ext4: Fix possible deadlock between ext4_truncate() and ext4_get_blocks()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ext4 / inode.c
blobd61fb523308fd2caa89e020e9d4afbfc4f201444
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "ext4_extents.h"
46 #include <trace/events/ext4.h>
48 #define MPAGE_DA_EXTENT_TAIL 0x01
50 static inline int ext4_begin_ordered_truncate(struct inode *inode,
51 loff_t new_size)
53 return jbd2_journal_begin_ordered_truncate(
54 EXT4_SB(inode->i_sb)->s_journal,
55 &EXT4_I(inode)->jinode,
56 new_size);
59 static void ext4_invalidatepage(struct page *page, unsigned long offset);
62 * Test whether an inode is a fast symlink.
64 static int ext4_inode_is_fast_symlink(struct inode *inode)
66 int ea_blocks = EXT4_I(inode)->i_file_acl ?
67 (inode->i_sb->s_blocksize >> 9) : 0;
69 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
73 * The ext4 forget function must perform a revoke if we are freeing data
74 * which has been journaled. Metadata (eg. indirect blocks) must be
75 * revoked in all cases.
77 * "bh" may be NULL: a metadata block may have been freed from memory
78 * but there may still be a record of it in the journal, and that record
79 * still needs to be revoked.
81 * If the handle isn't valid we're not journaling, but we still need to
82 * call into ext4_journal_revoke() to put the buffer head.
84 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
85 struct buffer_head *bh, ext4_fsblk_t blocknr)
87 int err;
89 might_sleep();
91 BUFFER_TRACE(bh, "enter");
93 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
94 "data mode %x\n",
95 bh, is_metadata, inode->i_mode,
96 test_opt(inode->i_sb, DATA_FLAGS));
98 /* Never use the revoke function if we are doing full data
99 * journaling: there is no need to, and a V1 superblock won't
100 * support it. Otherwise, only skip the revoke on un-journaled
101 * data blocks. */
103 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
104 (!is_metadata && !ext4_should_journal_data(inode))) {
105 if (bh) {
106 BUFFER_TRACE(bh, "call jbd2_journal_forget");
107 return ext4_journal_forget(handle, bh);
109 return 0;
113 * data!=journal && (is_metadata || should_journal_data(inode))
115 BUFFER_TRACE(bh, "call ext4_journal_revoke");
116 err = ext4_journal_revoke(handle, blocknr, bh);
117 if (err)
118 ext4_abort(inode->i_sb, __func__,
119 "error %d when attempting revoke", err);
120 BUFFER_TRACE(bh, "exit");
121 return err;
125 * Work out how many blocks we need to proceed with the next chunk of a
126 * truncate transaction.
128 static unsigned long blocks_for_truncate(struct inode *inode)
130 ext4_lblk_t needed;
132 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
134 /* Give ourselves just enough room to cope with inodes in which
135 * i_blocks is corrupt: we've seen disk corruptions in the past
136 * which resulted in random data in an inode which looked enough
137 * like a regular file for ext4 to try to delete it. Things
138 * will go a bit crazy if that happens, but at least we should
139 * try not to panic the whole kernel. */
140 if (needed < 2)
141 needed = 2;
143 /* But we need to bound the transaction so we don't overflow the
144 * journal. */
145 if (needed > EXT4_MAX_TRANS_DATA)
146 needed = EXT4_MAX_TRANS_DATA;
148 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
152 * Truncate transactions can be complex and absolutely huge. So we need to
153 * be able to restart the transaction at a conventient checkpoint to make
154 * sure we don't overflow the journal.
156 * start_transaction gets us a new handle for a truncate transaction,
157 * and extend_transaction tries to extend the existing one a bit. If
158 * extend fails, we need to propagate the failure up and restart the
159 * transaction in the top-level truncate loop. --sct
161 static handle_t *start_transaction(struct inode *inode)
163 handle_t *result;
165 result = ext4_journal_start(inode, blocks_for_truncate(inode));
166 if (!IS_ERR(result))
167 return result;
169 ext4_std_error(inode->i_sb, PTR_ERR(result));
170 return result;
174 * Try to extend this transaction for the purposes of truncation.
176 * Returns 0 if we managed to create more room. If we can't create more
177 * room, and the transaction must be restarted we return 1.
179 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
181 if (!ext4_handle_valid(handle))
182 return 0;
183 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
184 return 0;
185 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
186 return 0;
187 return 1;
191 * Restart the transaction associated with *handle. This does a commit,
192 * so before we call here everything must be consistently dirtied against
193 * this transaction.
195 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
196 int nblocks)
198 int ret;
201 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
202 * moment, get_block can be called only for blocks inside i_size since
203 * page cache has been already dropped and writes are blocked by
204 * i_mutex. So we can safely drop the i_data_sem here.
206 BUG_ON(EXT4_JOURNAL(inode) == NULL);
207 jbd_debug(2, "restarting handle %p\n", handle);
208 up_write(&EXT4_I(inode)->i_data_sem);
209 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
210 down_write(&EXT4_I(inode)->i_data_sem);
212 return ret;
216 * Called at the last iput() if i_nlink is zero.
218 void ext4_delete_inode(struct inode *inode)
220 handle_t *handle;
221 int err;
223 if (ext4_should_order_data(inode))
224 ext4_begin_ordered_truncate(inode, 0);
225 truncate_inode_pages(&inode->i_data, 0);
227 if (is_bad_inode(inode))
228 goto no_delete;
230 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
231 if (IS_ERR(handle)) {
232 ext4_std_error(inode->i_sb, PTR_ERR(handle));
234 * If we're going to skip the normal cleanup, we still need to
235 * make sure that the in-core orphan linked list is properly
236 * cleaned up.
238 ext4_orphan_del(NULL, inode);
239 goto no_delete;
242 if (IS_SYNC(inode))
243 ext4_handle_sync(handle);
244 inode->i_size = 0;
245 err = ext4_mark_inode_dirty(handle, inode);
246 if (err) {
247 ext4_warning(inode->i_sb, __func__,
248 "couldn't mark inode dirty (err %d)", err);
249 goto stop_handle;
251 if (inode->i_blocks)
252 ext4_truncate(inode);
255 * ext4_ext_truncate() doesn't reserve any slop when it
256 * restarts journal transactions; therefore there may not be
257 * enough credits left in the handle to remove the inode from
258 * the orphan list and set the dtime field.
260 if (!ext4_handle_has_enough_credits(handle, 3)) {
261 err = ext4_journal_extend(handle, 3);
262 if (err > 0)
263 err = ext4_journal_restart(handle, 3);
264 if (err != 0) {
265 ext4_warning(inode->i_sb, __func__,
266 "couldn't extend journal (err %d)", err);
267 stop_handle:
268 ext4_journal_stop(handle);
269 goto no_delete;
274 * Kill off the orphan record which ext4_truncate created.
275 * AKPM: I think this can be inside the above `if'.
276 * Note that ext4_orphan_del() has to be able to cope with the
277 * deletion of a non-existent orphan - this is because we don't
278 * know if ext4_truncate() actually created an orphan record.
279 * (Well, we could do this if we need to, but heck - it works)
281 ext4_orphan_del(handle, inode);
282 EXT4_I(inode)->i_dtime = get_seconds();
285 * One subtle ordering requirement: if anything has gone wrong
286 * (transaction abort, IO errors, whatever), then we can still
287 * do these next steps (the fs will already have been marked as
288 * having errors), but we can't free the inode if the mark_dirty
289 * fails.
291 if (ext4_mark_inode_dirty(handle, inode))
292 /* If that failed, just do the required in-core inode clear. */
293 clear_inode(inode);
294 else
295 ext4_free_inode(handle, inode);
296 ext4_journal_stop(handle);
297 return;
298 no_delete:
299 clear_inode(inode); /* We must guarantee clearing of inode... */
302 typedef struct {
303 __le32 *p;
304 __le32 key;
305 struct buffer_head *bh;
306 } Indirect;
308 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
310 p->key = *(p->p = v);
311 p->bh = bh;
315 * ext4_block_to_path - parse the block number into array of offsets
316 * @inode: inode in question (we are only interested in its superblock)
317 * @i_block: block number to be parsed
318 * @offsets: array to store the offsets in
319 * @boundary: set this non-zero if the referred-to block is likely to be
320 * followed (on disk) by an indirect block.
322 * To store the locations of file's data ext4 uses a data structure common
323 * for UNIX filesystems - tree of pointers anchored in the inode, with
324 * data blocks at leaves and indirect blocks in intermediate nodes.
325 * This function translates the block number into path in that tree -
326 * return value is the path length and @offsets[n] is the offset of
327 * pointer to (n+1)th node in the nth one. If @block is out of range
328 * (negative or too large) warning is printed and zero returned.
330 * Note: function doesn't find node addresses, so no IO is needed. All
331 * we need to know is the capacity of indirect blocks (taken from the
332 * inode->i_sb).
336 * Portability note: the last comparison (check that we fit into triple
337 * indirect block) is spelled differently, because otherwise on an
338 * architecture with 32-bit longs and 8Kb pages we might get into trouble
339 * if our filesystem had 8Kb blocks. We might use long long, but that would
340 * kill us on x86. Oh, well, at least the sign propagation does not matter -
341 * i_block would have to be negative in the very beginning, so we would not
342 * get there at all.
345 static int ext4_block_to_path(struct inode *inode,
346 ext4_lblk_t i_block,
347 ext4_lblk_t offsets[4], int *boundary)
349 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
350 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
351 const long direct_blocks = EXT4_NDIR_BLOCKS,
352 indirect_blocks = ptrs,
353 double_blocks = (1 << (ptrs_bits * 2));
354 int n = 0;
355 int final = 0;
357 if (i_block < direct_blocks) {
358 offsets[n++] = i_block;
359 final = direct_blocks;
360 } else if ((i_block -= direct_blocks) < indirect_blocks) {
361 offsets[n++] = EXT4_IND_BLOCK;
362 offsets[n++] = i_block;
363 final = ptrs;
364 } else if ((i_block -= indirect_blocks) < double_blocks) {
365 offsets[n++] = EXT4_DIND_BLOCK;
366 offsets[n++] = i_block >> ptrs_bits;
367 offsets[n++] = i_block & (ptrs - 1);
368 final = ptrs;
369 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
370 offsets[n++] = EXT4_TIND_BLOCK;
371 offsets[n++] = i_block >> (ptrs_bits * 2);
372 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
373 offsets[n++] = i_block & (ptrs - 1);
374 final = ptrs;
375 } else {
376 ext4_warning(inode->i_sb, "ext4_block_to_path",
377 "block %lu > max in inode %lu",
378 i_block + direct_blocks +
379 indirect_blocks + double_blocks, inode->i_ino);
381 if (boundary)
382 *boundary = final - 1 - (i_block & (ptrs - 1));
383 return n;
386 static int __ext4_check_blockref(const char *function, struct inode *inode,
387 __le32 *p, unsigned int max)
389 __le32 *bref = p;
390 unsigned int blk;
392 while (bref < p+max) {
393 blk = le32_to_cpu(*bref++);
394 if (blk &&
395 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
396 blk, 1))) {
397 ext4_error(inode->i_sb, function,
398 "invalid block reference %u "
399 "in inode #%lu", blk, inode->i_ino);
400 return -EIO;
403 return 0;
407 #define ext4_check_indirect_blockref(inode, bh) \
408 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
409 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
411 #define ext4_check_inode_blockref(inode) \
412 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
413 EXT4_NDIR_BLOCKS)
416 * ext4_get_branch - read the chain of indirect blocks leading to data
417 * @inode: inode in question
418 * @depth: depth of the chain (1 - direct pointer, etc.)
419 * @offsets: offsets of pointers in inode/indirect blocks
420 * @chain: place to store the result
421 * @err: here we store the error value
423 * Function fills the array of triples <key, p, bh> and returns %NULL
424 * if everything went OK or the pointer to the last filled triple
425 * (incomplete one) otherwise. Upon the return chain[i].key contains
426 * the number of (i+1)-th block in the chain (as it is stored in memory,
427 * i.e. little-endian 32-bit), chain[i].p contains the address of that
428 * number (it points into struct inode for i==0 and into the bh->b_data
429 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
430 * block for i>0 and NULL for i==0. In other words, it holds the block
431 * numbers of the chain, addresses they were taken from (and where we can
432 * verify that chain did not change) and buffer_heads hosting these
433 * numbers.
435 * Function stops when it stumbles upon zero pointer (absent block)
436 * (pointer to last triple returned, *@err == 0)
437 * or when it gets an IO error reading an indirect block
438 * (ditto, *@err == -EIO)
439 * or when it reads all @depth-1 indirect blocks successfully and finds
440 * the whole chain, all way to the data (returns %NULL, *err == 0).
442 * Need to be called with
443 * down_read(&EXT4_I(inode)->i_data_sem)
445 static Indirect *ext4_get_branch(struct inode *inode, int depth,
446 ext4_lblk_t *offsets,
447 Indirect chain[4], int *err)
449 struct super_block *sb = inode->i_sb;
450 Indirect *p = chain;
451 struct buffer_head *bh;
453 *err = 0;
454 /* i_data is not going away, no lock needed */
455 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
456 if (!p->key)
457 goto no_block;
458 while (--depth) {
459 bh = sb_getblk(sb, le32_to_cpu(p->key));
460 if (unlikely(!bh))
461 goto failure;
463 if (!bh_uptodate_or_lock(bh)) {
464 if (bh_submit_read(bh) < 0) {
465 put_bh(bh);
466 goto failure;
468 /* validate block references */
469 if (ext4_check_indirect_blockref(inode, bh)) {
470 put_bh(bh);
471 goto failure;
475 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
476 /* Reader: end */
477 if (!p->key)
478 goto no_block;
480 return NULL;
482 failure:
483 *err = -EIO;
484 no_block:
485 return p;
489 * ext4_find_near - find a place for allocation with sufficient locality
490 * @inode: owner
491 * @ind: descriptor of indirect block.
493 * This function returns the preferred place for block allocation.
494 * It is used when heuristic for sequential allocation fails.
495 * Rules are:
496 * + if there is a block to the left of our position - allocate near it.
497 * + if pointer will live in indirect block - allocate near that block.
498 * + if pointer will live in inode - allocate in the same
499 * cylinder group.
501 * In the latter case we colour the starting block by the callers PID to
502 * prevent it from clashing with concurrent allocations for a different inode
503 * in the same block group. The PID is used here so that functionally related
504 * files will be close-by on-disk.
506 * Caller must make sure that @ind is valid and will stay that way.
508 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
510 struct ext4_inode_info *ei = EXT4_I(inode);
511 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
512 __le32 *p;
513 ext4_fsblk_t bg_start;
514 ext4_fsblk_t last_block;
515 ext4_grpblk_t colour;
516 ext4_group_t block_group;
517 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
519 /* Try to find previous block */
520 for (p = ind->p - 1; p >= start; p--) {
521 if (*p)
522 return le32_to_cpu(*p);
525 /* No such thing, so let's try location of indirect block */
526 if (ind->bh)
527 return ind->bh->b_blocknr;
530 * It is going to be referred to from the inode itself? OK, just put it
531 * into the same cylinder group then.
533 block_group = ei->i_block_group;
534 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
535 block_group &= ~(flex_size-1);
536 if (S_ISREG(inode->i_mode))
537 block_group++;
539 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
540 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
543 * If we are doing delayed allocation, we don't need take
544 * colour into account.
546 if (test_opt(inode->i_sb, DELALLOC))
547 return bg_start;
549 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
550 colour = (current->pid % 16) *
551 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
552 else
553 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
554 return bg_start + colour;
558 * ext4_find_goal - find a preferred place for allocation.
559 * @inode: owner
560 * @block: block we want
561 * @partial: pointer to the last triple within a chain
563 * Normally this function find the preferred place for block allocation,
564 * returns it.
566 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
567 Indirect *partial)
570 * XXX need to get goal block from mballoc's data structures
573 return ext4_find_near(inode, partial);
577 * ext4_blks_to_allocate: Look up the block map and count the number
578 * of direct blocks need to be allocated for the given branch.
580 * @branch: chain of indirect blocks
581 * @k: number of blocks need for indirect blocks
582 * @blks: number of data blocks to be mapped.
583 * @blocks_to_boundary: the offset in the indirect block
585 * return the total number of blocks to be allocate, including the
586 * direct and indirect blocks.
588 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
589 int blocks_to_boundary)
591 unsigned int count = 0;
594 * Simple case, [t,d]Indirect block(s) has not allocated yet
595 * then it's clear blocks on that path have not allocated
597 if (k > 0) {
598 /* right now we don't handle cross boundary allocation */
599 if (blks < blocks_to_boundary + 1)
600 count += blks;
601 else
602 count += blocks_to_boundary + 1;
603 return count;
606 count++;
607 while (count < blks && count <= blocks_to_boundary &&
608 le32_to_cpu(*(branch[0].p + count)) == 0) {
609 count++;
611 return count;
615 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
616 * @indirect_blks: the number of blocks need to allocate for indirect
617 * blocks
619 * @new_blocks: on return it will store the new block numbers for
620 * the indirect blocks(if needed) and the first direct block,
621 * @blks: on return it will store the total number of allocated
622 * direct blocks
624 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
625 ext4_lblk_t iblock, ext4_fsblk_t goal,
626 int indirect_blks, int blks,
627 ext4_fsblk_t new_blocks[4], int *err)
629 struct ext4_allocation_request ar;
630 int target, i;
631 unsigned long count = 0, blk_allocated = 0;
632 int index = 0;
633 ext4_fsblk_t current_block = 0;
634 int ret = 0;
637 * Here we try to allocate the requested multiple blocks at once,
638 * on a best-effort basis.
639 * To build a branch, we should allocate blocks for
640 * the indirect blocks(if not allocated yet), and at least
641 * the first direct block of this branch. That's the
642 * minimum number of blocks need to allocate(required)
644 /* first we try to allocate the indirect blocks */
645 target = indirect_blks;
646 while (target > 0) {
647 count = target;
648 /* allocating blocks for indirect blocks and direct blocks */
649 current_block = ext4_new_meta_blocks(handle, inode,
650 goal, &count, err);
651 if (*err)
652 goto failed_out;
654 target -= count;
655 /* allocate blocks for indirect blocks */
656 while (index < indirect_blks && count) {
657 new_blocks[index++] = current_block++;
658 count--;
660 if (count > 0) {
662 * save the new block number
663 * for the first direct block
665 new_blocks[index] = current_block;
666 printk(KERN_INFO "%s returned more blocks than "
667 "requested\n", __func__);
668 WARN_ON(1);
669 break;
673 target = blks - count ;
674 blk_allocated = count;
675 if (!target)
676 goto allocated;
677 /* Now allocate data blocks */
678 memset(&ar, 0, sizeof(ar));
679 ar.inode = inode;
680 ar.goal = goal;
681 ar.len = target;
682 ar.logical = iblock;
683 if (S_ISREG(inode->i_mode))
684 /* enable in-core preallocation only for regular files */
685 ar.flags = EXT4_MB_HINT_DATA;
687 current_block = ext4_mb_new_blocks(handle, &ar, err);
689 if (*err && (target == blks)) {
691 * if the allocation failed and we didn't allocate
692 * any blocks before
694 goto failed_out;
696 if (!*err) {
697 if (target == blks) {
699 * save the new block number
700 * for the first direct block
702 new_blocks[index] = current_block;
704 blk_allocated += ar.len;
706 allocated:
707 /* total number of blocks allocated for direct blocks */
708 ret = blk_allocated;
709 *err = 0;
710 return ret;
711 failed_out:
712 for (i = 0; i < index; i++)
713 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
714 return ret;
718 * ext4_alloc_branch - allocate and set up a chain of blocks.
