2 * Kernel Probes (KProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2002, 2004
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26 * <prasanna@in.ibm.com> adapted for x86_64 from i386.
27 * 2005-Mar Roland McGrath <roland@redhat.com>
28 * Fixed to handle %rip-relative addressing mode correctly.
29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31 * <prasanna@in.ibm.com> added function-return probes.
32 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
33 * Added function return probes functionality
34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35 * kprobe-booster and kretprobe-booster for i386.
36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37 * and kretprobe-booster for x86-64
38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40 * unified x86 kprobes code.
43 #include <linux/kprobes.h>
44 #include <linux/ptrace.h>
45 #include <linux/string.h>
46 #include <linux/slab.h>
47 #include <linux/hardirq.h>
48 #include <linux/preempt.h>
49 #include <linux/module.h>
50 #include <linux/kdebug.h>
51 #include <linux/kallsyms.h>
52 #include <linux/ftrace.h>
54 #include <asm/cacheflush.h>
56 #include <asm/pgtable.h>
57 #include <asm/uaccess.h>
58 #include <asm/alternative.h>
60 #include <asm/debugreg.h>
62 void jprobe_return_end(void);
64 DEFINE_PER_CPU(struct kprobe
*, current_kprobe
) = NULL
;
65 DEFINE_PER_CPU(struct kprobe_ctlblk
, kprobe_ctlblk
);
67 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
69 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
70 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
71 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
72 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
73 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
76 * Undefined/reserved opcodes, conditional jump, Opcode Extension
77 * Groups, and some special opcodes can not boost.
78 * This is non-const to keep gcc from statically optimizing it out, as
79 * variable_test_bit makes gcc think only *(unsigned long*) is used.
81 static u32 twobyte_is_boostable
[256 / 32] = {
82 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
83 /* ---------------------------------------------- */
84 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
85 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 10 */
86 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
87 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
88 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
89 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
90 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
91 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
92 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
93 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
94 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
95 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
96 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
97 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
98 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
99 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */
100 /* ----------------------------------------------- */
101 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
105 struct kretprobe_blackpoint kretprobe_blacklist
[] = {
106 {"__switch_to", }, /* This function switches only current task, but
107 doesn't switch kernel stack.*/
108 {NULL
, NULL
} /* Terminator */
110 const int kretprobe_blacklist_size
= ARRAY_SIZE(kretprobe_blacklist
);
112 static void __kprobes
__synthesize_relative_insn(void *from
, void *to
, u8 op
)
114 struct __arch_relative_insn
{
117 } __attribute__((packed
)) *insn
;
119 insn
= (struct __arch_relative_insn
*)from
;
120 insn
->raddr
= (s32
)((long)(to
) - ((long)(from
) + 5));
124 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
125 static void __kprobes
synthesize_reljump(void *from
, void *to
)
127 __synthesize_relative_insn(from
, to
, RELATIVEJUMP_OPCODE
);
131 * Skip the prefixes of the instruction.
133 static kprobe_opcode_t
*__kprobes
skip_prefixes(kprobe_opcode_t
*insn
)
137 attr
= inat_get_opcode_attribute((insn_byte_t
)*insn
);
138 while (inat_is_legacy_prefix(attr
)) {
140 attr
= inat_get_opcode_attribute((insn_byte_t
)*insn
);
143 if (inat_is_rex_prefix(attr
))
150 * Returns non-zero if opcode is boostable.
