ASoC: davinci: let platform data define edma queue numbers
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / super.c
blob5c35bc7a499e19c97b0f8eba3a91a8224a46ffe4
1 /*
2 * linux/fs/super.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include "internal.h"
36 LIST_HEAD(super_blocks);
37 DEFINE_SPINLOCK(sb_lock);
39 /**
40 * alloc_super - create new superblock
41 * @type: filesystem type superblock should belong to
43 * Allocates and initializes a new &struct super_block. alloc_super()
44 * returns a pointer new superblock or %NULL if allocation had failed.
46 static struct super_block *alloc_super(struct file_system_type *type)
48 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
49 static const struct super_operations default_op;
51 if (s) {
52 if (security_sb_alloc(s)) {
53 kfree(s);
54 s = NULL;
55 goto out;
57 INIT_LIST_HEAD(&s->s_files);
58 INIT_LIST_HEAD(&s->s_instances);
59 INIT_HLIST_HEAD(&s->s_anon);
60 INIT_LIST_HEAD(&s->s_inodes);
61 INIT_LIST_HEAD(&s->s_dentry_lru);
62 init_rwsem(&s->s_umount);
63 mutex_init(&s->s_lock);
64 lockdep_set_class(&s->s_umount, &type->s_umount_key);
66 * The locking rules for s_lock are up to the
67 * filesystem. For example ext3fs has different
68 * lock ordering than usbfs:
70 lockdep_set_class(&s->s_lock, &type->s_lock_key);
72 * sget() can have s_umount recursion.
74 * When it cannot find a suitable sb, it allocates a new
75 * one (this one), and tries again to find a suitable old
76 * one.
78 * In case that succeeds, it will acquire the s_umount
79 * lock of the old one. Since these are clearly distrinct
80 * locks, and this object isn't exposed yet, there's no
81 * risk of deadlocks.
83 * Annotate this by putting this lock in a different
84 * subclass.
86 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
87 s->s_count = 1;
88 atomic_set(&s->s_active, 1);
89 mutex_init(&s->s_vfs_rename_mutex);
90 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
91 mutex_init(&s->s_dquot.dqio_mutex);
92 mutex_init(&s->s_dquot.dqonoff_mutex);
93 init_rwsem(&s->s_dquot.dqptr_sem);
94 init_waitqueue_head(&s->s_wait_unfrozen);
95 s->s_maxbytes = MAX_NON_LFS;
96 s->s_op = &default_op;
97 s->s_time_gran = 1000000000;
99 out:
100 return s;
104 * destroy_super - frees a superblock
105 * @s: superblock to free
107 * Frees a superblock.
109 static inline void destroy_super(struct super_block *s)
111 security_sb_free(s);
112 kfree(s->s_subtype);
113 kfree(s->s_options);
114 kfree(s);
117 /* Superblock refcounting */
120 * Drop a superblock's refcount. The caller must hold sb_lock.
122 void __put_super(struct super_block *sb)
124 if (!--sb->s_count) {
125 list_del_init(&sb->s_list);
126 destroy_super(sb);
131 * put_super - drop a temporary reference to superblock
132 * @sb: superblock in question
134 * Drops a temporary reference, frees superblock if there's no
135 * references left.
137 void put_super(struct super_block *sb)
139 spin_lock(&sb_lock);
140 __put_super(sb);
141 spin_unlock(&sb_lock);
146 * deactivate_locked_super - drop an active reference to superblock
147 * @s: superblock to deactivate
149 * Drops an active reference to superblock, converting it into a temprory
150 * one if there is no other active references left. In that case we
151 * tell fs driver to shut it down and drop the temporary reference we
152 * had just acquired.
154 * Caller holds exclusive lock on superblock; that lock is released.
156 void deactivate_locked_super(struct super_block *s)
158 struct file_system_type *fs = s->s_type;
159 if (atomic_dec_and_test(&s->s_active)) {
160 fs->kill_sb(s);
161 put_filesystem(fs);
162 put_super(s);
163 } else {
164 up_write(&s->s_umount);
168 EXPORT_SYMBOL(deactivate_locked_super);
171 * deactivate_super - drop an active reference to superblock
172 * @s: superblock to deactivate
174 * Variant of deactivate_locked_super(), except that superblock is *not*
175 * locked by caller. If we are going to drop the final active reference,
176 * lock will be acquired prior to that.