719 * @inode: owner
720 * @indirect_blks: number of allocated indirect blocks
721 * @blks: number of allocated direct blocks
722 * @offsets: offsets (in the blocks) to store the pointers to next.
723 * @branch: place to store the chain in.
725 * This function allocates blocks, zeroes out all but the last one,
726 * links them into chain and (if we are synchronous) writes them to disk.
727 * In other words, it prepares a branch that can be spliced onto the
728 * inode. It stores the information about that chain in the branch[], in
729 * the same format as ext4_get_branch() would do. We are calling it after
730 * we had read the existing part of chain and partial points to the last
731 * triple of that (one with zero ->key). Upon the exit we have the same
732 * picture as after the successful ext4_get_block(), except that in one
733 * place chain is disconnected - *branch->p is still zero (we did not
734 * set the last link), but branch->key contains the number that should
735 * be placed into *branch->p to fill that gap.
737 * If allocation fails we free all blocks we've allocated (and forget
738 * their buffer_heads) and return the error value the from failed
739 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
740 * as described above and return 0.
742 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
743 ext4_lblk_t iblock, int indirect_blks,
744 int *blks, ext4_fsblk_t goal,
745 ext4_lblk_t *offsets, Indirect *branch)
747 int blocksize = inode->i_sb->s_blocksize;
748 int i, n = 0;
749 int err = 0;
750 struct buffer_head *bh;
751 int num;
752 ext4_fsblk_t new_blocks[4];
753 ext4_fsblk_t current_block;
755 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
756 *blks, new_blocks, &err);
757 if (err)
758 return err;
760 branch[0].key = cpu_to_le32(new_blocks[0]);
762 * metadata blocks and data blocks are allocated.
764 for (n = 1; n <= indirect_blks; n++) {
766 * Get buffer_head for parent block, zero it out
767 * and set the pointer to new one, then send
768 * parent to disk.
770 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
771 branch[n].bh = bh;
772 lock_buffer(bh);
773 BUFFER_TRACE(bh, "call get_create_access");
774 err = ext4_journal_get_create_access(handle, bh);
775 if (err) {
776 /* Don't brelse(bh) here; it's done in
777 * ext4_journal_forget() below */
778 unlock_buffer(bh);
779 goto failed;
782 memset(bh->b_data, 0, blocksize);
783 branch[n].p = (__le32 *) bh->b_data + offsets[n];
784 branch[n].key = cpu_to_le32(new_blocks[n]);
785 *branch[n].p = branch[n].key;
786 if (n == indirect_blks) {
787 current_block = new_blocks[n];
789 * End of chain, update the last new metablock of
790 * the chain to point to the new allocated
791 * data blocks numbers
793 for (i = 1; i < num; i++)
794 *(branch[n].p + i) = cpu_to_le32(++current_block);
796 BUFFER_TRACE(bh, "marking uptodate");
797 set_buffer_uptodate(bh);
798 unlock_buffer(bh);
800 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
801 err = ext4_handle_dirty_metadata(handle, inode, bh);
802 if (err)
803 goto failed;
805 *blks = num;
806 return err;
807 failed:
808 /* Allocation failed, free what we already allocated */
809 for (i = 1; i <= n ; i++) {
810 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
811 ext4_journal_forget(handle, branch[i].bh);
813 for (i = 0; i < indirect_blks; i++)
814 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
816 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
818 return err;
822 * ext4_splice_branch - splice the allocated branch onto inode.
823 * @inode: owner
824 * @block: (logical) number of block we are adding
825 * @chain: chain of indirect blocks (with a missing link - see
826 * ext4_alloc_branch)
827 * @where: location of missing link
828 * @num: number of indirect blocks we are adding
829 * @blks: number of direct blocks we are adding
831 * This function fills the missing link and does all housekeeping needed in
832 * inode (->i_blocks, etc.). In case of success we end up with the full
833 * chain to new block and return 0.
835 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
836 ext4_lblk_t block, Indirect *where, int num,
837 int blks)
839 int i;
840 int err = 0;
841 ext4_fsblk_t current_block;
844 * If we're splicing into a [td]indirect block (as opposed to the
845 * inode) then we need to get write access to the [td]indirect block
846 * before the splice.
848 if (where->bh) {
849 BUFFER_TRACE(where->bh, "get_write_access");
850 err = ext4_journal_get_write_access(handle, where->bh);
851 if (err)
852 goto err_out;
854 /* That's it */
856 *where->p = where->key;
859 * Update the host buffer_head or inode to point to more just allocated
860 * direct blocks blocks
862 if (num == 0 && blks > 1) {
863 current_block = le32_to_cpu(where->key) + 1;
864 for (i = 1; i < blks; i++)
865 *(where->p + i) = cpu_to_le32(current_block++);
868 /* We are done with atomic stuff, now do the rest of housekeeping */
869 /* had we spliced it onto indirect block? */
870 if (where->bh) {
872 * If we spliced it onto an indirect block, we haven't
873 * altered the inode. Note however that if it is being spliced
874 * onto an indirect block at the very end of the file (the
875 * file is growing) then we *will* alter the inode to reflect
876 * the new i_size. But that is not done here - it is done in
877 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
879 jbd_debug(5, "splicing indirect only\n");
880 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
881 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
882 if (err)
883 goto err_out;
884 } else {
886 * OK, we spliced it into the inode itself on a direct block.
888 ext4_mark_inode_dirty(handle, inode);
889 jbd_debug(5, "splicing direct\n");
891 return err;
893 err_out:
894 for (i = 1; i <= num; i++) {
895 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
896 ext4_journal_forget(handle, where[i].bh);
897 ext4_free_blocks(handle, inode,
898 le32_to_cpu(where[i-1].key), 1, 0);
900 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
902 return err;
906 * The ext4_ind_get_blocks() function handles non-extents inodes
907 * (i.e., using the traditional indirect/double-indirect i_blocks
908 * scheme) for ext4_get_blocks().
910 * Allocation strategy is simple: if we have to allocate something, we will
911 * have to go the whole way to leaf. So let's do it before attaching anything
912 * to tree, set linkage between the newborn blocks, write them if sync is
913 * required, recheck the path, free and repeat if check fails, otherwise
914 * set the last missing link (that will protect us from any truncate-generated
915 * removals - all blocks on the path are immune now) and possibly force the
916 * write on the parent block.
917 * That has a nice additional property: no special recovery from the failed
918 * allocations is needed - we simply release blocks and do not touch anything
919 * reachable from inode.
921 * `handle' can be NULL if create == 0.
923 * return > 0, # of blocks mapped or allocated.
924 * return = 0, if plain lookup failed.
925 * return < 0, error case.
927 * The ext4_ind_get_blocks() function should be called with
928 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
929 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
930 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
931 * blocks.
933 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
934 ext4_lblk_t iblock, unsigned int maxblocks,
935 struct buffer_head *bh_result,
936 int flags)
938 int err = -EIO;
939 ext4_lblk_t offsets[4];
940 Indirect chain[4];
941 Indirect *partial;
942 ext4_fsblk_t goal;
943 int indirect_blks;
944 int blocks_to_boundary = 0;
945 int depth;
946 int count = 0;
947 ext4_fsblk_t first_block = 0;
949 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
950 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
951 depth = ext4_block_to_path(inode, iblock, offsets,
952 &blocks_to_boundary);
954 if (depth == 0)
955 goto out;
957 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
959 /* Simplest case - block found, no allocation needed */
960 if (!partial) {
961 first_block = le32_to_cpu(chain[depth - 1].key);
962 clear_buffer_new(bh_result);
963 count++;
964 /*map more blocks*/
965 while (count < maxblocks && count <= blocks_to_boundary) {
966 ext4_fsblk_t blk;
968 blk = le32_to_cpu(*(chain[depth-1].p + count));
970 if (blk == first_block + count)
971 count++;
972 else
973 break;
975 goto got_it;
978 /* Next simple case - plain lookup or failed read of indirect block */
979 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
980 goto cleanup;
983 * Okay, we need to do block allocation.
985 goal = ext4_find_goal(inode, iblock, partial);
987 /* the number of blocks need to allocate for [d,t]indirect blocks */
988 indirect_blks = (chain + depth) - partial - 1;
991 * Next look up the indirect map to count the totoal number of
992 * direct blocks to allocate for this branch.
994 count = ext4_blks_to_allocate(partial, indirect_blks,
995 maxblocks, blocks_to_boundary);
997 * Block out ext4_truncate while we alter the tree
999 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
1000 &count, goal,
1001 offsets + (partial - chain), partial);
1004 * The ext4_splice_branch call will free and forget any buffers
1005 * on the new chain if there is a failure, but that risks using
1006 * up transaction credits, especially for bitmaps where the
1007 * credits cannot be returned. Can we handle this somehow? We
1008 * may need to return -EAGAIN upwards in the worst case. --sct
1010 if (!err)
1011 err = ext4_splice_branch(handle, inode, iblock,
1012 partial, indirect_blks, count);
1013 else
1014 goto cleanup;
1016 set_buffer_new(bh_result);
1017 got_it:
1018 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1019 if (count > blocks_to_boundary)
1020 set_buffer_boundary(bh_result);
1021 err = count;
1022 /* Clean up and exit */
1023 partial = chain + depth - 1; /* the whole chain */
1024 cleanup:
1025 while (partial > chain) {
1026 BUFFER_TRACE(partial->bh, "call brelse");
1027 brelse(partial->bh);
1028 partial--;
1030 BUFFER_TRACE(bh_result, "returned");
1031 out:
1032 return err;
1035 qsize_t ext4_get_reserved_space(struct inode *inode)
1037 unsigned long long total;
1039 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1040 total = EXT4_I(inode)->i_reserved_data_blocks +
1041 EXT4_I(inode)->i_reserved_meta_blocks;
1042 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1044 return total;
1047 * Calculate the number of metadata blocks need to reserve
1048 * to allocate @blocks for non extent file based file
1050 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1052 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1053 int ind_blks, dind_blks, tind_blks;
1055 /* number of new indirect blocks needed */
1056 ind_blks = (blocks + icap - 1) / icap;
1058 dind_blks = (ind_blks + icap - 1) / icap;
1060 tind_blks = 1;
1062 return ind_blks + dind_blks + tind_blks;
1066 * Calculate the number of metadata blocks need to reserve
1067 * to allocate given number of blocks
1069 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1071 if (!blocks)
1072 return 0;
1074 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1075 return ext4_ext_calc_metadata_amount(inode, blocks);
1077 return ext4_indirect_calc_metadata_amount(inode, blocks);
1080 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1082 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1083 int total, mdb, mdb_free;
1085 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1086 /* recalculate the number of metablocks still need to be reserved */
1087 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1088 mdb = ext4_calc_metadata_amount(inode, total);
1090 /* figure out how many metablocks to release */
1091 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1092 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1094 if (mdb_free) {
1095 /* Account for allocated meta_blocks */
1096 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1098 /* update fs dirty blocks counter */
1099 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1100 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1101 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1104 /* update per-inode reservations */
1105 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1106 EXT4_I(inode)->i_reserved_data_blocks -= used;
1107 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1110 * free those over-booking quota for metadata blocks
1112 if (mdb_free)
1113 vfs_dq_release_reservation_block(inode, mdb_free);
1116 * If we have done all the pending block allocations and if
1117 * there aren't any writers on the inode, we can discard the
1118 * inode's preallocations.
1120 if (!total && (atomic_read(&inode->i_writecount) == 0))
1121 ext4_discard_preallocations(inode);
1124 static int check_block_validity(struct inode *inode, sector_t logical,
1125 sector_t phys, int len)
1127 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1128 ext4_error(inode->i_sb, "check_block_validity",
1129 "inode #%lu logical block %llu mapped to %llu "
1130 "(size %d)", inode->i_ino,
1131 (unsigned long long) logical,
1132 (unsigned long long) phys, len);
1133 WARN_ON(1);
1134 return -EIO;
1136 return 0;
1140 * The ext4_get_blocks() function tries to look up the requested blocks,
1141 * and returns if the blocks are already mapped.
1143 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1144 * and store the allocated blocks in the result buffer head and mark it
1145 * mapped.
1147 * If file type is extents based, it will call ext4_ext_get_blocks(),
1148 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1149 * based files
1151 * On success, it returns the number of blocks being mapped or allocate.
1152 * if create==0 and the blocks are pre-allocated and uninitialized block,
1153 * the result buffer head is unmapped. If the create ==1, it will make sure
1154 * the buffer head is mapped.
1156 * It returns 0 if plain look up failed (blocks have not been allocated), in
1157 * that casem, buffer head is unmapped
1159 * It returns the error in case of allocation failure.
1161 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1162 unsigned int max_blocks, struct buffer_head *bh,
1163 int flags)
1165 int retval;
1167 clear_buffer_mapped(bh);
1168 clear_buffer_unwritten(bh);
1171 * Try to see if we can get the block without requesting a new
1172 * file system block.
1174 down_read((&EXT4_I(inode)->i_data_sem));
1175 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1176 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1177 bh, 0);
1178 } else {
1179 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1180 bh, 0);
1182 up_read((&EXT4_I(inode)->i_data_sem));
1184 if (retval > 0 && buffer_mapped(bh)) {
1185 int ret = check_block_validity(inode, block,
1186 bh->b_blocknr, retval);
1187 if (ret != 0)
1188 return ret;
1191 /* If it is only a block(s) look up */
1192 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1193 return retval;
1196 * Returns if the blocks have already allocated
1198 * Note that if blocks have been preallocated
1199 * ext4_ext_get_block() returns th create = 0
1200 * with buffer head unmapped.
1202 if (retval > 0 && buffer_mapped(bh))
1203 return retval;
1206 * When we call get_blocks without the create flag, the
1207 * BH_Unwritten flag could have gotten set if the blocks
1208 * requested were part of a uninitialized extent. We need to
1209 * clear this flag now that we are committed to convert all or
1210 * part of the uninitialized extent to be an initialized
1211 * extent. This is because we need to avoid the combination
1212 * of BH_Unwritten and BH_Mapped flags being simultaneously
1213 * set on the buffer_head.
1215 clear_buffer_unwritten(bh);
1218 * New blocks allocate and/or writing to uninitialized extent
1219 * will possibly result in updating i_data, so we take
1220 * the write lock of i_data_sem, and call get_blocks()
1221 * with create == 1 flag.
1223 down_write((&EXT4_I(inode)->i_data_sem));
1226 * if the caller is from delayed allocation writeout path
1227 * we have already reserved fs blocks for allocation
1228 * let the underlying get_block() function know to
1229 * avoid double accounting
1231 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1232 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1234 * We need to check for EXT4 here because migrate
1235 * could have changed the inode type in between
1237 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1238 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1239 bh, flags);
1240 } else {
1241 retval = ext4_ind_get_blocks(handle, inode, block,
1242 max_blocks, bh, flags);
1244 if (retval > 0 && buffer_new(bh)) {
1246 * We allocated new blocks which will result in
1247 * i_data's format changing. Force the migrate
1248 * to fail by clearing migrate flags
1250 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1251 ~EXT4_EXT_MIGRATE;
1255 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1256 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1259 * Update reserved blocks/metadata blocks after successful
1260 * block allocation which had been deferred till now.
1262 if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1263 ext4_da_update_reserve_space(inode, retval);
1265 up_write((&EXT4_I(inode)->i_data_sem));
1266 if (retval > 0 && buffer_mapped(bh)) {
1267 int ret = check_block_validity(inode, block,
1268 bh->b_blocknr, retval);
1269 if (ret != 0)
1270 return ret;
1272 return retval;
1275 /* Maximum number of blocks we map for direct IO at once. */
1276 #define DIO_MAX_BLOCKS 4096
1278 int ext4_get_block(struct inode *inode, sector_t iblock,
1279 struct buffer_head *bh_result, int create)
1281 handle_t *handle = ext4_journal_current_handle();
1282 int ret = 0, started = 0;
1283 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1284 int dio_credits;
1286 if (create && !handle) {
1287 /* Direct IO write... */
1288 if (max_blocks > DIO_MAX_BLOCKS)
1289 max_blocks = DIO_MAX_BLOCKS;
1290 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1291 handle = ext4_journal_start(inode, dio_credits);
1292 if (IS_ERR(handle)) {
1293 ret = PTR_ERR(handle);
1294 goto out;
1296 started = 1;
1299 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1300 create ? EXT4_GET_BLOCKS_CREATE : 0);
1301 if (ret > 0) {
1302 bh_result->b_size = (ret << inode->i_blkbits);
1303 ret = 0;
1305 if (started)
1306 ext4_journal_stop(handle);
1307 out:
1308 return ret;
1312 * `handle' can be NULL if create is zero
1314 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1315 ext4_lblk_t block, int create, int *errp)
1317 struct buffer_head dummy;
1318 int fatal = 0, err;
1319 int flags = 0;
1321 J_ASSERT(handle != NULL || create == 0);
1323 dummy.b_state = 0;
1324 dummy.b_blocknr = -1000;
1325 buffer_trace_init(&dummy.b_history);
1326 if (create)
1327 flags |= EXT4_GET_BLOCKS_CREATE;
1328 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1330 * ext4_get_blocks() returns number of blocks mapped. 0 in
1331 * case of a HOLE.
1333 if (err > 0) {
1334 if (err > 1)
1335 WARN_ON(1);
1336 err = 0;
1338 *errp = err;
1339 if (!err && buffer_mapped(&dummy)) {
1340 struct buffer_head *bh;
1341 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1342 if (!bh) {
1343 *errp = -EIO;
1344 goto err;
1346 if (buffer_new(&dummy)) {
1347 J_ASSERT(create != 0);
1348 J_ASSERT(handle != NULL);
1351 * Now that we do not always journal data, we should
1352 * keep in mind whether this should always journal the
1353 * new buffer as metadata. For now, regular file
1354 * writes use ext4_get_block instead, so it's not a
1355 * problem.