151 * RIP relative instructions are adjusted at copying time in 64 bits mode
153 static int __kprobes
can_boost(kprobe_opcode_t
*opcodes
)
155 kprobe_opcode_t opcode
;
156 kprobe_opcode_t
*orig_opcodes
= opcodes
;
158 if (search_exception_tables((unsigned long)opcodes
))
159 return 0; /* Page fault may occur on this address. */
162 if (opcodes
- orig_opcodes
> MAX_INSN_SIZE
- 1)
164 opcode
= *(opcodes
++);
166 /* 2nd-byte opcode */
167 if (opcode
== 0x0f) {
168 if (opcodes
- orig_opcodes
> MAX_INSN_SIZE
- 1)
170 return test_bit(*opcodes
,
171 (unsigned long *)twobyte_is_boostable
);
174 switch (opcode
& 0xf0) {
177 goto retry
; /* REX prefix is boostable */
180 if (0x63 < opcode
&& opcode
< 0x67)
181 goto retry
; /* prefixes */
182 /* can't boost Address-size override and bound */
183 return (opcode
!= 0x62 && opcode
!= 0x67);
185 return 0; /* can't boost conditional jump */
187 /* can't boost software-interruptions */
188 return (0xc1 < opcode
&& opcode
< 0xcc) || opcode
== 0xcf;
190 /* can boost AA* and XLAT */
191 return (opcode
== 0xd4 || opcode
== 0xd5 || opcode
== 0xd7);
193 /* can boost in/out and absolute jmps */
194 return ((opcode
& 0x04) || opcode
== 0xea);
196 if ((opcode
& 0x0c) == 0 && opcode
!= 0xf1)
197 goto retry
; /* lock/rep(ne) prefix */
198 /* clear and set flags are boostable */
199 return (opcode
== 0xf5 || (0xf7 < opcode
&& opcode
< 0xfe));
201 /* segment override prefixes are boostable */
202 if (opcode
== 0x26 || opcode
== 0x36 || opcode
== 0x3e)
203 goto retry
; /* prefixes */
204 /* CS override prefix and call are not boostable */
205 return (opcode
!= 0x2e && opcode
!= 0x9a);
209 /* Recover the probed instruction at addr for further analysis. */
210 static int recover_probed_instruction(kprobe_opcode_t
*buf
, unsigned long addr
)
213 kp
= get_kprobe((void *)addr
);
218 * Basically, kp->ainsn.insn has an original instruction.
219 * However, RIP-relative instruction can not do single-stepping
220 * at different place, __copy_instruction() tweaks the displacement of
221 * that instruction. In that case, we can't recover the instruction
222 * from the kp->ainsn.insn.
224 * On the other hand, kp->opcode has a copy of the first byte of
225 * the probed instruction, which is overwritten by int3. And
226 * the instruction at kp->addr is not modified by kprobes except
227 * for the first byte, we can recover the original instruction
228 * from it and kp->opcode.
230 memcpy(buf
, kp
->addr
, MAX_INSN_SIZE
* sizeof(kprobe_opcode_t
));
235 /* Check if paddr is at an instruction boundary */
236 static int __kprobes
can_probe(unsigned long paddr
)
239 unsigned long addr
, offset
= 0;
241 kprobe_opcode_t buf
[MAX_INSN_SIZE
];
243 if (!kallsyms_lookup_size_offset(paddr
, NULL
, &offset
))
246 /* Decode instructions */
247 addr
= paddr
- offset
;
248 while (addr
< paddr
) {
249 kernel_insn_init(&insn
, (void *)addr
);
250 insn_get_opcode(&insn
);
253 * Check if the instruction has been modified by another
254 * kprobe, in which case we replace the breakpoint by the
255 * original instruction in our buffer.
257 if (insn
.opcode
.bytes
[0] == BREAKPOINT_INSTRUCTION
) {
258 ret
= recover_probed_instruction(buf
, addr
);
261 * Another debugging subsystem might insert
262 * this breakpoint. In that case, we can't
266 kernel_insn_init(&insn
, buf
);
268 insn_get_length(&insn
);
272 return (addr
== paddr
);
276 * Returns non-zero if opcode modifies the interrupt flag.
278 static int __kprobes
is_IF_modifier(kprobe_opcode_t
*insn
)
281 insn
= skip_prefixes(insn
);
286 case 0xcf: /* iret/iretd */
287 case 0x9d: /* popf/popfd */
295 * Copy an instruction and adjust the displacement if the instruction
296 * uses the %rip-relative addressing mode.
297 * If it does, Return the address of the 32-bit displacement word.
298 * If not, return null.
299 * Only applicable to 64-bit x86.