178 void deactivate_super(struct super_block *s)
180 if (!atomic_add_unless(&s->s_active, -1, 1)) {
181 down_write(&s->s_umount);
182 deactivate_locked_super(s);
186 EXPORT_SYMBOL(deactivate_super);
189 * grab_super - acquire an active reference
190 * @s: reference we are trying to make active
192 * Tries to acquire an active reference. grab_super() is used when we
193 * had just found a superblock in super_blocks or fs_type->fs_supers
194 * and want to turn it into a full-blown active reference. grab_super()
195 * is called with sb_lock held and drops it. Returns 1 in case of
196 * success, 0 if we had failed (superblock contents was already dead or
197 * dying when grab_super() had been called).
199 static int grab_super(struct super_block *s) __releases(sb_lock)
201 if (atomic_inc_not_zero(&s->s_active)) {
202 spin_unlock(&sb_lock);
203 return 1;
205 /* it's going away */
206 s->s_count++;
207 spin_unlock(&sb_lock);
208 /* wait for it to die */
209 down_write(&s->s_umount);
210 up_write(&s->s_umount);
211 put_super(s);
212 return 0;
216 * Superblock locking. We really ought to get rid of these two.
218 void lock_super(struct super_block * sb)
220 get_fs_excl();
221 mutex_lock(&sb->s_lock);
224 void unlock_super(struct super_block * sb)
226 put_fs_excl();
227 mutex_unlock(&sb->s_lock);
230 EXPORT_SYMBOL(lock_super);
231 EXPORT_SYMBOL(unlock_super);
234 * generic_shutdown_super - common helper for ->kill_sb()
235 * @sb: superblock to kill
237 * generic_shutdown_super() does all fs-independent work on superblock
238 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
239 * that need destruction out of superblock, call generic_shutdown_super()
240 * and release aforementioned objects. Note: dentries and inodes _are_
241 * taken care of and do not need specific handling.
243 * Upon calling this function, the filesystem may no longer alter or
244 * rearrange the set of dentries belonging to this super_block, nor may it
245 * change the attachments of dentries to inodes.
247 void generic_shutdown_super(struct super_block *sb)
249 const struct super_operations *sop = sb->s_op;
252 if (sb->s_root) {
253 shrink_dcache_for_umount(sb);
254 sync_filesystem(sb);
255 get_fs_excl();
256 sb->s_flags &= ~MS_ACTIVE;
258 /* bad name - it should be evict_inodes() */
259 invalidate_inodes(sb);
261 if (sop->put_super)
262 sop->put_super(sb);
264 /* Forget any remaining inodes */
265 if (invalidate_inodes(sb)) {
266 printk("VFS: Busy inodes after unmount of %s. "
267 "Self-destruct in 5 seconds. Have a nice day...\n",
268 sb->s_id);
270 put_fs_excl();
272 spin_lock(&sb_lock);
273 /* should be initialized for __put_super_and_need_restart() */
274 list_del_init(&sb->s_instances);
275 spin_unlock(&sb_lock);
276 up_write(&sb->s_umount);
279 EXPORT_SYMBOL(generic_shutdown_super);
282 * sget - find or create a superblock
283 * @type: filesystem type superblock should belong to
284 * @test: comparison callback
285 * @set: setup callback
286 * @data: argument to each of them
288 struct super_block *sget(struct file_system_type *type,
289 int (*test)(struct super_block *,void *),
290 int (*set)(struct super_block *,void *),
291 void *data)
293 struct super_block *s = NULL;
294 struct super_block *old;
295 int err;
297 retry:
298 spin_lock(&sb_lock);
299 if (test) {
300 list_for_each_entry(old, &type->fs_supers, s_instances) {
301 if (!test(old, data))
302 continue;
303 if (!grab_super(old))
304 goto retry;
305 if (s) {
306 up_write(&s->s_umount);
307 destroy_super(s);
309 down_write(&old->s_umount);
310 return old;
313 if (!s) {
314 spin_unlock(&sb_lock);
315 s = alloc_super(type);
316 if (!s)
317 return ERR_PTR(-ENOMEM);
318 goto retry;
321 err = set(s, data);
322 if (err) {
323 spin_unlock(&sb_lock);
324 up_write(&s->s_umount);
325 destroy_super(s);
326 return ERR_PTR(err);
328 s->s_type = type;
329 strlcpy(s->s_id, type->name, sizeof(s->s_id));
330 list_add_tail(&s->s_list, &super_blocks);
331 list_add(&s->s_instances, &type->fs_supers);
332 spin_unlock(&sb_lock);
333 get_filesystem(type);
334 return s;
337 EXPORT_SYMBOL(sget);
339 void drop_super(struct super_block *sb)
341 up_read(&sb->s_umount);
342 put_super(sb);
345 EXPORT_SYMBOL(drop_super);
348 * sync_supers - helper for periodic superblock writeback
350 * Call the write_super method if present on all dirty superblocks in
351 * the system. This is for the periodic writeback used by most older
352 * filesystems. For data integrity superblock writeback use
353 * sync_filesystems() instead.