1357 lock_buffer(bh);
1358 BUFFER_TRACE(bh, "call get_create_access");
1359 fatal = ext4_journal_get_create_access(handle, bh);
1360 if (!fatal && !buffer_uptodate(bh)) {
1361 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1362 set_buffer_uptodate(bh);
1364 unlock_buffer(bh);
1365 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1366 err = ext4_handle_dirty_metadata(handle, inode, bh);
1367 if (!fatal)
1368 fatal = err;
1369 } else {
1370 BUFFER_TRACE(bh, "not a new buffer");
1372 if (fatal) {
1373 *errp = fatal;
1374 brelse(bh);
1375 bh = NULL;
1377 return bh;
1379 err:
1380 return NULL;
1383 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1384 ext4_lblk_t block, int create, int *err)
1386 struct buffer_head *bh;
1388 bh = ext4_getblk(handle, inode, block, create, err);
1389 if (!bh)
1390 return bh;
1391 if (buffer_uptodate(bh))
1392 return bh;
1393 ll_rw_block(READ_META, 1, &bh);
1394 wait_on_buffer(bh);
1395 if (buffer_uptodate(bh))
1396 return bh;
1397 put_bh(bh);
1398 *err = -EIO;
1399 return NULL;
1402 static int walk_page_buffers(handle_t *handle,
1403 struct buffer_head *head,
1404 unsigned from,
1405 unsigned to,
1406 int *partial,
1407 int (*fn)(handle_t *handle,
1408 struct buffer_head *bh))
1410 struct buffer_head *bh;
1411 unsigned block_start, block_end;
1412 unsigned blocksize = head->b_size;
1413 int err, ret = 0;
1414 struct buffer_head *next;
1416 for (bh = head, block_start = 0;
1417 ret == 0 && (bh != head || !block_start);
1418 block_start = block_end, bh = next) {
1419 next = bh->b_this_page;
1420 block_end = block_start + blocksize;
1421 if (block_end <= from || block_start >= to) {
1422 if (partial && !buffer_uptodate(bh))
1423 *partial = 1;
1424 continue;
1426 err = (*fn)(handle, bh);
1427 if (!ret)
1428 ret = err;
1430 return ret;
1434 * To preserve ordering, it is essential that the hole instantiation and
1435 * the data write be encapsulated in a single transaction. We cannot
1436 * close off a transaction and start a new one between the ext4_get_block()
1437 * and the commit_write(). So doing the jbd2_journal_start at the start of
1438 * prepare_write() is the right place.
1440 * Also, this function can nest inside ext4_writepage() ->
1441 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1442 * has generated enough buffer credits to do the whole page. So we won't
1443 * block on the journal in that case, which is good, because the caller may
1444 * be PF_MEMALLOC.
1446 * By accident, ext4 can be reentered when a transaction is open via
1447 * quota file writes. If we were to commit the transaction while thus
1448 * reentered, there can be a deadlock - we would be holding a quota
1449 * lock, and the commit would never complete if another thread had a
1450 * transaction open and was blocking on the quota lock - a ranking
1451 * violation.
1453 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1454 * will _not_ run commit under these circumstances because handle->h_ref
1455 * is elevated. We'll still have enough credits for the tiny quotafile
1456 * write.
1458 static int do_journal_get_write_access(handle_t *handle,
1459 struct buffer_head *bh)
1461 if (!buffer_mapped(bh) || buffer_freed(bh))
1462 return 0;
1463 return ext4_journal_get_write_access(handle, bh);
1466 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1467 loff_t pos, unsigned len, unsigned flags,
1468 struct page **pagep, void **fsdata)
1470 struct inode *inode = mapping->host;
1471 int ret, needed_blocks;
1472 handle_t *handle;
1473 int retries = 0;
1474 struct page *page;
1475 pgoff_t index;
1476 unsigned from, to;
1478 trace_ext4_write_begin(inode, pos, len, flags);
1480 * Reserve one block more for addition to orphan list in case
1481 * we allocate blocks but write fails for some reason
1483 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1484 index = pos >> PAGE_CACHE_SHIFT;
1485 from = pos & (PAGE_CACHE_SIZE - 1);
1486 to = from + len;
1488 retry:
1489 handle = ext4_journal_start(inode, needed_blocks);
1490 if (IS_ERR(handle)) {
1491 ret = PTR_ERR(handle);
1492 goto out;
1495 /* We cannot recurse into the filesystem as the transaction is already
1496 * started */
1497 flags |= AOP_FLAG_NOFS;
1499 page = grab_cache_page_write_begin(mapping, index, flags);
1500 if (!page) {
1501 ext4_journal_stop(handle);
1502 ret = -ENOMEM;
1503 goto out;
1505 *pagep = page;
1507 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1508 ext4_get_block);
1510 if (!ret && ext4_should_journal_data(inode)) {
1511 ret = walk_page_buffers(handle, page_buffers(page),
1512 from, to, NULL, do_journal_get_write_access);
1515 if (ret) {
1516 unlock_page(page);
1517 page_cache_release(page);
1519 * block_write_begin may have instantiated a few blocks
1520 * outside i_size. Trim these off again. Don't need
1521 * i_size_read because we hold i_mutex.
1523 * Add inode to orphan list in case we crash before
1524 * truncate finishes
1526 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1527 ext4_orphan_add(handle, inode);
1529 ext4_journal_stop(handle);
1530 if (pos + len > inode->i_size) {
1531 ext4_truncate(inode);
1533 * If truncate failed early the inode might
1534 * still be on the orphan list; we need to
1535 * make sure the inode is removed from the
1536 * orphan list in that case.
1538 if (inode->i_nlink)
1539 ext4_orphan_del(NULL, inode);
1543 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1544 goto retry;
1545 out:
1546 return ret;
1549 /* For write_end() in data=journal mode */
1550 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1552 if (!buffer_mapped(bh) || buffer_freed(bh))
1553 return 0;
1554 set_buffer_uptodate(bh);
1555 return ext4_handle_dirty_metadata(handle, NULL, bh);
1558 static int ext4_generic_write_end(struct file *file,
1559 struct address_space *mapping,
1560 loff_t pos, unsigned len, unsigned copied,
1561 struct page *page, void *fsdata)
1563 int i_size_changed = 0;
1564 struct inode *inode = mapping->host;
1565 handle_t *handle = ext4_journal_current_handle();
1567 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1570 * No need to use i_size_read() here, the i_size
1571 * cannot change under us because we hold i_mutex.
1573 * But it's important to update i_size while still holding page lock:
1574 * page writeout could otherwise come in and zero beyond i_size.
1576 if (pos + copied > inode->i_size) {
1577 i_size_write(inode, pos + copied);
1578 i_size_changed = 1;
1581 if (pos + copied > EXT4_I(inode)->i_disksize) {
1582 /* We need to mark inode dirty even if
1583 * new_i_size is less that inode->i_size
1584 * bu greater than i_disksize.(hint delalloc)
1586 ext4_update_i_disksize(inode, (pos + copied));
1587 i_size_changed = 1;
1589 unlock_page(page);
1590 page_cache_release(page);
1593 * Don't mark the inode dirty under page lock. First, it unnecessarily
1594 * makes the holding time of page lock longer. Second, it forces lock
1595 * ordering of page lock and transaction start for journaling
1596 * filesystems.
1598 if (i_size_changed)
1599 ext4_mark_inode_dirty(handle, inode);
1601 return copied;
1605 * We need to pick up the new inode size which generic_commit_write gave us
1606 * `file' can be NULL - eg, when called from page_symlink().
1608 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1609 * buffers are managed internally.
1611 static int ext4_ordered_write_end(struct file *file,
1612 struct address_space *mapping,
1613 loff_t pos, unsigned len, unsigned copied,
1614 struct page *page, void *fsdata)
1616 handle_t *handle = ext4_journal_current_handle();
1617 struct inode *inode = mapping->host;
1618 int ret = 0, ret2;
1620 trace_ext4_ordered_write_end(inode, pos, len, copied);
1621 ret = ext4_jbd2_file_inode(handle, inode);
1623 if (ret == 0) {
1624 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1625 page, fsdata);
1626 copied = ret2;
1627 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1628 /* if we have allocated more blocks and copied
1629 * less. We will have blocks allocated outside
1630 * inode->i_size. So truncate them
1632 ext4_orphan_add(handle, inode);
1633 if (ret2 < 0)
1634 ret = ret2;
1636 ret2 = ext4_journal_stop(handle);
1637 if (!ret)
1638 ret = ret2;
1640 if (pos + len > inode->i_size) {
1641 ext4_truncate(inode);
1643 * If truncate failed early the inode might still be
1644 * on the orphan list; we need to make sure the inode
1645 * is removed from the orphan list in that case.
1647 if (inode->i_nlink)
1648 ext4_orphan_del(NULL, inode);
1652 return ret ? ret : copied;
1655 static int ext4_writeback_write_end(struct file *file,
1656 struct address_space *mapping,
1657 loff_t pos, unsigned len, unsigned copied,
1658 struct page *page, void *fsdata)
1660 handle_t *handle = ext4_journal_current_handle();
1661 struct inode *inode = mapping->host;
1662 int ret = 0, ret2;
1664 trace_ext4_writeback_write_end(inode, pos, len, copied);
1665 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1666 page, fsdata);
1667 copied = ret2;
1668 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1669 /* if we have allocated more blocks and copied
1670 * less. We will have blocks allocated outside
1671 * inode->i_size. So truncate them
1673 ext4_orphan_add(handle, inode);
1675 if (ret2 < 0)
1676 ret = ret2;
1678 ret2 = ext4_journal_stop(handle);
1679 if (!ret)
1680 ret = ret2;
1682 if (pos + len > inode->i_size) {
1683 ext4_truncate(inode);
1685 * If truncate failed early the inode might still be
1686 * on the orphan list; we need to make sure the inode
1687 * is removed from the orphan list in that case.
1689 if (inode->i_nlink)
1690 ext4_orphan_del(NULL, inode);
1693 return ret ? ret : copied;
1696 static int ext4_journalled_write_end(struct file *file,
1697 struct address_space *mapping,
1698 loff_t pos, unsigned len, unsigned copied,
1699 struct page *page, void *fsdata)
1701 handle_t *handle = ext4_journal_current_handle();
1702 struct inode *inode = mapping->host;
1703 int ret = 0, ret2;
1704 int partial = 0;
1705 unsigned from, to;
1706 loff_t new_i_size;
1708 trace_ext4_journalled_write_end(inode, pos, len, copied);
1709 from = pos & (PAGE_CACHE_SIZE - 1);
1710 to = from + len;
1712 if (copied < len) {
1713 if (!PageUptodate(page))
1714 copied = 0;
1715 page_zero_new_buffers(page, from+copied, to);
1718 ret = walk_page_buffers(handle, page_buffers(page), from,
1719 to, &partial, write_end_fn);
1720 if (!partial)
1721 SetPageUptodate(page);
1722 new_i_size = pos + copied;
1723 if (new_i_size > inode->i_size)
1724 i_size_write(inode, pos+copied);
1725 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1726 if (new_i_size > EXT4_I(inode)->i_disksize) {
1727 ext4_update_i_disksize(inode, new_i_size);
1728 ret2 = ext4_mark_inode_dirty(handle, inode);
1729 if (!ret)
1730 ret = ret2;
1733 unlock_page(page);
1734 page_cache_release(page);
1735 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1736 /* if we have allocated more blocks and copied
1737 * less. We will have blocks allocated outside
1738 * inode->i_size. So truncate them
1740 ext4_orphan_add(handle, inode);
1742 ret2 = ext4_journal_stop(handle);
1743 if (!ret)
1744 ret = ret2;
1745 if (pos + len > inode->i_size) {
1746 ext4_truncate(inode);
1748 * If truncate failed early the inode might still be
1749 * on the orphan list; we need to make sure the inode
1750 * is removed from the orphan list in that case.
1752 if (inode->i_nlink)
1753 ext4_orphan_del(NULL, inode);
1756 return ret ? ret : copied;
1759 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1761 int retries = 0;
1762 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1763 unsigned long md_needed, mdblocks, total = 0;
1766 * recalculate the amount of metadata blocks to reserve
1767 * in order to allocate nrblocks
1768 * worse case is one extent per block
1770 repeat:
1771 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1772 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1773 mdblocks = ext4_calc_metadata_amount(inode, total);
1774 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1776 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1777 total = md_needed + nrblocks;
1780 * Make quota reservation here to prevent quota overflow
1781 * later. Real quota accounting is done at pages writeout
1782 * time.
1784 if (vfs_dq_reserve_block(inode, total)) {
1785 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1786 return -EDQUOT;
1789 if (ext4_claim_free_blocks(sbi, total)) {
1790 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1791 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1792 yield();
1793 goto repeat;
1795 vfs_dq_release_reservation_block(inode, total);
1796 return -ENOSPC;
1798 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1799 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1801 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1802 return 0; /* success */
1805 static void ext4_da_release_space(struct inode *inode, int to_free)
1807 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1808 int total, mdb, mdb_free, release;
1810 if (!to_free)
1811 return; /* Nothing to release, exit */
1813 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1815 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1817 * if there is no reserved blocks, but we try to free some
1818 * then the counter is messed up somewhere.
1819 * but since this function is called from invalidate
1820 * page, it's harmless to return without any action
1822 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1823 "blocks for inode %lu, but there is no reserved "
1824 "data blocks\n", to_free, inode->i_ino);
1825 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1826 return;
1829 /* recalculate the number of metablocks still need to be reserved */
1830 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1831 mdb = ext4_calc_metadata_amount(inode, total);
1833 /* figure out how many metablocks to release */
1834 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1835 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1837 release = to_free + mdb_free;
1839 /* update fs dirty blocks counter for truncate case */
1840 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1842 /* update per-inode reservations */
1843 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1844 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1846 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1847 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1848 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1850 vfs_dq_release_reservation_block(inode, release);
1853 static void ext4_da_page_release_reservation(struct page *page,
1854 unsigned long offset)
1856 int to_release = 0;
1857 struct buffer_head *head, *bh;
1858 unsigned int curr_off = 0;
1860 head = page_buffers(page);
1861 bh = head;
1862 do {
1863 unsigned int next_off = curr_off + bh->b_size;
1865 if ((offset <= curr_off) && (buffer_delay(bh))) {
1866 to_release++;
1867 clear_buffer_delay(bh);
1869 curr_off = next_off;
1870 } while ((bh = bh->b_this_page) != head);
1871 ext4_da_release_space(page->mapping->host, to_release);
1875 * Delayed allocation stuff
1878 struct mpage_da_data {
1879 struct inode *inode;
1880 sector_t b_blocknr; /* start block number of extent */
1881 size_t b_size; /* size of extent */
1882 unsigned long b_state; /* state of the extent */
1883 unsigned long first_page, next_page; /* extent of pages */
1884 struct writeback_control *wbc;
1885 int io_done;
1886 int pages_written;
1887 int retval;
1891 * mpage_da_submit_io - walks through extent of pages and try to write
1892 * them with writepage() call back
1894 * @mpd->inode: inode
1895 * @mpd->first_page: first page of the extent
1896 * @mpd->next_page: page after the last page of the extent
1898 * By the time mpage_da_submit_io() is called we expect all blocks
1899 * to be allocated. this may be wrong if allocation failed.
1901 * As pages are already locked by write_cache_pages(), we can't use it
1903 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1905 long pages_skipped;
1906 struct pagevec pvec;
1907 unsigned long index, end;
1908 int ret = 0, err, nr_pages, i;
1909 struct inode *inode = mpd->inode;
1910 struct address_space *mapping = inode->i_mapping;
1912 BUG_ON(mpd->next_page <= mpd->first_page);
1914 * We need to start from the first_page to the next_page - 1
1915 * to make sure we also write the mapped dirty buffer_heads.
1916 * If we look at mpd->b_blocknr we would only be looking
1917 * at the currently mapped buffer_heads.
1919 index = mpd->first_page;
1920 end = mpd->next_page - 1;
1922 pagevec_init(&pvec, 0);
1923 while (index <= end) {
1924 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1925 if (nr_pages == 0)
1926 break;
1927 for (i = 0; i < nr_pages; i++) {
1928 struct page *page = pvec.pages[i];
1930 index = page->index;
1931 if (index > end)
1932 break;
1933 index++;
1935 BUG_ON(!PageLocked(page));
1936 BUG_ON(PageWriteback(page));
1938 pages_skipped = mpd->wbc->pages_skipped;
1939 err = mapping->a_ops->writepage(page, mpd->wbc);
1940 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1942 * have successfully written the page
1943 * without skipping the same
1945 mpd->pages_written++;
1947 * In error case, we have to continue because
1948 * remaining pages are still locked
1949 * XXX: unlock and re-dirty them?
1951 if (ret == 0)
1952 ret = err;
1954 pagevec_release(&pvec);
1956 return ret;
1960 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1962 * @mpd->inode - inode to walk through
1963 * @exbh->b_blocknr - first block on a disk
1964 * @exbh->b_size - amount of space in bytes
1965 * @logical - first logical block to start assignment with
1967 * the function goes through all passed space and put actual disk
1968 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
1970 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1971 struct buffer_head *exbh)
1973 struct inode *inode = mpd->inode;
1974 struct address_space *mapping = inode->i_mapping;
1975 int blocks = exbh->b_size >> inode->i_blkbits;
1976 sector_t pblock = exbh->b_blocknr, cur_logical;
1977 struct buffer_head *head, *bh;
1978 pgoff_t index, end;
1979 struct pagevec pvec;
1980 int nr_pages, i;
1982 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1983 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1984 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1986 pagevec_init(&pvec, 0);
1988 while (index <= end) {
1989 /* XXX: optimize tail */
1990 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1991 if (nr_pages == 0)
1992 break;
1993 for (i = 0; i < nr_pages; i++) {
1994 struct page *page = pvec.pages[i];
1996 index = page->index;
1997 if (index > end)
1998 break;
1999 index++;
2001 BUG_ON(!PageLocked(page));
2002 BUG_ON(PageWriteback(page));
2003 BUG_ON(!page_has_buffers(page));
2005 bh = page_buffers(page);
2006 head = bh;
2008 /* skip blocks out of the range */
2009 do {
2010 if (cur_logical >= logical)
2011 break;
2012 cur_logical++;
2013 } while ((bh = bh->b_this_page) != head);
2015 do {
2016 if (cur_logical >= logical + blocks)
2017 break;
2019 if (buffer_delay(bh) ||
2020 buffer_unwritten(bh)) {
2022 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2024 if (buffer_delay(bh)) {
2025 clear_buffer_delay(bh);
2026 bh->b_blocknr = pblock;
2027 } else {
2029 * unwritten already should have
2030 * blocknr assigned. Verify that
2032 clear_buffer_unwritten(bh);
2033 BUG_ON(bh->b_blocknr != pblock);
2036 } else if (buffer_mapped(bh))
2037 BUG_ON(bh->b_blocknr != pblock);
2039 cur_logical++;
2040 pblock++;
2041 } while ((bh = bh->b_this_page) != head);
2043 pagevec_release(&pvec);
2049 * __unmap_underlying_blocks - just a helper function to unmap
2050 * set of blocks described by @bh
2052 static inline void __unmap_underlying_blocks(struct inode *inode,
2053 struct buffer_head *bh)
2055 struct block_device *bdev = inode->i_sb->s_bdev;
2056 int blocks, i;
2058 blocks = bh->b_size >> inode->i_blkbits;
2059 for (i = 0; i < blocks; i++)
2060 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2063 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2064 sector_t logical, long blk_cnt)
2066 int nr_pages, i;
2067 pgoff_t index, end;
2068 struct pagevec pvec;
2069 struct inode *inode = mpd->inode;
2070 struct address_space *mapping = inode->i_mapping;
2072 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2073 end = (logical + blk_cnt - 1) >>
2074 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2075 while (index <= end) {
2076 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2077 if (nr_pages == 0)
2078 break;
2079 for (i = 0; i < nr_pages; i++) {
2080 struct page *page = pvec.pages[i];
2081 index = page->index;
2082 if (index > end)
2083 break;
2084 index++;
2086 BUG_ON(!PageLocked(page));
2087 BUG_ON(PageWriteback(page));
2088 block_invalidatepage(page, 0);
2089 ClearPageUptodate(page);
2090 unlock_page(page);
2093 return;
2096 static void ext4_print_free_blocks(struct inode *inode)
2098 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2099 printk(KERN_EMERG "Total free blocks count %lld\n",
2100 ext4_count_free_blocks(inode->i_sb));
2101 printk(KERN_EMERG "Free/Dirty block details\n");
2102 printk(KERN_EMERG "free_blocks=%lld\n",
2103 (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
2104 printk(KERN_EMERG "dirty_blocks=%lld\n",
2105 (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2106 printk(KERN_EMERG "Block reservation details\n");
2107 printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
2108 EXT4_I(inode)->i_reserved_data_blocks);
2109 printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
2110 EXT4_I(inode)->i_reserved_meta_blocks);
2111 return;
2115 * mpage_da_map_blocks - go through given space
2117 * @mpd - bh describing space
2119 * The function skips space we know is already mapped to disk blocks.