301 static int __kprobes
__copy_instruction(u8
*dest
, u8
*src
, int recover
)
305 kprobe_opcode_t buf
[MAX_INSN_SIZE
];
307 kernel_insn_init(&insn
, src
);
309 insn_get_opcode(&insn
);
310 if (insn
.opcode
.bytes
[0] == BREAKPOINT_INSTRUCTION
) {
311 ret
= recover_probed_instruction(buf
,
315 kernel_insn_init(&insn
, buf
);
318 insn_get_length(&insn
);
319 memcpy(dest
, insn
.kaddr
, insn
.length
);
322 if (insn_rip_relative(&insn
)) {
325 kernel_insn_init(&insn
, dest
);
326 insn_get_displacement(&insn
);
328 * The copied instruction uses the %rip-relative addressing
329 * mode. Adjust the displacement for the difference between
330 * the original location of this instruction and the location
331 * of the copy that will actually be run. The tricky bit here
332 * is making sure that the sign extension happens correctly in
333 * this calculation, since we need a signed 32-bit result to
334 * be sign-extended to 64 bits when it's added to the %rip
335 * value and yield the same 64-bit result that the sign-
336 * extension of the original signed 32-bit displacement would
339 newdisp
= (u8
*) src
+ (s64
) insn
.displacement
.value
-
341 BUG_ON((s64
) (s32
) newdisp
!= newdisp
); /* Sanity check. */
342 disp
= (u8
*) dest
+ insn_offset_displacement(&insn
);
343 *(s32
*) disp
= (s32
) newdisp
;
349 static void __kprobes
arch_copy_kprobe(struct kprobe
*p
)
352 * Copy an instruction without recovering int3, because it will be
353 * put by another subsystem.
355 __copy_instruction(p
->ainsn
.insn
, p
->addr
, 0);
357 if (can_boost(p
->addr
))
358 p
->ainsn
.boostable
= 0;
360 p
->ainsn
.boostable
= -1;
362 p
->opcode
= *p
->addr
;
365 int __kprobes
arch_prepare_kprobe(struct kprobe
*p
)
367 if (alternatives_text_reserved(p
->addr
, p
->addr
))
370 if (!can_probe((unsigned long)p
->addr
))
372 /* insn: must be on special executable page on x86. */
373 p
->ainsn
.insn
= get_insn_slot();
380 void __kprobes
arch_arm_kprobe(struct kprobe
*p
)
382 text_poke(p
->addr
, ((unsigned char []){BREAKPOINT_INSTRUCTION
}), 1);
385 void __kprobes
arch_disarm_kprobe(struct kprobe
*p
)
387 text_poke(p
->addr
, &p
->opcode
, 1);
390 void __kprobes
arch_remove_kprobe(struct kprobe
*p
)
393 free_insn_slot(p
->ainsn
.insn
, (p
->ainsn
.boostable
== 1));
394 p
->ainsn
.insn
= NULL
;
398 static void __kprobes
save_previous_kprobe(struct kprobe_ctlblk
*kcb
)
400 kcb
->prev_kprobe
.kp
= kprobe_running();
401 kcb
->prev_kprobe
.status
= kcb
->kprobe_status
;
402 kcb
->prev_kprobe
.old_flags
= kcb
->kprobe_old_flags
;
403 kcb
->prev_kprobe
.saved_flags
= kcb
->kprobe_saved_flags
;
406 static void __kprobes
restore_previous_kprobe(struct kprobe_ctlblk
*kcb
)
408 __this_cpu_write(current_kprobe
, kcb
->prev_kprobe
.kp
);
409 kcb
->kprobe_status
= kcb
->prev_kprobe
.status
;
410 kcb
->kprobe_old_flags
= kcb
->prev_kprobe
.old_flags
;
411 kcb
->kprobe_saved_flags
= kcb
->prev_kprobe
.saved_flags
;
414 static void __kprobes
set_current_kprobe(struct kprobe
*p
, struct pt_regs
*regs
,
415 struct kprobe_ctlblk
*kcb
)
417 __this_cpu_write(current_kprobe
, p
);
418 kcb
->kprobe_saved_flags
= kcb
->kprobe_old_flags
419 = (regs
->flags
& (X86_EFLAGS_TF
| X86_EFLAGS_IF
));
420 if (is_IF_modifier(p
->ainsn
.insn
))
421 kcb
->kprobe_saved_flags
&= ~X86_EFLAGS_IF
;
424 static void __kprobes
clear_btf(void)
426 if (test_thread_flag(TIF_BLOCKSTEP
)) {
427 unsigned long debugctl
= get_debugctlmsr();
429 debugctl
&= ~DEBUGCTLMSR_BTF
;
430 update_debugctlmsr(debugctl
);
434 static void __kprobes
restore_btf(void)
436 if (test_thread_flag(TIF_BLOCKSTEP
)) {
437 unsigned long debugctl
= get_debugctlmsr();
439 debugctl
|= DEBUGCTLMSR_BTF
;
440 update_debugctlmsr(debugctl
);
444 void __kprobes
arch_prepare_kretprobe(struct kretprobe_instance
*ri
,