355 * Note: check the dirty flag before waiting, so we don't
356 * hold up the sync while mounting a device. (The newly
357 * mounted device won't need syncing.)
359 void sync_supers(void)
361 struct super_block *sb, *n;
363 spin_lock(&sb_lock);
364 list_for_each_entry_safe(sb, n, &super_blocks, s_list) {
365 if (list_empty(&sb->s_instances))
366 continue;
367 if (sb->s_op->write_super && sb->s_dirt) {
368 sb->s_count++;
369 spin_unlock(&sb_lock);
371 down_read(&sb->s_umount);
372 if (sb->s_root && sb->s_dirt)
373 sb->s_op->write_super(sb);
374 up_read(&sb->s_umount);
376 spin_lock(&sb_lock);
377 __put_super(sb);
380 spin_unlock(&sb_lock);
384 * iterate_supers - call function for all active superblocks
385 * @f: function to call
386 * @arg: argument to pass to it
388 * Scans the superblock list and calls given function, passing it
389 * locked superblock and given argument.
391 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
393 struct super_block *sb, *n;
395 spin_lock(&sb_lock);
396 list_for_each_entry_safe(sb, n, &super_blocks, s_list) {
397 if (list_empty(&sb->s_instances))
398 continue;
399 sb->s_count++;
400 spin_unlock(&sb_lock);
402 down_read(&sb->s_umount);
403 if (sb->s_root)
404 f(sb, arg);
405 up_read(&sb->s_umount);
407 spin_lock(&sb_lock);
408 __put_super(sb);
410 spin_unlock(&sb_lock);
414 * get_super - get the superblock of a device
415 * @bdev: device to get the superblock for
417 * Scans the superblock list and finds the superblock of the file system
418 * mounted on the device given. %NULL is returned if no match is found.
421 struct super_block *get_super(struct block_device *bdev)
423 struct super_block *sb;
425 if (!bdev)
426 return NULL;
428 spin_lock(&sb_lock);
429 rescan:
430 list_for_each_entry(sb, &super_blocks, s_list) {
431 if (list_empty(&sb->s_instances))
432 continue;
433 if (sb->s_bdev == bdev) {
434 sb->s_count++;
435 spin_unlock(&sb_lock);
436 down_read(&sb->s_umount);
437 /* still alive? */
438 if (sb->s_root)
439 return sb;
440 up_read(&sb->s_umount);
441 /* nope, got unmounted */
442 spin_lock(&sb_lock);
443 __put_super(sb);
444 goto rescan;
447 spin_unlock(&sb_lock);
448 return NULL;
451 EXPORT_SYMBOL(get_super);
454 * get_active_super - get an active reference to the superblock of a device
455 * @bdev: device to get the superblock for
457 * Scans the superblock list and finds the superblock of the file system
458 * mounted on the device given. Returns the superblock with an active
459 * reference or %NULL if none was found.
