 struct sched_domain *sd;
4440 int pulled_task = 0;
4441 unsigned long next_balance = jiffies + HZ;
4443 this_rq->idle_stamp = this_rq->clock;
4445 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4446 return;
4448 for_each_domain(this_cpu, sd) {
4449 unsigned long interval;
4451 if (!(sd->flags & SD_LOAD_BALANCE))
4452 continue;
4454 if (sd->flags & SD_BALANCE_NEWIDLE)
4455 /* If we've pulled tasks over stop searching: */
4456 pulled_task = load_balance_newidle(this_cpu, this_rq,
4457 sd);
4459 interval = msecs_to_jiffies(sd->balance_interval);
4460 if (time_after(next_balance, sd->last_balance + interval))
4461 next_balance = sd->last_balance + interval;
4462 if (pulled_task) {
4463 this_rq->idle_stamp = 0;
4464 break;
4467 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4469 * We are going idle. next_balance may be set based on
4470 * a busy processor. So reset next_balance.
4472 this_rq->next_balance = next_balance;
4477 * active_load_balance is run by migration threads. It pushes running tasks
4478 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4479 * running on each physical CPU where possible, and avoids physical /
4480 * logical imbalances.
4482 * Called with busiest_rq locked.
4484 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4486 int target_cpu = busiest_rq->push_cpu;
4487 struct sched_domain *sd;
4488 struct rq *target_rq;
4490 /* Is there any task to move? */
4491 if (busiest_rq->nr_running <= 1)
4492 return;
4494 target_rq = cpu_rq(target_cpu);
4497 * This condition is "impossible", if it occurs
4498 * we need to fix it. Originally reported by
4499 * Bjorn Helgaas on a 128-cpu setup.
4501 BUG_ON(busiest_rq == target_rq);
4503 /* move a task from busiest_rq to target_rq */
4504 double_lock_balance(busiest_rq, target_rq);
4505 update_rq_clock(busiest_rq);
4506 update_rq_clock(target_rq);
4508 /* Search for an sd spanning us and the target CPU. */
4509 for_each_domain(target_cpu, sd) {
4510 if ((sd->flags & SD_LOAD_BALANCE) &&
4511 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4512 break;
4515 if (likely(sd)) {
4516 schedstat_inc(sd, alb_count);
4518 if (move_one_task(target_rq, target_cpu, busiest_rq,
4519 sd, CPU_IDLE))
4520 schedstat_inc(sd, alb_pushed);
4521 else
4522 schedstat_inc(sd, alb_failed);
4524 double_unlock_balance(busiest_rq, target_rq);
4527 #ifdef CONFIG_NO_HZ
4528 static struct {
4529 atomic_t load_balancer;
4530 cpumask_var_t cpu_mask;
4531 cpumask_var_t ilb_grp_nohz_mask;
4532 } nohz ____cacheline_aligned = {
4533 .load_balancer = ATOMIC_INIT(-1),
4536 int get_nohz_load_balancer(void)
4538 return atomic_read(&nohz.load_balancer);
4541 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4543 * lowest_flag_domain - Return lowest sched_domain containing flag.
4544 * @cpu: The cpu whose lowest level of sched domain is to
4545 * be returned.
4546 * @flag: The flag to check for the lowest sched_domain
4547 * for the given cpu.
4549 * Returns the lowest sched_domain of a cpu which contains the given flag.
4551 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4553 struct sched_domain *sd;
4555 for_each_domain(cpu, sd)
4556 if (sd && (sd->flags & flag))
4557 break;
4559 return sd;
4563 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4564 * @cpu: The cpu whose domains we're iterating over.
4565 * @sd: variable holding the value of the power_savings_sd
4566 * for cpu.
4567 * @flag: The flag to filter the sched_domains to be iterated.
4569 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4570 * set, starting from the lowest sched_domain to the highest.
4572 #define for_each_flag_domain(cpu, sd, flag) \
4573 for (sd = lowest_flag_domain(cpu, flag); \
4574 (sd && (sd->flags & flag)); sd = sd->parent)
4577 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4578 * @ilb_group: group to be checked for semi-idleness
4580 * Returns: 1 if the group is semi-idle. 0 otherwise.
4582 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4583 * and atleast one non-idle CPU. This helper function checks if the given
4584 * sched_group is semi-idle or not.
4586 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4588 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4589 sched_group_cpus(ilb_group));
4592 * A sched_group is semi-idle when it has atleast one busy cpu
4593 * and atleast one idle cpu.
4595 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4596 return 0;
4598 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4599 return 0;
4601 return 1;
4604 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4605 * @cpu: The cpu which is nominating a new idle_load_balancer.
4607 * Returns: Returns the id of the idle load balancer if it exists,
4608 * Else, returns >= nr_cpu_ids.
4610 * This algorithm picks the idle load balancer such that it belongs to a
4611 * semi-idle powersavings sched_domain. The idea is to try and avoid
4612 * completely idle packages/cores just for the purpose of idle load balancing
4613 * when there are other idle cpu's which are better suited for that job.
4615 static int find_new_ilb(int cpu)
4617 struct sched_domain *sd;
4618 struct sched_group *ilb_group;
4621 * Have idle load balancer selection from semi-idle packages only
4622 * when power-aware load balancing is enabled
4624 if (!(sched_smt_power_savings || sched_mc_power_savings))
4625 goto out_done;
4628 * Optimize for the case when we have no idle CPUs or only one
4629 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4631 if (cpumask_weight(nohz.cpu_mask) < 2)
4632 goto out_done;
4634 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4635 ilb_group = sd->groups;
4637 do {
4638 if (is_semi_idle_group(ilb_group))
4639 return cpumask_first(nohz.ilb_grp_nohz_mask);
4641 ilb_group = ilb_group->next;
4643 } while (ilb_group != sd->groups);
4646 out_done:
4647 return cpumask_first(nohz.cpu_mask);
4649 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4650 static inline int find_new_ilb(int call_cpu)
4652 return cpumask_first(nohz.cpu_mask);
4654 #endif
4657 * This routine will try to nominate the ilb (idle load balancing)
4658 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4659 * load balancing on behalf of all those cpus. If all the cpus in the system
4660 * go into this tickless mode, then there will be no ilb owner (as there is
4661 * no need for one) and all the cpus will sleep till the next wakeup event
4662 * arrives...
4664 * For the ilb owner, tick is not stopped. And this tick will be used
4665 * for idle load balancing. ilb owner will still be part of
4666 * nohz.cpu_mask..
4668 * While stopping the tick, this cpu will become the ilb owner if there
4669 * is no other owner. And will be the owner till that cpu becomes busy
4670 * or if all cpus in the system stop their ticks at which point
4671 * there is no need for ilb owner.
4673 * When the ilb owner becomes busy, it nominates another owner, during the
4674 * next busy scheduler_tick()
4676 int select_nohz_load_balancer(int stop_tick)
4678 int cpu = smp_processor_id();
4680 if (stop_tick) {
4681 cpu_rq(cpu)->in_nohz_recently = 1;
4683 if (!cpu_active(cpu)) {
4684 if (atomic_read(&nohz.load_balancer) != cpu)
4685 return 0;
4688 * If we are going offline and still the leader,
4689 * give up!
4691 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4692 BUG();
4694 return 0;
4697 cpumask_set_cpu(cpu, nohz.cpu_mask);
4699 /* time for ilb owner also to sleep */
4700 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
4701 if (atomic_read(&nohz.load_balancer) == cpu)
4702 atomic_set(&nohz.load_balancer, -1);
4703 return 0;
4706 if (atomic_read(&nohz.load_balancer) == -1) {
4707 /* make me the ilb owner */
4708 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4709 return 1;
4710 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4711 int new_ilb;
4713 if (!(sched_smt_power_savings ||
4714 sched_mc_power_savings))
4715 return 1;
4717 * Check to see if there is a more power-efficient
4718 * ilb.
4720 new_ilb = find_new_ilb(cpu);
4721 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4722 atomic_set(&nohz.load_balancer, -1);
4723 resched_cpu(new_ilb);
4724 return 0;
4726 return 1;
4728 } else {
4729 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4730 return 0;
4732 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4734 if (atomic_read(&nohz.load_balancer) == cpu)
4735 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4736 BUG();
4738 return 0;
4740 #endif
4742 static DEFINE_SPINLOCK(balancing);
4745 * It checks each scheduling domain to see if it is due to be balanced,
4746 * and initiates a balancing operation if so.
4748 * Balancing parameters are set up in arch_init_sched_domains.
4750 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4752 int balance = 1;
4753 struct rq *rq = cpu_rq(cpu);
4754 unsigned long interval;
4755 struct sched_domain *sd;
4756 /* Earliest time when we have to do rebalance again */
4757 unsigned long next_balance = jiffies + 60*HZ;
4758 int update_next_balance = 0;
4759 int need_serialize;
4761 for_each_domain(cpu, sd) {
4762 if (!(sd->flags & SD_LOAD_BALANCE))
4763 continue;
4765 interval = sd->balance_interval;
4766 if (idle != CPU_IDLE)
4767 interval *= sd->busy_factor;
4769 /* scale ms to jiffies */
4770 interval = msecs_to_jiffies(interval);
4771 if (unlikely(!interval))
4772 interval = 1;
4773 if (interval > HZ*NR_CPUS/10)
4774 interval = HZ*NR_CPUS/10;
4776 need_serialize = sd->flags & SD_SERIALIZE;
4778 if (need_serialize) {
4779 if (!spin_trylock(&balancing))
4780 goto out;
4783 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4784 if (load_balance(cpu, rq, sd, idle, &balance)) {
4786 * We've pulled tasks over so either we're no
4787 * longer idle, or one of our SMT siblings is
4788 * not idle.
4790 idle = CPU_NOT_IDLE;
4792 sd->last_balance = jiffies;
4794 if (need_serialize)
4795 spin_unlock(&balancing);
4796 out:
4797 if (time_after(next_balance, sd->last_balance + interval)) {
4798 next_balance = sd->last_balance + interval;
4799 update_next_balance = 1;
4803 * Stop the load balance at this level. There is another
4804 * CPU in our sched group which is doing load balancing more
4805 * actively.
4807 if (!balance)
4808 break;
4812 * next_balance will be updated only when there is a need.
4813 * When the cpu is attached to null domain for ex, it will not be
4814 * updated.
4816 if (likely(update_next_balance))
4817 rq->next_balance = next_balance;
4821 * run_rebalance_domains is triggered when needed from the scheduler tick.
4822 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4823 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4825 static void run_rebalance_domains(struct softirq_action *h)
4827 int this_cpu = smp_processor_id();
4828 struct rq *this_rq = cpu_rq(this_cpu);
4829 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4830 CPU_IDLE : CPU_NOT_IDLE;
4832 rebalance_domains(this_cpu, idle);
4834 #ifdef CONFIG_NO_HZ
4836 * If this cpu is the owner for idle load balancing, then do the
4837 * balancing on behalf of the other idle cpus whose ticks are
4838 * stopped.
4840 if (this_rq->idle_at_tick &&
4841 atomic_read(&nohz.load_balancer) == this_cpu) {
4842 struct rq *rq;
4843 int balance_cpu;
4845 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4846 if (balance_cpu == this_cpu)
4847 continue;
4850 * If this cpu gets work to do, stop the load balancing
4851 * work being done for other cpus. Next load
4852 * balancing owner will pick it up.
4854 if (need_resched())
4855 break;
4857 rebalance_domains(balance_cpu, CPU_IDLE);
4859 rq = cpu_rq(balance_cpu);
4860 if (time_after(this_rq->next_balance, rq->next_balance))
4861 this_rq->next_balance = rq->next_balance;
4864 #endif
4867 static inline int on_null_domain(int cpu)
4869 return !rcu_dereference(cpu_rq(cpu)->sd);
4873 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4875 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4876 * idle load balancing owner or decide to stop the periodic load balancing,
4877 * if the whole system is idle.
4879 static inline void trigger_load_balance(struct rq *rq, int cpu)
4881 #ifdef CONFIG_NO_HZ
4883 * If we were in the nohz mode recently and busy at the current
4884 * scheduler tick, then check if we need to nominate new idle
4885 * load balancer.
4887 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4888 rq->in_nohz_recently = 0;
4890 if (atomic_read(&nohz.load_balancer) == cpu) {
4891 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4892 atomic_set(&nohz.load_balancer, -1);
4895 if (atomic_read(&nohz.load_balancer) == -1) {
4896 int ilb = find_new_ilb(cpu);
4898 if (ilb < nr_cpu_ids)
4899 resched_cpu(ilb);
4904 * If this cpu is idle and doing idle load balancing for all the
4905 * cpus with ticks stopped, is it time for that to stop?
4907 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4908 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4909 resched_cpu(cpu);
4910 return;
4914 * If this cpu is idle and the idle load balancing is done by
4915 * someone else, then no need raise the SCHED_SOFTIRQ
4917 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4918 cpumask_test_cpu(cpu, nohz.cpu_mask))
4919 return;
4920 #endif
4921 /* Don't need to rebalance while attached to NULL domain */
4922 if (time_after_eq(jiffies, rq->next_balance) &&
4923 likely(!on_null_domain(cpu)))
4924 raise_softirq(SCHED_SOFTIRQ);
4927 #else /* CONFIG_SMP */
4930 * on UP we do not need to balance between CPUs:
4932 static inline void idle_balance(int cpu, struct rq *rq)
4936 #endif
4938 DEFINE_PER_CPU(struct kernel_stat, kstat);
4940 EXPORT_PER_CPU_SYMBOL(kstat);
4943 * Return any ns on the sched_clock that have not yet been accounted in
4944 * @p in case that task is currently running.
4946 * Called with task_rq_lock() held on @rq.
4948 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4950 u64 ns = 0;
4952 if (task_current(rq, p)) {
4953 update_rq_clock(rq);
4954 ns = rq->clock - p->se.exec_start;
4955 if ((s64)ns < 0)
4956 ns = 0;
4959 return ns;
4962 unsigned long long task_delta_exec(struct task_struct *p)
4964 unsigned long flags;
4965 struct rq *rq;
4966 u64 ns = 0;
4968 rq = task_rq_lock(p, &flags);
4969 ns = do_task_delta_exec(p, rq);
4970 task_rq_unlock(rq, &flags);
4972 return ns;
4976 * Return accounted runtime for the task.
4977 * In case the task is currently running, return the runtime plus current's
4978 * pending runtime that have not been accounted yet.
4980 unsigned long long task_sched_runtime(struct task_struct *p)
4982 unsigned long flags;
4983 struct rq *rq;
4984 u64 ns = 0;
4986 rq = task_rq_lock(p, &flags);
4987 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4988 task_rq_unlock(rq, &flags);
4990 return ns;
4994 * Return sum_exec_runtime for the thread group.
4995 * In case the task is currently running, return the sum plus current's
4996 * pending runtime that have not been accounted yet.
4998 * Note that the thread group might have other running tasks as well,
4999 * so the return value not includes other pending runtime that other
5000 * running tasks might have.
5002 unsigned long long thread_group_sched_runtime(struct task_struct *p)
5004 struct task_cputime totals;
5005 unsigned long flags;
5006 struct rq *rq;
5007 u64 ns;
5009 rq = task_rq_lock(p, &flags);
5010 thread_group_cputime(p, &totals);
5011 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
5012 task_rq_unlock(rq, &flags);
5014 return ns;
5018 * Account user cpu time to a process.
5019 * @p: the process that the cpu time gets accounted to
5020 * @cputime: the cpu time spent in user space since the last update
5021 * @cputime_scaled: cputime scaled by cpu frequency
5023 void account_user_time(struct task_struct *p, cputime_t cputime,
5024 cputime_t cputime_scaled)
5026 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5027 cputime64_t tmp;
5029 /* Add user time to process. */
5030 p->utime = cputime_add(p->utime, cputime);
5031 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5032 account_group_user_time(p, cputime);
5034 /* Add user time to cpustat. */
5035 tmp = cputime_to_cputime64(cputime);
5036 if (TASK_NICE(p) > 0)
5037 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5038 else
5039 cpustat->user = cputime64_add(cpustat->user, tmp);
5041 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5042 /* Account for user time used */
5043 acct_update_integrals(p);
5047 * Account guest cpu time to a process.
5048 * @p: the process that the cpu time gets accounted to
5049 * @cputime: the cpu time spent in virtual machine since the last update
5050 * @cputime_scaled: cputime scaled by cpu frequency
5052 static void account_guest_time(struct task_struct *p, cputime_t cputime,
5053 cputime_t cputime_scaled)
5055 cputime64_t tmp;
5056 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5058 tmp = cputime_to_cputime64(cputime);
5060 /* Add guest time to process. */
5061 p->utime = cputime_add(p->utime, cputime);
5062 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5063 account_group_user_time(p, cputime);
5064 p->gtime = cputime_add(p->gtime, cputime);
5066 /* Add guest time to cpustat. */
5067 cpustat->user = cputime64_add(cpustat->user, tmp);
5068 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5072 * Account system cpu time to a process.
5073 * @p: the process that the cpu time gets accounted to
5074 * @hardirq_offset: the offset to subtract from hardirq_count()
5075 * @cputime: the cpu time spent in kernel space since the last update
5076 * @cputime_scaled: cputime scaled by cpu frequency
5078 void account_system_time(struct task_struct *p, int hardirq_offset,
5079 cputime_t cputime, cputime_t cputime_scaled)
5081 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5082 cputime64_t tmp;
5084 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5085 account_guest_time(p, cputime, cputime_scaled);
5086 return;
5089 /* Add system time to process. */
5090 p->stime = cputime_add(p->stime, cputime);
5091 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5092 account_group_system_time(p, cputime);
5094 /* Add system time to cpustat. */
5095 tmp = cputime_to_cputime64(cputime);
5096 if (hardirq_count() - hardirq_offset)
5097 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5098 else if (softirq_count())
5099 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
5100 else
5101 cpustat->system = cputime64_add(cpustat->system, tmp);
5103 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5105 /* Account for system time used */
5106 acct_update_integrals(p);
5110 * Account for involuntary wait time.
5111 * @steal: the cpu time spent in involuntary wait
5113 void account_steal_time(cputime_t cputime)
5115 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5116 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5118 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5122 * Account for idle time.
5123 * @cputime: the cpu time spent in idle wait
5125 void account_idle_time(cputime_t cputime)
5127 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5128 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5129 struct rq *rq = this_rq();
5131 if (atomic_read(&rq->nr_iowait) > 0)
5132 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5133 else
5134 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5137 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5140 * Account a single tick of cpu time.
5141 * @p: the process that the cpu time gets accounted to
5142 * @user_tick: indicates if the tick is a user or a system tick
5144 void account_process_tick(struct task_struct *p, int user_tick)
5146 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
5147 struct rq *rq = this_rq();
5149 if (user_tick)
5150 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
5151 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5152 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
5153 one_jiffy_scaled);
5154 else
5155 account_idle_time(cputime_one_jiffy);
5159 * Account multiple ticks of steal time.
5160 * @p: the process from which the cpu time has been stolen
5161 * @ticks: number of stolen ticks
5163 void account_steal_ticks(unsigned long ticks)
5165 account_steal_time(jiffies_to_cputime(ticks));
5169 * Account multiple ticks of idle time.
5170 * @ticks: number of stolen ticks
5172 void account_idle_ticks(unsigned long ticks)
5174 account_idle_time(jiffies_to_cputime(ticks));
5177 #endif
5180 * Use precise platform statistics if available:
5182 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5183 cputime_t task_utime(struct task_struct *p)
5185 return p->utime;
5188 cputime_t task_stime(struct task_struct *p)
5190 return p->stime;
5192 #else
5193 cputime_t task_utime(struct task_struct *p)
5195 clock_t utime = cputime_to_clock_t(p->utime),
5196 total = utime + cputime_to_clock_t(p->stime);
5197 u64 temp;
5200 * Use CFS's precise accounting:
5202 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5204 if (total) {
5205 temp *= utime;
5206 do_div(temp, total);
5208 utime = (clock_t)temp;
5210 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5211 return p->prev_utime;
5214 cputime_t task_stime(struct task_struct *p)
5216 clock_t stime;
5219 * Use CFS's precise accounting. (we subtract utime from
5220 * the total, to make sure the total observed by userspace
5221 * grows monotonically - apps rely on that):
5223 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5224 cputime_to_clock_t(task_utime(p));
5226 if (stime >= 0)
5227 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5229 return p->prev_stime;
5231 #endif
5233 inline cputime_t task_gtime(struct task_struct *p)
5235 return p->gtime;
5239 * This function gets called by the timer code, with HZ frequency.
5240 * We call it with interrupts disabled.
5242 * It also gets called by the fork code, when changing the parent's
5243 * timeslices.
5245 void scheduler_tick(void)
5247 int cpu = smp_processor_id();
5248 struct rq *rq = cpu_rq(cpu);
5249 struct task_struct *curr = rq->curr;
5251 sched_clock_tick();
5253 spin_lock(&rq->lock);
5254 update_rq_clock(rq);
5255 update_cpu_load(rq);
5256 curr->sched_class->task_tick(rq, curr, 0);
5257 spin_unlock(&rq->lock);
5259 perf_event_task_tick(curr, cpu);
5261 #ifdef CONFIG_SMP
5262 rq->idle_at_tick = idle_cpu(cpu);
5263 trigger_load_balance(rq, cpu);
5264 #endif
5267 notrace unsigned long get_parent_ip(unsigned long addr)
5269 if (in_lock_functions(addr)) {
5270 addr = CALLER_ADDR2;
5271 if (in_lock_functions(addr))
5272 addr = CALLER_ADDR3;
5274 return addr;
5277 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5278 defined(CONFIG_PREEMPT_TRACER))
5280 void __kprobes add_preempt_count(int val)
5282 #ifdef CONFIG_DEBUG_PREEMPT
5284 * Underflow?