445 struct pt_regs
*regs
)
447 unsigned long *sara
= stack_addr(regs
);
449 ri
->ret_addr
= (kprobe_opcode_t
*) *sara
;
451 /* Replace the return addr with trampoline addr */
452 *sara
= (unsigned long) &kretprobe_trampoline
;
455 #ifdef CONFIG_OPTPROBES
456 static int __kprobes
setup_detour_execution(struct kprobe
*p
,
457 struct pt_regs
*regs
,
460 #define setup_detour_execution(p, regs, reenter) (0)
463 static void __kprobes
setup_singlestep(struct kprobe
*p
, struct pt_regs
*regs
,
464 struct kprobe_ctlblk
*kcb
, int reenter
)
466 if (setup_detour_execution(p
, regs
, reenter
))
469 #if !defined(CONFIG_PREEMPT)
470 if (p
->ainsn
.boostable
== 1 && !p
->post_handler
) {
471 /* Boost up -- we can execute copied instructions directly */
473 reset_current_kprobe();
475 * Reentering boosted probe doesn't reset current_kprobe,
476 * nor set current_kprobe, because it doesn't use single
479 regs
->ip
= (unsigned long)p
->ainsn
.insn
;
480 preempt_enable_no_resched();
485 save_previous_kprobe(kcb
);
486 set_current_kprobe(p
, regs
, kcb
);
487 kcb
->kprobe_status
= KPROBE_REENTER
;
489 kcb
->kprobe_status
= KPROBE_HIT_SS
;
490 /* Prepare real single stepping */
492 regs
->flags
|= X86_EFLAGS_TF
;
493 regs
->flags
&= ~X86_EFLAGS_IF
;
494 /* single step inline if the instruction is an int3 */
495 if (p
->opcode
== BREAKPOINT_INSTRUCTION
)
496 regs
->ip
= (unsigned long)p
->addr
;
498 regs
->ip
= (unsigned long)p
->ainsn
.insn
;
502 * We have reentered the kprobe_handler(), since another probe was hit while
503 * within the handler. We save the original kprobes variables and just single
504 * step on the instruction of the new probe without calling any user handlers.
506 static int __kprobes
reenter_kprobe(struct kprobe
*p
, struct pt_regs
*regs
,
507 struct kprobe_ctlblk
*kcb
)
509 switch (kcb
->kprobe_status
) {
510 case KPROBE_HIT_SSDONE
:
511 case KPROBE_HIT_ACTIVE
:
512 kprobes_inc_nmissed_count(p
);
513 setup_singlestep(p
, regs
, kcb
, 1);
516 /* A probe has been hit in the codepath leading up to, or just
517 * after, single-stepping of a probed instruction. This entire
518 * codepath should strictly reside in .kprobes.text section.
519 * Raise a BUG or we'll continue in an endless reentering loop
520 * and eventually a stack overflow.
522 printk(KERN_WARNING
"Unrecoverable kprobe detected at %p.\n",
527 /* impossible cases */
536 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
537 * remain disabled throughout this function.
539 static int __kprobes
kprobe_handler(struct pt_regs
*regs
)
541 kprobe_opcode_t
*addr
;
543 struct kprobe_ctlblk
*kcb
;
545 addr
= (kprobe_opcode_t
*)(regs
->ip
- sizeof(kprobe_opcode_t
));
547 * We don't want to be preempted for the entire
548 * duration of kprobe processing. We conditionally
549 * re-enable preemption at the end of this function,
550 * and also in reenter_kprobe() and setup_singlestep().
554 kcb
= get_kprobe_ctlblk();
555 p
= get_kprobe(addr
);
558 if (kprobe_running()) {
559 if (reenter_kprobe(p
, regs
, kcb
))
562 set_current_kprobe(p
, regs
, kcb
);
563 kcb
->kprobe_status
= KPROBE_HIT_ACTIVE
;
566 * If we have no pre-handler or it returned 0, we
567 * continue with normal processing. If we have a
568 * pre-handler and it returned non-zero, it prepped
569 * for calling the break_handler below on re-entry
570 * for jprobe processing, so get out doing nothing
573 if (!p
->pre_handler
|| !p
->pre_handler(p
, regs
))
574 setup_singlestep(p
, regs
, kcb
, 0);
577 } else if (*addr
!= BREAKPOINT_INSTRUCTION
) {
579 * The breakpoint instruction was removed right
580 * after we hit it. Another cpu has removed
581 * either a probepoint or a debugger breakpoint
582 * at this address. In either case, no further
583 * handling of this interrupt is appropriate.