461 struct super_block *get_active_super(struct block_device *bdev)
463 struct super_block *sb;
465 if (!bdev)
466 return NULL;
468 restart:
469 spin_lock(&sb_lock);
470 list_for_each_entry(sb, &super_blocks, s_list) {
471 if (list_empty(&sb->s_instances))
472 continue;
473 if (sb->s_bdev == bdev) {
474 if (grab_super(sb)) /* drops sb_lock */
475 return sb;
476 else
477 goto restart;
480 spin_unlock(&sb_lock);
481 return NULL;
484 struct super_block *user_get_super(dev_t dev)
486 struct super_block *sb;
488 spin_lock(&sb_lock);
489 rescan:
490 list_for_each_entry(sb, &super_blocks, s_list) {
491 if (list_empty(&sb->s_instances))
492 continue;
493 if (sb->s_dev == dev) {
494 sb->s_count++;
495 spin_unlock(&sb_lock);
496 down_read(&sb->s_umount);
497 /* still alive? */
498 if (sb->s_root)
499 return sb;
500 up_read(&sb->s_umount);
501 /* nope, got unmounted */
502 spin_lock(&sb_lock);
503 __put_super(sb);
504 goto rescan;
507 spin_unlock(&sb_lock);
508 return NULL;
512 * do_remount_sb - asks filesystem to change mount options.
513 * @sb: superblock in question
514 * @flags: numeric part of options
515 * @data: the rest of options
516 * @force: whether or not to force the change
518 * Alters the mount options of a mounted file system.
520 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
522 int retval;
523 int remount_ro;
525 if (sb->s_frozen != SB_UNFROZEN)
526 return -EBUSY;
528 #ifdef CONFIG_BLOCK
529 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
530 return -EACCES;
531 #endif
533 if (flags & MS_RDONLY)
534 acct_auto_close(sb);
535 shrink_dcache_sb(sb);
536 sync_filesystem(sb);
538 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
540 /* If we are remounting RDONLY and current sb is read/write,
541 make sure there are no rw files opened */
542 if (remount_ro) {
543 if (force)
544 mark_files_ro(sb);
545 else if (!fs_may_remount_ro(sb))
546 return -EBUSY;
549 if (sb->s_op->remount_fs) {
550 retval = sb->s_op->remount_fs(sb, &flags, data);
551 if (retval)
552 return retval;
554 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
557 * Some filesystems modify their metadata via some other path than the
558 * bdev buffer cache (eg. use a private mapping, or directories in
559 * pagecache, etc). Also file data modifications go via their own
560 * mappings. So If we try to mount readonly then copy the filesystem
561 * from bdev, we could get stale data, so invalidate it to give a best
562 * effort at coherency.
564 if (remount_ro && sb->s_bdev)
565 invalidate_bdev(sb->s_bdev);
566 return 0;
569 static void do_emergency_remount(struct work_struct *work)
571 struct super_block *sb, *n;
573 spin_lock(&sb_lock);
574 list_for_each_entry_safe(sb, n, &super_blocks, s_list) {
575 if (list_empty(&sb->s_instances))
576 continue;
577 sb->s_count++;
578 spin_unlock(&sb_lock);
579 down_write(&sb->s_umount);
580 if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
582 * What lock protects sb->s_flags??