5286 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5287 return;
5288 #endif
5289 preempt_count() += val;
5290 #ifdef CONFIG_DEBUG_PREEMPT
5292 * Spinlock count overflowing soon?
5294 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5295 PREEMPT_MASK - 10);
5296 #endif
5297 if (preempt_count() == val)
5298 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5300 EXPORT_SYMBOL(add_preempt_count);
5302 void __kprobes sub_preempt_count(int val)
5304 #ifdef CONFIG_DEBUG_PREEMPT
5306 * Underflow?
5308 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5309 return;
5311 * Is the spinlock portion underflowing?
5313 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5314 !(preempt_count() & PREEMPT_MASK)))
5315 return;
5316 #endif
5318 if (preempt_count() == val)
5319 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5320 preempt_count() -= val;
5322 EXPORT_SYMBOL(sub_preempt_count);
5324 #endif
5327 * Print scheduling while atomic bug:
5329 static noinline void __schedule_bug(struct task_struct *prev)
5331 struct pt_regs *regs = get_irq_regs();
5333 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5334 prev->comm, prev->pid, preempt_count());
5336 debug_show_held_locks(prev);
5337 print_modules();
5338 if (irqs_disabled())
5339 print_irqtrace_events(prev);
5341 if (regs)
5342 show_regs(regs);
5343 else
5344 dump_stack();
5348 * Various schedule()-time debugging checks and statistics:
5350 static inline void schedule_debug(struct task_struct *prev)
5353 * Test if we are atomic. Since do_exit() needs to call into
5354 * schedule() atomically, we ignore that path for now.
5355 * Otherwise, whine if we are scheduling when we should not be.
5357 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5358 __schedule_bug(prev);
5360 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5362 schedstat_inc(this_rq(), sched_count);
5363 #ifdef CONFIG_SCHEDSTATS
5364 if (unlikely(prev->lock_depth >= 0)) {
5365 schedstat_inc(this_rq(), bkl_count);
5366 schedstat_inc(prev, sched_info.bkl_count);
5368 #endif
5371 static void put_prev_task(struct rq *rq, struct task_struct *p)
5373 u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
5375 update_avg(&p->se.avg_running, runtime);
5377 if (p->state == TASK_RUNNING) {
5379 * In order to avoid avg_overlap growing stale when we are
5380 * indeed overlapping and hence not getting put to sleep, grow
5381 * the avg_overlap on preemption.
5383 * We use the average preemption runtime because that
5384 * correlates to the amount of cache footprint a task can
5385 * build up.
5387 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5388 update_avg(&p->se.avg_overlap, runtime);
5389 } else {
5390 update_avg(&p->se.avg_running, 0);
5392 p->sched_class->put_prev_task(rq, p);
5396 * Pick up the highest-prio task:
5398 static inline struct task_struct *
5399 pick_next_task(struct rq *rq)
5401 const struct sched_class *class;
5402 struct task_struct *p;
5405 * Optimization: we know that if all tasks are in
5406 * the fair class we can call that function directly:
5408 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5409 p = fair_sched_class.pick_next_task(rq);
5410 if (likely(p))
5411 return p;
5414 class = sched_class_highest;
5415 for ( ; ; ) {
5416 p = class->pick_next_task(rq);
5417 if (p)
5418 return p;
5420 * Will never be NULL as the idle class always
5421 * returns a non-NULL p:
5423 class = class->next;
5428 * schedule() is the main scheduler function.
5430 asmlinkage void __sched schedule(void)
5432 struct task_struct *prev, *next;
5433 unsigned long *switch_count;
5434 struct rq *rq;
5435 int cpu;
5437 need_resched:
5438 preempt_disable();
5439 cpu = smp_processor_id();
5440 rq = cpu_rq(cpu);
5441 rcu_sched_qs(cpu);
5442 prev = rq->curr;
5443 switch_count = &prev->nivcsw;
5445 release_kernel_lock(prev);
5446 need_resched_nonpreemptible:
5448 schedule_debug(prev);
5450 if (sched_feat(HRTICK))
5451 hrtick_clear(rq);
5453 spin_lock_irq(&rq->lock);
5454 update_rq_clock(rq);
5455 clear_tsk_need_resched(prev);
5457 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5458 if (unlikely(signal_pending_state(prev->state, prev)))
5459 prev->state = TASK_RUNNING;
5460 else
5461 deactivate_task(rq, prev, 1);
5462 switch_count = &prev->nvcsw;
5465 pre_schedule(rq, prev);
5467 if (unlikely(!rq->nr_running))
5468 idle_balance(cpu, rq);
5470 put_prev_task(rq, prev);
5471 next = pick_next_task(rq);
5473 if (likely(prev != next)) {
5474 sched_info_switch(prev, next);
5475 perf_event_task_sched_out(prev, next, cpu);
5477 rq->nr_switches++;
5478 rq->curr = next;
5479 ++*switch_count;
5481 context_switch(rq, prev, next); /* unlocks the rq */
5483 * the context switch might have flipped the stack from under
5484 * us, hence refresh the local variables.
5486 cpu = smp_processor_id();
5487 rq = cpu_rq(cpu);
5488 } else
5489 spin_unlock_irq(&rq->lock);
5491 post_schedule(rq);
5493 if (unlikely(reacquire_kernel_lock(current) < 0))
5494 goto need_resched_nonpreemptible;
5496 preempt_enable_no_resched();
5497 if (need_resched())
5498 goto need_resched;
5500 EXPORT_SYMBOL(schedule);
5502 #ifdef CONFIG_SMP
5504 * Look out! "owner" is an entirely speculative pointer
5505 * access and not reliable.
5507 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5509 unsigned int cpu;
5510 struct rq *rq;
5512 if (!sched_feat(OWNER_SPIN))
5513 return 0;
5515 #ifdef CONFIG_DEBUG_PAGEALLOC
5517 * Need to access the cpu field knowing that
5518 * DEBUG_PAGEALLOC could have unmapped it if
5519 * the mutex owner just released it and exited.
5521 if (probe_kernel_address(&owner->cpu, cpu))
5522 goto out;
5523 #else
5524 cpu = owner->cpu;
5525 #endif
5528 * Even if the access succeeded (likely case),
5529 * the cpu field may no longer be valid.
5531 if (cpu >= nr_cpumask_bits)
5532 goto out;
5535 * We need to validate that we can do a
5536 * get_cpu() and that we have the percpu area.
5538 if (!cpu_online(cpu))
5539 goto out;
5541 rq = cpu_rq(cpu);
5543 for (;;) {
5545 * Owner changed, break to re-assess state.
5547 if (lock->owner != owner)
5548 break;
5551 * Is that owner really running on that cpu?
5553 if (task_thread_info(rq->curr) != owner || need_resched())
5554 return 0;
5556 cpu_relax();
5558 out:
5559 return 1;
5561 #endif
5563 #ifdef CONFIG_PREEMPT
5565 * this is the entry point to schedule() from in-kernel preemption
5566 * off of preempt_enable. Kernel preemptions off return from interrupt
5567 * occur there and call schedule directly.
5569 asmlinkage void __sched preempt_schedule(void)
5571 struct thread_info *ti = current_thread_info();
5574 * If there is a non-zero preempt_count or interrupts are disabled,
5575 * we do not want to preempt the current task. Just return..
5577 if (likely(ti->preempt_count || irqs_disabled()))
5578 return;
5580 do {
5581 add_preempt_count(PREEMPT_ACTIVE);
5582 schedule();
5583 sub_preempt_count(PREEMPT_ACTIVE);
5586 * Check again in case we missed a preemption opportunity
5587 * between schedule and now.
5589 barrier();
5590 } while (need_resched());
5592 EXPORT_SYMBOL(preempt_schedule);
5595 * this is the entry point to schedule() from kernel preemption
5596 * off of irq context.
5597 * Note, that this is called and return with irqs disabled. This will
5598 * protect us against recursive calling from irq.
5600 asmlinkage void __sched preempt_schedule_irq(void)
5602 struct thread_info *ti = current_thread_info();
5604 /* Catch callers which need to be fixed */
5605 BUG_ON(ti->preempt_count || !irqs_disabled());
5607 do {
5608 add_preempt_count(PREEMPT_ACTIVE);
5609 local_irq_enable();
5610 schedule();
5611 local_irq_disable();
5612 sub_preempt_count(PREEMPT_ACTIVE);
5615 * Check again in case we missed a preemption opportunity
5616 * between schedule and now.
5618 barrier();
5619 } while (need_resched());
5622 #endif /* CONFIG_PREEMPT */
5624 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
5625 void *key)
5627 return try_to_wake_up(curr->private, mode, wake_flags);
5629 EXPORT_SYMBOL(default_wake_function);
5632 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5633 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5634 * number) then we wake all the non-exclusive tasks and one exclusive task.
5636 * There are circumstances in which we can try to wake a task which has already
5637 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5638 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5640 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5641 int nr_exclusive, int wake_flags, void *key)
5643 wait_queue_t *curr, *next;
5645 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5646 unsigned flags = curr->flags;
5648 if (curr->func(curr, mode, wake_flags, key) &&
5649 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5650 break;
5655 * __wake_up - wake up threads blocked on a waitqueue.
5656 * @q: the waitqueue
5657 * @mode: which threads
5658 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5659 * @key: is directly passed to the wakeup function
5661 * It may be assumed that this function implies a write memory barrier before
5662 * changing the task state if and only if any tasks are woken up.
5664 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5665 int nr_exclusive, void *key)
5667 unsigned long flags;
5669 spin_lock_irqsave(&q->lock, flags);
5670 __wake_up_common(q, mode, nr_exclusive, 0, key);
5671 spin_unlock_irqrestore(&q->lock, flags);
5673 EXPORT_SYMBOL(__wake_up);
5676 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5678 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5680 __wake_up_common(q, mode, 1, 0, NULL);
5683 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5685 __wake_up_common(q, mode, 1, 0, key);
5689 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5690 * @q: the waitqueue
5691 * @mode: which threads
5692 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5693 * @key: opaque value to be passed to wakeup targets
5695 * The sync wakeup differs that the waker knows that it will schedule
5696 * away soon, so while the target thread will be woken up, it will not
5697 * be migrated to another CPU - ie. the two threads are 'synchronized'
5698 * with each other. This can prevent needless bouncing between CPUs.
5700 * On UP it can prevent extra preemption.
5702 * It may be assumed that this function implies a write memory barrier before
5703 * changing the task state if and only if any tasks are woken up.
5705 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5706 int nr_exclusive, void *key)
5708 unsigned long flags;
5709 int wake_flags = WF_SYNC;
5711 if (unlikely(!q))
5712 return;
5714 if (unlikely(!nr_exclusive))
5715 wake_flags = 0;
5717 spin_lock_irqsave(&q->lock, flags);
5718 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
5719 spin_unlock_irqrestore(&q->lock, flags);
5721 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5724 * __wake_up_sync - see __wake_up_sync_key()
5726 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5728 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5730 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5733 * complete: - signals a single thread waiting on this completion
5734 * @x: holds the state of this particular completion
5736 * This will wake up a single thread waiting on this completion. Threads will be
5737 * awakened in the same order in which they were queued.
5739 * See also complete_all(), wait_for_completion() and related routines.
5741 * It may be assumed that this function implies a write memory barrier before
5742 * changing the task state if and only if any tasks are woken up.
5744 void complete(struct completion *x)
5746 unsigned long flags;
5748 spin_lock_irqsave(&x->wait.lock, flags);
5749 x->done++;
5750 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5751 spin_unlock_irqrestore(&x->wait.lock, flags);
5753 EXPORT_SYMBOL(complete);
5756 * complete_all: - signals all threads waiting on this completion
5757 * @x: holds the state of this particular completion
5759 * This will wake up all threads waiting on this particular completion event.
5761 * It may be assumed that this function implies a write memory barrier before
5762 * changing the task state if and only if any tasks are woken up.
5764 void complete_all(struct completion *x)
5766 unsigned long flags;
5768 spin_lock_irqsave(&x->wait.lock, flags);
5769 x->done += UINT_MAX/2;
5770 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5771 spin_unlock_irqrestore(&x->wait.lock, flags);
5773 EXPORT_SYMBOL(complete_all);
5775 static inline long __sched
5776 do_wait_for_common(struct completion *x, long timeout, int state)
5778 if (!x->done) {
5779 DECLARE_WAITQUEUE(wait, current);
5781 wait.flags |= WQ_FLAG_EXCLUSIVE;
5782 __add_wait_queue_tail(&x->wait, &wait);
5783 do {
5784 if (signal_pending_state(state, current)) {
5785 timeout = -ERESTARTSYS;
5786 break;
5788 __set_current_state(state);
5789 spin_unlock_irq(&x->wait.lock);
5790 timeout = schedule_timeout(timeout);
5791 spin_lock_irq(&x->wait.lock);
5792 } while (!x->done && timeout);
5793 __remove_wait_queue(&x->wait, &wait);
5794 if (!x->done)
5795 return timeout;
5797 x->done--;
5798 return timeout ?: 1;
5801 static long __sched
5802 wait_for_common(struct completion *x, long timeout, int state)
5804 might_sleep();
5806 spin_lock_irq(&x->wait.lock);
5807 timeout = do_wait_for_common(x, timeout, state);
5808 spin_unlock_irq(&x->wait.lock);
5809 return timeout;
5813 * wait_for_completion: - waits for completion of a task
5814 * @x: holds the state of this particular completion
5816 * This waits to be signaled for completion of a specific task. It is NOT
5817 * interruptible and there is no timeout.
5819 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5820 * and interrupt capability. Also see complete().
5822 void __sched wait_for_completion(struct completion *x)
5824 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5826 EXPORT_SYMBOL(wait_for_completion);
5829 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5830 * @x: holds the state of this particular completion
5831 * @timeout: timeout value in jiffies
5833 * This waits for either a completion of a specific task to be signaled or for a
5834 * specified timeout to expire. The timeout is in jiffies. It is not
5835 * interruptible.
5837 unsigned long __sched
5838 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5840 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5842 EXPORT_SYMBOL(wait_for_completion_timeout);
5845 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5846 * @x: holds the state of this particular completion
5848 * This waits for completion of a specific task to be signaled. It is
5849 * interruptible.
5851 int __sched wait_for_completion_interruptible(struct completion *x)
5853 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5854 if (t == -ERESTARTSYS)
5855 return t;
5856 return 0;
5858 EXPORT_SYMBOL(wait_for_completion_interruptible);
5861 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5862 * @x: holds the state of this particular completion
5863 * @timeout: timeout value in jiffies
5865 * This waits for either a completion of a specific task to be signaled or for a
5866 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5868 unsigned long __sched
5869 wait_for_completion_interruptible_timeout(struct completion *x,
5870 unsigned long timeout)
5872 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5874 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5877 * wait_for_completion_killable: - waits for completion of a task (killable)
5878 * @x: holds the state of this particular completion
5880 * This waits to be signaled for completion of a specific task. It can be
5881 * interrupted by a kill signal.
5883 int __sched wait_for_completion_killable(struct completion *x)
5885 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5886 if (t == -ERESTARTSYS)
5887 return t;
5888 return 0;
5890 EXPORT_SYMBOL(wait_for_completion_killable);
5893 * try_wait_for_completion - try to decrement a completion without blocking
5894 * @x: completion structure
5896 * Returns: 0 if a decrement cannot be done without blocking
5897 * 1 if a decrement succeeded.
5899 * If a completion is being used as a counting completion,
5900 * attempt to decrement the counter without blocking. This
5901 * enables us to avoid waiting if the resource the completion
5902 * is protecting is not available.
5904 bool try_wait_for_completion(struct completion *x)
5906 int ret = 1;
5908 spin_lock_irq(&x->wait.lock);
5909 if (!x->done)
5910 ret = 0;
5911 else
5912 x->done--;
5913 spin_unlock_irq(&x->wait.lock);
5914 return ret;
5916 EXPORT_SYMBOL(try_wait_for_completion);
5919 * completion_done - Test to see if a completion has any waiters
5920 * @x: completion structure
5922 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5923 * 1 if there are no waiters.
5926 bool completion_done(struct completion *x)
5928 int ret = 1;
5930 spin_lock_irq(&x->wait.lock);
5931 if (!x->done)
5932 ret = 0;
5933 spin_unlock_irq(&x->wait.lock);
5934 return ret;
5936 EXPORT_SYMBOL(completion_done);
5938 static long __sched
5939 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5941 unsigned long flags;
5942 wait_queue_t wait;
5944 init_waitqueue_entry(&wait, current);
5946 __set_current_state(state);
5948 spin_lock_irqsave(&q->lock, flags);
5949 __add_wait_queue(q, &wait);
5950 spin_unlock(&q->lock);
5951 timeout = schedule_timeout(timeout);
5952 spin_lock_irq(&q->lock);
5953 __remove_wait_queue(q, &wait);
5954 spin_unlock_irqrestore(&q->lock, flags);
5956 return timeout;
5959 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5961 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5963 EXPORT_SYMBOL(interruptible_sleep_on);
5965 long __sched
5966 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5968 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5970 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5972 void __sched sleep_on(wait_queue_head_t *q)
5974 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5976 EXPORT_SYMBOL(sleep_on);
5978 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5980 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5982 EXPORT_SYMBOL(sleep_on_timeout);
5984 #ifdef CONFIG_RT_MUTEXES
5987 * rt_mutex_setprio - set the current priority of a task
5988 * @p: task
5989 * @prio: prio value (kernel-internal form)
5991 * This function changes the 'effective' priority of a task. It does
5992 * not touch ->normal_prio like __setscheduler().
5994 * Used by the rt_mutex code to implement priority inheritance logic.
5996 void rt_mutex_setprio(struct task_struct *p, int prio)
5998 unsigned long flags;
5999 int oldprio, on_rq, running;
6000 struct rq *rq;
6001 const struct sched_class *prev_class = p->sched_class;
6003 BUG_ON(prio < 0 || prio > MAX_PRIO);
6005 rq = task_rq_lock(p, &flags);
6006 update_rq_clock(rq);
6008 oldprio = p->prio;
6009 on_rq = p->se.on_rq;
6010 running = task_current(rq, p);
6011 if (on_rq)
6012 dequeue_task(rq, p, 0);
6013 if (running)
6014 p->sched_class->put_prev_task(rq, p);
6016 if (rt_prio(prio))
6017 p->sched_class = &rt_sched_class;
6018 else
6019 p->sched_class = &fair_sched_class;
6021 p->prio = prio;
6023 if (running)
6024 p->sched_class->set_curr_task(rq);
6025 if (on_rq) {
6026 enqueue_task(rq, p, 0);
6028 check_class_changed(rq, p, prev_class, oldprio, running);
6030 task_rq_unlock(rq, &flags);
6033 #endif
6035 void set_user_nice(struct task_struct *p, long nice)
6037 int old_prio, delta, on_rq;
6038 unsigned long flags;
6039 struct rq *rq;
6041 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6042 return;
6044 * We have to be careful, if called from sys_setpriority(),
6045 * the task might be in the middle of scheduling on another CPU.
6047 rq = task_rq_lock(p, &flags);
6048 update_rq_clock(rq);
6050 * The RT priorities are set via sched_setscheduler(), but we still
6051 * allow the 'normal' nice value to be set - but as expected
6052 * it wont have any effect on scheduling until the task is
6053 * SCHED_FIFO/SCHED_RR:
6055 if (task_has_rt_policy(p)) {
6056 p->static_prio = NICE_TO_PRIO(nice);
6057 goto out_unlock;
6059 on_rq = p->se.on_rq;
6060 if (on_rq)
6061 dequeue_task(rq, p, 0);
6063 p->static_prio = NICE_TO_PRIO(nice);
6064 set_load_weight(p);
6065 old_prio = p->prio;
6066 p->prio = effective_prio(p);
6067 delta = p->prio - old_prio;
6069 if (on_rq) {
6070 enqueue_task(rq, p, 0);
6072 * If the task increased its priority or is running and
6073 * lowered its priority, then reschedule its CPU:
6075 if (delta < 0 || (delta > 0 && task_running(rq, p)))
6076 resched_task(rq->curr);
6078 out_unlock:
6079 task_rq_unlock(rq, &flags);
6081 EXPORT_SYMBOL(set_user_nice);
6084 * can_nice - check if a task can reduce its nice value
6085 * @p: task
6086 * @nice: nice value
6088 int can_nice(const struct task_struct *p, const int nice)
6090 /* convert nice value [19,-20] to rlimit style value [1,40] */
6091 int nice_rlim = 20 - nice;
6093 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6094 capable(CAP_SYS_NICE));
6097 #ifdef __ARCH_WANT_SYS_NICE
6100 * sys_nice - change the priority of the current process.
6101 * @increment: priority increment
6103 * sys_setpriority is a more generic, but much slower function that
6104 * does similar things.