2122 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2124 int err, blks, get_blocks_flags;
2125 struct buffer_head new;
2126 sector_t next = mpd->b_blocknr;
2127 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2128 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2129 handle_t *handle = NULL;
2132 * We consider only non-mapped and non-allocated blocks
2134 if ((mpd->b_state & (1 << BH_Mapped)) &&
2135 !(mpd->b_state & (1 << BH_Delay)) &&
2136 !(mpd->b_state & (1 << BH_Unwritten)))
2137 return 0;
2140 * If we didn't accumulate anything to write simply return
2142 if (!mpd->b_size)
2143 return 0;
2145 handle = ext4_journal_current_handle();
2146 BUG_ON(!handle);
2149 * Call ext4_get_blocks() to allocate any delayed allocation
2150 * blocks, or to convert an uninitialized extent to be
2151 * initialized (in the case where we have written into
2152 * one or more preallocated blocks).
2154 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2155 * indicate that we are on the delayed allocation path. This
2156 * affects functions in many different parts of the allocation
2157 * call path. This flag exists primarily because we don't
2158 * want to change *many* call functions, so ext4_get_blocks()
2159 * will set the magic i_delalloc_reserved_flag once the
2160 * inode's allocation semaphore is taken.
2162 * If the blocks in questions were delalloc blocks, set
2163 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2164 * variables are updated after the blocks have been allocated.
2166 new.b_state = 0;
2167 get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2168 EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2169 if (mpd->b_state & (1 << BH_Delay))
2170 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2171 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2172 &new, get_blocks_flags);
2173 if (blks < 0) {
2174 err = blks;
2176 * If get block returns with error we simply
2177 * return. Later writepage will redirty the page and
2178 * writepages will find the dirty page again
2180 if (err == -EAGAIN)
2181 return 0;
2183 if (err == -ENOSPC &&
2184 ext4_count_free_blocks(mpd->inode->i_sb)) {
2185 mpd->retval = err;
2186 return 0;
2190 * get block failure will cause us to loop in
2191 * writepages, because a_ops->writepage won't be able
2192 * to make progress. The page will be redirtied by
2193 * writepage and writepages will again try to write
2194 * the same.
2196 printk(KERN_EMERG "%s block allocation failed for inode %lu "
2197 "at logical offset %llu with max blocks "
2198 "%zd with error %d\n",
2199 __func__, mpd->inode->i_ino,
2200 (unsigned long long)next,
2201 mpd->b_size >> mpd->inode->i_blkbits, err);
2202 printk(KERN_EMERG "This should not happen.!! "
2203 "Data will be lost\n");
2204 if (err == -ENOSPC) {
2205 ext4_print_free_blocks(mpd->inode);
2207 /* invalidate all the pages */
2208 ext4_da_block_invalidatepages(mpd, next,
2209 mpd->b_size >> mpd->inode->i_blkbits);
2210 return err;
2212 BUG_ON(blks == 0);
2214 new.b_size = (blks << mpd->inode->i_blkbits);
2216 if (buffer_new(&new))
2217 __unmap_underlying_blocks(mpd->inode, &new);
2220 * If blocks are delayed marked, we need to
2221 * put actual blocknr and drop delayed bit
2223 if ((mpd->b_state & (1 << BH_Delay)) ||
2224 (mpd->b_state & (1 << BH_Unwritten)))
2225 mpage_put_bnr_to_bhs(mpd, next, &new);
2227 if (ext4_should_order_data(mpd->inode)) {
2228 err = ext4_jbd2_file_inode(handle, mpd->inode);
2229 if (err)
2230 return err;
2234 * Update on-disk size along with block allocation.
2236 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2237 if (disksize > i_size_read(mpd->inode))
2238 disksize = i_size_read(mpd->inode);
2239 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2240 ext4_update_i_disksize(mpd->inode, disksize);
2241 return ext4_mark_inode_dirty(handle, mpd->inode);
2244 return 0;
2247 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2248 (1 << BH_Delay) | (1 << BH_Unwritten))
2251 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2253 * @mpd->lbh - extent of blocks
2254 * @logical - logical number of the block in the file
2255 * @bh - bh of the block (used to access block's state)
2257 * the function is used to collect contig. blocks in same state
2259 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2260 sector_t logical, size_t b_size,
2261 unsigned long b_state)
2263 sector_t next;
2264 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2266 /* check if thereserved journal credits might overflow */
2267 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2268 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2270 * With non-extent format we are limited by the journal
2271 * credit available. Total credit needed to insert
2272 * nrblocks contiguous blocks is dependent on the
2273 * nrblocks. So limit nrblocks.
2275 goto flush_it;
2276 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2277 EXT4_MAX_TRANS_DATA) {
2279 * Adding the new buffer_head would make it cross the
2280 * allowed limit for which we have journal credit
2281 * reserved. So limit the new bh->b_size
2283 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2284 mpd->inode->i_blkbits;
2285 /* we will do mpage_da_submit_io in the next loop */
2289 * First block in the extent
2291 if (mpd->b_size == 0) {
2292 mpd->b_blocknr = logical;
2293 mpd->b_size = b_size;
2294 mpd->b_state = b_state & BH_FLAGS;
2295 return;
2298 next = mpd->b_blocknr + nrblocks;
2300 * Can we merge the block to our big extent?
2302 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2303 mpd->b_size += b_size;
2304 return;
2307 flush_it:
2309 * We couldn't merge the block to our extent, so we
2310 * need to flush current extent and start new one
2312 if (mpage_da_map_blocks(mpd) == 0)
2313 mpage_da_submit_io(mpd);
2314 mpd->io_done = 1;
2315 return;
2318 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2320 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2324 * __mpage_da_writepage - finds extent of pages and blocks
2326 * @page: page to consider
2327 * @wbc: not used, we just follow rules
2328 * @data: context
2330 * The function finds extents of pages and scan them for all blocks.
2332 static int __mpage_da_writepage(struct page *page,
2333 struct writeback_control *wbc, void *data)
2335 struct mpage_da_data *mpd = data;
2336 struct inode *inode = mpd->inode;
2337 struct buffer_head *bh, *head;
2338 sector_t logical;
2340 if (mpd->io_done) {
2342 * Rest of the page in the page_vec
2343 * redirty then and skip then. We will
2344 * try to to write them again after
2345 * starting a new transaction
2347 redirty_page_for_writepage(wbc, page);
2348 unlock_page(page);
2349 return MPAGE_DA_EXTENT_TAIL;
2352 * Can we merge this page to current extent?
2354 if (mpd->next_page != page->index) {
2356 * Nope, we can't. So, we map non-allocated blocks
2357 * and start IO on them using writepage()
2359 if (mpd->next_page != mpd->first_page) {
2360 if (mpage_da_map_blocks(mpd) == 0)
2361 mpage_da_submit_io(mpd);
2363 * skip rest of the page in the page_vec
2365 mpd->io_done = 1;
2366 redirty_page_for_writepage(wbc, page);
2367 unlock_page(page);
2368 return MPAGE_DA_EXTENT_TAIL;
2372 * Start next extent of pages ...
2374 mpd->first_page = page->index;
2377 * ... and blocks
2379 mpd->b_size = 0;
2380 mpd->b_state = 0;
2381 mpd->b_blocknr = 0;
2384 mpd->next_page = page->index + 1;
2385 logical = (sector_t) page->index <<
2386 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2388 if (!page_has_buffers(page)) {
2389 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2390 (1 << BH_Dirty) | (1 << BH_Uptodate));
2391 if (mpd->io_done)
2392 return MPAGE_DA_EXTENT_TAIL;
2393 } else {
2395 * Page with regular buffer heads, just add all dirty ones
2397 head = page_buffers(page);
2398 bh = head;
2399 do {
2400 BUG_ON(buffer_locked(bh));
2402 * We need to try to allocate
2403 * unmapped blocks in the same page.
2404 * Otherwise we won't make progress
2405 * with the page in ext4_writepage
2407 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2408 mpage_add_bh_to_extent(mpd, logical,
2409 bh->b_size,
2410 bh->b_state);
2411 if (mpd->io_done)
2412 return MPAGE_DA_EXTENT_TAIL;
2413 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2415 * mapped dirty buffer. We need to update
2416 * the b_state because we look at
2417 * b_state in mpage_da_map_blocks. We don't
2418 * update b_size because if we find an
2419 * unmapped buffer_head later we need to
2420 * use the b_state flag of that buffer_head.
2422 if (mpd->b_size == 0)
2423 mpd->b_state = bh->b_state & BH_FLAGS;
2425 logical++;
2426 } while ((bh = bh->b_this_page) != head);
2429 return 0;
2433 * This is a special get_blocks_t callback which is used by
2434 * ext4_da_write_begin(). It will either return mapped block or
2435 * reserve space for a single block.
2437 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2438 * We also have b_blocknr = -1 and b_bdev initialized properly
2440 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2441 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2442 * initialized properly.
2444 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2445 struct buffer_head *bh_result, int create)
2447 int ret = 0;
2448 sector_t invalid_block = ~((sector_t) 0xffff);
2450 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2451 invalid_block = ~0;
2453 BUG_ON(create == 0);
2454 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2457 * first, we need to know whether the block is allocated already
2458 * preallocated blocks are unmapped but should treated
2459 * the same as allocated blocks.
2461 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
2462 if ((ret == 0) && !buffer_delay(bh_result)) {
2463 /* the block isn't (pre)allocated yet, let's reserve space */
2465 * XXX: __block_prepare_write() unmaps passed block,
2466 * is it OK?
2468 ret = ext4_da_reserve_space(inode, 1);
2469 if (ret)
2470 /* not enough space to reserve */
2471 return ret;
2473 map_bh(bh_result, inode->i_sb, invalid_block);
2474 set_buffer_new(bh_result);
2475 set_buffer_delay(bh_result);
2476 } else if (ret > 0) {
2477 bh_result->b_size = (ret << inode->i_blkbits);
2478 if (buffer_unwritten(bh_result)) {
2479 /* A delayed write to unwritten bh should
2480 * be marked new and mapped. Mapped ensures
2481 * that we don't do get_block multiple times
2482 * when we write to the same offset and new
2483 * ensures that we do proper zero out for
2484 * partial write.
2486 set_buffer_new(bh_result);
2487 set_buffer_mapped(bh_result);
2489 ret = 0;
2492 return ret;
2496 * This function is used as a standard get_block_t calback function
2497 * when there is no desire to allocate any blocks. It is used as a
2498 * callback function for block_prepare_write(), nobh_writepage(), and
2499 * block_write_full_page(). These functions should only try to map a
2500 * single block at a time.
2502 * Since this function doesn't do block allocations even if the caller
2503 * requests it by passing in create=1, it is critically important that
2504 * any caller checks to make sure that any buffer heads are returned
2505 * by this function are either all already mapped or marked for
2506 * delayed allocation before calling nobh_writepage() or
2507 * block_write_full_page(). Otherwise, b_blocknr could be left
2508 * unitialized, and the page write functions will be taken by
2509 * surprise.
2511 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2512 struct buffer_head *bh_result, int create)
2514 int ret = 0;
2515 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2517 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2520 * we don't want to do block allocation in writepage
2521 * so call get_block_wrap with create = 0
2523 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2524 if (ret > 0) {
2525 bh_result->b_size = (ret << inode->i_blkbits);
2526 ret = 0;
2528 return ret;
2531 static int bget_one(handle_t *handle, struct buffer_head *bh)
2533 get_bh(bh);
2534 return 0;
2537 static int bput_one(handle_t *handle, struct buffer_head *bh)
2539 put_bh(bh);
2540 return 0;
2543 static int __ext4_journalled_writepage(struct page *page,
2544 struct writeback_control *wbc,
2545 unsigned int len)
2547 struct address_space *mapping = page->mapping;
2548 struct inode *inode = mapping->host;
2549 struct buffer_head *page_bufs;
2550 handle_t *handle = NULL;
2551 int ret = 0;
2552 int err;
2554 page_bufs = page_buffers(page);
2555 BUG_ON(!page_bufs);
2556 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2557 /* As soon as we unlock the page, it can go away, but we have
2558 * references to buffers so we are safe */
2559 unlock_page(page);
2561 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2562 if (IS_ERR(handle)) {
2563 ret = PTR_ERR(handle);
2564 goto out;
2567 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2568 do_journal_get_write_access);
2570 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2571 write_end_fn);
2572 if (ret == 0)
2573 ret = err;
2574 err = ext4_journal_stop(handle);
2575 if (!ret)
2576 ret = err;
2578 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2579 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2580 out:
2581 return ret;
2585 * Note that we don't need to start a transaction unless we're journaling data
2586 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2587 * need to file the inode to the transaction's list in ordered mode because if
2588 * we are writing back data added by write(), the inode is already there and if
2589 * we are writing back data modified via mmap(), noone guarantees in which
2590 * transaction the data will hit the disk. In case we are journaling data, we
2591 * cannot start transaction directly because transaction start ranks above page
2592 * lock so we have to do some magic.
2594 * This function can get called via...
2595 * - ext4_da_writepages after taking page lock (have journal handle)
2596 * - journal_submit_inode_data_buffers (no journal handle)
2597 * - shrink_page_list via pdflush (no journal handle)
2598 * - grab_page_cache when doing write_begin (have journal handle)
2600 * We don't do any block allocation in this function. If we have page with
2601 * multiple blocks we need to write those buffer_heads that are mapped. This
2602 * is important for mmaped based write. So if we do with blocksize 1K
2603 * truncate(f, 1024);
2604 * a = mmap(f, 0, 4096);
2605 * a[0] = 'a';
2606 * truncate(f, 4096);
2607 * we have in the page first buffer_head mapped via page_mkwrite call back
2608 * but other bufer_heads would be unmapped but dirty(dirty done via the
2609 * do_wp_page). So writepage should write the first block. If we modify
2610 * the mmap area beyond 1024 we will again get a page_fault and the
2611 * page_mkwrite callback will do the block allocation and mark the
2612 * buffer_heads mapped.
2614 * We redirty the page if we have any buffer_heads that is either delay or
2615 * unwritten in the page.
2617 * We can get recursively called as show below.
2619 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2620 * ext4_writepage()
2622 * But since we don't do any block allocation we should not deadlock.
2623 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2625 static int ext4_writepage(struct page *page,
2626 struct writeback_control *wbc)
2628 int ret = 0;
2629 loff_t size;
2630 unsigned int len;
2631 struct buffer_head *page_bufs;
2632 struct inode *inode = page->mapping->host;
2634 trace_ext4_writepage(inode, page);
2635 size = i_size_read(inode);
2636 if (page->index == size >> PAGE_CACHE_SHIFT)
2637 len = size & ~PAGE_CACHE_MASK;
2638 else
2639 len = PAGE_CACHE_SIZE;
2641 if (page_has_buffers(page)) {
2642 page_bufs = page_buffers(page);
2643 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2644 ext4_bh_delay_or_unwritten)) {
2646 * We don't want to do block allocation
2647 * So redirty the page and return
2648 * We may reach here when we do a journal commit
2649 * via journal_submit_inode_data_buffers.
2650 * If we don't have mapping block we just ignore
2651 * them. We can also reach here via shrink_page_list
2653 redirty_page_for_writepage(wbc, page);
2654 unlock_page(page);
2655 return 0;
2657 } else {
2659 * The test for page_has_buffers() is subtle:
2660 * We know the page is dirty but it lost buffers. That means
2661 * that at some moment in time after write_begin()/write_end()
2662 * has been called all buffers have been clean and thus they
2663 * must have been written at least once. So they are all
2664 * mapped and we can happily proceed with mapping them
2665 * and writing the page.
2667 * Try to initialize the buffer_heads and check whether
2668 * all are mapped and non delay. We don't want to
2669 * do block allocation here.
2671 ret = block_prepare_write(page, 0, len,
2672 noalloc_get_block_write);
2673 if (!ret) {
2674 page_bufs = page_buffers(page);
2675 /* check whether all are mapped and non delay */
2676 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2677 ext4_bh_delay_or_unwritten)) {
2678 redirty_page_for_writepage(wbc, page);
2679 unlock_page(page);
2680 return 0;
2682 } else {
2684 * We can't do block allocation here
2685 * so just redity the page and unlock
2686 * and return
2688 redirty_page_for_writepage(wbc, page);
2689 unlock_page(page);
2690 return 0;
2692 /* now mark the buffer_heads as dirty and uptodate */
2693 block_commit_write(page, 0, len);
2696 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2698 * It's mmapped pagecache. Add buffers and journal it. There
2699 * doesn't seem much point in redirtying the page here.
2701 ClearPageChecked(page);
2702 return __ext4_journalled_writepage(page, wbc, len);
2705 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2706 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2707 else
2708 ret = block_write_full_page(page, noalloc_get_block_write,
2709 wbc);
2711 return ret;
2715 * This is called via ext4_da_writepages() to
2716 * calulate the total number of credits to reserve to fit
2717 * a single extent allocation into a single transaction,
2718 * ext4_da_writpeages() will loop calling this before
2719 * the block allocation.
2722 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2724 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2727 * With non-extent format the journal credit needed to
2728 * insert nrblocks contiguous block is dependent on
2729 * number of contiguous block. So we will limit
2730 * number of contiguous block to a sane value
2732 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2733 (max_blocks > EXT4_MAX_TRANS_DATA))
2734 max_blocks = EXT4_MAX_TRANS_DATA;
2736 return ext4_chunk_trans_blocks(inode, max_blocks);
2739 static int ext4_da_writepages(struct address_space *mapping,
2740 struct writeback_control *wbc)
2742 pgoff_t index;
2743 int range_whole = 0;
2744 handle_t *handle = NULL;
2745 struct mpage_da_data mpd;
2746 struct inode *inode = mapping->host;
2747 int no_nrwrite_index_update;
2748 int pages_written = 0;
2749 long pages_skipped;
2750 int range_cyclic, cycled = 1, io_done = 0;
2751 int needed_blocks, ret = 0, nr_to_writebump = 0;
2752 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2754 trace_ext4_da_writepages(inode, wbc);
2757 * No pages to write? This is mainly a kludge to avoid starting
2758 * a transaction for special inodes like journal inode on last iput()
2759 * because that could violate lock ordering on umount
2761 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2762 return 0;
2765 * If the filesystem has aborted, it is read-only, so return
2766 * right away instead of dumping stack traces later on that
2767 * will obscure the real source of the problem. We test
2768 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2769 * the latter could be true if the filesystem is mounted
2770 * read-only, and in that case, ext4_da_writepages should
2771 * *never* be called, so if that ever happens, we would want
2772 * the stack trace.