584 do_remount_sb(sb, MS_RDONLY, NULL, 1);
586 up_write(&sb->s_umount);
587 spin_lock(&sb_lock);
588 __put_super(sb);
590 spin_unlock(&sb_lock);
591 kfree(work);
592 printk("Emergency Remount complete\n");
595 void emergency_remount(void)
597 struct work_struct *work;
599 work = kmalloc(sizeof(*work), GFP_ATOMIC);
600 if (work) {
601 INIT_WORK(work, do_emergency_remount);
602 schedule_work(work);
607 * Unnamed block devices are dummy devices used by virtual
608 * filesystems which don't use real block-devices. -- jrs
611 static DEFINE_IDA(unnamed_dev_ida);
612 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
613 static int unnamed_dev_start = 0; /* don't bother trying below it */
615 int set_anon_super(struct super_block *s, void *data)
617 int dev;
618 int error;
620 retry:
621 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
622 return -ENOMEM;
623 spin_lock(&unnamed_dev_lock);
624 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
625 if (!error)
626 unnamed_dev_start = dev + 1;
627 spin_unlock(&unnamed_dev_lock);
628 if (error == -EAGAIN)
629 /* We raced and lost with another CPU. */
630 goto retry;
631 else if (error)
632 return -EAGAIN;
634 if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
635 spin_lock(&unnamed_dev_lock);
636 ida_remove(&unnamed_dev_ida, dev);
637 if (unnamed_dev_start > dev)
638 unnamed_dev_start = dev;
639 spin_unlock(&unnamed_dev_lock);
640 return -EMFILE;
642 s->s_dev = MKDEV(0, dev & MINORMASK);
643 s->s_bdi = &noop_backing_dev_info;
644 return 0;
647 EXPORT_SYMBOL(set_anon_super);
649 void kill_anon_super(struct super_block *sb)
651 int slot = MINOR(sb->s_dev);
653 generic_shutdown_super(sb);
654 spin_lock(&unnamed_dev_lock);
655 ida_remove(&unnamed_dev_ida, slot);
656 if (slot < unnamed_dev_start)
657 unnamed_dev_start = slot;
658 spin_unlock(&unnamed_dev_lock);
661 EXPORT_SYMBOL(kill_anon_super);
663 void kill_litter_super(struct super_block *sb)
665 if (sb->s_root)
666 d_genocide(sb->s_root);
667 kill_anon_super(sb);
670 EXPORT_SYMBOL(kill_litter_super);
672 static int ns_test_super(struct super_block *sb, void *data)
674 return sb->s_fs_info == data;
677 static int ns_set_super(struct super_block *sb, void *data)
679 sb->s_fs_info = data;
680 return set_anon_super(sb, NULL);
683 int get_sb_ns(struct file_system_type *fs_type, int flags, void *data,
684 int (*fill_super)(struct super_block *, void *, int),
685 struct vfsmount *mnt)
687 struct super_block *sb;
689 sb = sget(fs_type, ns_test_super, ns_set_super, data);
690 if (IS_ERR(sb))
691 return PTR_ERR(sb);
693 if (!sb->s_root) {
694 int err;
695 sb->s_flags = flags;
696 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
697 if (err) {
698 deactivate_locked_super(sb);
699 return err;
702 sb->s_flags |= MS_ACTIVE;
705 simple_set_mnt(mnt, sb);
706 return 0;
709 EXPORT_SYMBOL(get_sb_ns);
711 #ifdef CONFIG_BLOCK
712 static int set_bdev_super(struct super_block *s, void *data)
714 s->s_bdev = data;
715 s->s_dev = s->s_bdev->bd_dev;
718 * We set the bdi here to the queue backing, file systems can
719 * overwrite this in ->fill_super()
721 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
722 return 0;
725 static int test_bdev_super(struct super_block *s, void *data)
727 return (void *)s->s_bdev == data;
730 int get_sb_bdev(struct file_system_type *fs_type,
731 int flags, const char *dev_name, void *data,
732 int (*fill_super)(struct super_block *, void *, int),
733 struct vfsmount *mnt)
735 struct block_device *bdev;
736 struct super_block *s;
737 fmode_t mode = FMODE_READ;
738 int error = 0;
740 if (!(flags & MS_RDONLY))
741 mode |= FMODE_WRITE;
743 bdev = open_bdev_exclusive(dev_name, mode, fs_type);
744 if (IS_ERR(bdev))
745 return PTR_ERR(bdev);
748 * once the super is inserted into the list by sget, s_umount