584 * Back up over the (now missing) int3 and run
585 * the original instruction.
587 regs
->ip
= (unsigned long)addr
;
588 preempt_enable_no_resched();
590 } else if (kprobe_running()) {
591 p
= __this_cpu_read(current_kprobe
);
592 if (p
->break_handler
&& p
->break_handler(p
, regs
)) {
593 setup_singlestep(p
, regs
, kcb
, 0);
596 } /* else: not a kprobe fault; let the kernel handle it */
598 preempt_enable_no_resched();
603 #define SAVE_REGS_STRING \
604 /* Skip cs, ip, orig_ax. */ \
605 " subq $24, %rsp\n" \
621 #define RESTORE_REGS_STRING \
637 /* Skip orig_ax, ip, cs */ \
640 #define SAVE_REGS_STRING \
641 /* Skip cs, ip, orig_ax and gs. */ \
642 " subl $16, %esp\n" \
653 #define RESTORE_REGS_STRING \
661 /* Skip ds, es, fs, gs, orig_ax, and ip. Note: don't pop cs here*/\
666 * When a retprobed function returns, this code saves registers and
667 * calls trampoline_handler() runs, which calls the kretprobe's handler.
669 static void __used __kprobes
kretprobe_trampoline_holder(void)
672 ".global kretprobe_trampoline\n"
673 "kretprobe_trampoline: \n"
675 /* We don't bother saving the ss register */
680 " call trampoline_handler\n"
681 /* Replace saved sp with true return address. */
682 " movq %rax, 152(%rsp)\n"
689 " call trampoline_handler\n"
690 /* Move flags to cs */
691 " movl 56(%esp), %edx\n"
692 " movl %edx, 52(%esp)\n"
693 /* Replace saved flags with true return address. */
694 " movl %eax, 56(%esp)\n"
702 * Called from kretprobe_trampoline
704 static __used __kprobes
void *trampoline_handler(struct pt_regs
*regs
)
706 struct kretprobe_instance
*ri
= NULL
;
707 struct hlist_head
*head
, empty_rp
;
708 struct hlist_node
*node
, *tmp
;
709 unsigned long flags
, orig_ret_address
= 0;
710 unsigned long trampoline_address
= (unsigned long)&kretprobe_trampoline
;
711 kprobe_opcode_t
*correct_ret_addr
= NULL
;
713 INIT_HLIST_HEAD(&empty_rp
);
714 kretprobe_hash_lock(current
, &head
, &flags
);
715 /* fixup registers */
717 regs
->cs
= __KERNEL_CS
;
719 regs
->cs
= __KERNEL_CS
| get_kernel_rpl();
722 regs
->ip
= trampoline_address
;
723 regs
->orig_ax
= ~0UL;
726 * It is possible to have multiple instances associated with a given
727 * task either because multiple functions in the call path have
728 * return probes installed on them, and/or more than one
729 * return probe was registered for a target function.
731 * We can handle this because:
732 * - instances are always pushed into the head of the list
733 * - when multiple return probes are registered for the same
734 * function, the (chronologically) first instance's ret_addr
735 * will be the real return address, and all the rest will
736 * point to kretprobe_trampoline.