6106 SYSCALL_DEFINE1(nice, int, increment)
6108 long nice, retval;
6111 * Setpriority might change our priority at the same moment.
6112 * We don't have to worry. Conceptually one call occurs first
6113 * and we have a single winner.
6115 if (increment < -40)
6116 increment = -40;
6117 if (increment > 40)
6118 increment = 40;
6120 nice = TASK_NICE(current) + increment;
6121 if (nice < -20)
6122 nice = -20;
6123 if (nice > 19)
6124 nice = 19;
6126 if (increment < 0 && !can_nice(current, nice))
6127 return -EPERM;
6129 retval = security_task_setnice(current, nice);
6130 if (retval)
6131 return retval;
6133 set_user_nice(current, nice);
6134 return 0;
6137 #endif
6140 * task_prio - return the priority value of a given task.
6141 * @p: the task in question.
6143 * This is the priority value as seen by users in /proc.
6144 * RT tasks are offset by -200. Normal tasks are centered
6145 * around 0, value goes from -16 to +15.
6147 int task_prio(const struct task_struct *p)
6149 return p->prio - MAX_RT_PRIO;
6153 * task_nice - return the nice value of a given task.
6154 * @p: the task in question.
6156 int task_nice(const struct task_struct *p)
6158 return TASK_NICE(p);
6160 EXPORT_SYMBOL(task_nice);
6163 * idle_cpu - is a given cpu idle currently?
6164 * @cpu: the processor in question.
6166 int idle_cpu(int cpu)
6168 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6172 * idle_task - return the idle task for a given cpu.
6173 * @cpu: the processor in question.
6175 struct task_struct *idle_task(int cpu)
6177 return cpu_rq(cpu)->idle;
6181 * find_process_by_pid - find a process with a matching PID value.
6182 * @pid: the pid in question.
6184 static struct task_struct *find_process_by_pid(pid_t pid)
6186 return pid ? find_task_by_vpid(pid) : current;
6189 /* Actually do priority change: must hold rq lock. */
6190 static void
6191 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6193 BUG_ON(p->se.on_rq);
6195 p->policy = policy;
6196 switch (p->policy) {
6197 case SCHED_NORMAL:
6198 case SCHED_BATCH:
6199 case SCHED_IDLE:
6200 p->sched_class = &fair_sched_class;
6201 break;
6202 case SCHED_FIFO:
6203 case SCHED_RR:
6204 p->sched_class = &rt_sched_class;
6205 break;
6208 p->rt_priority = prio;
6209 p->normal_prio = normal_prio(p);
6210 /* we are holding p->pi_lock already */
6211 p->prio = rt_mutex_getprio(p);
6212 set_load_weight(p);
6216 * check the target process has a UID that matches the current process's
6218 static bool check_same_owner(struct task_struct *p)
6220 const struct cred *cred = current_cred(), *pcred;
6221 bool match;
6223 rcu_read_lock();
6224 pcred = __task_cred(p);
6225 match = (cred->euid == pcred->euid ||
6226 cred->euid == pcred->uid);
6227 rcu_read_unlock();
6228 return match;
6231 static int __sched_setscheduler(struct task_struct *p, int policy,
6232 struct sched_param *param, bool user)
6234 int retval, oldprio, oldpolicy = -1, on_rq, running;
6235 unsigned long flags;
6236 const struct sched_class *prev_class = p->sched_class;
6237 struct rq *rq;
6238 int reset_on_fork;
6240 /* may grab non-irq protected spin_locks */
6241 BUG_ON(in_interrupt());
6242 recheck:
6243 /* double check policy once rq lock held */
6244 if (policy < 0) {
6245 reset_on_fork = p->sched_reset_on_fork;
6246 policy = oldpolicy = p->policy;
6247 } else {
6248 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6249 policy &= ~SCHED_RESET_ON_FORK;
6251 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6252 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6253 policy != SCHED_IDLE)
6254 return -EINVAL;
6258 * Valid priorities for SCHED_FIFO and SCHED_RR are
6259 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6260 * SCHED_BATCH and SCHED_IDLE is 0.
6262 if (param->sched_priority < 0 ||
6263 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6264 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6265 return -EINVAL;
6266 if (rt_policy(policy) != (param->sched_priority != 0))
6267 return -EINVAL;
6270 * Allow unprivileged RT tasks to decrease priority:
6272 if (user && !capable(CAP_SYS_NICE)) {
6273 if (rt_policy(policy)) {
6274 unsigned long rlim_rtprio;
6276 if (!lock_task_sighand(p, &flags))
6277 return -ESRCH;
6278 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6279 unlock_task_sighand(p, &flags);
6281 /* can't set/change the rt policy */
6282 if (policy != p->policy && !rlim_rtprio)
6283 return -EPERM;
6285 /* can't increase priority */
6286 if (param->sched_priority > p->rt_priority &&
6287 param->sched_priority > rlim_rtprio)
6288 return -EPERM;
6291 * Like positive nice levels, dont allow tasks to
6292 * move out of SCHED_IDLE either:
6294 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6295 return -EPERM;
6297 /* can't change other user's priorities */
6298 if (!check_same_owner(p))
6299 return -EPERM;
6301 /* Normal users shall not reset the sched_reset_on_fork flag */
6302 if (p->sched_reset_on_fork && !reset_on_fork)
6303 return -EPERM;
6306 if (user) {
6307 #ifdef CONFIG_RT_GROUP_SCHED
6309 * Do not allow realtime tasks into groups that have no runtime
6310 * assigned.
6312 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6313 task_group(p)->rt_bandwidth.rt_runtime == 0)
6314 return -EPERM;
6315 #endif
6317 retval = security_task_setscheduler(p, policy, param);
6318 if (retval)
6319 return retval;
6323 * make sure no PI-waiters arrive (or leave) while we are
6324 * changing the priority of the task:
6326 spin_lock_irqsave(&p->pi_lock, flags);
6328 * To be able to change p->policy safely, the apropriate
6329 * runqueue lock must be held.
6331 rq = __task_rq_lock(p);
6332 /* recheck policy now with rq lock held */
6333 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6334 policy = oldpolicy = -1;
6335 __task_rq_unlock(rq);
6336 spin_unlock_irqrestore(&p->pi_lock, flags);
6337 goto recheck;
6339 update_rq_clock(rq);
6340 on_rq = p->se.on_rq;
6341 running = task_current(rq, p);
6342 if (on_rq)
6343 deactivate_task(rq, p, 0);
6344 if (running)
6345 p->sched_class->put_prev_task(rq, p);
6347 p->sched_reset_on_fork = reset_on_fork;
6349 oldprio = p->prio;
6350 __setscheduler(rq, p, policy, param->sched_priority);
6352 if (running)
6353 p->sched_class->set_curr_task(rq);
6354 if (on_rq) {
6355 activate_task(rq, p, 0);
6357 check_class_changed(rq, p, prev_class, oldprio, running);
6359 __task_rq_unlock(rq);
6360 spin_unlock_irqrestore(&p->pi_lock, flags);
6362 rt_mutex_adjust_pi(p);
6364 return 0;
6368 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6369 * @p: the task in question.
6370 * @policy: new policy.
6371 * @param: structure containing the new RT priority.
6373 * NOTE that the task may be already dead.
6375 int sched_setscheduler(struct task_struct *p, int policy,
6376 struct sched_param *param)
6378 return __sched_setscheduler(p, policy, param, true);
6380 EXPORT_SYMBOL_GPL(sched_setscheduler);
6383 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6384 * @p: the task in question.
6385 * @policy: new policy.
6386 * @param: structure containing the new RT priority.
6388 * Just like sched_setscheduler, only don't bother checking if the
6389 * current context has permission. For example, this is needed in
6390 * stop_machine(): we create temporary high priority worker threads,
6391 * but our caller might not have that capability.
6393 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6394 struct sched_param *param)
6396 return __sched_setscheduler(p, policy, param, false);
6399 static int
6400 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6402 struct sched_param lparam;
6403 struct task_struct *p;
6404 int retval;
6406 if (!param || pid < 0)
6407 return -EINVAL;
6408 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6409 return -EFAULT;
6411 rcu_read_lock();
6412 retval = -ESRCH;
6413 p = find_process_by_pid(pid);
6414 if (p != NULL)
6415 retval = sched_setscheduler(p, policy, &lparam);
6416 rcu_read_unlock();
6418 return retval;
6422 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6423 * @pid: the pid in question.
6424 * @policy: new policy.
6425 * @param: structure containing the new RT priority.
6427 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6428 struct sched_param __user *, param)
6430 /* negative values for policy are not valid */
6431 if (policy < 0)
6432 return -EINVAL;
6434 return do_sched_setscheduler(pid, policy, param);
6438 * sys_sched_setparam - set/change the RT priority of a thread
6439 * @pid: the pid in question.
6440 * @param: structure containing the new RT priority.
6442 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6444 return do_sched_setscheduler(pid, -1, param);
6448 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6449 * @pid: the pid in question.
6451 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6453 struct task_struct *p;
6454 int retval;
6456 if (pid < 0)
6457 return -EINVAL;
6459 retval = -ESRCH;
6460 read_lock(&tasklist_lock);
6461 p = find_process_by_pid(pid);
6462 if (p) {
6463 retval = security_task_getscheduler(p);
6464 if (!retval)
6465 retval = p->policy
6466 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6468 read_unlock(&tasklist_lock);
6469 return retval;
6473 * sys_sched_getparam - get the RT priority of a thread
6474 * @pid: the pid in question.
6475 * @param: structure containing the RT priority.
6477 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6479 struct sched_param lp;
6480 struct task_struct *p;
6481 int retval;
6483 if (!param || pid < 0)
6484 return -EINVAL;
6486 read_lock(&tasklist_lock);
6487 p = find_process_by_pid(pid);
6488 retval = -ESRCH;
6489 if (!p)
6490 goto out_unlock;
6492 retval = security_task_getscheduler(p);
6493 if (retval)
6494 goto out_unlock;
6496 lp.sched_priority = p->rt_priority;
6497 read_unlock(&tasklist_lock);
6500 * This one might sleep, we cannot do it with a spinlock held ...
6502 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6504 return retval;
6506 out_unlock:
6507 read_unlock(&tasklist_lock);
6508 return retval;
6511 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6513 cpumask_var_t cpus_allowed, new_mask;
6514 struct task_struct *p;
6515 int retval;
6517 get_online_cpus();
6518 read_lock(&tasklist_lock);
6520 p = find_process_by_pid(pid);
6521 if (!p) {
6522 read_unlock(&tasklist_lock);
6523 put_online_cpus();
6524 return -ESRCH;
6528 * It is not safe to call set_cpus_allowed with the
6529 * tasklist_lock held. We will bump the task_struct's
6530 * usage count and then drop tasklist_lock.
6532 get_task_struct(p);
6533 read_unlock(&tasklist_lock);
6535 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6536 retval = -ENOMEM;
6537 goto out_put_task;
6539 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6540 retval = -ENOMEM;
6541 goto out_free_cpus_allowed;
6543 retval = -EPERM;
6544 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6545 goto out_unlock;
6547 retval = security_task_setscheduler(p, 0, NULL);
6548 if (retval)
6549 goto out_unlock;
6551 cpuset_cpus_allowed(p, cpus_allowed);
6552 cpumask_and(new_mask, in_mask, cpus_allowed);
6553 again:
6554 retval = set_cpus_allowed_ptr(p, new_mask);
6556 if (!retval) {
6557 cpuset_cpus_allowed(p, cpus_allowed);
6558 if (!cpumask_subset(new_mask, cpus_allowed)) {
6560 * We must have raced with a concurrent cpuset
6561 * update. Just reset the cpus_allowed to the
6562 * cpuset's cpus_allowed
6564 cpumask_copy(new_mask, cpus_allowed);
6565 goto again;
6568 out_unlock:
6569 free_cpumask_var(new_mask);
6570 out_free_cpus_allowed:
6571 free_cpumask_var(cpus_allowed);
6572 out_put_task:
6573 put_task_struct(p);
6574 put_online_cpus();
6575 return retval;
6578 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6579 struct cpumask *new_mask)
6581 if (len < cpumask_size())
6582 cpumask_clear(new_mask);
6583 else if (len > cpumask_size())
6584 len = cpumask_size();
6586 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6590 * sys_sched_setaffinity - set the cpu affinity of a process
6591 * @pid: pid of the process
6592 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6593 * @user_mask_ptr: user-space pointer to the new cpu mask
6595 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6596 unsigned long __user *, user_mask_ptr)
6598 cpumask_var_t new_mask;
6599 int retval;
6601 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6602 return -ENOMEM;
6604 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6605 if (retval == 0)
6606 retval = sched_setaffinity(pid, new_mask);
6607 free_cpumask_var(new_mask);
6608 return retval;
6611 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6613 struct task_struct *p;
6614 int retval;
6616 get_online_cpus();
6617 read_lock(&tasklist_lock);
6619 retval = -ESRCH;
6620 p = find_process_by_pid(pid);
6621 if (!p)
6622 goto out_unlock;
6624 retval = security_task_getscheduler(p);
6625 if (retval)
6626 goto out_unlock;
6628 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6630 out_unlock:
6631 read_unlock(&tasklist_lock);
6632 put_online_cpus();
6634 return retval;
6638 * sys_sched_getaffinity - get the cpu affinity of a process
6639 * @pid: pid of the process
6640 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6641 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6643 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6644 unsigned long __user *, user_mask_ptr)
6646 int ret;
6647 cpumask_var_t mask;
6649 if (len < cpumask_size())
6650 return -EINVAL;
6652 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6653 return -ENOMEM;
6655 ret = sched_getaffinity(pid, mask);
6656 if (ret == 0) {
6657 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6658 ret = -EFAULT;
6659 else
6660 ret = cpumask_size();
6662 free_cpumask_var(mask);
6664 return ret;
6668 * sys_sched_yield - yield the current processor to other threads.
6670 * This function yields the current CPU to other tasks. If there are no
6671 * other threads running on this CPU then this function will return.
6673 SYSCALL_DEFINE0(sched_yield)
6675 struct rq *rq = this_rq_lock();
6677 schedstat_inc(rq, yld_count);
6678 current->sched_class->yield_task(rq);
6681 * Since we are going to call schedule() anyway, there's
6682 * no need to preempt or enable interrupts:
6684 __release(rq->lock);
6685 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6686 _raw_spin_unlock(&rq->lock);
6687 preempt_enable_no_resched();
6689 schedule();
6691 return 0;
6694 static inline int should_resched(void)
6696 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6699 static void __cond_resched(void)
6701 add_preempt_count(PREEMPT_ACTIVE);
6702 schedule();
6703 sub_preempt_count(PREEMPT_ACTIVE);
6706 int __sched _cond_resched(void)
6708 if (should_resched()) {
6709 __cond_resched();
6710 return 1;
6712 return 0;
6714 EXPORT_SYMBOL(_cond_resched);
6717 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6718 * call schedule, and on return reacquire the lock.
6720 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6721 * operations here to prevent schedule() from being called twice (once via
6722 * spin_unlock(), once by hand).
6724 int __cond_resched_lock(spinlock_t *lock)
6726 int resched = should_resched();
6727 int ret = 0;
6729 lockdep_assert_held(lock);
6731 if (spin_needbreak(lock) || resched) {
6732 spin_unlock(lock);
6733 if (resched)
6734 __cond_resched();
6735 else
6736 cpu_relax();
6737 ret = 1;
6738 spin_lock(lock);
6740 return ret;
6742 EXPORT_SYMBOL(__cond_resched_lock);
6744 int __sched __cond_resched_softirq(void)
6746 BUG_ON(!in_softirq());
6748 if (should_resched()) {
6749 local_bh_enable();
6750 __cond_resched();
6751 local_bh_disable();
6752 return 1;
6754 return 0;
6756 EXPORT_SYMBOL(__cond_resched_softirq);
6759 * yield - yield the current processor to other threads.
6761 * This is a shortcut for kernel-space yielding - it marks the
6762 * thread runnable and calls sys_sched_yield().
6764 void __sched yield(void)
6766 set_current_state(TASK_RUNNING);
6767 sys_sched_yield();
6769 EXPORT_SYMBOL(yield);
6772 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6773 * that process accounting knows that this is a task in IO wait state.
6775 void __sched io_schedule(void)
6777 struct rq *rq = raw_rq();
6779 delayacct_blkio_start();
6780 atomic_inc(&rq->nr_iowait);
6781 current->in_iowait = 1;
6782 schedule();
6783 current->in_iowait = 0;
6784 atomic_dec(&rq->nr_iowait);
6785 delayacct_blkio_end();
6787 EXPORT_SYMBOL(io_schedule);
6789 long __sched io_schedule_timeout(long timeout)
6791 struct rq *rq = raw_rq();
6792 long ret;
6794 delayacct_blkio_start();
6795 atomic_inc(&rq->nr_iowait);
6796 current->in_iowait = 1;
6797 ret = schedule_timeout(timeout);
6798 current->in_iowait = 0;
6799 atomic_dec(&rq->nr_iowait);
6800 delayacct_blkio_end();
6801 return ret;
6805 * sys_sched_get_priority_max - return maximum RT priority.
6806 * @policy: scheduling class.
6808 * this syscall returns the maximum rt_priority that can be used
6809 * by a given scheduling class.
6811 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6813 int ret = -EINVAL;
6815 switch (policy) {
6816 case SCHED_FIFO:
6817 case SCHED_RR:
6818 ret = MAX_USER_RT_PRIO-1;
6819 break;
6820 case SCHED_NORMAL:
6821 case SCHED_BATCH:
6822 case SCHED_IDLE:
6823 ret = 0;
6824 break;
6826 return ret;
6830 * sys_sched_get_priority_min - return minimum RT priority.
6831 * @policy: scheduling class.
6833 * this syscall returns the minimum rt_priority that can be used
6834 * by a given scheduling class.
6836 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6838 int ret = -EINVAL;
6840 switch (policy) {
6841 case SCHED_FIFO:
6842 case SCHED_RR:
6843 ret = 1;
6844 break;
6845 case SCHED_NORMAL:
6846 case SCHED_BATCH:
6847 case SCHED_IDLE:
6848 ret = 0;
6850 return ret;
6854 * sys_sched_rr_get_interval - return the default timeslice of a process.
6855 * @pid: pid of the process.
6856 * @interval: userspace pointer to the timeslice value.
6858 * this syscall writes the default timeslice value of a given process
6859 * into the user-space timespec buffer. A value of '0' means infinity.
6861 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6862 struct timespec __user *, interval)
6864 struct task_struct *p;
6865 unsigned int time_slice;
6866 int retval;
6867 struct timespec t;
6869 if (pid < 0)
6870 return -EINVAL;
6872 retval = -ESRCH;
6873 read_lock(&tasklist_lock);
6874 p = find_process_by_pid(pid);
6875 if (!p)
6876 goto out_unlock;
6878 retval = security_task_getscheduler(p);
6879 if (retval)
6880 goto out_unlock;
6882 time_slice = p->sched_class->get_rr_interval(p);
6884 read_unlock(&tasklist_lock);
6885 jiffies_to_timespec(time_slice, &t);
6886 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6887 return retval;
6889 out_unlock:
6890 read_unlock(&tasklist_lock);
6891 return retval;
6894 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6896 void sched_show_task(struct task_struct *p)
6898 unsigned long free = 0;
6899 unsigned state;
6901 state = p->state ? __ffs(p->state) + 1 : 0;
6902 printk(KERN_INFO "%-13.13s %c", p->comm,
6903 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6904 #if BITS_PER_LONG == 32
6905 if (state == TASK_RUNNING)
6906 printk(KERN_CONT " running ");
6907 else
6908 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6909 #else
6910 if (state == TASK_RUNNING)
6911 printk(KERN_CONT " running task ");
6912 else
6913 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6914 #endif
6915 #ifdef CONFIG_DEBUG_STACK_USAGE
6916 free = stack_not_used(p);
6917 #endif
6918 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6919 task_pid_nr(p), task_pid_nr(p->real_parent),
6920 (unsigned long)task_thread_info(p)->flags);
6922 show_stack(p, NULL);
6925 void show_state_filter(unsigned long state_filter)
6927 struct task_struct *g, *p;
6929 #if BITS_PER_LONG == 32
6930 printk(KERN_INFO
6931 " task PC stack pid father\n");
6932 #else
6933 printk(KERN_INFO
6934 " task PC stack pid father\n");
6935 #endif
6936 read_lock(&tasklist_lock);
6937 do_each_thread(g, p) {
6939 * reset the NMI-timeout, listing all files on a slow
6940 * console might take alot of time:
6942 touch_nmi_watchdog();
6943 if (!state_filter || (p->state & state_filter))
6944 sched_show_task(p);
6945 } while_each_thread(g, p);
6947 touch_all_softlockup_watchdogs();
6949 #ifdef CONFIG_SCHED_DEBUG
6950 sysrq_sched_debug_show();
6951 #endif
6952 read_unlock(&tasklist_lock);
6954 * Only show locks if all tasks are dumped:
6956 if (state_filter == -1)
6957 debug_show_all_locks();
6960 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6962 idle->sched_class = &idle_sched_class;
6966 * init_idle - set up an idle thread for a given CPU
6967 * @idle: task in question
6968 * @cpu: cpu the idle task belongs to
6970 * NOTE: this function does not set the idle thread's NEED_RESCHED
6971 * flag, to make booting more robust.