749 * will protect the lockfs code from trying to start a snapshot
750 * while we are mounting
752 mutex_lock(&bdev->bd_fsfreeze_mutex);
753 if (bdev->bd_fsfreeze_count > 0) {
754 mutex_unlock(&bdev->bd_fsfreeze_mutex);
755 error = -EBUSY;
756 goto error_bdev;
758 s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
759 mutex_unlock(&bdev->bd_fsfreeze_mutex);
760 if (IS_ERR(s))
761 goto error_s;
763 if (s->s_root) {
764 if ((flags ^ s->s_flags) & MS_RDONLY) {
765 deactivate_locked_super(s);
766 error = -EBUSY;
767 goto error_bdev;
770 close_bdev_exclusive(bdev, mode);
771 } else {
772 char b[BDEVNAME_SIZE];
774 s->s_flags = flags;
775 s->s_mode = mode;
776 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
777 sb_set_blocksize(s, block_size(bdev));
778 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
779 if (error) {
780 deactivate_locked_super(s);
781 goto error;
784 s->s_flags |= MS_ACTIVE;
785 bdev->bd_super = s;
788 simple_set_mnt(mnt, s);
789 return 0;
791 error_s:
792 error = PTR_ERR(s);
793 error_bdev:
794 close_bdev_exclusive(bdev, mode);
795 error:
796 return error;
799 EXPORT_SYMBOL(get_sb_bdev);
801 void kill_block_super(struct super_block *sb)
803 struct block_device *bdev = sb->s_bdev;
804 fmode_t mode = sb->s_mode;
806 bdev->bd_super = NULL;
807 generic_shutdown_super(sb);
808 sync_blockdev(bdev);
809 close_bdev_exclusive(bdev, mode);
812 EXPORT_SYMBOL(kill_block_super);
813 #endif
815 int get_sb_nodev(struct file_system_type *fs_type,
816 int flags, void *data,
817 int (*fill_super)(struct super_block *, void *, int),
818 struct vfsmount *mnt)
820 int error;
821 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
823 if (IS_ERR(s))
824 return PTR_ERR(s);
826 s->s_flags = flags;
828 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
829 if (error) {
830 deactivate_locked_super(s);
831 return error;
833 s->s_flags |= MS_ACTIVE;
834 simple_set_mnt(mnt, s);
835 return 0;
838 EXPORT_SYMBOL(get_sb_nodev);
840 static int compare_single(struct super_block *s, void *p)
842 return 1;
845 int get_sb_single(struct file_system_type *fs_type,
846 int flags, void *data,
847 int (*fill_super)(struct super_block *, void *, int),
848 struct vfsmount *mnt)
850 struct super_block *s;
851 int error;
853 s = sget(fs_type, compare_single, set_anon_super, NULL);
854 if (IS_ERR(s))
855 return PTR_ERR(s);
856 if (!s->s_root) {
857 s->s_flags = flags;
858 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
859 if (error) {
860 deactivate_locked_super(s);
861 return error;
863 s->s_flags |= MS_ACTIVE;
864 } else {
865 do_remount_sb(s, flags, data, 0);
867 simple_set_mnt(mnt, s);
868 return 0;
871 EXPORT_SYMBOL(get_sb_single);
873 struct vfsmount *
874 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
876 struct vfsmount *mnt;
877 char *secdata = NULL;
878 int error;
880 if (!type)
881 return ERR_PTR(-ENODEV);
883 error = -ENOMEM;
884 mnt = alloc_vfsmnt(name);
885 if (!mnt)
886 goto out;
888 if (flags & MS_KERNMOUNT)
889 mnt->mnt_flags = MNT_INTERNAL;
891 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
892 secdata = alloc_secdata();
893 if (!secdata)
894 goto out_mnt;
896 error = security_sb_copy_data(data, secdata);
897 if (error)
898 goto out_free_secdata;
901 error = type->get_sb(type, flags, name, data, mnt);
902 if (error < 0)
903 goto out_free_secdata;
904 BUG_ON(!mnt->mnt_sb);
905 WARN_ON(!mnt->mnt_sb->s_bdi);
907 error = security_sb_kern_mount(mnt->mnt_sb, flags, secdata);
908 if (error)
909 goto out_sb;
912 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
913 * but s_maxbytes was an unsigned long long for many releases. Throw
914 * this warning for a little while to try and catch filesystems that
915 * violate this rule. This warning should be either removed or
916 * converted to a BUG() in 2.6.34.