738 hlist_for_each_entry_safe(ri
, node
, tmp
, head
, hlist
) {
739 if (ri
->task
!= current
)
740 /* another task is sharing our hash bucket */
743 orig_ret_address
= (unsigned long)ri
->ret_addr
;
745 if (orig_ret_address
!= trampoline_address
)
747 * This is the real return address. Any other
748 * instances associated with this task are for
749 * other calls deeper on the call stack
754 kretprobe_assert(ri
, orig_ret_address
, trampoline_address
);
756 correct_ret_addr
= ri
->ret_addr
;
757 hlist_for_each_entry_safe(ri
, node
, tmp
, head
, hlist
) {
758 if (ri
->task
!= current
)
759 /* another task is sharing our hash bucket */
762 orig_ret_address
= (unsigned long)ri
->ret_addr
;
763 if (ri
->rp
&& ri
->rp
->handler
) {
764 __this_cpu_write(current_kprobe
, &ri
->rp
->kp
);
765 get_kprobe_ctlblk()->kprobe_status
= KPROBE_HIT_ACTIVE
;
766 ri
->ret_addr
= correct_ret_addr
;
767 ri
->rp
->handler(ri
, regs
);
768 __this_cpu_write(current_kprobe
, NULL
);
771 recycle_rp_inst(ri
, &empty_rp
);
773 if (orig_ret_address
!= trampoline_address
)
775 * This is the real return address. Any other
776 * instances associated with this task are for
777 * other calls deeper on the call stack
782 kretprobe_hash_unlock(current
, &flags
);
784 hlist_for_each_entry_safe(ri
, node
, tmp
, &empty_rp
, hlist
) {
785 hlist_del(&ri
->hlist
);
788 return (void *)orig_ret_address
;
792 * Called after single-stepping. p->addr is the address of the
793 * instruction whose first byte has been replaced by the "int 3"
794 * instruction. To avoid the SMP problems that can occur when we
795 * temporarily put back the original opcode to single-step, we
796 * single-stepped a copy of the instruction. The address of this
797 * copy is p->ainsn.insn.
799 * This function prepares to return from the post-single-step
800 * interrupt. We have to fix up the stack as follows:
802 * 0) Except in the case of absolute or indirect jump or call instructions,
803 * the new ip is relative to the copied instruction. We need to make
804 * it relative to the original instruction.
806 * 1) If the single-stepped instruction was pushfl, then the TF and IF
807 * flags are set in the just-pushed flags, and may need to be cleared.
809 * 2) If the single-stepped instruction was a call, the return address
810 * that is atop the stack is the address following the copied instruction.
811 * We need to make it the address following the original instruction.
813 * If this is the first time we've single-stepped the instruction at
814 * this probepoint, and the instruction is boostable, boost it: add a
815 * jump instruction after the copied instruction, that jumps to the next
816 * instruction after the probepoint.
818 static void __kprobes
resume_execution(struct kprobe
*p
,
819 struct pt_regs
*regs
, struct kprobe_ctlblk
*kcb
)
821 unsigned long *tos
= stack_addr(regs
);
822 unsigned long copy_ip
= (unsigned long)p
->ainsn
.insn
;
823 unsigned long orig_ip
= (unsigned long)p
->addr
;
824 kprobe_opcode_t
*insn
= p
->ainsn
.insn
;
827 insn
= skip_prefixes(insn
);
829 regs
->flags
&= ~X86_EFLAGS_TF
;
831 case 0x9c: /* pushfl */
832 *tos
&= ~(X86_EFLAGS_TF
| X86_EFLAGS_IF
);
833 *tos
|= kcb
->kprobe_old_flags
;
835 case 0xc2: /* iret/ret/lret */
840 case 0xea: /* jmp absolute -- ip is correct */
841 /* ip is already adjusted, no more changes required */
842 p
->ainsn
.boostable
= 1;
844 case 0xe8: /* call relative - Fix return addr */
845 *tos
= orig_ip
+ (*tos
- copy_ip
);
848 case 0x9a: /* call absolute -- same as call absolute, indirect */
849 *tos
= orig_ip
+ (*tos
- copy_ip
);
853 if ((insn
[1] & 0x30) == 0x10) {
855 * call absolute, indirect
856 * Fix return addr; ip is correct.
857 * But this is not boostable
859 *tos
= orig_ip
+ (*tos
- copy_ip
);
861 } else if (((insn
[1] & 0x31) == 0x20) ||
862 ((insn
[1] & 0x31) == 0x21)) {
864 * jmp near and far, absolute indirect
865 * ip is correct. And this is boostable
867 p
->ainsn
.boostable
= 1;
874 if (p
->ainsn
.boostable
== 0) {
875 if ((regs
->ip
> copy_ip
) &&
876 (regs
->ip
- copy_ip
) + 5 < MAX_INSN_SIZE
) {
878 * These instructions can be executed directly if it
879 * jumps back to correct address.