6973 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6975 struct rq *rq = cpu_rq(cpu);
6976 unsigned long flags;
6978 spin_lock_irqsave(&rq->lock, flags);
6980 __sched_fork(idle);
6981 idle->se.exec_start = sched_clock();
6983 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6984 __set_task_cpu(idle, cpu);
6986 rq->curr = rq->idle = idle;
6987 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6988 idle->oncpu = 1;
6989 #endif
6990 spin_unlock_irqrestore(&rq->lock, flags);
6992 /* Set the preempt count _outside_ the spinlocks! */
6993 #if defined(CONFIG_PREEMPT)
6994 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6995 #else
6996 task_thread_info(idle)->preempt_count = 0;
6997 #endif
6999 * The idle tasks have their own, simple scheduling class:
7001 idle->sched_class = &idle_sched_class;
7002 ftrace_graph_init_task(idle);
7006 * In a system that switches off the HZ timer nohz_cpu_mask
7007 * indicates which cpus entered this state. This is used
7008 * in the rcu update to wait only for active cpus. For system
7009 * which do not switch off the HZ timer nohz_cpu_mask should
7010 * always be CPU_BITS_NONE.
7012 cpumask_var_t nohz_cpu_mask;
7015 * Increase the granularity value when there are more CPUs,
7016 * because with more CPUs the 'effective latency' as visible
7017 * to users decreases. But the relationship is not linear,
7018 * so pick a second-best guess by going with the log2 of the
7019 * number of CPUs.
7021 * This idea comes from the SD scheduler of Con Kolivas:
7023 static void update_sysctl(void)
7025 unsigned int cpus = min(num_online_cpus(), 8U);
7026 unsigned int factor = 1 + ilog2(cpus);
7028 #define SET_SYSCTL(name) \
7029 (sysctl_##name = (factor) * normalized_sysctl_##name)
7030 SET_SYSCTL(sched_min_granularity);
7031 SET_SYSCTL(sched_latency);
7032 SET_SYSCTL(sched_wakeup_granularity);
7033 SET_SYSCTL(sched_shares_ratelimit);
7034 #undef SET_SYSCTL
7037 static inline void sched_init_granularity(void)
7039 update_sysctl();
7042 #ifdef CONFIG_SMP
7044 * This is how migration works:
7046 * 1) we queue a struct migration_req structure in the source CPU's
7047 * runqueue and wake up that CPU's migration thread.
7048 * 2) we down() the locked semaphore => thread blocks.
7049 * 3) migration thread wakes up (implicitly it forces the migrated
7050 * thread off the CPU)
7051 * 4) it gets the migration request and checks whether the migrated
7052 * task is still in the wrong runqueue.
7053 * 5) if it's in the wrong runqueue then the migration thread removes
7054 * it and puts it into the right queue.
7055 * 6) migration thread up()s the semaphore.
7056 * 7) we wake up and the migration is done.
7060 * Change a given task's CPU affinity. Migrate the thread to a
7061 * proper CPU and schedule it away if the CPU it's executing on
7062 * is removed from the allowed bitmask.
7064 * NOTE: the caller must have a valid reference to the task, the
7065 * task must not exit() & deallocate itself prematurely. The
7066 * call is not atomic; no spinlocks may be held.
7068 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7070 struct migration_req req;
7071 unsigned long flags;
7072 struct rq *rq;
7073 int ret = 0;
7075 rq = task_rq_lock(p, &flags);
7076 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
7077 ret = -EINVAL;
7078 goto out;
7081 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7082 !cpumask_equal(&p->cpus_allowed, new_mask))) {
7083 ret = -EINVAL;
7084 goto out;
7087 if (p->sched_class->set_cpus_allowed)
7088 p->sched_class->set_cpus_allowed(p, new_mask);
7089 else {
7090 cpumask_copy(&p->cpus_allowed, new_mask);
7091 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7094 /* Can the task run on the task's current CPU? If so, we're done */
7095 if (cpumask_test_cpu(task_cpu(p), new_mask))
7096 goto out;
7098 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
7099 /* Need help from migration thread: drop lock and wait. */
7100 struct task_struct *mt = rq->migration_thread;
7102 get_task_struct(mt);
7103 task_rq_unlock(rq, &flags);
7104 wake_up_process(rq->migration_thread);
7105 put_task_struct(mt);
7106 wait_for_completion(&req.done);
7107 tlb_migrate_finish(p->mm);
7108 return 0;
7110 out:
7111 task_rq_unlock(rq, &flags);
7113 return ret;
7115 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7118 * Move (not current) task off this cpu, onto dest cpu. We're doing
7119 * this because either it can't run here any more (set_cpus_allowed()
7120 * away from this CPU, or CPU going down), or because we're
7121 * attempting to rebalance this task on exec (sched_exec).
7123 * So we race with normal scheduler movements, but that's OK, as long
7124 * as the task is no longer on this CPU.
7126 * Returns non-zero if task was successfully migrated.
7128 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7130 struct rq *rq_dest, *rq_src;
7131 int ret = 0, on_rq;
7133 if (unlikely(!cpu_active(dest_cpu)))
7134 return ret;
7136 rq_src = cpu_rq(src_cpu);
7137 rq_dest = cpu_rq(dest_cpu);
7139 double_rq_lock(rq_src, rq_dest);
7140 /* Already moved. */
7141 if (task_cpu(p) != src_cpu)
7142 goto done;
7143 /* Affinity changed (again). */
7144 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7145 goto fail;
7147 on_rq = p->se.on_rq;
7148 if (on_rq)
7149 deactivate_task(rq_src, p, 0);
7151 set_task_cpu(p, dest_cpu);
7152 if (on_rq) {
7153 activate_task(rq_dest, p, 0);
7154 check_preempt_curr(rq_dest, p, 0);
7156 done:
7157 ret = 1;
7158 fail:
7159 double_rq_unlock(rq_src, rq_dest);
7160 return ret;
7163 #define RCU_MIGRATION_IDLE 0
7164 #define RCU_MIGRATION_NEED_QS 1
7165 #define RCU_MIGRATION_GOT_QS 2
7166 #define RCU_MIGRATION_MUST_SYNC 3
7169 * migration_thread - this is a highprio system thread that performs
7170 * thread migration by bumping thread off CPU then 'pushing' onto
7171 * another runqueue.
7173 static int migration_thread(void *data)
7175 int badcpu;
7176 int cpu = (long)data;
7177 struct rq *rq;
7179 rq = cpu_rq(cpu);
7180 BUG_ON(rq->migration_thread != current);
7182 set_current_state(TASK_INTERRUPTIBLE);
7183 while (!kthread_should_stop()) {
7184 struct migration_req *req;
7185 struct list_head *head;
7187 spin_lock_irq(&rq->lock);
7189 if (cpu_is_offline(cpu)) {
7190 spin_unlock_irq(&rq->lock);
7191 break;
7194 if (rq->active_balance) {
7195 active_load_balance(rq, cpu);
7196 rq->active_balance = 0;
7199 head = &rq->migration_queue;
7201 if (list_empty(head)) {
7202 spin_unlock_irq(&rq->lock);
7203 schedule();
7204 set_current_state(TASK_INTERRUPTIBLE);
7205 continue;
7207 req = list_entry(head->next, struct migration_req, list);
7208 list_del_init(head->next);
7210 if (req->task != NULL) {
7211 spin_unlock(&rq->lock);
7212 __migrate_task(req->task, cpu, req->dest_cpu);
7213 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7214 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7215 spin_unlock(&rq->lock);
7216 } else {
7217 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7218 spin_unlock(&rq->lock);
7219 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7221 local_irq_enable();
7223 complete(&req->done);
7225 __set_current_state(TASK_RUNNING);
7227 return 0;
7230 #ifdef CONFIG_HOTPLUG_CPU
7232 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7234 int ret;
7236 local_irq_disable();
7237 ret = __migrate_task(p, src_cpu, dest_cpu);
7238 local_irq_enable();
7239 return ret;
7243 * Figure out where task on dead CPU should go, use force if necessary.
7245 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7247 int dest_cpu;
7248 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7250 again:
7251 /* Look for allowed, online CPU in same node. */
7252 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
7253 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7254 goto move;
7256 /* Any allowed, online CPU? */
7257 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
7258 if (dest_cpu < nr_cpu_ids)
7259 goto move;
7261 /* No more Mr. Nice Guy. */
7262 if (dest_cpu >= nr_cpu_ids) {
7263 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7264 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
7267 * Don't tell them about moving exiting tasks or
7268 * kernel threads (both mm NULL), since they never
7269 * leave kernel.
7271 if (p->mm && printk_ratelimit()) {
7272 printk(KERN_INFO "process %d (%s) no "
7273 "longer affine to cpu%d\n",
7274 task_pid_nr(p), p->comm, dead_cpu);
7278 move:
7279 /* It can have affinity changed while we were choosing. */
7280 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7281 goto again;
7285 * While a dead CPU has no uninterruptible tasks queued at this point,
7286 * it might still have a nonzero ->nr_uninterruptible counter, because
7287 * for performance reasons the counter is not stricly tracking tasks to
7288 * their home CPUs. So we just add the counter to another CPU's counter,
7289 * to keep the global sum constant after CPU-down:
7291 static void migrate_nr_uninterruptible(struct rq *rq_src)
7293 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
7294 unsigned long flags;
7296 local_irq_save(flags);
7297 double_rq_lock(rq_src, rq_dest);
7298 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7299 rq_src->nr_uninterruptible = 0;
7300 double_rq_unlock(rq_src, rq_dest);
7301 local_irq_restore(flags);
7304 /* Run through task list and migrate tasks from the dead cpu. */
7305 static void migrate_live_tasks(int src_cpu)
7307 struct task_struct *p, *t;
7309 read_lock(&tasklist_lock);
7311 do_each_thread(t, p) {
7312 if (p == current)
7313 continue;
7315 if (task_cpu(p) == src_cpu)
7316 move_task_off_dead_cpu(src_cpu, p);
7317 } while_each_thread(t, p);
7319 read_unlock(&tasklist_lock);
7323 * Schedules idle task to be the next runnable task on current CPU.
7324 * It does so by boosting its priority to highest possible.
7325 * Used by CPU offline code.
7327 void sched_idle_next(void)
7329 int this_cpu = smp_processor_id();
7330 struct rq *rq = cpu_rq(this_cpu);
7331 struct task_struct *p = rq->idle;
7332 unsigned long flags;
7334 /* cpu has to be offline */
7335 BUG_ON(cpu_online(this_cpu));
7338 * Strictly not necessary since rest of the CPUs are stopped by now
7339 * and interrupts disabled on the current cpu.
7341 spin_lock_irqsave(&rq->lock, flags);
7343 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7345 update_rq_clock(rq);
7346 activate_task(rq, p, 0);
7348 spin_unlock_irqrestore(&rq->lock, flags);
7352 * Ensures that the idle task is using init_mm right before its cpu goes
7353 * offline.
7355 void idle_task_exit(void)
7357 struct mm_struct *mm = current->active_mm;
7359 BUG_ON(cpu_online(smp_processor_id()));
7361 if (mm != &init_mm)
7362 switch_mm(mm, &init_mm, current);
7363 mmdrop(mm);
7366 /* called under rq->lock with disabled interrupts */
7367 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7369 struct rq *rq = cpu_rq(dead_cpu);
7371 /* Must be exiting, otherwise would be on tasklist. */
7372 BUG_ON(!p->exit_state);
7374 /* Cannot have done final schedule yet: would have vanished. */
7375 BUG_ON(p->state == TASK_DEAD);
7377 get_task_struct(p);
7380 * Drop lock around migration; if someone else moves it,
7381 * that's OK. No task can be added to this CPU, so iteration is
7382 * fine.
7384 spin_unlock_irq(&rq->lock);
7385 move_task_off_dead_cpu(dead_cpu, p);
7386 spin_lock_irq(&rq->lock);
7388 put_task_struct(p);
7391 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7392 static void migrate_dead_tasks(unsigned int dead_cpu)
7394 struct rq *rq = cpu_rq(dead_cpu);
7395 struct task_struct *next;
7397 for ( ; ; ) {
7398 if (!rq->nr_running)
7399 break;
7400 update_rq_clock(rq);
7401 next = pick_next_task(rq);
7402 if (!next)
7403 break;
7404 next->sched_class->put_prev_task(rq, next);
7405 migrate_dead(dead_cpu, next);
7411 * remove the tasks which were accounted by rq from calc_load_tasks.
7413 static void calc_global_load_remove(struct rq *rq)
7415 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7416 rq->calc_load_active = 0;
7418 #endif /* CONFIG_HOTPLUG_CPU */
7420 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7422 static struct ctl_table sd_ctl_dir[] = {
7424 .procname = "sched_domain",
7425 .mode = 0555,
7427 {0, },
7430 static struct ctl_table sd_ctl_root[] = {
7432 .ctl_name = CTL_KERN,
7433 .procname = "kernel",
7434 .mode = 0555,
7435 .child = sd_ctl_dir,
7437 {0, },
7440 static struct ctl_table *sd_alloc_ctl_entry(int n)
7442 struct ctl_table *entry =
7443 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7445 return entry;
7448 static void sd_free_ctl_entry(struct ctl_table **tablep)
7450 struct ctl_table *entry;
7453 * In the intermediate directories, both the child directory and
7454 * procname are dynamically allocated and could fail but the mode
7455 * will always be set. In the lowest directory the names are
7456 * static strings and all have proc handlers.
7458 for (entry = *tablep; entry->mode; entry++) {
7459 if (entry->child)
7460 sd_free_ctl_entry(&entry->child);
7461 if (entry->proc_handler == NULL)
7462 kfree(entry->procname);
7465 kfree(*tablep);
7466 *tablep = NULL;
7469 static void
7470 set_table_entry(struct ctl_table *entry,
7471 const char *procname, void *data, int maxlen,
7472 mode_t mode, proc_handler *proc_handler)
7474 entry->procname = procname;
7475 entry->data = data;
7476 entry->maxlen = maxlen;
7477 entry->mode = mode;
7478 entry->proc_handler = proc_handler;
7481 static struct ctl_table *
7482 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7484 struct ctl_table *table = sd_alloc_ctl_entry(13);
7486 if (table == NULL)
7487 return NULL;
7489 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7490 sizeof(long), 0644, proc_doulongvec_minmax);
7491 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7492 sizeof(long), 0644, proc_doulongvec_minmax);
7493 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7494 sizeof(int), 0644, proc_dointvec_minmax);
7495 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7496 sizeof(int), 0644, proc_dointvec_minmax);
7497 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7498 sizeof(int), 0644, proc_dointvec_minmax);
7499 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7500 sizeof(int), 0644, proc_dointvec_minmax);
7501 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7502 sizeof(int), 0644, proc_dointvec_minmax);
7503 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7504 sizeof(int), 0644, proc_dointvec_minmax);
7505 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7506 sizeof(int), 0644, proc_dointvec_minmax);
7507 set_table_entry(&table[9], "cache_nice_tries",
7508 &sd->cache_nice_tries,
7509 sizeof(int), 0644, proc_dointvec_minmax);
7510 set_table_entry(&table[10], "flags", &sd->flags,
7511 sizeof(int), 0644, proc_dointvec_minmax);
7512 set_table_entry(&table[11], "name", sd->name,
7513 CORENAME_MAX_SIZE, 0444, proc_dostring);
7514 /* &table[12] is terminator */
7516 return table;
7519 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7521 struct ctl_table *entry, *table;
7522 struct sched_domain *sd;
7523 int domain_num = 0, i;
7524 char buf[32];
7526 for_each_domain(cpu, sd)
7527 domain_num++;
7528 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7529 if (table == NULL)
7530 return NULL;
7532 i = 0;
7533 for_each_domain(cpu, sd) {
7534 snprintf(buf, 32, "domain%d", i);
7535 entry->procname = kstrdup(buf, GFP_KERNEL);
7536 entry->mode = 0555;
7537 entry->child = sd_alloc_ctl_domain_table(sd);
7538 entry++;
7539 i++;
7541 return table;
7544 static struct ctl_table_header *sd_sysctl_header;
7545 static void register_sched_domain_sysctl(void)
7547 int i, cpu_num = num_possible_cpus();
7548 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7549 char buf[32];
7551 WARN_ON(sd_ctl_dir[0].child);
7552 sd_ctl_dir[0].child = entry;
7554 if (entry == NULL)
7555 return;
7557 for_each_possible_cpu(i) {
7558 snprintf(buf, 32, "cpu%d", i);
7559 entry->procname = kstrdup(buf, GFP_KERNEL);
7560 entry->mode = 0555;
7561 entry->child = sd_alloc_ctl_cpu_table(i);
7562 entry++;
7565 WARN_ON(sd_sysctl_header);
7566 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7569 /* may be called multiple times per register */
7570 static void unregister_sched_domain_sysctl(void)
7572 if (sd_sysctl_header)
7573 unregister_sysctl_table(sd_sysctl_header);
7574 sd_sysctl_header = NULL;
7575 if (sd_ctl_dir[0].child)
7576 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7578 #else
7579 static void register_sched_domain_sysctl(void)
7582 static void unregister_sched_domain_sysctl(void)
7585 #endif
7587 static void set_rq_online(struct rq *rq)
7589 if (!rq->online) {
7590 const struct sched_class *class;
7592 cpumask_set_cpu(rq->cpu, rq->rd->online);
7593 rq->online = 1;
7595 for_each_class(class) {
7596 if (class->rq_online)
7597 class->rq_online(rq);
7602 static void set_rq_offline(struct rq *rq)
7604 if (rq->online) {
7605 const struct sched_class *class;
7607 for_each_class(class) {
7608 if (class->rq_offline)
7609 class->rq_offline(rq);
7612 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7613 rq->online = 0;
7618 * migration_call - callback that gets triggered when a CPU is added.
7619 * Here we can start up the necessary migration thread for the new CPU.
7621 static int __cpuinit
7622 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7624 struct task_struct *p;
7625 int cpu = (long)hcpu;
7626 unsigned long flags;
7627 struct rq *rq;
7629 switch (action) {
7631 case CPU_UP_PREPARE:
7632 case CPU_UP_PREPARE_FROZEN:
7633 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7634 if (IS_ERR(p))
7635 return NOTIFY_BAD;
7636 kthread_bind(p, cpu);
7637 /* Must be high prio: stop_machine expects to yield to it. */
7638 rq = task_rq_lock(p, &flags);
7639 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7640 task_rq_unlock(rq, &flags);
7641 get_task_struct(p);
7642 cpu_rq(cpu)->migration_thread = p;
7643 rq->calc_load_update = calc_load_update;
7644 break;
7646 case CPU_ONLINE:
7647 case CPU_ONLINE_FROZEN:
7648 /* Strictly unnecessary, as first user will wake it. */
7649 wake_up_process(cpu_rq(cpu)->migration_thread);
7651 /* Update our root-domain */
7652 rq = cpu_rq(cpu);
7653 spin_lock_irqsave(&rq->lock, flags);
7654 if (rq->rd) {
7655 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7657 set_rq_online(rq);
7659 spin_unlock_irqrestore(&rq->lock, flags);
7660 break;
7662 #ifdef CONFIG_HOTPLUG_CPU
7663 case CPU_UP_CANCELED:
7664 case CPU_UP_CANCELED_FROZEN:
7665 if (!cpu_rq(cpu)->migration_thread)
7666 break;
7667 /* Unbind it from offline cpu so it can run. Fall thru. */
7668 kthread_bind(cpu_rq(cpu)->migration_thread,
7669 cpumask_any(cpu_online_mask));
7670 kthread_stop(cpu_rq(cpu)->migration_thread);
7671 put_task_struct(cpu_rq(cpu)->migration_thread);
7672 cpu_rq(cpu)->migration_thread = NULL;
7673 break;
7675 case CPU_DEAD:
7676 case CPU_DEAD_FROZEN:
7677 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7678 migrate_live_tasks(cpu);
7679 rq = cpu_rq(cpu);
7680 kthread_stop(rq->migration_thread);
7681 put_task_struct(rq->migration_thread);
7682 rq->migration_thread = NULL;
7683 /* Idle task back to normal (off runqueue, low prio) */
7684 spin_lock_irq(&rq->lock);
7685 update_rq_clock(rq);
7686 deactivate_task(rq, rq->idle, 0);
7687 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7688 rq->idle->sched_class = &idle_sched_class;
7689 migrate_dead_tasks(cpu);
7690 spin_unlock_irq(&rq->lock);
7691 cpuset_unlock();
7692 migrate_nr_uninterruptible(rq);
7693 BUG_ON(rq->nr_running != 0);
7694 calc_global_load_remove(rq);
7696 * No need to migrate the tasks: it was best-effort if
7697 * they didn't take sched_hotcpu_mutex. Just wake up
7698 * the requestors.