2774 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2775 return -EROFS;
2778 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2779 * This make sure small files blocks are allocated in
2780 * single attempt. This ensure that small files
2781 * get less fragmented.
2783 if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2784 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2785 wbc->nr_to_write = sbi->s_mb_stream_request;
2787 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2788 range_whole = 1;
2790 range_cyclic = wbc->range_cyclic;
2791 if (wbc->range_cyclic) {
2792 index = mapping->writeback_index;
2793 if (index)
2794 cycled = 0;
2795 wbc->range_start = index << PAGE_CACHE_SHIFT;
2796 wbc->range_end = LLONG_MAX;
2797 wbc->range_cyclic = 0;
2798 } else
2799 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2801 mpd.wbc = wbc;
2802 mpd.inode = mapping->host;
2805 * we don't want write_cache_pages to update
2806 * nr_to_write and writeback_index
2808 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2809 wbc->no_nrwrite_index_update = 1;
2810 pages_skipped = wbc->pages_skipped;
2812 retry:
2813 while (!ret && wbc->nr_to_write > 0) {
2816 * we insert one extent at a time. So we need
2817 * credit needed for single extent allocation.
2818 * journalled mode is currently not supported
2819 * by delalloc
2821 BUG_ON(ext4_should_journal_data(inode));
2822 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2824 /* start a new transaction*/
2825 handle = ext4_journal_start(inode, needed_blocks);
2826 if (IS_ERR(handle)) {
2827 ret = PTR_ERR(handle);
2828 printk(KERN_CRIT "%s: jbd2_start: "
2829 "%ld pages, ino %lu; err %d\n", __func__,
2830 wbc->nr_to_write, inode->i_ino, ret);
2831 dump_stack();
2832 goto out_writepages;
2836 * Now call __mpage_da_writepage to find the next
2837 * contiguous region of logical blocks that need
2838 * blocks to be allocated by ext4. We don't actually
2839 * submit the blocks for I/O here, even though
2840 * write_cache_pages thinks it will, and will set the
2841 * pages as clean for write before calling
2842 * __mpage_da_writepage().
2844 mpd.b_size = 0;
2845 mpd.b_state = 0;
2846 mpd.b_blocknr = 0;
2847 mpd.first_page = 0;
2848 mpd.next_page = 0;
2849 mpd.io_done = 0;
2850 mpd.pages_written = 0;
2851 mpd.retval = 0;
2852 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2853 &mpd);
2855 * If we have a contigous extent of pages and we
2856 * haven't done the I/O yet, map the blocks and submit
2857 * them for I/O.
2859 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2860 if (mpage_da_map_blocks(&mpd) == 0)
2861 mpage_da_submit_io(&mpd);
2862 mpd.io_done = 1;
2863 ret = MPAGE_DA_EXTENT_TAIL;
2865 wbc->nr_to_write -= mpd.pages_written;
2867 ext4_journal_stop(handle);
2869 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2870 /* commit the transaction which would
2871 * free blocks released in the transaction
2872 * and try again
2874 jbd2_journal_force_commit_nested(sbi->s_journal);
2875 wbc->pages_skipped = pages_skipped;
2876 ret = 0;
2877 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2879 * got one extent now try with
2880 * rest of the pages
2882 pages_written += mpd.pages_written;
2883 wbc->pages_skipped = pages_skipped;
2884 ret = 0;
2885 io_done = 1;
2886 } else if (wbc->nr_to_write)
2888 * There is no more writeout needed
2889 * or we requested for a noblocking writeout
2890 * and we found the device congested
2892 break;
2894 if (!io_done && !cycled) {
2895 cycled = 1;
2896 index = 0;
2897 wbc->range_start = index << PAGE_CACHE_SHIFT;
2898 wbc->range_end = mapping->writeback_index - 1;
2899 goto retry;
2901 if (pages_skipped != wbc->pages_skipped)
2902 printk(KERN_EMERG "This should not happen leaving %s "
2903 "with nr_to_write = %ld ret = %d\n",
2904 __func__, wbc->nr_to_write, ret);
2906 /* Update index */
2907 index += pages_written;
2908 wbc->range_cyclic = range_cyclic;
2909 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2911 * set the writeback_index so that range_cyclic
2912 * mode will write it back later
2914 mapping->writeback_index = index;
2916 out_writepages:
2917 if (!no_nrwrite_index_update)
2918 wbc->no_nrwrite_index_update = 0;
2919 wbc->nr_to_write -= nr_to_writebump;
2920 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2921 return ret;
2924 #define FALL_BACK_TO_NONDELALLOC 1
2925 static int ext4_nonda_switch(struct super_block *sb)
2927 s64 free_blocks, dirty_blocks;
2928 struct ext4_sb_info *sbi = EXT4_SB(sb);
2931 * switch to non delalloc mode if we are running low
2932 * on free block. The free block accounting via percpu
2933 * counters can get slightly wrong with percpu_counter_batch getting
2934 * accumulated on each CPU without updating global counters
2935 * Delalloc need an accurate free block accounting. So switch
2936 * to non delalloc when we are near to error range.
2938 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2939 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2940 if (2 * free_blocks < 3 * dirty_blocks ||
2941 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2943 * free block count is less that 150% of dirty blocks
2944 * or free blocks is less that watermark
2946 return 1;
2948 return 0;
2951 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2952 loff_t pos, unsigned len, unsigned flags,
2953 struct page **pagep, void **fsdata)
2955 int ret, retries = 0;
2956 struct page *page;
2957 pgoff_t index;
2958 unsigned from, to;
2959 struct inode *inode = mapping->host;
2960 handle_t *handle;
2962 index = pos >> PAGE_CACHE_SHIFT;
2963 from = pos & (PAGE_CACHE_SIZE - 1);
2964 to = from + len;
2966 if (ext4_nonda_switch(inode->i_sb)) {
2967 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2968 return ext4_write_begin(file, mapping, pos,
2969 len, flags, pagep, fsdata);
2971 *fsdata = (void *)0;
2972 trace_ext4_da_write_begin(inode, pos, len, flags);
2973 retry:
2975 * With delayed allocation, we don't log the i_disksize update
2976 * if there is delayed block allocation. But we still need
2977 * to journalling the i_disksize update if writes to the end
2978 * of file which has an already mapped buffer.
2980 handle = ext4_journal_start(inode, 1);
2981 if (IS_ERR(handle)) {
2982 ret = PTR_ERR(handle);
2983 goto out;
2985 /* We cannot recurse into the filesystem as the transaction is already
2986 * started */
2987 flags |= AOP_FLAG_NOFS;
2989 page = grab_cache_page_write_begin(mapping, index, flags);
2990 if (!page) {
2991 ext4_journal_stop(handle);
2992 ret = -ENOMEM;
2993 goto out;
2995 *pagep = page;
2997 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2998 ext4_da_get_block_prep);
2999 if (ret < 0) {
3000 unlock_page(page);
3001 ext4_journal_stop(handle);
3002 page_cache_release(page);
3004 * block_write_begin may have instantiated a few blocks
3005 * outside i_size. Trim these off again. Don't need
3006 * i_size_read because we hold i_mutex.
3008 if (pos + len > inode->i_size)
3009 ext4_truncate(inode);
3012 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3013 goto retry;
3014 out:
3015 return ret;
3019 * Check if we should update i_disksize
3020 * when write to the end of file but not require block allocation
3022 static int ext4_da_should_update_i_disksize(struct page *page,
3023 unsigned long offset)
3025 struct buffer_head *bh;
3026 struct inode *inode = page->mapping->host;
3027 unsigned int idx;
3028 int i;
3030 bh = page_buffers(page);
3031 idx = offset >> inode->i_blkbits;
3033 for (i = 0; i < idx; i++)
3034 bh = bh->b_this_page;
3036 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3037 return 0;
3038 return 1;
3041 static int ext4_da_write_end(struct file *file,
3042 struct address_space *mapping,
3043 loff_t pos, unsigned len, unsigned copied,
3044 struct page *page, void *fsdata)
3046 struct inode *inode = mapping->host;
3047 int ret = 0, ret2;
3048 handle_t *handle = ext4_journal_current_handle();
3049 loff_t new_i_size;
3050 unsigned long start, end;
3051 int write_mode = (int)(unsigned long)fsdata;
3053 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3054 if (ext4_should_order_data(inode)) {
3055 return ext4_ordered_write_end(file, mapping, pos,
3056 len, copied, page, fsdata);
3057 } else if (ext4_should_writeback_data(inode)) {
3058 return ext4_writeback_write_end(file, mapping, pos,
3059 len, copied, page, fsdata);
3060 } else {
3061 BUG();
3065 trace_ext4_da_write_end(inode, pos, len, copied);
3066 start = pos & (PAGE_CACHE_SIZE - 1);
3067 end = start + copied - 1;
3070 * generic_write_end() will run mark_inode_dirty() if i_size
3071 * changes. So let's piggyback the i_disksize mark_inode_dirty
3072 * into that.
3075 new_i_size = pos + copied;
3076 if (new_i_size > EXT4_I(inode)->i_disksize) {
3077 if (ext4_da_should_update_i_disksize(page, end)) {
3078 down_write(&EXT4_I(inode)->i_data_sem);
3079 if (new_i_size > EXT4_I(inode)->i_disksize) {
3081 * Updating i_disksize when extending file
3082 * without needing block allocation
3084 if (ext4_should_order_data(inode))
3085 ret = ext4_jbd2_file_inode(handle,
3086 inode);
3088 EXT4_I(inode)->i_disksize = new_i_size;
3090 up_write(&EXT4_I(inode)->i_data_sem);
3091 /* We need to mark inode dirty even if
3092 * new_i_size is less that inode->i_size
3093 * bu greater than i_disksize.(hint delalloc)
3095 ext4_mark_inode_dirty(handle, inode);
3098 ret2 = generic_write_end(file, mapping, pos, len, copied,
3099 page, fsdata);
3100 copied = ret2;
3101 if (ret2 < 0)
3102 ret = ret2;
3103 ret2 = ext4_journal_stop(handle);
3104 if (!ret)
3105 ret = ret2;
3107 return ret ? ret : copied;
3110 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3113 * Drop reserved blocks
3115 BUG_ON(!PageLocked(page));
3116 if (!page_has_buffers(page))
3117 goto out;
3119 ext4_da_page_release_reservation(page, offset);
3121 out:
3122 ext4_invalidatepage(page, offset);
3124 return;
3128 * Force all delayed allocation blocks to be allocated for a given inode.
3130 int ext4_alloc_da_blocks(struct inode *inode)
3132 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3133 !EXT4_I(inode)->i_reserved_meta_blocks)
3134 return 0;
3137 * We do something simple for now. The filemap_flush() will
3138 * also start triggering a write of the data blocks, which is
3139 * not strictly speaking necessary (and for users of
3140 * laptop_mode, not even desirable). However, to do otherwise
3141 * would require replicating code paths in:
3143 * ext4_da_writepages() ->
3144 * write_cache_pages() ---> (via passed in callback function)
3145 * __mpage_da_writepage() -->
3146 * mpage_add_bh_to_extent()
3147 * mpage_da_map_blocks()
3149 * The problem is that write_cache_pages(), located in
3150 * mm/page-writeback.c, marks pages clean in preparation for
3151 * doing I/O, which is not desirable if we're not planning on
3152 * doing I/O at all.
3154 * We could call write_cache_pages(), and then redirty all of
3155 * the pages by calling redirty_page_for_writeback() but that
3156 * would be ugly in the extreme. So instead we would need to
3157 * replicate parts of the code in the above functions,
3158 * simplifying them becuase we wouldn't actually intend to
3159 * write out the pages, but rather only collect contiguous
3160 * logical block extents, call the multi-block allocator, and
3161 * then update the buffer heads with the block allocations.
3163 * For now, though, we'll cheat by calling filemap_flush(),
3164 * which will map the blocks, and start the I/O, but not
3165 * actually wait for the I/O to complete.
3167 return filemap_flush(inode->i_mapping);
3171 * bmap() is special. It gets used by applications such as lilo and by
3172 * the swapper to find the on-disk block of a specific piece of data.
3174 * Naturally, this is dangerous if the block concerned is still in the
3175 * journal. If somebody makes a swapfile on an ext4 data-journaling
3176 * filesystem and enables swap, then they may get a nasty shock when the
3177 * data getting swapped to that swapfile suddenly gets overwritten by
3178 * the original zero's written out previously to the journal and
3179 * awaiting writeback in the kernel's buffer cache.
3181 * So, if we see any bmap calls here on a modified, data-journaled file,
3182 * take extra steps to flush any blocks which might be in the cache.
3184 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3186 struct inode *inode = mapping->host;
3187 journal_t *journal;
3188 int err;
3190 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3191 test_opt(inode->i_sb, DELALLOC)) {
3193 * With delalloc we want to sync the file
3194 * so that we can make sure we allocate
3195 * blocks for file
3197 filemap_write_and_wait(mapping);
3200 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3202 * This is a REALLY heavyweight approach, but the use of
3203 * bmap on dirty files is expected to be extremely rare:
3204 * only if we run lilo or swapon on a freshly made file
3205 * do we expect this to happen.
3207 * (bmap requires CAP_SYS_RAWIO so this does not
3208 * represent an unprivileged user DOS attack --- we'd be
3209 * in trouble if mortal users could trigger this path at
3210 * will.)
3212 * NB. EXT4_STATE_JDATA is not set on files other than
3213 * regular files. If somebody wants to bmap a directory
3214 * or symlink and gets confused because the buffer
3215 * hasn't yet been flushed to disk, they deserve
3216 * everything they get.
3219 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3220 journal = EXT4_JOURNAL(inode);
3221 jbd2_journal_lock_updates(journal);
3222 err = jbd2_journal_flush(journal);
3223 jbd2_journal_unlock_updates(journal);
3225 if (err)
3226 return 0;
3229 return generic_block_bmap(mapping, block, ext4_get_block);
3232 static int ext4_readpage(struct file *file, struct page *page)
3234 return mpage_readpage(page, ext4_get_block);
3237 static int
3238 ext4_readpages(struct file *file, struct address_space *mapping,
3239 struct list_head *pages, unsigned nr_pages)
3241 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3244 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3246 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3249 * If it's a full truncate we just forget about the pending dirtying
3251 if (offset == 0)
3252 ClearPageChecked(page);
3254 if (journal)
3255 jbd2_journal_invalidatepage(journal, page, offset);
3256 else
3257 block_invalidatepage(page, offset);
3260 static int ext4_releasepage(struct page *page, gfp_t wait)
3262 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3264 WARN_ON(PageChecked(page));
3265 if (!page_has_buffers(page))
3266 return 0;
3267 if (journal)
3268 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3269 else
3270 return try_to_free_buffers(page);
3274 * If the O_DIRECT write will extend the file then add this inode to the
3275 * orphan list. So recovery will truncate it back to the original size
3276 * if the machine crashes during the write.
3278 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3279 * crashes then stale disk data _may_ be exposed inside the file. But current
3280 * VFS code falls back into buffered path in that case so we are safe.
3282 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3283 const struct iovec *iov, loff_t offset,
3284 unsigned long nr_segs)
3286 struct file *file = iocb->ki_filp;
3287 struct inode *inode = file->f_mapping->host;
3288 struct ext4_inode_info *ei = EXT4_I(inode);
3289 handle_t *handle;
3290 ssize_t ret;
3291 int orphan = 0;
3292 size_t count = iov_length(iov, nr_segs);
3294 if (rw == WRITE) {
3295 loff_t final_size = offset + count;
3297 if (final_size > inode->i_size) {
3298 /* Credits for sb + inode write */
3299 handle = ext4_journal_start(inode, 2);
3300 if (IS_ERR(handle)) {
3301 ret = PTR_ERR(handle);
3302 goto out;
3304 ret = ext4_orphan_add(handle, inode);
3305 if (ret) {
3306 ext4_journal_stop(handle);
3307 goto out;
3309 orphan = 1;
3310 ei->i_disksize = inode->i_size;
3311 ext4_journal_stop(handle);
3315 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3316 offset, nr_segs,
3317 ext4_get_block, NULL);
3319 if (orphan) {
3320 int err;
3322 /* Credits for sb + inode write */
3323 handle = ext4_journal_start(inode, 2);
3324 if (IS_ERR(handle)) {
3325 /* This is really bad luck. We've written the data
3326 * but cannot extend i_size. Bail out and pretend
3327 * the write failed... */
3328 ret = PTR_ERR(handle);
3329 goto out;
3331 if (inode->i_nlink)
3332 ext4_orphan_del(handle, inode);
3333 if (ret > 0) {
3334 loff_t end = offset + ret;
3335 if (end > inode->i_size) {
3336 ei->i_disksize = end;
3337 i_size_write(inode, end);
3339 * We're going to return a positive `ret'
3340 * here due to non-zero-length I/O, so there's
3341 * no way of reporting error returns from
3342 * ext4_mark_inode_dirty() to userspace. So
3343 * ignore it.
3345 ext4_mark_inode_dirty(handle, inode);
3348 err = ext4_journal_stop(handle);
3349 if (ret == 0)
3350 ret = err;
3352 out:
3353 return ret;
3357 * Pages can be marked dirty completely asynchronously from ext4's journalling
3358 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3359 * much here because ->set_page_dirty is called under VFS locks. The page is
3360 * not necessarily locked.
3362 * We cannot just dirty the page and leave attached buffers clean, because the
3363 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3364 * or jbddirty because all the journalling code will explode.
3366 * So what we do is to mark the page "pending dirty" and next time writepage
3367 * is called, propagate that into the buffers appropriately.