918 WARN((mnt->mnt_sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
919 "negative value (%lld)\n", type->name, mnt->mnt_sb->s_maxbytes);
921 mnt->mnt_mountpoint = mnt->mnt_root;
922 mnt->mnt_parent = mnt;
923 up_write(&mnt->mnt_sb->s_umount);
924 free_secdata(secdata);
925 return mnt;
926 out_sb:
927 dput(mnt->mnt_root);
928 deactivate_locked_super(mnt->mnt_sb);
929 out_free_secdata:
930 free_secdata(secdata);
931 out_mnt:
932 free_vfsmnt(mnt);
933 out:
934 return ERR_PTR(error);
937 EXPORT_SYMBOL_GPL(vfs_kern_mount);
940 * freeze_super - lock the filesystem and force it into a consistent state
941 * @sb: the super to lock
943 * Syncs the super to make sure the filesystem is consistent and calls the fs's
944 * freeze_fs. Subsequent calls to this without first thawing the fs will return
945 * -EBUSY.
947 int freeze_super(struct super_block *sb)
949 int ret;
951 atomic_inc(&sb->s_active);
952 down_write(&sb->s_umount);
953 if (sb->s_frozen) {
954 deactivate_locked_super(sb);
955 return -EBUSY;
958 if (sb->s_flags & MS_RDONLY) {
959 sb->s_frozen = SB_FREEZE_TRANS;
960 smp_wmb();
961 up_write(&sb->s_umount);
962 return 0;
965 sb->s_frozen = SB_FREEZE_WRITE;
966 smp_wmb();
968 sync_filesystem(sb);
970 sb->s_frozen = SB_FREEZE_TRANS;
971 smp_wmb();
973 sync_blockdev(sb->s_bdev);
974 if (sb->s_op->freeze_fs) {
975 ret = sb->s_op->freeze_fs(sb);
976 if (ret) {
977 printk(KERN_ERR
978 "VFS:Filesystem freeze failed\n");
979 sb->s_frozen = SB_UNFROZEN;
980 deactivate_locked_super(sb);
981 return ret;
984 up_write(&sb->s_umount);
985 return 0;
987 EXPORT_SYMBOL(freeze_super);
990 * thaw_super -- unlock filesystem
991 * @sb: the super to thaw
993 * Unlocks the filesystem and marks it writeable again after freeze_super().
995 int thaw_super(struct super_block *sb)
997 int error;
999 down_write(&sb->s_umount);
1000 if (sb->s_frozen == SB_UNFROZEN) {
1001 up_write(&sb->s_umount);
1002 return -EINVAL;
1005 if (sb->s_flags & MS_RDONLY)
1006 goto out;
1008 if (sb->s_op->unfreeze_fs) {
1009 error = sb->s_op->unfreeze_fs(sb);
1010 if (error) {
1011 printk(KERN_ERR
1012 "VFS:Filesystem thaw failed\n");
1013 sb->s_frozen = SB_FREEZE_TRANS;
1014 up_write(&sb->s_umount);
1015 return error;
1019 out:
1020 sb->s_frozen = SB_UNFROZEN;
1021 smp_wmb();
1022 wake_up(&sb->s_wait_unfrozen);
1023 deactivate_locked_super(sb);
1025 return 0;
1027 EXPORT_SYMBOL(thaw_super);
1029 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1031 int err;
1032 const char *subtype = strchr(fstype, '.');
1033 if (subtype) {
1034 subtype++;
1035 err = -EINVAL;
1036 if (!subtype[0])
1037 goto err;
1038 } else
1039 subtype = "";
1041 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1042 err = -ENOMEM;
1043 if (!mnt->mnt_sb->s_subtype)
1044 goto err;
1045 return mnt;
1047 err:
1048 mntput(mnt);
1049 return ERR_PTR(err);
1052 struct vfsmount *
1053 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1055 struct file_system_type *type = get_fs_type(fstype);
1056 struct vfsmount *mnt;
1057 if (!type)
1058 return ERR_PTR(-ENODEV);
1059 mnt = vfs_kern_mount(type, flags, name, data);
1060 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1061 !mnt->mnt_sb->s_subtype)
1062 mnt = fs_set_subtype(mnt, fstype);
1063 put_filesystem(type);
1064 return mnt;
1066 EXPORT_SYMBOL_GPL(do_kern_mount);
1068 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
1070 return vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
1073 EXPORT_SYMBOL_GPL(kern_mount_data);