7700 spin_lock_irq(&rq->lock);
7701 while (!list_empty(&rq->migration_queue)) {
7702 struct migration_req *req;
7704 req = list_entry(rq->migration_queue.next,
7705 struct migration_req, list);
7706 list_del_init(&req->list);
7707 spin_unlock_irq(&rq->lock);
7708 complete(&req->done);
7709 spin_lock_irq(&rq->lock);
7711 spin_unlock_irq(&rq->lock);
7712 break;
7714 case CPU_DYING:
7715 case CPU_DYING_FROZEN:
7716 /* Update our root-domain */
7717 rq = cpu_rq(cpu);
7718 spin_lock_irqsave(&rq->lock, flags);
7719 if (rq->rd) {
7720 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7721 set_rq_offline(rq);
7723 spin_unlock_irqrestore(&rq->lock, flags);
7724 break;
7725 #endif
7727 return NOTIFY_OK;
7731 * Register at high priority so that task migration (migrate_all_tasks)
7732 * happens before everything else. This has to be lower priority than
7733 * the notifier in the perf_event subsystem, though.
7735 static struct notifier_block __cpuinitdata migration_notifier = {
7736 .notifier_call = migration_call,
7737 .priority = 10
7740 static int __init migration_init(void)
7742 void *cpu = (void *)(long)smp_processor_id();
7743 int err;
7745 /* Start one for the boot CPU: */
7746 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7747 BUG_ON(err == NOTIFY_BAD);
7748 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7749 register_cpu_notifier(&migration_notifier);
7751 return 0;
7753 early_initcall(migration_init);
7754 #endif
7756 #ifdef CONFIG_SMP
7758 #ifdef CONFIG_SCHED_DEBUG
7760 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7761 struct cpumask *groupmask)
7763 struct sched_group *group = sd->groups;
7764 char str[256];
7766 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7767 cpumask_clear(groupmask);
7769 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7771 if (!(sd->flags & SD_LOAD_BALANCE)) {
7772 printk("does not load-balance\n");
7773 if (sd->parent)
7774 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7775 " has parent");
7776 return -1;
7779 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7781 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7782 printk(KERN_ERR "ERROR: domain->span does not contain "
7783 "CPU%d\n", cpu);
7785 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7786 printk(KERN_ERR "ERROR: domain->groups does not contain"
7787 " CPU%d\n", cpu);
7790 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7791 do {
7792 if (!group) {
7793 printk("\n");
7794 printk(KERN_ERR "ERROR: group is NULL\n");
7795 break;
7798 if (!group->cpu_power) {
7799 printk(KERN_CONT "\n");
7800 printk(KERN_ERR "ERROR: domain->cpu_power not "
7801 "set\n");
7802 break;
7805 if (!cpumask_weight(sched_group_cpus(group))) {
7806 printk(KERN_CONT "\n");
7807 printk(KERN_ERR "ERROR: empty group\n");
7808 break;
7811 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7812 printk(KERN_CONT "\n");
7813 printk(KERN_ERR "ERROR: repeated CPUs\n");
7814 break;
7817 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7819 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7821 printk(KERN_CONT " %s", str);
7822 if (group->cpu_power != SCHED_LOAD_SCALE) {
7823 printk(KERN_CONT " (cpu_power = %d)",
7824 group->cpu_power);
7827 group = group->next;
7828 } while (group != sd->groups);
7829 printk(KERN_CONT "\n");
7831 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7832 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7834 if (sd->parent &&
7835 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7836 printk(KERN_ERR "ERROR: parent span is not a superset "
7837 "of domain->span\n");
7838 return 0;
7841 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7843 cpumask_var_t groupmask;
7844 int level = 0;
7846 if (!sd) {
7847 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7848 return;
7851 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7853 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7854 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7855 return;
7858 for (;;) {
7859 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7860 break;
7861 level++;
7862 sd = sd->parent;
7863 if (!sd)
7864 break;
7866 free_cpumask_var(groupmask);
7868 #else /* !CONFIG_SCHED_DEBUG */
7869 # define sched_domain_debug(sd, cpu) do { } while (0)
7870 #endif /* CONFIG_SCHED_DEBUG */
7872 static int sd_degenerate(struct sched_domain *sd)
7874 if (cpumask_weight(sched_domain_span(sd)) == 1)
7875 return 1;
7877 /* Following flags need at least 2 groups */
7878 if (sd->flags & (SD_LOAD_BALANCE |
7879 SD_BALANCE_NEWIDLE |
7880 SD_BALANCE_FORK |
7881 SD_BALANCE_EXEC |
7882 SD_SHARE_CPUPOWER |
7883 SD_SHARE_PKG_RESOURCES)) {
7884 if (sd->groups != sd->groups->next)
7885 return 0;
7888 /* Following flags don't use groups */
7889 if (sd->flags & (SD_WAKE_AFFINE))
7890 return 0;
7892 return 1;
7895 static int
7896 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7898 unsigned long cflags = sd->flags, pflags = parent->flags;
7900 if (sd_degenerate(parent))
7901 return 1;
7903 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7904 return 0;
7906 /* Flags needing groups don't count if only 1 group in parent */
7907 if (parent->groups == parent->groups->next) {
7908 pflags &= ~(SD_LOAD_BALANCE |
7909 SD_BALANCE_NEWIDLE |
7910 SD_BALANCE_FORK |
7911 SD_BALANCE_EXEC |
7912 SD_SHARE_CPUPOWER |
7913 SD_SHARE_PKG_RESOURCES);
7914 if (nr_node_ids == 1)
7915 pflags &= ~SD_SERIALIZE;
7917 if (~cflags & pflags)
7918 return 0;
7920 return 1;
7923 static void free_rootdomain(struct root_domain *rd)
7925 synchronize_sched();
7927 cpupri_cleanup(&rd->cpupri);
7929 free_cpumask_var(rd->rto_mask);
7930 free_cpumask_var(rd->online);
7931 free_cpumask_var(rd->span);
7932 kfree(rd);
7935 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7937 struct root_domain *old_rd = NULL;
7938 unsigned long flags;
7940 spin_lock_irqsave(&rq->lock, flags);
7942 if (rq->rd) {
7943 old_rd = rq->rd;
7945 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7946 set_rq_offline(rq);
7948 cpumask_clear_cpu(rq->cpu, old_rd->span);
7951 * If we dont want to free the old_rt yet then
7952 * set old_rd to NULL to skip the freeing later
7953 * in this function:
7955 if (!atomic_dec_and_test(&old_rd->refcount))
7956 old_rd = NULL;
7959 atomic_inc(&rd->refcount);
7960 rq->rd = rd;
7962 cpumask_set_cpu(rq->cpu, rd->span);
7963 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
7964 set_rq_online(rq);
7966 spin_unlock_irqrestore(&rq->lock, flags);
7968 if (old_rd)
7969 free_rootdomain(old_rd);
7972 static int init_rootdomain(struct root_domain *rd, bool bootmem)
7974 gfp_t gfp = GFP_KERNEL;
7976 memset(rd, 0, sizeof(*rd));
7978 if (bootmem)
7979 gfp = GFP_NOWAIT;
7981 if (!alloc_cpumask_var(&rd->span, gfp))
7982 goto out;
7983 if (!alloc_cpumask_var(&rd->online, gfp))
7984 goto free_span;
7985 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7986 goto free_online;
7988 if (cpupri_init(&rd->cpupri, bootmem) != 0)
7989 goto free_rto_mask;
7990 return 0;
7992 free_rto_mask:
7993 free_cpumask_var(rd->rto_mask);
7994 free_online:
7995 free_cpumask_var(rd->online);
7996 free_span:
7997 free_cpumask_var(rd->span);
7998 out:
7999 return -ENOMEM;
8002 static void init_defrootdomain(void)
8004 init_rootdomain(&def_root_domain, true);
8006 atomic_set(&def_root_domain.refcount, 1);
8009 static struct root_domain *alloc_rootdomain(void)
8011 struct root_domain *rd;
8013 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8014 if (!rd)
8015 return NULL;
8017 if (init_rootdomain(rd, false) != 0) {
8018 kfree(rd);
8019 return NULL;
8022 return rd;
8026 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
8027 * hold the hotplug lock.
8029 static void
8030 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
8032 struct rq *rq = cpu_rq(cpu);
8033 struct sched_domain *tmp;
8035 /* Remove the sched domains which do not contribute to scheduling. */
8036 for (tmp = sd; tmp; ) {
8037 struct sched_domain *parent = tmp->parent;
8038 if (!parent)
8039 break;
8041 if (sd_parent_degenerate(tmp, parent)) {
8042 tmp->parent = parent->parent;
8043 if (parent->parent)
8044 parent->parent->child = tmp;
8045 } else
8046 tmp = tmp->parent;
8049 if (sd && sd_degenerate(sd)) {
8050 sd = sd->parent;
8051 if (sd)
8052 sd->child = NULL;
8055 sched_domain_debug(sd, cpu);
8057 rq_attach_root(rq, rd);
8058 rcu_assign_pointer(rq->sd, sd);
8061 /* cpus with isolated domains */
8062 static cpumask_var_t cpu_isolated_map;
8064 /* Setup the mask of cpus configured for isolated domains */
8065 static int __init isolated_cpu_setup(char *str)
8067 alloc_bootmem_cpumask_var(&cpu_isolated_map);
8068 cpulist_parse(str, cpu_isolated_map);
8069 return 1;
8072 __setup("isolcpus=", isolated_cpu_setup);
8075 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8076 * to a function which identifies what group(along with sched group) a CPU
8077 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8078 * (due to the fact that we keep track of groups covered with a struct cpumask).
8080 * init_sched_build_groups will build a circular linked list of the groups
8081 * covered by the given span, and will set each group's ->cpumask correctly,
8082 * and ->cpu_power to 0.
8084 static void
8085 init_sched_build_groups(const struct cpumask *span,
8086 const struct cpumask *cpu_map,
8087 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8088 struct sched_group **sg,
8089 struct cpumask *tmpmask),
8090 struct cpumask *covered, struct cpumask *tmpmask)
8092 struct sched_group *first = NULL, *last = NULL;
8093 int i;
8095 cpumask_clear(covered);
8097 for_each_cpu(i, span) {
8098 struct sched_group *sg;
8099 int group = group_fn(i, cpu_map, &sg, tmpmask);
8100 int j;
8102 if (cpumask_test_cpu(i, covered))
8103 continue;
8105 cpumask_clear(sched_group_cpus(sg));
8106 sg->cpu_power = 0;
8108 for_each_cpu(j, span) {
8109 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
8110 continue;
8112 cpumask_set_cpu(j, covered);
8113 cpumask_set_cpu(j, sched_group_cpus(sg));
8115 if (!first)
8116 first = sg;
8117 if (last)
8118 last->next = sg;
8119 last = sg;
8121 last->next = first;
8124 #define SD_NODES_PER_DOMAIN 16
8126 #ifdef CONFIG_NUMA
8129 * find_next_best_node - find the next node to include in a sched_domain
8130 * @node: node whose sched_domain we're building
8131 * @used_nodes: nodes already in the sched_domain
8133 * Find the next node to include in a given scheduling domain. Simply
8134 * finds the closest node not already in the @used_nodes map.
8136 * Should use nodemask_t.
8138 static int find_next_best_node(int node, nodemask_t *used_nodes)
8140 int i, n, val, min_val, best_node = 0;
8142 min_val = INT_MAX;
8144 for (i = 0; i < nr_node_ids; i++) {
8145 /* Start at @node */
8146 n = (node + i) % nr_node_ids;
8148 if (!nr_cpus_node(n))
8149 continue;
8151 /* Skip already used nodes */
8152 if (node_isset(n, *used_nodes))
8153 continue;
8155 /* Simple min distance search */
8156 val = node_distance(node, n);
8158 if (val < min_val) {
8159 min_val = val;
8160 best_node = n;
8164 node_set(best_node, *used_nodes);
8165 return best_node;
8169 * sched_domain_node_span - get a cpumask for a node's sched_domain
8170 * @node: node whose cpumask we're constructing
8171 * @span: resulting cpumask
8173 * Given a node, construct a good cpumask for its sched_domain to span. It
8174 * should be one that prevents unnecessary balancing, but also spreads tasks
8175 * out optimally.
8177 static void sched_domain_node_span(int node, struct cpumask *span)
8179 nodemask_t used_nodes;
8180 int i;
8182 cpumask_clear(span);
8183 nodes_clear(used_nodes);
8185 cpumask_or(span, span, cpumask_of_node(node));
8186 node_set(node, used_nodes);
8188 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8189 int next_node = find_next_best_node(node, &used_nodes);
8191 cpumask_or(span, span, cpumask_of_node(next_node));
8194 #endif /* CONFIG_NUMA */
8196 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8199 * The cpus mask in sched_group and sched_domain hangs off the end.
8201 * ( See the the comments in include/linux/sched.h:struct sched_group
8202 * and struct sched_domain. )
8204 struct static_sched_group {
8205 struct sched_group sg;
8206 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8209 struct static_sched_domain {
8210 struct sched_domain sd;
8211 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8214 struct s_data {
8215 #ifdef CONFIG_NUMA
8216 int sd_allnodes;
8217 cpumask_var_t domainspan;
8218 cpumask_var_t covered;
8219 cpumask_var_t notcovered;
8220 #endif
8221 cpumask_var_t nodemask;
8222 cpumask_var_t this_sibling_map;
8223 cpumask_var_t this_core_map;
8224 cpumask_var_t send_covered;
8225 cpumask_var_t tmpmask;
8226 struct sched_group **sched_group_nodes;
8227 struct root_domain *rd;
8230 enum s_alloc {
8231 sa_sched_groups = 0,
8232 sa_rootdomain,
8233 sa_tmpmask,
8234 sa_send_covered,
8235 sa_this_core_map,
8236 sa_this_sibling_map,
8237 sa_nodemask,
8238 sa_sched_group_nodes,
8239 #ifdef CONFIG_NUMA
8240 sa_notcovered,
8241 sa_covered,
8242 sa_domainspan,
8243 #endif
8244 sa_none,
8248 * SMT sched-domains:
8250 #ifdef CONFIG_SCHED_SMT
8251 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8252 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8254 static int
8255 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8256 struct sched_group **sg, struct cpumask *unused)
8258 if (sg)
8259 *sg = &per_cpu(sched_group_cpus, cpu).sg;
8260 return cpu;
8262 #endif /* CONFIG_SCHED_SMT */
8265 * multi-core sched-domains:
8267 #ifdef CONFIG_SCHED_MC
8268 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8269 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8270 #endif /* CONFIG_SCHED_MC */
8272 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8273 static int
8274 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8275 struct sched_group **sg, struct cpumask *mask)
8277 int group;
8279 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8280 group = cpumask_first(mask);
8281 if (sg)
8282 *sg = &per_cpu(sched_group_core, group).sg;
8283 return group;
8285 #elif defined(CONFIG_SCHED_MC)
8286 static int
8287 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8288 struct sched_group **sg, struct cpumask *unused)
8290 if (sg)
8291 *sg = &per_cpu(sched_group_core, cpu).sg;
8292 return cpu;
8294 #endif
8296 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8297 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8299 static int
8300 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8301 struct sched_group **sg, struct cpumask *mask)
8303 int group;
8304 #ifdef CONFIG_SCHED_MC
8305 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8306 group = cpumask_first(mask);
8307 #elif defined(CONFIG_SCHED_SMT)
8308 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8309 group = cpumask_first(mask);
8310 #else
8311 group = cpu;
8312 #endif
8313 if (sg)
8314 *sg = &per_cpu(sched_group_phys, group).sg;
8315 return group;
8318 #ifdef CONFIG_NUMA
8320 * The init_sched_build_groups can't handle what we want to do with node
8321 * groups, so roll our own. Now each node has its own list of groups which
8322 * gets dynamically allocated.
8324 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8325 static struct sched_group ***sched_group_nodes_bycpu;
8327 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8328 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8330 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8331 struct sched_group **sg,
8332 struct cpumask *nodemask)
8334 int group;
8336 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8337 group = cpumask_first(nodemask);
8339 if (sg)
8340 *sg = &per_cpu(sched_group_allnodes, group).sg;
8341 return group;
8344 static void init_numa_sched_groups_power(struct sched_group *group_head)
8346 struct sched_group *sg = group_head;
8347 int j;
8349 if (!sg)
8350 return;
8351 do {
8352 for_each_cpu(j, sched_group_cpus(sg)) {
8353 struct sched_domain *sd;
8355 sd = &per_cpu(phys_domains, j).sd;
8356 if (j != group_first_cpu(sd->groups)) {
8358 * Only add "power" once for each
8359 * physical package.
8361 continue;
8364 sg->cpu_power += sd->groups->cpu_power;
8366 sg = sg->next;
8367 } while (sg != group_head);
8370 static int build_numa_sched_groups(struct s_data *d,
8371 const struct cpumask *cpu_map, int num)
8373 struct sched_domain *sd;
8374 struct sched_group *sg, *prev;
8375 int n, j;
8377 cpumask_clear(d->covered);
8378 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8379 if (cpumask_empty(d->nodemask)) {
8380 d->sched_group_nodes[num] = NULL;
8381 goto out;
8384 sched_domain_node_span(num, d->domainspan);
8385 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8387 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8388 GFP_KERNEL, num);
8389 if (!sg) {
8390 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8391 num);
8392 return -ENOMEM;
8394 d->sched_group_nodes[num] = sg;
8396 for_each_cpu(j, d->nodemask) {
8397 sd = &per_cpu(node_domains, j).sd;
8398 sd->groups = sg;
8401 sg->cpu_power = 0;
8402 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8403 sg->next = sg;
8404 cpumask_or(d->covered, d->covered, d->nodemask);
8406 prev = sg;
8407 for (j = 0; j < nr_node_ids; j++) {
8408 n = (num + j) % nr_node_ids;
8409 cpumask_complement(d->notcovered, d->covered);
8410 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8411 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8412 if (cpumask_empty(d->tmpmask))
8413 break;
8414 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8415 if (cpumask_empty(d->tmpmask))
8416 continue;
8417 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8418 GFP_KERNEL, num);
8419 if (!sg) {
8420 printk(KERN_WARNING
8421 "Can not alloc domain group for node %d\n", j);
8422 return -ENOMEM;
8424 sg->cpu_power = 0;
8425 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8426 sg->next = prev->next;
8427 cpumask_or(d->covered, d->covered, d->tmpmask);
8428 prev->next = sg;
8429 prev = sg;
8431 out:
8432 return 0;
8434 #endif /* CONFIG_NUMA */
8436 #ifdef CONFIG_NUMA
8437 /* Free memory allocated for various sched_group structures */
8438 static void free_sched_groups(const struct cpumask *cpu_map,
8439 struct cpumask *nodemask)
8441 int cpu, i;
8443 for_each_cpu(cpu, cpu_map) {
8444 struct sched_group **sched_group_nodes
8445 = sched_group_nodes_bycpu[cpu];
8447 if (!sched_group_nodes)
8448 continue;
8450 for (i = 0; i < nr_node_ids; i++) {
8451 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8453 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8454 if (cpumask_empty(nodemask))
8455 continue;
8457 if (sg == NULL)
8458 continue;
8459 sg = sg->next;
8460 next_sg:
8461 oldsg = sg;
8462 sg = sg->next;
8463 kfree(oldsg);
8464 if (oldsg != sched_group_nodes[i])
8465 goto next_sg;
8467 kfree(sched_group_nodes);
8468 sched_group_nodes_bycpu[cpu] = NULL;
8471 #else /* !CONFIG_NUMA */
8472 static void free_sched_groups(const struct cpumask *cpu_map,
8473 struct cpumask *nodemask)
8476 #endif /* CONFIG_NUMA */
8479 * Initialize sched groups cpu_power.
8481 * cpu_power indicates the capacity of sched group, which is used while
8482 * distributing the load between different sched groups in a sched domain.
8483 * Typically cpu_power for all the groups in a sched domain will be same unless
8484 * there are asymmetries in the topology. If there are asymmetries, group
8485 * having more cpu_power will pickup more load compared to the group having
8486 * less cpu_power.
8488 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8490 struct sched_domain *child;
8491 struct sched_group *group;
8492 long power;
8493 int weight;
8495 WARN_ON(!sd || !sd->groups);
8497 if (cpu != group_first_cpu(sd->groups))
8498 return;
8500 child = sd->child;
8502 sd->groups->cpu_power = 0;
8504 if (!child) {
8505 power = SCHED_LOAD_SCALE;
8506 weight = cpumask_weight(sched_domain_span(sd));
8508 * SMT siblings share the power of a single core.
8509 * Usually multiple threads get a better yield out of
8510 * that one core than a single thread would have,
8511 * reflect that in sd->smt_gain.
8513 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8514 power *= sd->smt_gain;
8515 power /= weight;
8516 power >>= SCHED_LOAD_SHIFT;
8518 sd->groups->cpu_power += power;
8519 return;
8523 * Add cpu_power of each child group to this groups cpu_power.