3369 static int ext4_journalled_set_page_dirty(struct page *page)
3371 SetPageChecked(page);
3372 return __set_page_dirty_nobuffers(page);
3375 static const struct address_space_operations ext4_ordered_aops = {
3376 .readpage = ext4_readpage,
3377 .readpages = ext4_readpages,
3378 .writepage = ext4_writepage,
3379 .sync_page = block_sync_page,
3380 .write_begin = ext4_write_begin,
3381 .write_end = ext4_ordered_write_end,
3382 .bmap = ext4_bmap,
3383 .invalidatepage = ext4_invalidatepage,
3384 .releasepage = ext4_releasepage,
3385 .direct_IO = ext4_direct_IO,
3386 .migratepage = buffer_migrate_page,
3387 .is_partially_uptodate = block_is_partially_uptodate,
3390 static const struct address_space_operations ext4_writeback_aops = {
3391 .readpage = ext4_readpage,
3392 .readpages = ext4_readpages,
3393 .writepage = ext4_writepage,
3394 .sync_page = block_sync_page,
3395 .write_begin = ext4_write_begin,
3396 .write_end = ext4_writeback_write_end,
3397 .bmap = ext4_bmap,
3398 .invalidatepage = ext4_invalidatepage,
3399 .releasepage = ext4_releasepage,
3400 .direct_IO = ext4_direct_IO,
3401 .migratepage = buffer_migrate_page,
3402 .is_partially_uptodate = block_is_partially_uptodate,
3405 static const struct address_space_operations ext4_journalled_aops = {
3406 .readpage = ext4_readpage,
3407 .readpages = ext4_readpages,
3408 .writepage = ext4_writepage,
3409 .sync_page = block_sync_page,
3410 .write_begin = ext4_write_begin,
3411 .write_end = ext4_journalled_write_end,
3412 .set_page_dirty = ext4_journalled_set_page_dirty,
3413 .bmap = ext4_bmap,
3414 .invalidatepage = ext4_invalidatepage,
3415 .releasepage = ext4_releasepage,
3416 .is_partially_uptodate = block_is_partially_uptodate,
3419 static const struct address_space_operations ext4_da_aops = {
3420 .readpage = ext4_readpage,
3421 .readpages = ext4_readpages,
3422 .writepage = ext4_writepage,
3423 .writepages = ext4_da_writepages,
3424 .sync_page = block_sync_page,
3425 .write_begin = ext4_da_write_begin,
3426 .write_end = ext4_da_write_end,
3427 .bmap = ext4_bmap,
3428 .invalidatepage = ext4_da_invalidatepage,
3429 .releasepage = ext4_releasepage,
3430 .direct_IO = ext4_direct_IO,
3431 .migratepage = buffer_migrate_page,
3432 .is_partially_uptodate = block_is_partially_uptodate,
3435 void ext4_set_aops(struct inode *inode)
3437 if (ext4_should_order_data(inode) &&
3438 test_opt(inode->i_sb, DELALLOC))
3439 inode->i_mapping->a_ops = &ext4_da_aops;
3440 else if (ext4_should_order_data(inode))
3441 inode->i_mapping->a_ops = &ext4_ordered_aops;
3442 else if (ext4_should_writeback_data(inode) &&
3443 test_opt(inode->i_sb, DELALLOC))
3444 inode->i_mapping->a_ops = &ext4_da_aops;
3445 else if (ext4_should_writeback_data(inode))
3446 inode->i_mapping->a_ops = &ext4_writeback_aops;
3447 else
3448 inode->i_mapping->a_ops = &ext4_journalled_aops;
3452 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3453 * up to the end of the block which corresponds to `from'.
3454 * This required during truncate. We need to physically zero the tail end
3455 * of that block so it doesn't yield old data if the file is later grown.
3457 int ext4_block_truncate_page(handle_t *handle,
3458 struct address_space *mapping, loff_t from)
3460 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3461 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3462 unsigned blocksize, length, pos;
3463 ext4_lblk_t iblock;
3464 struct inode *inode = mapping->host;
3465 struct buffer_head *bh;
3466 struct page *page;
3467 int err = 0;
3469 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3470 mapping_gfp_mask(mapping) & ~__GFP_FS);
3471 if (!page)
3472 return -EINVAL;
3474 blocksize = inode->i_sb->s_blocksize;
3475 length = blocksize - (offset & (blocksize - 1));
3476 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3479 * For "nobh" option, we can only work if we don't need to
3480 * read-in the page - otherwise we create buffers to do the IO.
3482 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3483 ext4_should_writeback_data(inode) && PageUptodate(page)) {
3484 zero_user(page, offset, length);
3485 set_page_dirty(page);
3486 goto unlock;
3489 if (!page_has_buffers(page))
3490 create_empty_buffers(page, blocksize, 0);
3492 /* Find the buffer that contains "offset" */
3493 bh = page_buffers(page);
3494 pos = blocksize;
3495 while (offset >= pos) {
3496 bh = bh->b_this_page;
3497 iblock++;
3498 pos += blocksize;
3501 err = 0;
3502 if (buffer_freed(bh)) {
3503 BUFFER_TRACE(bh, "freed: skip");
3504 goto unlock;
3507 if (!buffer_mapped(bh)) {
3508 BUFFER_TRACE(bh, "unmapped");
3509 ext4_get_block(inode, iblock, bh, 0);
3510 /* unmapped? It's a hole - nothing to do */
3511 if (!buffer_mapped(bh)) {
3512 BUFFER_TRACE(bh, "still unmapped");
3513 goto unlock;
3517 /* Ok, it's mapped. Make sure it's up-to-date */
3518 if (PageUptodate(page))
3519 set_buffer_uptodate(bh);
3521 if (!buffer_uptodate(bh)) {
3522 err = -EIO;
3523 ll_rw_block(READ, 1, &bh);
3524 wait_on_buffer(bh);
3525 /* Uhhuh. Read error. Complain and punt. */
3526 if (!buffer_uptodate(bh))
3527 goto unlock;
3530 if (ext4_should_journal_data(inode)) {
3531 BUFFER_TRACE(bh, "get write access");
3532 err = ext4_journal_get_write_access(handle, bh);
3533 if (err)
3534 goto unlock;
3537 zero_user(page, offset, length);
3539 BUFFER_TRACE(bh, "zeroed end of block");
3541 err = 0;
3542 if (ext4_should_journal_data(inode)) {
3543 err = ext4_handle_dirty_metadata(handle, inode, bh);
3544 } else {
3545 if (ext4_should_order_data(inode))
3546 err = ext4_jbd2_file_inode(handle, inode);
3547 mark_buffer_dirty(bh);
3550 unlock:
3551 unlock_page(page);
3552 page_cache_release(page);
3553 return err;
3557 * Probably it should be a library function... search for first non-zero word
3558 * or memcmp with zero_page, whatever is better for particular architecture.
3559 * Linus?
3561 static inline int all_zeroes(__le32 *p, __le32 *q)
3563 while (p < q)
3564 if (*p++)
3565 return 0;
3566 return 1;
3570 * ext4_find_shared - find the indirect blocks for partial truncation.
3571 * @inode: inode in question
3572 * @depth: depth of the affected branch
3573 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3574 * @chain: place to store the pointers to partial indirect blocks
3575 * @top: place to the (detached) top of branch
3577 * This is a helper function used by ext4_truncate().
3579 * When we do truncate() we may have to clean the ends of several
3580 * indirect blocks but leave the blocks themselves alive. Block is
3581 * partially truncated if some data below the new i_size is refered
3582 * from it (and it is on the path to the first completely truncated
3583 * data block, indeed). We have to free the top of that path along
3584 * with everything to the right of the path. Since no allocation
3585 * past the truncation point is possible until ext4_truncate()
3586 * finishes, we may safely do the latter, but top of branch may
3587 * require special attention - pageout below the truncation point
3588 * might try to populate it.
3590 * We atomically detach the top of branch from the tree, store the
3591 * block number of its root in *@top, pointers to buffer_heads of
3592 * partially truncated blocks - in @chain[].bh and pointers to
3593 * their last elements that should not be removed - in
3594 * @chain[].p. Return value is the pointer to last filled element
3595 * of @chain.
3597 * The work left to caller to do the actual freeing of subtrees:
3598 * a) free the subtree starting from *@top
3599 * b) free the subtrees whose roots are stored in
3600 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3601 * c) free the subtrees growing from the inode past the @chain[0].
3602 * (no partially truncated stuff there). */
3604 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3605 ext4_lblk_t offsets[4], Indirect chain[4],
3606 __le32 *top)
3608 Indirect *partial, *p;
3609 int k, err;
3611 *top = 0;
3612 /* Make k index the deepest non-null offest + 1 */
3613 for (k = depth; k > 1 && !offsets[k-1]; k--)
3615 partial = ext4_get_branch(inode, k, offsets, chain, &err);
3616 /* Writer: pointers */
3617 if (!partial)
3618 partial = chain + k-1;
3620 * If the branch acquired continuation since we've looked at it -
3621 * fine, it should all survive and (new) top doesn't belong to us.
3623 if (!partial->key && *partial->p)
3624 /* Writer: end */
3625 goto no_top;
3626 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3629 * OK, we've found the last block that must survive. The rest of our
3630 * branch should be detached before unlocking. However, if that rest
3631 * of branch is all ours and does not grow immediately from the inode
3632 * it's easier to cheat and just decrement partial->p.
3634 if (p == chain + k - 1 && p > chain) {
3635 p->p--;
3636 } else {
3637 *top = *p->p;
3638 /* Nope, don't do this in ext4. Must leave the tree intact */
3639 #if 0
3640 *p->p = 0;
3641 #endif
3643 /* Writer: end */
3645 while (partial > p) {
3646 brelse(partial->bh);
3647 partial--;
3649 no_top:
3650 return partial;
3654 * Zero a number of block pointers in either an inode or an indirect block.
3655 * If we restart the transaction we must again get write access to the
3656 * indirect block for further modification.
3658 * We release `count' blocks on disk, but (last - first) may be greater
3659 * than `count' because there can be holes in there.
3661 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3662 struct buffer_head *bh,
3663 ext4_fsblk_t block_to_free,
3664 unsigned long count, __le32 *first,
3665 __le32 *last)
3667 __le32 *p;
3668 if (try_to_extend_transaction(handle, inode)) {
3669 if (bh) {
3670 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3671 ext4_handle_dirty_metadata(handle, inode, bh);
3673 ext4_mark_inode_dirty(handle, inode);
3674 ext4_truncate_restart_trans(handle, inode,
3675 blocks_for_truncate(inode));
3676 if (bh) {
3677 BUFFER_TRACE(bh, "retaking write access");
3678 ext4_journal_get_write_access(handle, bh);
3683 * Any buffers which are on the journal will be in memory. We
3684 * find them on the hash table so jbd2_journal_revoke() will
3685 * run jbd2_journal_forget() on them. We've already detached
3686 * each block from the file, so bforget() in
3687 * jbd2_journal_forget() should be safe.
3689 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3691 for (p = first; p < last; p++) {
3692 u32 nr = le32_to_cpu(*p);
3693 if (nr) {
3694 struct buffer_head *tbh;
3696 *p = 0;
3697 tbh = sb_find_get_block(inode->i_sb, nr);
3698 ext4_forget(handle, 0, inode, tbh, nr);
3702 ext4_free_blocks(handle, inode, block_to_free, count, 0);
3706 * ext4_free_data - free a list of data blocks
3707 * @handle: handle for this transaction
3708 * @inode: inode we are dealing with
3709 * @this_bh: indirect buffer_head which contains *@first and *@last
3710 * @first: array of block numbers
3711 * @last: points immediately past the end of array
3713 * We are freeing all blocks refered from that array (numbers are stored as
3714 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3716 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3717 * blocks are contiguous then releasing them at one time will only affect one
3718 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3719 * actually use a lot of journal space.
3721 * @this_bh will be %NULL if @first and @last point into the inode's direct
3722 * block pointers.
3724 static void ext4_free_data(handle_t *handle, struct inode *inode,
3725 struct buffer_head *this_bh,
3726 __le32 *first, __le32 *last)
3728 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
3729 unsigned long count = 0; /* Number of blocks in the run */
3730 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3731 corresponding to
3732 block_to_free */
3733 ext4_fsblk_t nr; /* Current block # */
3734 __le32 *p; /* Pointer into inode/ind
3735 for current block */
3736 int err;
3738 if (this_bh) { /* For indirect block */
3739 BUFFER_TRACE(this_bh, "get_write_access");
3740 err = ext4_journal_get_write_access(handle, this_bh);
3741 /* Important: if we can't update the indirect pointers
3742 * to the blocks, we can't free them. */
3743 if (err)
3744 return;
3747 for (p = first; p < last; p++) {
3748 nr = le32_to_cpu(*p);
3749 if (nr) {
3750 /* accumulate blocks to free if they're contiguous */
3751 if (count == 0) {
3752 block_to_free = nr;
3753 block_to_free_p = p;
3754 count = 1;
3755 } else if (nr == block_to_free + count) {
3756 count++;
3757 } else {
3758 ext4_clear_blocks(handle, inode, this_bh,
3759 block_to_free,
3760 count, block_to_free_p, p);
3761 block_to_free = nr;
3762 block_to_free_p = p;
3763 count = 1;
3768 if (count > 0)
3769 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3770 count, block_to_free_p, p);
3772 if (this_bh) {
3773 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3776 * The buffer head should have an attached journal head at this
3777 * point. However, if the data is corrupted and an indirect
3778 * block pointed to itself, it would have been detached when
3779 * the block was cleared. Check for this instead of OOPSing.
3781 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3782 ext4_handle_dirty_metadata(handle, inode, this_bh);
3783 else
3784 ext4_error(inode->i_sb, __func__,
3785 "circular indirect block detected, "
3786 "inode=%lu, block=%llu",
3787 inode->i_ino,
3788 (unsigned long long) this_bh->b_blocknr);
3793 * ext4_free_branches - free an array of branches
3794 * @handle: JBD handle for this transaction
3795 * @inode: inode we are dealing with
3796 * @parent_bh: the buffer_head which contains *@first and *@last
3797 * @first: array of block numbers
3798 * @last: pointer immediately past the end of array
3799 * @depth: depth of the branches to free
3801 * We are freeing all blocks refered from these branches (numbers are
3802 * stored as little-endian 32-bit) and updating @inode->i_blocks
3803 * appropriately.
3805 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3806 struct buffer_head *parent_bh,
3807 __le32 *first, __le32 *last, int depth)
3809 ext4_fsblk_t nr;
3810 __le32 *p;
3812 if (ext4_handle_is_aborted(handle))
3813 return;
3815 if (depth--) {
3816 struct buffer_head *bh;
3817 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3818 p = last;
3819 while (--p >= first) {
3820 nr = le32_to_cpu(*p);
3821 if (!nr)
3822 continue; /* A hole */
3824 /* Go read the buffer for the next level down */
3825 bh = sb_bread(inode->i_sb, nr);
3828 * A read failure? Report error and clear slot
3829 * (should be rare).
3831 if (!bh) {
3832 ext4_error(inode->i_sb, "ext4_free_branches",
3833 "Read failure, inode=%lu, block=%llu",
3834 inode->i_ino, nr);
3835 continue;
3838 /* This zaps the entire block. Bottom up. */
3839 BUFFER_TRACE(bh, "free child branches");
3840 ext4_free_branches(handle, inode, bh,
3841 (__le32 *) bh->b_data,
3842 (__le32 *) bh->b_data + addr_per_block,
3843 depth);
3846 * We've probably journalled the indirect block several
3847 * times during the truncate. But it's no longer
3848 * needed and we now drop it from the transaction via
3849 * jbd2_journal_revoke().
3851 * That's easy if it's exclusively part of this
3852 * transaction. But if it's part of the committing
3853 * transaction then jbd2_journal_forget() will simply
3854 * brelse() it. That means that if the underlying
3855 * block is reallocated in ext4_get_block(),
3856 * unmap_underlying_metadata() will find this block
3857 * and will try to get rid of it. damn, damn.
3859 * If this block has already been committed to the
3860 * journal, a revoke record will be written. And
3861 * revoke records must be emitted *before* clearing
3862 * this block's bit in the bitmaps.
3864 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3867 * Everything below this this pointer has been
3868 * released. Now let this top-of-subtree go.
3870 * We want the freeing of this indirect block to be
3871 * atomic in the journal with the updating of the
3872 * bitmap block which owns it. So make some room in
3873 * the journal.
3875 * We zero the parent pointer *after* freeing its
3876 * pointee in the bitmaps, so if extend_transaction()
3877 * for some reason fails to put the bitmap changes and
3878 * the release into the same transaction, recovery
3879 * will merely complain about releasing a free block,
3880 * rather than leaking blocks.
3882 if (ext4_handle_is_aborted(handle))
3883 return;
3884 if (try_to_extend_transaction(handle, inode)) {
3885 ext4_mark_inode_dirty(handle, inode);
3886 ext4_truncate_restart_trans(handle, inode,
3887 blocks_for_truncate(inode));
3890 ext4_free_blocks(handle, inode, nr, 1, 1);
3892 if (parent_bh) {
3894 * The block which we have just freed is
3895 * pointed to by an indirect block: journal it
3897 BUFFER_TRACE(parent_bh, "get_write_access");
3898 if (!ext4_journal_get_write_access(handle,
3899 parent_bh)){
3900 *p = 0;
3901 BUFFER_TRACE(parent_bh,
3902 "call ext4_handle_dirty_metadata");
3903 ext4_handle_dirty_metadata(handle,
3904 inode,
3905 parent_bh);
3909 } else {
3910 /* We have reached the bottom of the tree. */
3911 BUFFER_TRACE(parent_bh, "free data blocks");
3912 ext4_free_data(handle, inode, parent_bh, first, last);
3916 int ext4_can_truncate(struct inode *inode)
3918 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3919 return 0;
3920 if (S_ISREG(inode->i_mode))
3921 return 1;
3922 if (S_ISDIR(inode->i_mode))
3923 return 1;
3924 if (S_ISLNK(inode->i_mode))
3925 return !ext4_inode_is_fast_symlink(inode);
3926 return 0;
3930 * ext4_truncate()
3932 * We block out ext4_get_block() block instantiations across the entire
3933 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3934 * simultaneously on behalf of the same inode.
3936 * As we work through the truncate and commmit bits of it to the journal there
3937 * is one core, guiding principle: the file's tree must always be consistent on
3938 * disk. We must be able to restart the truncate after a crash.
3940 * The file's tree may be transiently inconsistent in memory (although it
3941 * probably isn't), but whenever we close off and commit a journal transaction,
3942 * the contents of (the filesystem + the journal) must be consistent and
3943 * restartable. It's pretty simple, really: bottom up, right to left (although
3944 * left-to-right works OK too).
3946 * Note that at recovery time, journal replay occurs *before* the restart of
3947 * truncate against the orphan inode list.
3949 * The committed inode has the new, desired i_size (which is the same as
3950 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3951 * that this inode's truncate did not complete and it will again call
3952 * ext4_truncate() to have another go. So there will be instantiated blocks
3953 * to the right of the truncation point in a crashed ext4 filesystem. But
3954 * that's fine - as long as they are linked from the inode, the post-crash
3955 * ext4_truncate() run will find them and release them.
3957 void ext4_truncate(struct inode *inode)
3959 handle_t *handle;
3960 struct ext4_inode_info *ei = EXT4_I(inode);
3961 __le32 *i_data = ei->i_data;
3962 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3963 struct address_space *mapping = inode->i_mapping;
3964 ext4_lblk_t offsets[4];
3965 Indirect chain[4];
3966 Indirect *partial;
3967 __le32 nr = 0;
3968 int n;
3969 ext4_lblk_t last_block;
3970 unsigned blocksize = inode->i_sb->s_blocksize;
3972 if (!ext4_can_truncate(inode))
3973 return;
3975 if (ei->i_disksize && inode->i_size == 0 &&
3976 !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3977 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
3979 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3980 ext4_ext_truncate(inode);
3981 return;
3984 handle = start_transaction(inode);
3985 if (IS_ERR(handle))
3986 return; /* AKPM: return what? */
3988 last_block = (inode->i_size + blocksize-1)
3989 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3991 if (inode->i_size & (blocksize - 1))
3992 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3993 goto out_stop;
3995 n = ext4_block_to_path(inode, last_block, offsets, NULL);
3996 if (n == 0)
3997 goto out_stop; /* error */
4000 * OK. This truncate is going to happen. We add the inode to the
4001 * orphan list, so that if this truncate spans multiple transactions,
4002 * and we crash, we will resume the truncate when the filesystem
4003 * recovers. It also marks the inode dirty, to catch the new size.