8525 group = child->groups;
8526 do {
8527 sd->groups->cpu_power += group->cpu_power;
8528 group = group->next;
8529 } while (group != child->groups);
8533 * Initializers for schedule domains
8534 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8537 #ifdef CONFIG_SCHED_DEBUG
8538 # define SD_INIT_NAME(sd, type) sd->name = #type
8539 #else
8540 # define SD_INIT_NAME(sd, type) do { } while (0)
8541 #endif
8543 #define SD_INIT(sd, type) sd_init_##type(sd)
8545 #define SD_INIT_FUNC(type) \
8546 static noinline void sd_init_##type(struct sched_domain *sd) \
8548 memset(sd, 0, sizeof(*sd)); \
8549 *sd = SD_##type##_INIT; \
8550 sd->level = SD_LV_##type; \
8551 SD_INIT_NAME(sd, type); \
8554 SD_INIT_FUNC(CPU)
8555 #ifdef CONFIG_NUMA
8556 SD_INIT_FUNC(ALLNODES)
8557 SD_INIT_FUNC(NODE)
8558 #endif
8559 #ifdef CONFIG_SCHED_SMT
8560 SD_INIT_FUNC(SIBLING)
8561 #endif
8562 #ifdef CONFIG_SCHED_MC
8563 SD_INIT_FUNC(MC)
8564 #endif
8566 static int default_relax_domain_level = -1;
8568 static int __init setup_relax_domain_level(char *str)
8570 unsigned long val;
8572 val = simple_strtoul(str, NULL, 0);
8573 if (val < SD_LV_MAX)
8574 default_relax_domain_level = val;
8576 return 1;
8578 __setup("relax_domain_level=", setup_relax_domain_level);
8580 static void set_domain_attribute(struct sched_domain *sd,
8581 struct sched_domain_attr *attr)
8583 int request;
8585 if (!attr || attr->relax_domain_level < 0) {
8586 if (default_relax_domain_level < 0)
8587 return;
8588 else
8589 request = default_relax_domain_level;
8590 } else
8591 request = attr->relax_domain_level;
8592 if (request < sd->level) {
8593 /* turn off idle balance on this domain */
8594 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8595 } else {
8596 /* turn on idle balance on this domain */
8597 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8601 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8602 const struct cpumask *cpu_map)
8604 switch (what) {
8605 case sa_sched_groups:
8606 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8607 d->sched_group_nodes = NULL;
8608 case sa_rootdomain:
8609 free_rootdomain(d->rd); /* fall through */
8610 case sa_tmpmask:
8611 free_cpumask_var(d->tmpmask); /* fall through */
8612 case sa_send_covered:
8613 free_cpumask_var(d->send_covered); /* fall through */
8614 case sa_this_core_map:
8615 free_cpumask_var(d->this_core_map); /* fall through */
8616 case sa_this_sibling_map:
8617 free_cpumask_var(d->this_sibling_map); /* fall through */
8618 case sa_nodemask:
8619 free_cpumask_var(d->nodemask); /* fall through */
8620 case sa_sched_group_nodes:
8621 #ifdef CONFIG_NUMA
8622 kfree(d->sched_group_nodes); /* fall through */
8623 case sa_notcovered:
8624 free_cpumask_var(d->notcovered); /* fall through */
8625 case sa_covered:
8626 free_cpumask_var(d->covered); /* fall through */
8627 case sa_domainspan:
8628 free_cpumask_var(d->domainspan); /* fall through */
8629 #endif
8630 case sa_none:
8631 break;
8635 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8636 const struct cpumask *cpu_map)
8638 #ifdef CONFIG_NUMA
8639 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8640 return sa_none;
8641 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8642 return sa_domainspan;
8643 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8644 return sa_covered;
8645 /* Allocate the per-node list of sched groups */
8646 d->sched_group_nodes = kcalloc(nr_node_ids,
8647 sizeof(struct sched_group *), GFP_KERNEL);
8648 if (!d->sched_group_nodes) {
8649 printk(KERN_WARNING "Can not alloc sched group node list\n");
8650 return sa_notcovered;
8652 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8653 #endif
8654 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8655 return sa_sched_group_nodes;
8656 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8657 return sa_nodemask;
8658 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8659 return sa_this_sibling_map;
8660 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8661 return sa_this_core_map;
8662 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8663 return sa_send_covered;
8664 d->rd = alloc_rootdomain();
8665 if (!d->rd) {
8666 printk(KERN_WARNING "Cannot alloc root domain\n");
8667 return sa_tmpmask;
8669 return sa_rootdomain;
8672 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8673 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8675 struct sched_domain *sd = NULL;
8676 #ifdef CONFIG_NUMA
8677 struct sched_domain *parent;
8679 d->sd_allnodes = 0;
8680 if (cpumask_weight(cpu_map) >
8681 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8682 sd = &per_cpu(allnodes_domains, i).sd;
8683 SD_INIT(sd, ALLNODES);
8684 set_domain_attribute(sd, attr);
8685 cpumask_copy(sched_domain_span(sd), cpu_map);
8686 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8687 d->sd_allnodes = 1;
8689 parent = sd;
8691 sd = &per_cpu(node_domains, i).sd;
8692 SD_INIT(sd, NODE);
8693 set_domain_attribute(sd, attr);
8694 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8695 sd->parent = parent;
8696 if (parent)
8697 parent->child = sd;
8698 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
8699 #endif
8700 return sd;
8703 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8704 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8705 struct sched_domain *parent, int i)
8707 struct sched_domain *sd;
8708 sd = &per_cpu(phys_domains, i).sd;
8709 SD_INIT(sd, CPU);
8710 set_domain_attribute(sd, attr);
8711 cpumask_copy(sched_domain_span(sd), d->nodemask);
8712 sd->parent = parent;
8713 if (parent)
8714 parent->child = sd;
8715 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8716 return sd;
8719 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8720 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8721 struct sched_domain *parent, int i)
8723 struct sched_domain *sd = parent;
8724 #ifdef CONFIG_SCHED_MC
8725 sd = &per_cpu(core_domains, i).sd;
8726 SD_INIT(sd, MC);
8727 set_domain_attribute(sd, attr);
8728 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8729 sd->parent = parent;
8730 parent->child = sd;
8731 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8732 #endif
8733 return sd;
8736 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8737 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8738 struct sched_domain *parent, int i)
8740 struct sched_domain *sd = parent;
8741 #ifdef CONFIG_SCHED_SMT
8742 sd = &per_cpu(cpu_domains, i).sd;
8743 SD_INIT(sd, SIBLING);
8744 set_domain_attribute(sd, attr);
8745 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8746 sd->parent = parent;
8747 parent->child = sd;
8748 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
8749 #endif
8750 return sd;
8753 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8754 const struct cpumask *cpu_map, int cpu)
8756 switch (l) {
8757 #ifdef CONFIG_SCHED_SMT
8758 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8759 cpumask_and(d->this_sibling_map, cpu_map,
8760 topology_thread_cpumask(cpu));
8761 if (cpu == cpumask_first(d->this_sibling_map))
8762 init_sched_build_groups(d->this_sibling_map, cpu_map,
8763 &cpu_to_cpu_group,
8764 d->send_covered, d->tmpmask);
8765 break;
8766 #endif
8767 #ifdef CONFIG_SCHED_MC
8768 case SD_LV_MC: /* set up multi-core groups */
8769 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8770 if (cpu == cpumask_first(d->this_core_map))
8771 init_sched_build_groups(d->this_core_map, cpu_map,
8772 &cpu_to_core_group,
8773 d->send_covered, d->tmpmask);
8774 break;
8775 #endif
8776 case SD_LV_CPU: /* set up physical groups */
8777 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8778 if (!cpumask_empty(d->nodemask))
8779 init_sched_build_groups(d->nodemask, cpu_map,
8780 &cpu_to_phys_group,
8781 d->send_covered, d->tmpmask);
8782 break;
8783 #ifdef CONFIG_NUMA
8784 case SD_LV_ALLNODES:
8785 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8786 d->send_covered, d->tmpmask);
8787 break;
8788 #endif
8789 default:
8790 break;
8795 * Build sched domains for a given set of cpus and attach the sched domains
8796 * to the individual cpus
8798 static int __build_sched_domains(const struct cpumask *cpu_map,
8799 struct sched_domain_attr *attr)
8801 enum s_alloc alloc_state = sa_none;
8802 struct s_data d;
8803 struct sched_domain *sd;
8804 int i;
8805 #ifdef CONFIG_NUMA
8806 d.sd_allnodes = 0;
8807 #endif
8809 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8810 if (alloc_state != sa_rootdomain)
8811 goto error;
8812 alloc_state = sa_sched_groups;
8815 * Set up domains for cpus specified by the cpu_map.
8817 for_each_cpu(i, cpu_map) {
8818 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8819 cpu_map);
8821 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8822 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8823 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8824 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
8827 for_each_cpu(i, cpu_map) {
8828 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8829 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
8832 /* Set up physical groups */
8833 for (i = 0; i < nr_node_ids; i++)
8834 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8836 #ifdef CONFIG_NUMA
8837 /* Set up node groups */
8838 if (d.sd_allnodes)
8839 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8841 for (i = 0; i < nr_node_ids; i++)
8842 if (build_numa_sched_groups(&d, cpu_map, i))
8843 goto error;
8844 #endif
8846 /* Calculate CPU power for physical packages and nodes */
8847 #ifdef CONFIG_SCHED_SMT
8848 for_each_cpu(i, cpu_map) {
8849 sd = &per_cpu(cpu_domains, i).sd;
8850 init_sched_groups_power(i, sd);
8852 #endif
8853 #ifdef CONFIG_SCHED_MC
8854 for_each_cpu(i, cpu_map) {
8855 sd = &per_cpu(core_domains, i).sd;
8856 init_sched_groups_power(i, sd);
8858 #endif
8860 for_each_cpu(i, cpu_map) {
8861 sd = &per_cpu(phys_domains, i).sd;
8862 init_sched_groups_power(i, sd);
8865 #ifdef CONFIG_NUMA
8866 for (i = 0; i < nr_node_ids; i++)
8867 init_numa_sched_groups_power(d.sched_group_nodes[i]);
8869 if (d.sd_allnodes) {
8870 struct sched_group *sg;
8872 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8873 d.tmpmask);
8874 init_numa_sched_groups_power(sg);
8876 #endif
8878 /* Attach the domains */
8879 for_each_cpu(i, cpu_map) {
8880 #ifdef CONFIG_SCHED_SMT
8881 sd = &per_cpu(cpu_domains, i).sd;
8882 #elif defined(CONFIG_SCHED_MC)
8883 sd = &per_cpu(core_domains, i).sd;
8884 #else
8885 sd = &per_cpu(phys_domains, i).sd;
8886 #endif
8887 cpu_attach_domain(sd, d.rd, i);
8890 d.sched_group_nodes = NULL; /* don't free this we still need it */
8891 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8892 return 0;
8894 error:
8895 __free_domain_allocs(&d, alloc_state, cpu_map);
8896 return -ENOMEM;
8899 static int build_sched_domains(const struct cpumask *cpu_map)
8901 return __build_sched_domains(cpu_map, NULL);
8904 static struct cpumask *doms_cur; /* current sched domains */
8905 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8906 static struct sched_domain_attr *dattr_cur;
8907 /* attribues of custom domains in 'doms_cur' */
8910 * Special case: If a kmalloc of a doms_cur partition (array of
8911 * cpumask) fails, then fallback to a single sched domain,
8912 * as determined by the single cpumask fallback_doms.
8914 static cpumask_var_t fallback_doms;
8917 * arch_update_cpu_topology lets virtualized architectures update the
8918 * cpu core maps. It is supposed to return 1 if the topology changed
8919 * or 0 if it stayed the same.
8921 int __attribute__((weak)) arch_update_cpu_topology(void)
8923 return 0;
8927 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8928 * For now this just excludes isolated cpus, but could be used to
8929 * exclude other special cases in the future.
8931 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8933 int err;
8935 arch_update_cpu_topology();
8936 ndoms_cur = 1;
8937 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
8938 if (!doms_cur)
8939 doms_cur = fallback_doms;
8940 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8941 dattr_cur = NULL;
8942 err = build_sched_domains(doms_cur);
8943 register_sched_domain_sysctl();
8945 return err;
8948 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8949 struct cpumask *tmpmask)
8951 free_sched_groups(cpu_map, tmpmask);
8955 * Detach sched domains from a group of cpus specified in cpu_map
8956 * These cpus will now be attached to the NULL domain
8958 static void detach_destroy_domains(const struct cpumask *cpu_map)
8960 /* Save because hotplug lock held. */
8961 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8962 int i;
8964 for_each_cpu(i, cpu_map)
8965 cpu_attach_domain(NULL, &def_root_domain, i);
8966 synchronize_sched();
8967 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8970 /* handle null as "default" */
8971 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8972 struct sched_domain_attr *new, int idx_new)
8974 struct sched_domain_attr tmp;
8976 /* fast path */
8977 if (!new && !cur)
8978 return 1;
8980 tmp = SD_ATTR_INIT;
8981 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8982 new ? (new + idx_new) : &tmp,
8983 sizeof(struct sched_domain_attr));
8987 * Partition sched domains as specified by the 'ndoms_new'
8988 * cpumasks in the array doms_new[] of cpumasks. This compares
8989 * doms_new[] to the current sched domain partitioning, doms_cur[].
8990 * It destroys each deleted domain and builds each new domain.
8992 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8993 * The masks don't intersect (don't overlap.) We should setup one
8994 * sched domain for each mask. CPUs not in any of the cpumasks will
8995 * not be load balanced. If the same cpumask appears both in the
8996 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8997 * it as it is.
8999 * The passed in 'doms_new' should be kmalloc'd. This routine takes
9000 * ownership of it and will kfree it when done with it. If the caller
9001 * failed the kmalloc call, then it can pass in doms_new == NULL &&
9002 * ndoms_new == 1, and partition_sched_domains() will fallback to
9003 * the single partition 'fallback_doms', it also forces the domains
9004 * to be rebuilt.
9006 * If doms_new == NULL it will be replaced with cpu_online_mask.
9007 * ndoms_new == 0 is a special case for destroying existing domains,
9008 * and it will not create the default domain.
9010 * Call with hotplug lock held
9012 /* FIXME: Change to struct cpumask *doms_new[] */
9013 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
9014 struct sched_domain_attr *dattr_new)
9016 int i, j, n;
9017 int new_topology;
9019 mutex_lock(&sched_domains_mutex);
9021 /* always unregister in case we don't destroy any domains */
9022 unregister_sched_domain_sysctl();
9024 /* Let architecture update cpu core mappings. */
9025 new_topology = arch_update_cpu_topology();
9027 n = doms_new ? ndoms_new : 0;
9029 /* Destroy deleted domains */
9030 for (i = 0; i < ndoms_cur; i++) {
9031 for (j = 0; j < n && !new_topology; j++) {
9032 if (cpumask_equal(&doms_cur[i], &doms_new[j])
9033 && dattrs_equal(dattr_cur, i, dattr_new, j))
9034 goto match1;
9036 /* no match - a current sched domain not in new doms_new[] */
9037 detach_destroy_domains(doms_cur + i);
9038 match1:
9042 if (doms_new == NULL) {
9043 ndoms_cur = 0;
9044 doms_new = fallback_doms;
9045 cpumask_andnot(&doms_new[0], cpu_active_mask, cpu_isolated_map);
9046 WARN_ON_ONCE(dattr_new);
9049 /* Build new domains */
9050 for (i = 0; i < ndoms_new; i++) {
9051 for (j = 0; j < ndoms_cur && !new_topology; j++) {
9052 if (cpumask_equal(&doms_new[i], &doms_cur[j])
9053 && dattrs_equal(dattr_new, i, dattr_cur, j))
9054 goto match2;
9056 /* no match - add a new doms_new */
9057 __build_sched_domains(doms_new + i,
9058 dattr_new ? dattr_new + i : NULL);
9059 match2:
9063 /* Remember the new sched domains */
9064 if (doms_cur != fallback_doms)
9065 kfree(doms_cur);
9066 kfree(dattr_cur); /* kfree(NULL) is safe */
9067 doms_cur = doms_new;
9068 dattr_cur = dattr_new;
9069 ndoms_cur = ndoms_new;
9071 register_sched_domain_sysctl();
9073 mutex_unlock(&sched_domains_mutex);
9076 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9077 static void arch_reinit_sched_domains(void)
9079 get_online_cpus();
9081 /* Destroy domains first to force the rebuild */
9082 partition_sched_domains(0, NULL, NULL);
9084 rebuild_sched_domains();
9085 put_online_cpus();
9088 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9090 unsigned int level = 0;
9092 if (sscanf(buf, "%u", &level) != 1)
9093 return -EINVAL;
9096 * level is always be positive so don't check for
9097 * level < POWERSAVINGS_BALANCE_NONE which is 0
9098 * What happens on 0 or 1 byte write,
9099 * need to check for count as well?
9102 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9103 return -EINVAL;
9105 if (smt)
9106 sched_smt_power_savings = level;
9107 else
9108 sched_mc_power_savings = level;
9110 arch_reinit_sched_domains();
9112 return count;
9115 #ifdef CONFIG_SCHED_MC
9116 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9117 char *page)
9119 return sprintf(page, "%u\n", sched_mc_power_savings);
9121 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9122 const char *buf, size_t count)
9124 return sched_power_savings_store(buf, count, 0);
9126 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9127 sched_mc_power_savings_show,
9128 sched_mc_power_savings_store);
9129 #endif
9131 #ifdef CONFIG_SCHED_SMT
9132 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9133 char *page)
9135 return sprintf(page, "%u\n", sched_smt_power_savings);
9137 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9138 const char *buf, size_t count)
9140 return sched_power_savings_store(buf, count, 1);
9142 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9143 sched_smt_power_savings_show,
9144 sched_smt_power_savings_store);
9145 #endif
9147 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
9149 int err = 0;
9151 #ifdef CONFIG_SCHED_SMT
9152 if (smt_capable())
9153 err = sysfs_create_file(&cls->kset.kobj,
9154 &attr_sched_smt_power_savings.attr);
9155 #endif
9156 #ifdef CONFIG_SCHED_MC
9157 if (!err && mc_capable())
9158 err = sysfs_create_file(&cls->kset.kobj,
9159 &attr_sched_mc_power_savings.attr);
9160 #endif
9161 return err;
9163 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9165 #ifndef CONFIG_CPUSETS
9167 * Add online and remove offline CPUs from the scheduler domains.
9168 * When cpusets are enabled they take over this function.
9170 static int update_sched_domains(struct notifier_block *nfb,
9171 unsigned long action, void *hcpu)
9173 switch (action) {
9174 case CPU_ONLINE:
9175 case CPU_ONLINE_FROZEN:
9176 case CPU_DOWN_PREPARE:
9177 case CPU_DOWN_PREPARE_FROZEN:
9178 case CPU_DOWN_FAILED:
9179 case CPU_DOWN_FAILED_FROZEN:
9180 partition_sched_domains(1, NULL, NULL);
9181 return NOTIFY_OK;
9183 default:
9184 return NOTIFY_DONE;
9187 #endif
9189 static int update_runtime(struct notifier_block *nfb,
9190 unsigned long action, void *hcpu)
9192 int cpu = (int)(long)hcpu;
9194 switch (action) {
9195 case CPU_DOWN_PREPARE:
9196 case CPU_DOWN_PREPARE_FROZEN:
9197 disable_runtime(cpu_rq(cpu));
9198 return NOTIFY_OK;
9200 case CPU_DOWN_FAILED:
9201 case CPU_DOWN_FAILED_FROZEN:
9202 case CPU_ONLINE:
9203 case CPU_ONLINE_FROZEN:
9204 enable_runtime(cpu_rq(cpu));
9205 return NOTIFY_OK;
9207 default:
9208 return NOTIFY_DONE;
9212 void __init sched_init_smp(void)
9214 cpumask_var_t non_isolated_cpus;
9216 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9217 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9219 #if defined(CONFIG_NUMA)
9220 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9221 GFP_KERNEL);
9222 BUG_ON(sched_group_nodes_bycpu == NULL);
9223 #endif
9224 get_online_cpus();
9225 mutex_lock(&sched_domains_mutex);
9226 arch_init_sched_domains(cpu_active_mask);
9227 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9228 if (cpumask_empty(non_isolated_cpus))
9229 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9230 mutex_unlock(&sched_domains_mutex);
9231 put_online_cpus();
9233 #ifndef CONFIG_CPUSETS
9234 /* XXX: Theoretical race here - CPU may be hotplugged now */
9235 hotcpu_notifier(update_sched_domains, 0);
9236 #endif
9238 /* RT runtime code needs to handle some hotplug events */
9239 hotcpu_notifier(update_runtime, 0);
9241 init_hrtick();
9243 /* Move init over to a non-isolated CPU */
9244 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9245 BUG();
9246 sched_init_granularity();
9247 free_cpumask_var(non_isolated_cpus);
9249 init_sched_rt_class();
9251 #else
9252 void __init sched_init_smp(void)
9254 sched_init_granularity();
9256 #endif /* CONFIG_SMP */
9258 const_debug unsigned int sysctl_timer_migration = 1;
9260 int in_sched_functions(unsigned long addr)
9262 return in_lock_functions(addr) ||
9263 (addr >= (unsigned long)__sched_text_start
9264 && addr < (unsigned long)__sched_text_end);
9267 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9269 cfs_rq->tasks_timeline = RB_ROOT;
9270 INIT_LIST_HEAD(&cfs_rq->tasks);
9271 #ifdef CONFIG_FAIR_GROUP_SCHED
9272 cfs_rq->rq = rq;
9273 #endif
9274 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9277 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9279 struct rt_prio_array *array;
9280 int i;
9282 array = &rt_rq->active;
9283 for (i = 0; i < MAX_RT_PRIO; i++) {
9284 INIT_LIST_HEAD(array->queue + i);
9285 __clear_bit(i, array->bitmap);
9287 /* delimiter for bitsearch: */
9288 __set_bit(MAX_RT_PRIO, array->bitmap);
9290 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9291 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9292 #ifdef CONFIG_SMP
9293 rt_rq->highest_prio.next = MAX_RT_PRIO;
9294 #endif
9295 #endif
9296 #ifdef CONFIG_SMP
9297 rt_rq->rt_nr_migratory = 0;
9298 rt_rq->overloaded = 0;
9299 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
9300 #endif
9302 rt_rq->rt_time = 0;
9303 rt_rq->rt_throttled = 0;
9304 rt_rq->rt_runtime = 0;
9305 spin_lock_init(&rt_rq->rt_runtime_lock);
9307 #ifdef CONFIG_RT_GROUP_SCHED
9308 rt_rq->rt_nr_boosted = 0;
9309 rt_rq->rq = rq;
9310 #endif
9313 #ifdef CONFIG_FAIR_GROUP_SCHED
9314 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9315 struct sched_entity *se, int cpu, int add,
9316 struct sched_entity *parent)
9318 struct rq *rq = cpu_rq(cpu);
9319 tg->cfs_rq[cpu] = cfs_rq;
9320 init_cfs_rq(cfs_rq, rq);
9321 cfs_rq->tg = tg;
9322 if (add)
9323 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9325 tg->se[cpu] = se;
9326 /* se could be NULL for init_task_group */
9327 if (!se)
9328 return;
9330 if (!parent)
9331 se->cfs_rq = &rq->cfs;
9332 else
9333 se->cfs_rq = parent->my_q;
9335 se->my_q = cfs_rq;
9336 se->load.weight = tg->shares;
9337 se->load.inv_weight = 0;
9338 se->parent = parent;
9340 #endif
9342 #ifdef CONFIG_RT_GROUP_SCHED
9343 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9344 struct sched_rt_entity *rt_se, int cpu, int add,
9345 struct sched_rt_entity *parent)
9347 struct rq *rq = cpu_rq(cpu);
9349 tg->rt_rq[cpu] = rt_rq;
9350 init_rt_rq(rt_rq, rq);
9351 rt_rq->tg = tg;
9352 rt_rq->rt_se = rt_se;
9353 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9354 if (add)
9355 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9357 tg->rt_se[cpu] = rt_se;
9358 if (!rt_se)
9359 return;
9361 if (!parent)
9362 rt_se->rt_rq = &rq->rt;
9363 else
9364 rt_se->rt_rq = parent->my_q;
9366 rt_se->my_q = rt_rq;
9367 rt_se->parent = parent;
9368 INIT_LIST_HEAD(&rt_se->run_list);
9370 #endif
9372 void __init sched_init(void)
9374 int i, j;
9375 unsigned long alloc_size = 0, ptr;
9377 #ifdef CONFIG_FAIR_GROUP_SCHED
9378 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9379 #endif
9380 #ifdef CONFIG_RT_GROUP_SCHED
9381 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9382 #endif
9383 #ifdef CONFIG_USER_SCHED
9384 alloc_size *= 2;
9385 #endif
9386 #ifdef CONFIG_CPUMASK_OFFSTACK
9387 alloc_size += num_possible_cpus() * cpumask_size();
9388 #endif
9390 * As sched_init() is called before page_alloc is setup,
9391 * we use alloc_bootmem().
9393 if (alloc_size) {
9394 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9396 #ifdef CONFIG_FAIR_GROUP_SCHED
9397 init_task_group.se = (struct sched_entity **)ptr;
9398 ptr += nr_cpu_ids * sizeof(void **);
9400 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9401 ptr += nr_cpu_ids * sizeof(void **);
9403 #ifdef CONFIG_USER_SCHED
9404 root_task_group.se = (struct sched_entity **)ptr;
9405 ptr += nr_cpu_ids * sizeof(void **);
9407 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9408 ptr += nr_cpu_ids * sizeof(void **);
9409 #endif /* CONFIG_USER_SCHED */
9410 #endif /* CONFIG_FAIR_GROUP_SCHED */
9411 #ifdef CONFIG_RT_GROUP_SCHED
9412 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9413 ptr += nr_cpu_ids * sizeof(void **);
9415 init_task_group.rt_rq = (struct rt_rq **)ptr;
9416 ptr += nr_cpu_ids * sizeof(void **);
9418 #ifdef CONFIG_USER_SCHED
9419 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9420 ptr += nr_cpu_ids * sizeof(void **);
9422 root_task_group.rt_rq = (struct rt_rq **)ptr;
9423 ptr += nr_cpu_ids * sizeof(void **);
9424 #endif /* CONFIG_USER_SCHED */
9425 #endif /* CONFIG_RT_GROUP_SCHED */
9426 #ifdef CONFIG_CPUMASK_OFFSTACK
9427 for_each_possible_cpu(i) {
9428 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9429 ptr += cpumask_size();
9431 #endif /* CONFIG_CPUMASK_OFFSTACK */
9434 #ifdef CONFIG_SMP
9435 init_defrootdomain();
9436 #endif
9438 init_rt_bandwidth(&def_rt_bandwidth,
9439 global_rt_period(), global_rt_runtime());
9441 #ifdef CONFIG_RT_GROUP_SCHED
9442 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9443 global_rt_period(), global_rt_runtime());
9444 #ifdef CONFIG_USER_SCHED
9445 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9446 global_rt_period(), RUNTIME_INF);
9447 #endif /* CONFIG_USER_SCHED */
9448 #endif /* CONFIG_RT_GROUP_SCHED */
9450 #ifdef CONFIG_GROUP_SCHED
9451 list_add(&init_task_group.list, &task_groups);
9452 INIT_LIST_HEAD(&init_task_group.children);
9454 #ifdef CONFIG_USER_SCHED
9455 INIT_LIST_HEAD(&root_task_group.children);
9456 init_task_group.parent = &root_task_group;
9457 list_add(&init_task_group.siblings, &root_task_group.children);
9458 #endif /* CONFIG_USER_SCHED */
9459 #endif /* CONFIG_GROUP_SCHED */
9461 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9462 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9463 __alignof__(unsigned long));
9464 #endif
9465 for_each_possible_cpu(i) {
9466 struct rq *rq;
9468 rq = cpu_rq(i);
9469 spin_lock_init(&rq->lock);
9470 rq->nr_running = 0;
9471 rq->calc_load_active = 0;
9472 rq->calc_load_update = jiffies + LOAD_FREQ;
9473 init_cfs_rq(&rq->cfs, rq);
9474 init_rt_rq(&rq->rt, rq);
9475 #ifdef CONFIG_FAIR_GROUP_SCHED
9476 init_task_group.shares = init_task_group_load;
9477 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9478 #ifdef CONFIG_CGROUP_SCHED
9480 * How much cpu bandwidth does init_task_group get?
9482 * In case of task-groups formed thr' the cgroup filesystem, it
9483 * gets 100% of the cpu resources in the system. This overall
9484 * system cpu resource is divided among the tasks of
9485 * init_task_group and its child task-groups in a fair manner,
9486 * based on each entity's (task or task-group's) weight
9487 * (se->load.weight).
9489 * In other words, if init_task_group has 10 tasks of weight
9490 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9491 * then A0's share of the cpu resource is:
9493 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9495 * We achieve this by letting init_task_group's tasks sit
9496 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9498 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9499 #elif defined CONFIG_USER_SCHED
9500 root_task_group.shares = NICE_0_LOAD;
9501 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9503 * In case of task-groups formed thr' the user id of tasks,
9504 * init_task_group represents tasks belonging to root user.
9505 * Hence it forms a sibling of all subsequent groups formed.
9506 * In this case, init_task_group gets only a fraction of overall
9507 * system cpu resource, based on the weight assigned to root
9508 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9509 * by letting tasks of init_task_group sit in a separate cfs_rq
9510 * (init_tg_cfs_rq) and having one entity represent this group of
9511 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9513 init_tg_cfs_entry(&init_task_group,
9514 &per_cpu(init_tg_cfs_rq, i),
9515 &per_cpu(init_sched_entity, i), i, 1,
9516 root_task_group.se[i]);
9518 #endif
9519 #endif /* CONFIG_FAIR_GROUP_SCHED */
9521 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9522 #ifdef CONFIG_RT_GROUP_SCHED
9523 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9524 #ifdef CONFIG_CGROUP_SCHED
9525 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9526 #elif defined CONFIG_USER_SCHED
9527 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9528 init_tg_rt_entry(&init_task_group,
9529 &per_cpu(init_rt_rq, i),
9530 &per_cpu(init_sched_rt_entity, i), i, 1,
9531 root_task_group.rt_se[i]);
9532 #endif
9533 #endif
9535 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9536 rq->cpu_load[j] = 0;
9537 #ifdef CONFIG_SMP
9538 rq->sd = NULL;
9539 rq->rd = NULL;
9540 rq->post_schedule = 0;
9541 rq->active_balance = 0;
9542 rq->next_balance = jiffies;
9543 rq->push_cpu = 0;
9544 rq->cpu = i;
9545 rq->online = 0;
9546 rq->migration_thread = NULL;
9547 rq->idle_stamp = 0;
9548 rq->avg_idle = 2*sysctl_sched_migration_cost;
9549 INIT_LIST_HEAD(&rq->migration_queue);
9550 rq_attach_root(rq, &def_root_domain);
9551 #endif
9552 init_rq_hrtick(rq);
9553 atomic_set(&rq->nr_iowait, 0);
9556 set_load_weight(&init_task);
9558 #ifdef CONFIG_PREEMPT_NOTIFIERS
9559 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9560 #endif
9562 #ifdef CONFIG_SMP
9563 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9564 #endif
9566 #ifdef CONFIG_RT_MUTEXES
9567 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9568 #endif
9571 * The boot idle thread does lazy MMU switching as well:
9573 atomic_inc(&init_mm.mm_count);
9574 enter_lazy_tlb(&init_mm, current);
9577 * Make us the idle thread. Technically, schedule() should not be
9578 * called from this thread, however somewhere below it might be,
9579 * but because we are the idle thread, we just pick up running again
9580 * when this runqueue becomes "idle".
9582 init_idle(current, smp_processor_id());
9584 calc_load_update = jiffies + LOAD_FREQ;
9587 * During early bootup we pretend to be a normal task:
9589 current->sched_class = &fair_sched_class;
9591 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9592 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9593 #ifdef CONFIG_SMP
9594 #ifdef CONFIG_NO_HZ
9595 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9596 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9597 #endif
9598 /* May be allocated at isolcpus cmdline parse time */
9599 if (cpu_isolated_map == NULL)
9600 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9601 #endif /* SMP */
9603 perf_event_init();
9605 scheduler_running = 1;
9608 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9609 static inline int preempt_count_equals(int preempt_offset)
9611 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9613 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9616 void __might_sleep(char *file, int line, int preempt_offset)
9618 #ifdef in_atomic
9619 static unsigned long prev_jiffy; /* ratelimiting */
9621 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9622 system_state != SYSTEM_RUNNING || oops_in_progress)
9623 return;
9624 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9625 return;
9626 prev_jiffy = jiffies;
9628 printk(KERN_ERR
9629 "BUG: sleeping function called from invalid context at %s:%d\n",
9630 file, line);
9631 printk(KERN_ERR
9632 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9633 in_atomic(), irqs_disabled(),
9634 current->pid, current->comm);
9636 debug_show_held_locks(current);
9637 if (irqs_disabled())
9638 print_irqtrace_events(current);
9639 dump_stack();
9640 #endif
9642 EXPORT_SYMBOL(__might_sleep);
9643 #endif
9645 #ifdef CONFIG_MAGIC_SYSRQ
9646 static void normalize_task(struct rq *rq, struct task_struct *p)
9648 int on_rq;
9650 update_rq_clock(rq);
9651 on_rq = p->se.on_rq;
9652 if (on_rq)
9653 deactivate_task(rq, p, 0);
9654 __setscheduler(rq, p, SCHED_NORMAL, 0);
9655 if (on_rq) {
9656 activate_task(rq, p, 0);
9657 resched_task(rq->curr);
9661 void normalize_rt_tasks(void)
9663 struct task_struct *g, *p;
9664 unsigned long flags;
9665 struct rq *rq;
9667 read_lock_irqsave(&tasklist_lock, flags);
9668 do_each_thread(g, p) {
9670 * Only normalize user tasks:
9672 if (!p->mm)
9673 continue;
9675 p->se.exec_start = 0;
9676 #ifdef CONFIG_SCHEDSTATS
9677 p->se.wait_start = 0;
9678 p->se.sleep_start = 0;
9679 p->se.block_start = 0;
9680 #endif
9682 if (!rt_task(p)) {
9684 * Renice negative nice level userspace
9685 * tasks back to 0:
9687 if (TASK_NICE(p) < 0 && p->mm)
9688 set_user_nice(p, 0);
9689 continue;
9692 spin_lock(&p->pi_lock);
9693 rq = __task_rq_lock(p);
9695 normalize_task(rq, p);
9697 __task_rq_unlock(rq);
9698 spin_unlock(&p->pi_lock);
9699 } while_each_thread(g, p);
9701 read_unlock_irqrestore(&tasklist_lock, flags);
9704 #endif /* CONFIG_MAGIC_SYSRQ */
9706 #ifdef CONFIG_IA64
9708 * These functions are only useful for the IA64 MCA handling.
9710 * They can only be called when the whole system has been
9711 * stopped - every CPU needs to be quiescent, and no scheduling
9712 * activity can take place. Using them for anything else would
9713 * be a serious bug, and as a result, they aren't even visible
9714 * under any other configuration.
9718 * curr_task - return the current task for a given cpu.
9719 * @cpu: the processor in question.
9721 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9723 struct task_struct *curr_task(int cpu)
9725 return cpu_curr(cpu);
9729 * set_curr_task - set the current task for a given cpu.
9730 * @cpu: the processor in question.
9731 * @p: the task pointer to set.
9733 * Description: This function must only be used when non-maskable interrupts
9734 * are serviced on a separate stack. It allows the architecture to switch the
9735 * notion of the current task on a cpu in a non-blocking manner. This function
9736 * must be called with all CPU's synchronized, and interrupts disabled, the
9737 * and caller must save the original value of the current task (see
9738 * curr_task() above) and restore that value before reenabling interrupts and
9739 * re-starting the system.
9741 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9743 void set_curr_task(int cpu, struct task_struct *p)
9745 cpu_curr(cpu) = p;
9748 #endif
9750 #ifdef CONFIG_FAIR_GROUP_SCHED
9751 static void free_fair_sched_group(struct task_group *tg)
9753 int i;
9755 for_each_possible_cpu(i) {
9756 if (tg->cfs_rq)
9757 kfree(tg->cfs_rq[i]);
9758 if (tg->se)
9759 kfree(tg->se[i]);
9762 kfree(tg->cfs_rq);
9763 kfree(tg->se);
9766 static
9767 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9769 struct cfs_rq *cfs_rq;
9770 struct sched_entity *se;
9771 struct rq *rq;
9772 int i;
9774 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9775 if (!tg->cfs_rq)
9776 goto err;
9777 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9778 if (!tg->se)
9779 goto err;
9781 tg->shares = NICE_0_LOAD;
9783 for_each_possible_cpu(i) {
9784 rq = cpu_rq(i);
9786 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9787 GFP_KERNEL, cpu_to_node(i));
9788 if (!cfs_rq)
9789 goto err;
9791 se = kzalloc_node(sizeof(struct sched_entity),
9792 GFP_KERNEL, cpu_to_node(i));
9793 if (!se)
9794 goto err;
9796 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9799 return 1;
9801 err:
9802 return 0;
9805 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9807 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9808 &cpu_rq(cpu)->leaf_cfs_rq_list);
9811 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9813 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9815 #else /* !CONFG_FAIR_GROUP_SCHED */
9816 static inline void free_fair_sched_group(struct task_group *tg)
9820 static inline
9821 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9823 return 1;
9826 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9830 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9833 #endif /* CONFIG_FAIR_GROUP_SCHED */
9835 #ifdef CONFIG_RT_GROUP_SCHED
9836 static void free_rt_sched_group(struct task_group *tg)
9838 int i;
9840 destroy_rt_bandwidth(&tg->rt_bandwidth);
9842 for_each_possible_cpu(i) {
9843 if (tg->rt_rq)
9844 kfree(tg->rt_rq[i]);
9845 if (tg->rt_se)
9846 kfree(tg->rt_se[i]);
9849 kfree(tg->rt_rq);
9850 kfree(tg->rt_se);
9853 static
9854 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9856 struct rt_rq *rt_rq;
9857 struct sched_rt_entity *rt_se;
9858 struct rq *rq;
9859 int i;
9861 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9862 if (!tg->rt_rq)
9863 goto err;
9864 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9865 if (!tg->rt_se)
9866 goto err;
9868 init_rt_bandwidth(&tg->rt_bandwidth,
9869 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9871 for_each_possible_cpu(i) {
9872 rq = cpu_rq(i);
9874 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9875 GFP_KERNEL, cpu_to_node(i));
9876 if (!rt_rq)
9877 goto err;
9879 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9880 GFP_KERNEL, cpu_to_node(i));
9881 if (!rt_se)
9882 goto err;
9884 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9887 return 1;
9889 err:
9890 return 0;
9893 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9895 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9896 &cpu_rq(cpu)->leaf_rt_rq_list);
9899 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9901 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9903 #else /* !CONFIG_RT_GROUP_SCHED */
9904 static inline void free_rt_sched_group(struct task_group *tg)
9908 static inline
9909 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9911 return 1;
9914 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9918 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9921 #endif /* CONFIG_RT_GROUP_SCHED */
9923 #ifdef CONFIG_GROUP_SCHED
9924 static void free_sched_group(struct task_group *tg)
9926 free_fair_sched_group(tg);
9927 free_rt_sched_group(tg);
9928 kfree(tg);
9931 /* allocate runqueue etc for a new task group */
9932 struct task_group *sched_create_group(struct task_group *parent)
9934 struct task_group *tg;
9935 unsigned long flags;
9936 int i;
9938 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9939 if (!tg)
9940 return ERR_PTR(-ENOMEM);
9942 if (!alloc_fair_sched_group(tg, parent))
9943 goto err;
9945 if (!alloc_rt_sched_group(tg, parent))
9946 goto err;
9948 spin_lock_irqsave(&task_group_lock, flags);
9949 for_each_possible_cpu(i) {
9950 register_fair_sched_group(tg, i);
9951 register_rt_sched_group(tg, i);
9953 list_add_rcu(&tg->list, &task_groups);
9955 WARN_ON(!parent); /* root should already exist */
9957 tg->parent = parent;
9958 INIT_LIST_HEAD(&tg->children);
9959 list_add_rcu(&tg->siblings, &parent->children);
9960 spin_unlock_irqrestore(&task_group_lock, flags);
9962 return tg;
9964 err:
9965 free_sched_group(tg);
9966 return ERR_PTR(-ENOMEM);
9969 /* rcu callback to free various structures associated with a task group */
9970 static void free_sched_group_rcu(struct rcu_head *rhp)
9972 /* now it should be safe to free those cfs_rqs */
9973 free_sched_group(container_of(rhp, struct task_group, rcu));
9976 /* Destroy runqueue etc associated with a task group */
9977 void sched_destroy_group(struct task_group *tg)
9979 unsigned long flags;
9980 int i;
9982 spin_lock_irqsave(&task_group_lock, flags);
9983 for_each_possible_cpu(i) {
9984 unregister_fair_sched_group(tg, i);
9985 unregister_rt_sched_group(tg, i);
9987 list_del_rcu(&tg->list);
9988 list_del_rcu(&tg->siblings);
9989 spin_unlock_irqrestore(&task_group_lock, flags);
9991 /* wait for possible concurrent references to cfs_rqs complete */
9992 call_rcu(&tg->rcu, free_sched_group_rcu);
9995 /* change task's runqueue when it moves between groups.
9996 * The caller of this function should have put the task in its new group
9997 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9998 * reflect its new group.
10000 void sched_move_task(struct task_struct *tsk)
10002 int on_rq, running;
10003 unsigned long flags;
10004 struct rq *rq;
10006 rq = task_rq_lock(tsk, &flags);
10008 update_rq_clock(rq);
10010 running = task_current(rq, tsk);
10011 on_rq = tsk->se.on_rq;
10013 if (on_rq)
10014 dequeue_task(rq, tsk, 0);
10015 if (unlikely(running))
10016 tsk->sched_class->put_prev_task(rq, tsk);
10018 set_task_rq(tsk, task_cpu(tsk));
10020 #ifdef CONFIG_FAIR_GROUP_SCHED
10021 if (tsk->sched_class->moved_group)
10022 tsk->sched_class->moved_group(tsk);
10023 #endif
10025 if (unlikely(running))
10026 tsk->sched_class->set_curr_task(rq);
10027 if (on_rq)
10028 enqueue_task(rq, tsk, 0);
10030 task_rq_unlock(rq, &flags);
10032 #endif /* CONFIG_GROUP_SCHED */
10034 #ifdef CONFIG_FAIR_GROUP_SCHED
10035 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
10037 struct cfs_rq *cfs_rq = se->cfs_rq;
10038 int on_rq;
10040 on_rq = se->on_rq;
10041 if (on_rq)
10042 dequeue_entity(cfs_rq, se, 0);
10044 se->load.weight = shares;
10045 se->load.inv_weight = 0;
10047 if (on_rq)
10048 enqueue_entity(cfs_rq, se, 0);
10051 static void set_se_shares(struct sched_entity *se, unsigned long shares)
10053 struct cfs_rq *cfs_rq = se->cfs_rq;
10054 struct rq *rq = cfs_rq->rq;
10055 unsigned long flags;
10057 spin_lock_irqsave(&rq->lock, flags);
10058 __set_se_shares(se, shares);
10059 spin_unlock_irqrestore(&rq->lock, flags);
10062 static DEFINE_MUTEX(shares_mutex);
10064 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10066 int i;
10067 unsigned long flags;
10070 * We can't change the weight of the root cgroup.