4005 * Implication: the file must always be in a sane, consistent
4006 * truncatable state while each transaction commits.
4008 if (ext4_orphan_add(handle, inode))
4009 goto out_stop;
4012 * From here we block out all ext4_get_block() callers who want to
4013 * modify the block allocation tree.
4015 down_write(&ei->i_data_sem);
4017 ext4_discard_preallocations(inode);
4020 * The orphan list entry will now protect us from any crash which
4021 * occurs before the truncate completes, so it is now safe to propagate
4022 * the new, shorter inode size (held for now in i_size) into the
4023 * on-disk inode. We do this via i_disksize, which is the value which
4024 * ext4 *really* writes onto the disk inode.
4026 ei->i_disksize = inode->i_size;
4028 if (n == 1) { /* direct blocks */
4029 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4030 i_data + EXT4_NDIR_BLOCKS);
4031 goto do_indirects;
4034 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4035 /* Kill the top of shared branch (not detached) */
4036 if (nr) {
4037 if (partial == chain) {
4038 /* Shared branch grows from the inode */
4039 ext4_free_branches(handle, inode, NULL,
4040 &nr, &nr+1, (chain+n-1) - partial);
4041 *partial->p = 0;
4043 * We mark the inode dirty prior to restart,
4044 * and prior to stop. No need for it here.
4046 } else {
4047 /* Shared branch grows from an indirect block */
4048 BUFFER_TRACE(partial->bh, "get_write_access");
4049 ext4_free_branches(handle, inode, partial->bh,
4050 partial->p,
4051 partial->p+1, (chain+n-1) - partial);
4054 /* Clear the ends of indirect blocks on the shared branch */
4055 while (partial > chain) {
4056 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4057 (__le32*)partial->bh->b_data+addr_per_block,
4058 (chain+n-1) - partial);
4059 BUFFER_TRACE(partial->bh, "call brelse");
4060 brelse(partial->bh);
4061 partial--;
4063 do_indirects:
4064 /* Kill the remaining (whole) subtrees */
4065 switch (offsets[0]) {
4066 default:
4067 nr = i_data[EXT4_IND_BLOCK];
4068 if (nr) {
4069 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4070 i_data[EXT4_IND_BLOCK] = 0;
4072 case EXT4_IND_BLOCK:
4073 nr = i_data[EXT4_DIND_BLOCK];
4074 if (nr) {
4075 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4076 i_data[EXT4_DIND_BLOCK] = 0;
4078 case EXT4_DIND_BLOCK:
4079 nr = i_data[EXT4_TIND_BLOCK];
4080 if (nr) {
4081 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4082 i_data[EXT4_TIND_BLOCK] = 0;
4084 case EXT4_TIND_BLOCK:
4088 up_write(&ei->i_data_sem);
4089 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4090 ext4_mark_inode_dirty(handle, inode);
4093 * In a multi-transaction truncate, we only make the final transaction
4094 * synchronous
4096 if (IS_SYNC(inode))
4097 ext4_handle_sync(handle);
4098 out_stop:
4100 * If this was a simple ftruncate(), and the file will remain alive
4101 * then we need to clear up the orphan record which we created above.
4102 * However, if this was a real unlink then we were called by
4103 * ext4_delete_inode(), and we allow that function to clean up the
4104 * orphan info for us.
4106 if (inode->i_nlink)
4107 ext4_orphan_del(handle, inode);
4109 ext4_journal_stop(handle);
4113 * ext4_get_inode_loc returns with an extra refcount against the inode's
4114 * underlying buffer_head on success. If 'in_mem' is true, we have all
4115 * data in memory that is needed to recreate the on-disk version of this
4116 * inode.
4118 static int __ext4_get_inode_loc(struct inode *inode,
4119 struct ext4_iloc *iloc, int in_mem)
4121 struct ext4_group_desc *gdp;
4122 struct buffer_head *bh;
4123 struct super_block *sb = inode->i_sb;
4124 ext4_fsblk_t block;
4125 int inodes_per_block, inode_offset;
4127 iloc->bh = NULL;
4128 if (!ext4_valid_inum(sb, inode->i_ino))
4129 return -EIO;
4131 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4132 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4133 if (!gdp)
4134 return -EIO;
4137 * Figure out the offset within the block group inode table
4139 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4140 inode_offset = ((inode->i_ino - 1) %
4141 EXT4_INODES_PER_GROUP(sb));
4142 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4143 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4145 bh = sb_getblk(sb, block);
4146 if (!bh) {
4147 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4148 "inode block - inode=%lu, block=%llu",
4149 inode->i_ino, block);
4150 return -EIO;
4152 if (!buffer_uptodate(bh)) {
4153 lock_buffer(bh);
4156 * If the buffer has the write error flag, we have failed
4157 * to write out another inode in the same block. In this
4158 * case, we don't have to read the block because we may
4159 * read the old inode data successfully.
4161 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4162 set_buffer_uptodate(bh);
4164 if (buffer_uptodate(bh)) {
4165 /* someone brought it uptodate while we waited */
4166 unlock_buffer(bh);
4167 goto has_buffer;
4171 * If we have all information of the inode in memory and this
4172 * is the only valid inode in the block, we need not read the
4173 * block.
4175 if (in_mem) {
4176 struct buffer_head *bitmap_bh;
4177 int i, start;
4179 start = inode_offset & ~(inodes_per_block - 1);
4181 /* Is the inode bitmap in cache? */
4182 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4183 if (!bitmap_bh)
4184 goto make_io;
4187 * If the inode bitmap isn't in cache then the
4188 * optimisation may end up performing two reads instead
4189 * of one, so skip it.
4191 if (!buffer_uptodate(bitmap_bh)) {
4192 brelse(bitmap_bh);
4193 goto make_io;
4195 for (i = start; i < start + inodes_per_block; i++) {
4196 if (i == inode_offset)
4197 continue;
4198 if (ext4_test_bit(i, bitmap_bh->b_data))
4199 break;
4201 brelse(bitmap_bh);
4202 if (i == start + inodes_per_block) {
4203 /* all other inodes are free, so skip I/O */
4204 memset(bh->b_data, 0, bh->b_size);
4205 set_buffer_uptodate(bh);
4206 unlock_buffer(bh);
4207 goto has_buffer;
4211 make_io:
4213 * If we need to do any I/O, try to pre-readahead extra
4214 * blocks from the inode table.
4216 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4217 ext4_fsblk_t b, end, table;
4218 unsigned num;
4220 table = ext4_inode_table(sb, gdp);
4221 /* s_inode_readahead_blks is always a power of 2 */
4222 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4223 if (table > b)
4224 b = table;
4225 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4226 num = EXT4_INODES_PER_GROUP(sb);
4227 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4228 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4229 num -= ext4_itable_unused_count(sb, gdp);
4230 table += num / inodes_per_block;
4231 if (end > table)
4232 end = table;
4233 while (b <= end)
4234 sb_breadahead(sb, b++);
4238 * There are other valid inodes in the buffer, this inode
4239 * has in-inode xattrs, or we don't have this inode in memory.
4240 * Read the block from disk.
4242 get_bh(bh);
4243 bh->b_end_io = end_buffer_read_sync;
4244 submit_bh(READ_META, bh);
4245 wait_on_buffer(bh);
4246 if (!buffer_uptodate(bh)) {
4247 ext4_error(sb, __func__,
4248 "unable to read inode block - inode=%lu, "
4249 "block=%llu", inode->i_ino, block);
4250 brelse(bh);
4251 return -EIO;
4254 has_buffer:
4255 iloc->bh = bh;
4256 return 0;
4259 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4261 /* We have all inode data except xattrs in memory here. */
4262 return __ext4_get_inode_loc(inode, iloc,
4263 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4266 void ext4_set_inode_flags(struct inode *inode)
4268 unsigned int flags = EXT4_I(inode)->i_flags;
4270 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4271 if (flags & EXT4_SYNC_FL)
4272 inode->i_flags |= S_SYNC;
4273 if (flags & EXT4_APPEND_FL)
4274 inode->i_flags |= S_APPEND;
4275 if (flags & EXT4_IMMUTABLE_FL)
4276 inode->i_flags |= S_IMMUTABLE;
4277 if (flags & EXT4_NOATIME_FL)
4278 inode->i_flags |= S_NOATIME;
4279 if (flags & EXT4_DIRSYNC_FL)
4280 inode->i_flags |= S_DIRSYNC;
4283 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4284 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4286 unsigned int flags = ei->vfs_inode.i_flags;
4288 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4289 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4290 if (flags & S_SYNC)
4291 ei->i_flags |= EXT4_SYNC_FL;
4292 if (flags & S_APPEND)
4293 ei->i_flags |= EXT4_APPEND_FL;
4294 if (flags & S_IMMUTABLE)
4295 ei->i_flags |= EXT4_IMMUTABLE_FL;
4296 if (flags & S_NOATIME)
4297 ei->i_flags |= EXT4_NOATIME_FL;
4298 if (flags & S_DIRSYNC)
4299 ei->i_flags |= EXT4_DIRSYNC_FL;
4302 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4303 struct ext4_inode_info *ei)
4305 blkcnt_t i_blocks ;
4306 struct inode *inode = &(ei->vfs_inode);
4307 struct super_block *sb = inode->i_sb;
4309 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4310 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4311 /* we are using combined 48 bit field */
4312 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4313 le32_to_cpu(raw_inode->i_blocks_lo);
4314 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4315 /* i_blocks represent file system block size */
4316 return i_blocks << (inode->i_blkbits - 9);
4317 } else {
4318 return i_blocks;
4320 } else {
4321 return le32_to_cpu(raw_inode->i_blocks_lo);
4325 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4327 struct ext4_iloc iloc;
4328 struct ext4_inode *raw_inode;
4329 struct ext4_inode_info *ei;
4330 struct buffer_head *bh;
4331 struct inode *inode;
4332 long ret;
4333 int block;
4335 inode = iget_locked(sb, ino);
4336 if (!inode)
4337 return ERR_PTR(-ENOMEM);
4338 if (!(inode->i_state & I_NEW))
4339 return inode;
4341 ei = EXT4_I(inode);
4343 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4344 if (ret < 0)
4345 goto bad_inode;
4346 bh = iloc.bh;
4347 raw_inode = ext4_raw_inode(&iloc);
4348 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4349 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4350 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4351 if (!(test_opt(inode->i_sb, NO_UID32))) {
4352 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4353 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4355 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4357 ei->i_state = 0;
4358 ei->i_dir_start_lookup = 0;
4359 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4360 /* We now have enough fields to check if the inode was active or not.
4361 * This is needed because nfsd might try to access dead inodes
4362 * the test is that same one that e2fsck uses
4363 * NeilBrown 1999oct15
4365 if (inode->i_nlink == 0) {
4366 if (inode->i_mode == 0 ||
4367 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4368 /* this inode is deleted */
4369 brelse(bh);
4370 ret = -ESTALE;
4371 goto bad_inode;
4373 /* The only unlinked inodes we let through here have
4374 * valid i_mode and are being read by the orphan
4375 * recovery code: that's fine, we're about to complete
4376 * the process of deleting those. */
4378 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4379 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4380 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4381 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4382 ei->i_file_acl |=
4383 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4384 inode->i_size = ext4_isize(raw_inode);
4385 ei->i_disksize = inode->i_size;
4386 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4387 ei->i_block_group = iloc.block_group;
4388 ei->i_last_alloc_group = ~0;
4390 * NOTE! The in-memory inode i_data array is in little-endian order
4391 * even on big-endian machines: we do NOT byteswap the block numbers!
4393 for (block = 0; block < EXT4_N_BLOCKS; block++)
4394 ei->i_data[block] = raw_inode->i_block[block];
4395 INIT_LIST_HEAD(&ei->i_orphan);
4397 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4398 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4399 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4400 EXT4_INODE_SIZE(inode->i_sb)) {
4401 brelse(bh);
4402 ret = -EIO;
4403 goto bad_inode;
4405 if (ei->i_extra_isize == 0) {
4406 /* The extra space is currently unused. Use it. */
4407 ei->i_extra_isize = sizeof(struct ext4_inode) -
4408 EXT4_GOOD_OLD_INODE_SIZE;
4409 } else {
4410 __le32 *magic = (void *)raw_inode +
4411 EXT4_GOOD_OLD_INODE_SIZE +
4412 ei->i_extra_isize;
4413 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4414 ei->i_state |= EXT4_STATE_XATTR;
4416 } else
4417 ei->i_extra_isize = 0;
4419 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4420 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4421 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4422 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4424 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4425 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4426 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4427 inode->i_version |=
4428 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4431 ret = 0;
4432 if (ei->i_file_acl &&
4433 ((ei->i_file_acl <
4434 (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4435 EXT4_SB(sb)->s_gdb_count)) ||
4436 (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4437 ext4_error(sb, __func__,
4438 "bad extended attribute block %llu in inode #%lu",
4439 ei->i_file_acl, inode->i_ino);
4440 ret = -EIO;
4441 goto bad_inode;
4442 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4443 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4444 (S_ISLNK(inode->i_mode) &&
4445 !ext4_inode_is_fast_symlink(inode)))
4446 /* Validate extent which is part of inode */
4447 ret = ext4_ext_check_inode(inode);
4448 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4449 (S_ISLNK(inode->i_mode) &&
4450 !ext4_inode_is_fast_symlink(inode))) {
4451 /* Validate block references which are part of inode */
4452 ret = ext4_check_inode_blockref(inode);
4454 if (ret) {
4455 brelse(bh);
4456 goto bad_inode;
4459 if (S_ISREG(inode->i_mode)) {
4460 inode->i_op = &ext4_file_inode_operations;
4461 inode->i_fop = &ext4_file_operations;
4462 ext4_set_aops(inode);
4463 } else if (S_ISDIR(inode->i_mode)) {
4464 inode->i_op = &ext4_dir_inode_operations;
4465 inode->i_fop = &ext4_dir_operations;
4466 } else if (S_ISLNK(inode->i_mode)) {
4467 if (ext4_inode_is_fast_symlink(inode)) {
4468 inode->i_op = &ext4_fast_symlink_inode_operations;
4469 nd_terminate_link(ei->i_data, inode->i_size,
4470 sizeof(ei->i_data) - 1);
4471 } else {
4472 inode->i_op = &ext4_symlink_inode_operations;
4473 ext4_set_aops(inode);
4475 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4476 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4477 inode->i_op = &ext4_special_inode_operations;
4478 if (raw_inode->i_block[0])
4479 init_special_inode(inode, inode->i_mode,
4480 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4481 else
4482 init_special_inode(inode, inode->i_mode,
4483 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4484 } else {
4485 brelse(bh);
4486 ret = -EIO;
4487 ext4_error(inode->i_sb, __func__,
4488 "bogus i_mode (%o) for inode=%lu",
4489 inode->i_mode, inode->i_ino);
4490 goto bad_inode;
4492 brelse(iloc.bh);
4493 ext4_set_inode_flags(inode);
4494 unlock_new_inode(inode);
4495 return inode;
4497 bad_inode:
4498 iget_failed(inode);
4499 return ERR_PTR(ret);
4502 static int ext4_inode_blocks_set(handle_t *handle,
4503 struct ext4_inode *raw_inode,
4504 struct ext4_inode_info *ei)
4506 struct inode *inode = &(ei->vfs_inode);
4507 u64 i_blocks = inode->i_blocks;
4508 struct super_block *sb = inode->i_sb;
4510 if (i_blocks <= ~0U) {
4512 * i_blocks can be represnted in a 32 bit variable
4513 * as multiple of 512 bytes
4515 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4516 raw_inode->i_blocks_high = 0;
4517 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4518 return 0;
4520 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4521 return -EFBIG;
4523 if (i_blocks <= 0xffffffffffffULL) {
4525 * i_blocks can be represented in a 48 bit variable
4526 * as multiple of 512 bytes
4528 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4529 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4530 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4531 } else {
4532 ei->i_flags |= EXT4_HUGE_FILE_FL;
4533 /* i_block is stored in file system block size */
4534 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4535 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4536 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4538 return 0;
4542 * Post the struct inode info into an on-disk inode location in the
4543 * buffer-cache. This gobbles the caller's reference to the
4544 * buffer_head in the inode location struct.
4546 * The caller must have write access to iloc->bh.
4548 static int ext4_do_update_inode(handle_t *handle,
4549 struct inode *inode,
4550 struct ext4_iloc *iloc)
4552 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4553 struct ext4_inode_info *ei = EXT4_I(inode);
4554 struct buffer_head *bh = iloc->bh;
4555 int err = 0, rc, block;
4557 /* For fields not not tracking in the in-memory inode,
4558 * initialise them to zero for new inodes. */
4559 if (ei->i_state & EXT4_STATE_NEW)
4560 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4562 ext4_get_inode_flags(ei);
4563 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4564 if (!(test_opt(inode->i_sb, NO_UID32))) {
4565 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4566 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4568 * Fix up interoperability with old kernels. Otherwise, old inodes get
4569 * re-used with the upper 16 bits of the uid/gid intact
4571 if (!ei->i_dtime) {
4572 raw_inode->i_uid_high =
4573 cpu_to_le16(high_16_bits(inode->i_uid));
4574 raw_inode->i_gid_high =
4575 cpu_to_le16(high_16_bits(inode->i_gid));
4576 } else {
4577 raw_inode->i_uid_high = 0;
4578 raw_inode->i_gid_high = 0;
4580 } else {
4581 raw_inode->i_uid_low =
4582 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4583 raw_inode->i_gid_low =
4584 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4585 raw_inode->i_uid_high = 0;
4586 raw_inode->i_gid_high = 0;
4588 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4590 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4591 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4592 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4593 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4595 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4596 goto out_brelse;
4597 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4598 /* clear the migrate flag in the raw_inode */
4599 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4600 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4601 cpu_to_le32(EXT4_OS_HURD))
4602 raw_inode->i_file_acl_high =
4603 cpu_to_le16(ei->i_file_acl >> 32);
4604 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4605 ext4_isize_set(raw_inode, ei->i_disksize);
4606 if (ei->i_disksize > 0x7fffffffULL) {
4607 struct super_block *sb = inode->i_sb;
4608 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4609 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4610 EXT4_SB(sb)->s_es->s_rev_level ==
4611 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4612 /* If this is the first large file
4613 * created, add a flag to the superblock.