10072 if (!tg->se[0])
10073 return -EINVAL;
10075 if (shares < MIN_SHARES)
10076 shares = MIN_SHARES;
10077 else if (shares > MAX_SHARES)
10078 shares = MAX_SHARES;
10080 mutex_lock(&shares_mutex);
10081 if (tg->shares == shares)
10082 goto done;
10084 spin_lock_irqsave(&task_group_lock, flags);
10085 for_each_possible_cpu(i)
10086 unregister_fair_sched_group(tg, i);
10087 list_del_rcu(&tg->siblings);
10088 spin_unlock_irqrestore(&task_group_lock, flags);
10090 /* wait for any ongoing reference to this group to finish */
10091 synchronize_sched();
10094 * Now we are free to modify the group's share on each cpu
10095 * w/o tripping rebalance_share or load_balance_fair.
10097 tg->shares = shares;
10098 for_each_possible_cpu(i) {
10100 * force a rebalance
10102 cfs_rq_set_shares(tg->cfs_rq[i], 0);
10103 set_se_shares(tg->se[i], shares);
10107 * Enable load balance activity on this group, by inserting it back on
10108 * each cpu's rq->leaf_cfs_rq_list.
10110 spin_lock_irqsave(&task_group_lock, flags);
10111 for_each_possible_cpu(i)
10112 register_fair_sched_group(tg, i);
10113 list_add_rcu(&tg->siblings, &tg->parent->children);
10114 spin_unlock_irqrestore(&task_group_lock, flags);
10115 done:
10116 mutex_unlock(&shares_mutex);
10117 return 0;
10120 unsigned long sched_group_shares(struct task_group *tg)
10122 return tg->shares;
10124 #endif
10126 #ifdef CONFIG_RT_GROUP_SCHED
10128 * Ensure that the real time constraints are schedulable.
10130 static DEFINE_MUTEX(rt_constraints_mutex);
10132 static unsigned long to_ratio(u64 period, u64 runtime)
10134 if (runtime == RUNTIME_INF)
10135 return 1ULL << 20;
10137 return div64_u64(runtime << 20, period);
10140 /* Must be called with tasklist_lock held */
10141 static inline int tg_has_rt_tasks(struct task_group *tg)
10143 struct task_struct *g, *p;
10145 do_each_thread(g, p) {
10146 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10147 return 1;
10148 } while_each_thread(g, p);
10150 return 0;
10153 struct rt_schedulable_data {
10154 struct task_group *tg;
10155 u64 rt_period;
10156 u64 rt_runtime;
10159 static int tg_schedulable(struct task_group *tg, void *data)
10161 struct rt_schedulable_data *d = data;
10162 struct task_group *child;
10163 unsigned long total, sum = 0;
10164 u64 period, runtime;
10166 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10167 runtime = tg->rt_bandwidth.rt_runtime;
10169 if (tg == d->tg) {
10170 period = d->rt_period;
10171 runtime = d->rt_runtime;
10174 #ifdef CONFIG_USER_SCHED
10175 if (tg == &root_task_group) {
10176 period = global_rt_period();
10177 runtime = global_rt_runtime();
10179 #endif
10182 * Cannot have more runtime than the period.
10184 if (runtime > period && runtime != RUNTIME_INF)
10185 return -EINVAL;
10188 * Ensure we don't starve existing RT tasks.
10190 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10191 return -EBUSY;
10193 total = to_ratio(period, runtime);
10196 * Nobody can have more than the global setting allows.
10198 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10199 return -EINVAL;
10202 * The sum of our children's runtime should not exceed our own.
10204 list_for_each_entry_rcu(child, &tg->children, siblings) {
10205 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10206 runtime = child->rt_bandwidth.rt_runtime;
10208 if (child == d->tg) {
10209 period = d->rt_period;
10210 runtime = d->rt_runtime;
10213 sum += to_ratio(period, runtime);
10216 if (sum > total)
10217 return -EINVAL;
10219 return 0;
10222 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10224 struct rt_schedulable_data data = {
10225 .tg = tg,
10226 .rt_period = period,
10227 .rt_runtime = runtime,
10230 return walk_tg_tree(tg_schedulable, tg_nop, &data);
10233 static int tg_set_bandwidth(struct task_group *tg,
10234 u64 rt_period, u64 rt_runtime)
10236 int i, err = 0;
10238 mutex_lock(&rt_constraints_mutex);
10239 read_lock(&tasklist_lock);
10240 err = __rt_schedulable(tg, rt_period, rt_runtime);
10241 if (err)
10242 goto unlock;
10244 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10245 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10246 tg->rt_bandwidth.rt_runtime = rt_runtime;
10248 for_each_possible_cpu(i) {
10249 struct rt_rq *rt_rq = tg->rt_rq[i];
10251 spin_lock(&rt_rq->rt_runtime_lock);
10252 rt_rq->rt_runtime = rt_runtime;
10253 spin_unlock(&rt_rq->rt_runtime_lock);
10255 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10256 unlock:
10257 read_unlock(&tasklist_lock);
10258 mutex_unlock(&rt_constraints_mutex);
10260 return err;
10263 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10265 u64 rt_runtime, rt_period;
10267 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10268 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10269 if (rt_runtime_us < 0)
10270 rt_runtime = RUNTIME_INF;
10272 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10275 long sched_group_rt_runtime(struct task_group *tg)
10277 u64 rt_runtime_us;
10279 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10280 return -1;
10282 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10283 do_div(rt_runtime_us, NSEC_PER_USEC);
10284 return rt_runtime_us;
10287 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10289 u64 rt_runtime, rt_period;
10291 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10292 rt_runtime = tg->rt_bandwidth.rt_runtime;
10294 if (rt_period == 0)
10295 return -EINVAL;
10297 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10300 long sched_group_rt_period(struct task_group *tg)
10302 u64 rt_period_us;
10304 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10305 do_div(rt_period_us, NSEC_PER_USEC);
10306 return rt_period_us;
10309 static int sched_rt_global_constraints(void)
10311 u64 runtime, period;
10312 int ret = 0;
10314 if (sysctl_sched_rt_period <= 0)
10315 return -EINVAL;
10317 runtime = global_rt_runtime();
10318 period = global_rt_period();
10321 * Sanity check on the sysctl variables.
10323 if (runtime > period && runtime != RUNTIME_INF)
10324 return -EINVAL;
10326 mutex_lock(&rt_constraints_mutex);
10327 read_lock(&tasklist_lock);
10328 ret = __rt_schedulable(NULL, 0, 0);
10329 read_unlock(&tasklist_lock);
10330 mutex_unlock(&rt_constraints_mutex);
10332 return ret;
10335 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10337 /* Don't accept realtime tasks when there is no way for them to run */
10338 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10339 return 0;
10341 return 1;
10344 #else /* !CONFIG_RT_GROUP_SCHED */
10345 static int sched_rt_global_constraints(void)
10347 unsigned long flags;
10348 int i;
10350 if (sysctl_sched_rt_period <= 0)
10351 return -EINVAL;
10354 * There's always some RT tasks in the root group
10355 * -- migration, kstopmachine etc..
10357 if (sysctl_sched_rt_runtime == 0)
10358 return -EBUSY;
10360 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10361 for_each_possible_cpu(i) {
10362 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10364 spin_lock(&rt_rq->rt_runtime_lock);
10365 rt_rq->rt_runtime = global_rt_runtime();
10366 spin_unlock(&rt_rq->rt_runtime_lock);
10368 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10370 return 0;
10372 #endif /* CONFIG_RT_GROUP_SCHED */
10374 int sched_rt_handler(struct ctl_table *table, int write,
10375 void __user *buffer, size_t *lenp,
10376 loff_t *ppos)
10378 int ret;
10379 int old_period, old_runtime;
10380 static DEFINE_MUTEX(mutex);
10382 mutex_lock(&mutex);
10383 old_period = sysctl_sched_rt_period;
10384 old_runtime = sysctl_sched_rt_runtime;
10386 ret = proc_dointvec(table, write, buffer, lenp, ppos);
10388 if (!ret && write) {
10389 ret = sched_rt_global_constraints();
10390 if (ret) {
10391 sysctl_sched_rt_period = old_period;
10392 sysctl_sched_rt_runtime = old_runtime;
10393 } else {
10394 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10395 def_rt_bandwidth.rt_period =
10396 ns_to_ktime(global_rt_period());
10399 mutex_unlock(&mutex);
10401 return ret;
10404 #ifdef CONFIG_CGROUP_SCHED
10406 /* return corresponding task_group object of a cgroup */
10407 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10409 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10410 struct task_group, css);
10413 static struct cgroup_subsys_state *
10414 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10416 struct task_group *tg, *parent;
10418 if (!cgrp->parent) {
10419 /* This is early initialization for the top cgroup */
10420 return &init_task_group.css;
10423 parent = cgroup_tg(cgrp->parent);
10424 tg = sched_create_group(parent);
10425 if (IS_ERR(tg))
10426 return ERR_PTR(-ENOMEM);
10428 return &tg->css;
10431 static void
10432 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10434 struct task_group *tg = cgroup_tg(cgrp);
10436 sched_destroy_group(tg);
10439 static int
10440 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
10442 #ifdef CONFIG_RT_GROUP_SCHED
10443 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10444 return -EINVAL;
10445 #else
10446 /* We don't support RT-tasks being in separate groups */
10447 if (tsk->sched_class != &fair_sched_class)
10448 return -EINVAL;
10449 #endif
10450 return 0;
10453 static int
10454 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10455 struct task_struct *tsk, bool threadgroup)
10457 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10458 if (retval)
10459 return retval;
10460 if (threadgroup) {
10461 struct task_struct *c;
10462 rcu_read_lock();
10463 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10464 retval = cpu_cgroup_can_attach_task(cgrp, c);
10465 if (retval) {
10466 rcu_read_unlock();
10467 return retval;
10470 rcu_read_unlock();
10472 return 0;
10475 static void
10476 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10477 struct cgroup *old_cont, struct task_struct *tsk,
10478 bool threadgroup)
10480 sched_move_task(tsk);
10481 if (threadgroup) {
10482 struct task_struct *c;
10483 rcu_read_lock();
10484 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10485 sched_move_task(c);
10487 rcu_read_unlock();
10491 #ifdef CONFIG_FAIR_GROUP_SCHED
10492 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10493 u64 shareval)
10495 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10498 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10500 struct task_group *tg = cgroup_tg(cgrp);
10502 return (u64) tg->shares;
10504 #endif /* CONFIG_FAIR_GROUP_SCHED */
10506 #ifdef CONFIG_RT_GROUP_SCHED
10507 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10508 s64 val)
10510 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10513 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10515 return sched_group_rt_runtime(cgroup_tg(cgrp));
10518 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10519 u64 rt_period_us)
10521 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10524 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10526 return sched_group_rt_period(cgroup_tg(cgrp));
10528 #endif /* CONFIG_RT_GROUP_SCHED */
10530 static struct cftype cpu_files[] = {
10531 #ifdef CONFIG_FAIR_GROUP_SCHED
10533 .name = "shares",
10534 .read_u64 = cpu_shares_read_u64,
10535 .write_u64 = cpu_shares_write_u64,
10537 #endif
10538 #ifdef CONFIG_RT_GROUP_SCHED
10540 .name = "rt_runtime_us",
10541 .read_s64 = cpu_rt_runtime_read,
10542 .write_s64 = cpu_rt_runtime_write,
10545 .name = "rt_period_us",
10546 .read_u64 = cpu_rt_period_read_uint,
10547 .write_u64 = cpu_rt_period_write_uint,
10549 #endif
10552 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10554 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10557 struct cgroup_subsys cpu_cgroup_subsys = {
10558 .name = "cpu",
10559 .create = cpu_cgroup_create,
10560 .destroy = cpu_cgroup_destroy,
10561 .can_attach = cpu_cgroup_can_attach,
10562 .attach = cpu_cgroup_attach,
10563 .populate = cpu_cgroup_populate,
10564 .subsys_id = cpu_cgroup_subsys_id,
10565 .early_init = 1,
10568 #endif /* CONFIG_CGROUP_SCHED */
10570 #ifdef CONFIG_CGROUP_CPUACCT
10573 * CPU accounting code for task groups.
10575 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10576 * (balbir@in.ibm.com).
10579 /* track cpu usage of a group of tasks and its child groups */
10580 struct cpuacct {
10581 struct cgroup_subsys_state css;
10582 /* cpuusage holds pointer to a u64-type object on every cpu */
10583 u64 *cpuusage;
10584 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10585 struct cpuacct *parent;
10588 struct cgroup_subsys cpuacct_subsys;
10590 /* return cpu accounting group corresponding to this container */
10591 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10593 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10594 struct cpuacct, css);
10597 /* return cpu accounting group to which this task belongs */
10598 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10600 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10601 struct cpuacct, css);
10604 /* create a new cpu accounting group */
10605 static struct cgroup_subsys_state *cpuacct_create(
10606 struct cgroup_subsys *ss, struct cgroup *cgrp)
10608 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10609 int i;
10611 if (!ca)
10612 goto out;
10614 ca->cpuusage = alloc_percpu(u64);
10615 if (!ca->cpuusage)
10616 goto out_free_ca;
10618 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10619 if (percpu_counter_init(&ca->cpustat[i], 0))
10620 goto out_free_counters;
10622 if (cgrp->parent)
10623 ca->parent = cgroup_ca(cgrp->parent);
10625 return &ca->css;
10627 out_free_counters:
10628 while (--i >= 0)
10629 percpu_counter_destroy(&ca->cpustat[i]);
10630 free_percpu(ca->cpuusage);
10631 out_free_ca:
10632 kfree(ca);
10633 out:
10634 return ERR_PTR(-ENOMEM);
10637 /* destroy an existing cpu accounting group */
10638 static void
10639 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10641 struct cpuacct *ca = cgroup_ca(cgrp);
10642 int i;
10644 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10645 percpu_counter_destroy(&ca->cpustat[i]);
10646 free_percpu(ca->cpuusage);
10647 kfree(ca);
10650 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10652 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10653 u64 data;
10655 #ifndef CONFIG_64BIT
10657 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10659 spin_lock_irq(&cpu_rq(cpu)->lock);
10660 data = *cpuusage;
10661 spin_unlock_irq(&cpu_rq(cpu)->lock);
10662 #else
10663 data = *cpuusage;
10664 #endif
10666 return data;
10669 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10671 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10673 #ifndef CONFIG_64BIT
10675 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10677 spin_lock_irq(&cpu_rq(cpu)->lock);
10678 *cpuusage = val;
10679 spin_unlock_irq(&cpu_rq(cpu)->lock);
10680 #else
10681 *cpuusage = val;
10682 #endif
10685 /* return total cpu usage (in nanoseconds) of a group */
10686 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10688 struct cpuacct *ca = cgroup_ca(cgrp);
10689 u64 totalcpuusage = 0;
10690 int i;
10692 for_each_present_cpu(i)
10693 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10695 return totalcpuusage;
10698 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10699 u64 reset)
10701 struct cpuacct *ca = cgroup_ca(cgrp);
10702 int err = 0;
10703 int i;
10705 if (reset) {
10706 err = -EINVAL;
10707 goto out;
10710 for_each_present_cpu(i)
10711 cpuacct_cpuusage_write(ca, i, 0);
10713 out:
10714 return err;
10717 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10718 struct seq_file *m)
10720 struct cpuacct *ca = cgroup_ca(cgroup);
10721 u64 percpu;
10722 int i;
10724 for_each_present_cpu(i) {
10725 percpu = cpuacct_cpuusage_read(ca, i);
10726 seq_printf(m, "%llu ", (unsigned long long) percpu);
10728 seq_printf(m, "\n");
10729 return 0;
10732 static const char *cpuacct_stat_desc[] = {
10733 [CPUACCT_STAT_USER] = "user",
10734 [CPUACCT_STAT_SYSTEM] = "system",
10737 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10738 struct cgroup_map_cb *cb)
10740 struct cpuacct *ca = cgroup_ca(cgrp);
10741 int i;
10743 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10744 s64 val = percpu_counter_read(&ca->cpustat[i]);
10745 val = cputime64_to_clock_t(val);
10746 cb->fill(cb, cpuacct_stat_desc[i], val);
10748 return 0;
10751 static struct cftype files[] = {
10753 .name = "usage",
10754 .read_u64 = cpuusage_read,
10755 .write_u64 = cpuusage_write,
10758 .name = "usage_percpu",
10759 .read_seq_string = cpuacct_percpu_seq_read,
10762 .name = "stat",
10763 .read_map = cpuacct_stats_show,
10767 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10769 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10773 * charge this task's execution time to its accounting group.
10775 * called with rq->lock held.
10777 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10779 struct cpuacct *ca;
10780 int cpu;
10782 if (unlikely(!cpuacct_subsys.active))
10783 return;
10785 cpu = task_cpu(tsk);
10787 rcu_read_lock();
10789 ca = task_ca(tsk);
10791 for (; ca; ca = ca->parent) {
10792 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10793 *cpuusage += cputime;
10796 rcu_read_unlock();
10800 * Charge the system/user time to the task's accounting group.
10802 static void cpuacct_update_stats(struct task_struct *tsk,
10803 enum cpuacct_stat_index idx, cputime_t val)
10805 struct cpuacct *ca;
10807 if (unlikely(!cpuacct_subsys.active))
10808 return;
10810 rcu_read_lock();
10811 ca = task_ca(tsk);
10813 do {
10814 percpu_counter_add(&ca->cpustat[idx], val);
10815 ca = ca->parent;
10816 } while (ca);
10817 rcu_read_unlock();
10820 struct cgroup_subsys cpuacct_subsys = {
10821 .name = "cpuacct",
10822 .create = cpuacct_create,
10823 .destroy = cpuacct_destroy,
10824 .populate = cpuacct_populate,
10825 .subsys_id = cpuacct_subsys_id,
10827 #endif /* CONFIG_CGROUP_CPUACCT */
10829 #ifndef CONFIG_SMP
10831 int rcu_expedited_torture_stats(char *page)
10833 return 0;
10835 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10837 void synchronize_sched_expedited(void)
10840 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10842 #else /* #ifndef CONFIG_SMP */
10844 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10845 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10847 #define RCU_EXPEDITED_STATE_POST -2
10848 #define RCU_EXPEDITED_STATE_IDLE -1
10850 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10852 int rcu_expedited_torture_stats(char *page)
10854 int cnt = 0;
10855 int cpu;
10857 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10858 for_each_online_cpu(cpu) {
10859 cnt += sprintf(&page[cnt], " %d:%d",
10860 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10862 cnt += sprintf(&page[cnt], "\n");
10863 return cnt;
10865 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10867 static long synchronize_sched_expedited_count;
10870 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10871 * approach to force grace period to end quickly. This consumes
10872 * significant time on all CPUs, and is thus not recommended for
10873 * any sort of common-case code.
10875 * Note that it is illegal to call this function while holding any
10876 * lock that is acquired by a CPU-hotplug notifier. Failing to
10877 * observe this restriction will result in deadlock.
10879 void synchronize_sched_expedited(void)
10881 int cpu;
10882 unsigned long flags;
10883 bool need_full_sync = 0;
10884 struct rq *rq;
10885 struct migration_req *req;
10886 long snap;
10887 int trycount = 0;
10889 smp_mb(); /* ensure prior mod happens before capturing snap. */
10890 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10891 get_online_cpus();
10892 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10893 put_online_cpus();
10894 if (trycount++ < 10)
10895 udelay(trycount * num_online_cpus());
10896 else {
10897 synchronize_sched();
10898 return;
10900 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10901 smp_mb(); /* ensure test happens before caller kfree */
10902 return;
10904 get_online_cpus();
10906 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10907 for_each_online_cpu(cpu) {
10908 rq = cpu_rq(cpu);
10909 req = &per_cpu(rcu_migration_req, cpu);
10910 init_completion(&req->done);
10911 req->task = NULL;
10912 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10913 spin_lock_irqsave(&rq->lock, flags);
10914 list_add(&req->list, &rq->migration_queue);
10915 spin_unlock_irqrestore(&rq->lock, flags);
10916 wake_up_process(rq->migration_thread);
10918 for_each_online_cpu(cpu) {
10919 rcu_expedited_state = cpu;
10920 req = &per_cpu(rcu_migration_req, cpu);
10921 rq = cpu_rq(cpu);
10922 wait_for_completion(&req->done);
10923 spin_lock_irqsave(&rq->lock, flags);
10924 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10925 need_full_sync = 1;
10926 req->dest_cpu = RCU_MIGRATION_IDLE;
10927 spin_unlock_irqrestore(&rq->lock, flags);
10929 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10930 mutex_unlock(&rcu_sched_expedited_mutex);
10931 put_online_cpus();
10932 if (need_full_sync)
10933 synchronize_sched();
10935 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10937 #endif /* #else #ifndef CONFIG_SMP */