4615 err = ext4_journal_get_write_access(handle,
4616 EXT4_SB(sb)->s_sbh);
4617 if (err)
4618 goto out_brelse;
4619 ext4_update_dynamic_rev(sb);
4620 EXT4_SET_RO_COMPAT_FEATURE(sb,
4621 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4622 sb->s_dirt = 1;
4623 ext4_handle_sync(handle);
4624 err = ext4_handle_dirty_metadata(handle, inode,
4625 EXT4_SB(sb)->s_sbh);
4628 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4629 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4630 if (old_valid_dev(inode->i_rdev)) {
4631 raw_inode->i_block[0] =
4632 cpu_to_le32(old_encode_dev(inode->i_rdev));
4633 raw_inode->i_block[1] = 0;
4634 } else {
4635 raw_inode->i_block[0] = 0;
4636 raw_inode->i_block[1] =
4637 cpu_to_le32(new_encode_dev(inode->i_rdev));
4638 raw_inode->i_block[2] = 0;
4640 } else
4641 for (block = 0; block < EXT4_N_BLOCKS; block++)
4642 raw_inode->i_block[block] = ei->i_data[block];
4644 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4645 if (ei->i_extra_isize) {
4646 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4647 raw_inode->i_version_hi =
4648 cpu_to_le32(inode->i_version >> 32);
4649 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4652 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4653 rc = ext4_handle_dirty_metadata(handle, inode, bh);
4654 if (!err)
4655 err = rc;
4656 ei->i_state &= ~EXT4_STATE_NEW;
4658 out_brelse:
4659 brelse(bh);
4660 ext4_std_error(inode->i_sb, err);
4661 return err;
4665 * ext4_write_inode()
4667 * We are called from a few places:
4669 * - Within generic_file_write() for O_SYNC files.
4670 * Here, there will be no transaction running. We wait for any running
4671 * trasnaction to commit.
4673 * - Within sys_sync(), kupdate and such.
4674 * We wait on commit, if tol to.
4676 * - Within prune_icache() (PF_MEMALLOC == true)
4677 * Here we simply return. We can't afford to block kswapd on the
4678 * journal commit.
4680 * In all cases it is actually safe for us to return without doing anything,
4681 * because the inode has been copied into a raw inode buffer in
4682 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4683 * knfsd.
4685 * Note that we are absolutely dependent upon all inode dirtiers doing the
4686 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4687 * which we are interested.
4689 * It would be a bug for them to not do this. The code:
4691 * mark_inode_dirty(inode)
4692 * stuff();
4693 * inode->i_size = expr;
4695 * is in error because a kswapd-driven write_inode() could occur while
4696 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4697 * will no longer be on the superblock's dirty inode list.
4699 int ext4_write_inode(struct inode *inode, int wait)
4701 if (current->flags & PF_MEMALLOC)
4702 return 0;
4704 if (ext4_journal_current_handle()) {
4705 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4706 dump_stack();
4707 return -EIO;
4710 if (!wait)
4711 return 0;
4713 return ext4_force_commit(inode->i_sb);
4717 * ext4_setattr()
4719 * Called from notify_change.
4721 * We want to trap VFS attempts to truncate the file as soon as
4722 * possible. In particular, we want to make sure that when the VFS
4723 * shrinks i_size, we put the inode on the orphan list and modify
4724 * i_disksize immediately, so that during the subsequent flushing of
4725 * dirty pages and freeing of disk blocks, we can guarantee that any
4726 * commit will leave the blocks being flushed in an unused state on
4727 * disk. (On recovery, the inode will get truncated and the blocks will
4728 * be freed, so we have a strong guarantee that no future commit will
4729 * leave these blocks visible to the user.)
4731 * Another thing we have to assure is that if we are in ordered mode
4732 * and inode is still attached to the committing transaction, we must
4733 * we start writeout of all the dirty pages which are being truncated.
4734 * This way we are sure that all the data written in the previous
4735 * transaction are already on disk (truncate waits for pages under
4736 * writeback).
4738 * Called with inode->i_mutex down.
4740 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4742 struct inode *inode = dentry->d_inode;
4743 int error, rc = 0;
4744 const unsigned int ia_valid = attr->ia_valid;
4746 error = inode_change_ok(inode, attr);
4747 if (error)
4748 return error;
4750 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4751 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4752 handle_t *handle;
4754 /* (user+group)*(old+new) structure, inode write (sb,
4755 * inode block, ? - but truncate inode update has it) */
4756 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4757 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4758 if (IS_ERR(handle)) {
4759 error = PTR_ERR(handle);
4760 goto err_out;
4762 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4763 if (error) {
4764 ext4_journal_stop(handle);
4765 return error;
4767 /* Update corresponding info in inode so that everything is in
4768 * one transaction */
4769 if (attr->ia_valid & ATTR_UID)
4770 inode->i_uid = attr->ia_uid;
4771 if (attr->ia_valid & ATTR_GID)
4772 inode->i_gid = attr->ia_gid;
4773 error = ext4_mark_inode_dirty(handle, inode);
4774 ext4_journal_stop(handle);
4777 if (attr->ia_valid & ATTR_SIZE) {
4778 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4779 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4781 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4782 error = -EFBIG;
4783 goto err_out;
4788 if (S_ISREG(inode->i_mode) &&
4789 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4790 handle_t *handle;
4792 handle = ext4_journal_start(inode, 3);
4793 if (IS_ERR(handle)) {
4794 error = PTR_ERR(handle);
4795 goto err_out;
4798 error = ext4_orphan_add(handle, inode);
4799 EXT4_I(inode)->i_disksize = attr->ia_size;
4800 rc = ext4_mark_inode_dirty(handle, inode);
4801 if (!error)
4802 error = rc;
4803 ext4_journal_stop(handle);
4805 if (ext4_should_order_data(inode)) {
4806 error = ext4_begin_ordered_truncate(inode,
4807 attr->ia_size);
4808 if (error) {
4809 /* Do as much error cleanup as possible */
4810 handle = ext4_journal_start(inode, 3);
4811 if (IS_ERR(handle)) {
4812 ext4_orphan_del(NULL, inode);
4813 goto err_out;
4815 ext4_orphan_del(handle, inode);
4816 ext4_journal_stop(handle);
4817 goto err_out;
4822 rc = inode_setattr(inode, attr);
4824 /* If inode_setattr's call to ext4_truncate failed to get a
4825 * transaction handle at all, we need to clean up the in-core
4826 * orphan list manually. */
4827 if (inode->i_nlink)
4828 ext4_orphan_del(NULL, inode);
4830 if (!rc && (ia_valid & ATTR_MODE))
4831 rc = ext4_acl_chmod(inode);
4833 err_out:
4834 ext4_std_error(inode->i_sb, error);
4835 if (!error)
4836 error = rc;
4837 return error;
4840 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4841 struct kstat *stat)
4843 struct inode *inode;
4844 unsigned long delalloc_blocks;
4846 inode = dentry->d_inode;
4847 generic_fillattr(inode, stat);
4850 * We can't update i_blocks if the block allocation is delayed
4851 * otherwise in the case of system crash before the real block
4852 * allocation is done, we will have i_blocks inconsistent with
4853 * on-disk file blocks.
4854 * We always keep i_blocks updated together with real
4855 * allocation. But to not confuse with user, stat
4856 * will return the blocks that include the delayed allocation
4857 * blocks for this file.
4859 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4860 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4861 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4863 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4864 return 0;
4867 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4868 int chunk)
4870 int indirects;
4872 /* if nrblocks are contiguous */
4873 if (chunk) {
4875 * With N contiguous data blocks, it need at most
4876 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4877 * 2 dindirect blocks
4878 * 1 tindirect block
4880 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4881 return indirects + 3;
4884 * if nrblocks are not contiguous, worse case, each block touch
4885 * a indirect block, and each indirect block touch a double indirect
4886 * block, plus a triple indirect block
4888 indirects = nrblocks * 2 + 1;
4889 return indirects;
4892 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4894 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4895 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4896 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4900 * Account for index blocks, block groups bitmaps and block group
4901 * descriptor blocks if modify datablocks and index blocks
4902 * worse case, the indexs blocks spread over different block groups
4904 * If datablocks are discontiguous, they are possible to spread over
4905 * different block groups too. If they are contiugous, with flexbg,
4906 * they could still across block group boundary.
4908 * Also account for superblock, inode, quota and xattr blocks
4910 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4912 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4913 int gdpblocks;
4914 int idxblocks;
4915 int ret = 0;
4918 * How many index blocks need to touch to modify nrblocks?
4919 * The "Chunk" flag indicating whether the nrblocks is
4920 * physically contiguous on disk
4922 * For Direct IO and fallocate, they calls get_block to allocate
4923 * one single extent at a time, so they could set the "Chunk" flag
4925 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4927 ret = idxblocks;
4930 * Now let's see how many group bitmaps and group descriptors need
4931 * to account
4933 groups = idxblocks;
4934 if (chunk)
4935 groups += 1;
4936 else
4937 groups += nrblocks;
4939 gdpblocks = groups;
4940 if (groups > ngroups)
4941 groups = ngroups;
4942 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4943 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4945 /* bitmaps and block group descriptor blocks */
4946 ret += groups + gdpblocks;
4948 /* Blocks for super block, inode, quota and xattr blocks */
4949 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4951 return ret;
4955 * Calulate the total number of credits to reserve to fit
4956 * the modification of a single pages into a single transaction,
4957 * which may include multiple chunks of block allocations.
4959 * This could be called via ext4_write_begin()
4961 * We need to consider the worse case, when
4962 * one new block per extent.
4964 int ext4_writepage_trans_blocks(struct inode *inode)
4966 int bpp = ext4_journal_blocks_per_page(inode);
4967 int ret;
4969 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4971 /* Account for data blocks for journalled mode */
4972 if (ext4_should_journal_data(inode))
4973 ret += bpp;
4974 return ret;
4978 * Calculate the journal credits for a chunk of data modification.
4980 * This is called from DIO, fallocate or whoever calling
4981 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
4983 * journal buffers for data blocks are not included here, as DIO
4984 * and fallocate do no need to journal data buffers.
4986 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4988 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4992 * The caller must have previously called ext4_reserve_inode_write().
4993 * Give this, we know that the caller already has write access to iloc->bh.
4995 int ext4_mark_iloc_dirty(handle_t *handle,
4996 struct inode *inode, struct ext4_iloc *iloc)
4998 int err = 0;
5000 if (test_opt(inode->i_sb, I_VERSION))
5001 inode_inc_iversion(inode);
5003 /* the do_update_inode consumes one bh->b_count */
5004 get_bh(iloc->bh);
5006 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5007 err = ext4_do_update_inode(handle, inode, iloc);
5008 put_bh(iloc->bh);
5009 return err;
5013 * On success, We end up with an outstanding reference count against
5014 * iloc->bh. This _must_ be cleaned up later.
5018 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5019 struct ext4_iloc *iloc)
5021 int err;
5023 err = ext4_get_inode_loc(inode, iloc);
5024 if (!err) {
5025 BUFFER_TRACE(iloc->bh, "get_write_access");
5026 err = ext4_journal_get_write_access(handle, iloc->bh);
5027 if (err) {
5028 brelse(iloc->bh);
5029 iloc->bh = NULL;
5032 ext4_std_error(inode->i_sb, err);
5033 return err;
5037 * Expand an inode by new_extra_isize bytes.
5038 * Returns 0 on success or negative error number on failure.
5040 static int ext4_expand_extra_isize(struct inode *inode,
5041 unsigned int new_extra_isize,
5042 struct ext4_iloc iloc,
5043 handle_t *handle)
5045 struct ext4_inode *raw_inode;
5046 struct ext4_xattr_ibody_header *header;
5047 struct ext4_xattr_entry *entry;
5049 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5050 return 0;
5052 raw_inode = ext4_raw_inode(&iloc);
5054 header = IHDR(inode, raw_inode);
5055 entry = IFIRST(header);
5057 /* No extended attributes present */
5058 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5059 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5060 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5061 new_extra_isize);
5062 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5063 return 0;
5066 /* try to expand with EAs present */
5067 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5068 raw_inode, handle);
5072 * What we do here is to mark the in-core inode as clean with respect to inode
5073 * dirtiness (it may still be data-dirty).
5074 * This means that the in-core inode may be reaped by prune_icache
5075 * without having to perform any I/O. This is a very good thing,
5076 * because *any* task may call prune_icache - even ones which
5077 * have a transaction open against a different journal.
5079 * Is this cheating? Not really. Sure, we haven't written the
5080 * inode out, but prune_icache isn't a user-visible syncing function.
5081 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5082 * we start and wait on commits.
5084 * Is this efficient/effective? Well, we're being nice to the system
5085 * by cleaning up our inodes proactively so they can be reaped
5086 * without I/O. But we are potentially leaving up to five seconds'
5087 * worth of inodes floating about which prune_icache wants us to
5088 * write out. One way to fix that would be to get prune_icache()
5089 * to do a write_super() to free up some memory. It has the desired
5090 * effect.
5092 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5094 struct ext4_iloc iloc;
5095 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5096 static unsigned int mnt_count;
5097 int err, ret;
5099 might_sleep();
5100 err = ext4_reserve_inode_write(handle, inode, &iloc);
5101 if (ext4_handle_valid(handle) &&
5102 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5103 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5105 * We need extra buffer credits since we may write into EA block
5106 * with this same handle. If journal_extend fails, then it will
5107 * only result in a minor loss of functionality for that inode.
5108 * If this is felt to be critical, then e2fsck should be run to
5109 * force a large enough s_min_extra_isize.
5111 if ((jbd2_journal_extend(handle,
5112 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5113 ret = ext4_expand_extra_isize(inode,
5114 sbi->s_want_extra_isize,
5115 iloc, handle);
5116 if (ret) {
5117 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5118 if (mnt_count !=
5119 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5120 ext4_warning(inode->i_sb, __func__,
5121 "Unable to expand inode %lu. Delete"
5122 " some EAs or run e2fsck.",
5123 inode->i_ino);
5124 mnt_count =
5125 le16_to_cpu(sbi->s_es->s_mnt_count);
5130 if (!err)
5131 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5132 return err;
5136 * ext4_dirty_inode() is called from __mark_inode_dirty()
5138 * We're really interested in the case where a file is being extended.
5139 * i_size has been changed by generic_commit_write() and we thus need
5140 * to include the updated inode in the current transaction.
5142 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5143 * are allocated to the file.
5145 * If the inode is marked synchronous, we don't honour that here - doing
5146 * so would cause a commit on atime updates, which we don't bother doing.
5147 * We handle synchronous inodes at the highest possible level.
5149 void ext4_dirty_inode(struct inode *inode)
5151 handle_t *current_handle = ext4_journal_current_handle();
5152 handle_t *handle;
5154 if (!ext4_handle_valid(current_handle)) {
5155 ext4_mark_inode_dirty(current_handle, inode);
5156 return;
5159 handle = ext4_journal_start(inode, 2);
5160 if (IS_ERR(handle))
5161 goto out;
5162 if (current_handle &&
5163 current_handle->h_transaction != handle->h_transaction) {
5164 /* This task has a transaction open against a different fs */
5165 printk(KERN_EMERG "%s: transactions do not match!\n",
5166 __func__);
5167 } else {
5168 jbd_debug(5, "marking dirty. outer handle=%p\n",
5169 current_handle);
5170 ext4_mark_inode_dirty(handle, inode);
5172 ext4_journal_stop(handle);
5173 out:
5174 return;
5177 #if 0
5179 * Bind an inode's backing buffer_head into this transaction, to prevent
5180 * it from being flushed to disk early. Unlike
5181 * ext4_reserve_inode_write, this leaves behind no bh reference and
5182 * returns no iloc structure, so the caller needs to repeat the iloc
5183 * lookup to mark the inode dirty later.
5185 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5187 struct ext4_iloc iloc;
5189 int err = 0;
5190 if (handle) {
5191 err = ext4_get_inode_loc(inode, &iloc);
5192 if (!err) {
5193 BUFFER_TRACE(iloc.bh, "get_write_access");
5194 err = jbd2_journal_get_write_access(handle, iloc.bh);
5195 if (!err)
5196 err = ext4_handle_dirty_metadata(handle,
5197 inode,
5198 iloc.bh);
5199 brelse(iloc.bh);
5202 ext4_std_error(inode->i_sb, err);
5203 return err;
5205 #endif
5207 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5209 journal_t *journal;
5210 handle_t *handle;
5211 int err;
5214 * We have to be very careful here: changing a data block's
5215 * journaling status dynamically is dangerous. If we write a
5216 * data block to the journal, change the status and then delete
5217 * that block, we risk forgetting to revoke the old log record
5218 * from the journal and so a subsequent replay can corrupt data.
5219 * So, first we make sure that the journal is empty and that
5220 * nobody is changing anything.
5223 journal = EXT4_JOURNAL(inode);
5224 if (!journal)
5225 return 0;
5226 if (is_journal_aborted(journal))
5227 return -EROFS;
5229 jbd2_journal_lock_updates(journal);
5230 jbd2_journal_flush(journal);
5233 * OK, there are no updates running now, and all cached data is
5234 * synced to disk. We are now in a completely consistent state
5235 * which doesn't have anything in the journal, and we know that
5236 * no filesystem updates are running, so it is safe to modify
5237 * the inode's in-core data-journaling state flag now.
5240 if (val)
5241 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5242 else
5243 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5244 ext4_set_aops(inode);
5246 jbd2_journal_unlock_updates(journal);
5248 /* Finally we can mark the inode as dirty. */
5250 handle = ext4_journal_start(inode, 1);
5251 if (IS_ERR(handle))
5252 return PTR_ERR(handle);
5254 err = ext4_mark_inode_dirty(handle, inode);
5255 ext4_handle_sync(handle);
5256 ext4_journal_stop(handle);
5257 ext4_std_error(inode->i_sb, err);
5259 return err;
5262 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5264 return !buffer_mapped(bh);
5267 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5269 struct page *page = vmf->page;
5270 loff_t size;
5271 unsigned long len;
5272 int ret = -EINVAL;
5273 void *fsdata;
5274 struct file *file = vma->vm_file;
5275 struct inode *inode = file->f_path.dentry->d_inode;
5276 struct address_space *mapping = inode->i_mapping;
5279 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5280 * get i_mutex because we are already holding mmap_sem.
5282 down_read(&inode->i_alloc_sem);
5283 size = i_size_read(inode);
5284 if (page->mapping != mapping || size <= page_offset(page)
5285 || !PageUptodate(page)) {
5286 /* page got truncated from under us? */
5287 goto out_unlock;
5289 ret = 0;
5290 if (PageMappedToDisk(page))
5291 goto out_unlock;
5293 if (page->index == size >> PAGE_CACHE_SHIFT)
5294 len = size & ~PAGE_CACHE_MASK;
5295 else
5296 len = PAGE_CACHE_SIZE;
5298 if (page_has_buffers(page)) {
5299 /* return if we have all the buffers mapped */
5300 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5301 ext4_bh_unmapped))
5302 goto out_unlock;
5305 * OK, we need to fill the hole... Do write_begin write_end
5306 * to do block allocation/reservation.We are not holding
5307 * inode.i__mutex here. That allow * parallel write_begin,
5308 * write_end call. lock_page prevent this from happening
5309 * on the same page though
5311 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5312 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5313 if (ret < 0)
5314 goto out_unlock;
5315 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5316 len, len, page, fsdata);
5317 if (ret < 0)
5318 goto out_unlock;
5319 ret = 0;
5320 out_unlock:
5321 if (ret)
5322 ret = VM_FAULT_SIGBUS;
5323 up_read(&inode->i_alloc_sem);
5324 return ret;