881 synthesize_reljump((void *)regs
->ip
,
882 (void *)orig_ip
+ (regs
->ip
- copy_ip
));
883 p
->ainsn
.boostable
= 1;
885 p
->ainsn
.boostable
= -1;
889 regs
->ip
+= orig_ip
- copy_ip
;
896 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
897 * remain disabled throughout this function.
899 static int __kprobes
post_kprobe_handler(struct pt_regs
*regs
)
901 struct kprobe
*cur
= kprobe_running();
902 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
907 resume_execution(cur
, regs
, kcb
);
908 regs
->flags
|= kcb
->kprobe_saved_flags
;
910 if ((kcb
->kprobe_status
!= KPROBE_REENTER
) && cur
->post_handler
) {
911 kcb
->kprobe_status
= KPROBE_HIT_SSDONE
;
912 cur
->post_handler(cur
, regs
, 0);
915 /* Restore back the original saved kprobes variables and continue. */
916 if (kcb
->kprobe_status
== KPROBE_REENTER
) {
917 restore_previous_kprobe(kcb
);
920 reset_current_kprobe();
922 preempt_enable_no_resched();
925 * if somebody else is singlestepping across a probe point, flags
926 * will have TF set, in which case, continue the remaining processing
927 * of do_debug, as if this is not a probe hit.
929 if (regs
->flags
& X86_EFLAGS_TF
)
935 int __kprobes
kprobe_fault_handler(struct pt_regs
*regs
, int trapnr
)
937 struct kprobe
*cur
= kprobe_running();
938 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
940 switch (kcb
->kprobe_status
) {
944 * We are here because the instruction being single
945 * stepped caused a page fault. We reset the current
946 * kprobe and the ip points back to the probe address
947 * and allow the page fault handler to continue as a
950 regs
->ip
= (unsigned long)cur
->addr
;
951 regs
->flags
|= kcb
->kprobe_old_flags
;
952 if (kcb
->kprobe_status
== KPROBE_REENTER
)
953 restore_previous_kprobe(kcb
);
955 reset_current_kprobe();
956 preempt_enable_no_resched();
958 case KPROBE_HIT_ACTIVE
:
959 case KPROBE_HIT_SSDONE
:
961 * We increment the nmissed count for accounting,
962 * we can also use npre/npostfault count for accounting
963 * these specific fault cases.
965 kprobes_inc_nmissed_count(cur
);
968 * We come here because instructions in the pre/post
969 * handler caused the page_fault, this could happen
970 * if handler tries to access user space by
971 * copy_from_user(), get_user() etc. Let the
972 * user-specified handler try to fix it first.
974 if (cur
->fault_handler
&& cur
->fault_handler(cur
, regs
, trapnr
))
978 * In case the user-specified fault handler returned
979 * zero, try to fix up.
981 if (fixup_exception(regs
))
985 * fixup routine could not handle it,
986 * Let do_page_fault() fix it.
996 * Wrapper routine for handling exceptions.
998 int __kprobes
kprobe_exceptions_notify(struct notifier_block
*self
,
999 unsigned long val
, void *data
)
1001 struct die_args
*args
= data
;
1002 int ret
= NOTIFY_DONE
;
1004 if (args
->regs
&& user_mode_vm(args
->regs
))
1009 if (kprobe_handler(args
->regs
))
1013 if (post_kprobe_handler(args
->regs
)) {
1015 * Reset the BS bit in dr6 (pointed by args->err) to
1016 * denote completion of processing
1018 (*(unsigned long *)ERR_PTR(args
->err
)) &= ~DR_STEP
;
1024 * To be potentially processing a kprobe fault and to
1025 * trust the result from kprobe_running(), we have
1026 * be non-preemptible.
1028 if (!preemptible() && kprobe_running() &&
1029 kprobe_fault_handler(args
->regs
, args
->trapnr
))
1038 int __kprobes
setjmp_pre_handler(struct kprobe
*p
, struct pt_regs
*regs
)
1040 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
1042 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
1044 kcb
->jprobe_saved_regs
= *regs
;
1045 kcb
->jprobe_saved_sp
= stack_addr(regs
);
1046 addr
= (unsigned long)(kcb
->jprobe_saved_sp
);
1049 * As Linus pointed out, gcc assumes that the callee
1050 * owns the argument space and could overwrite it, e.g.
1051 * tailcall optimization. So, to be absolutely safe
1052 * we also save and restore enough stack bytes to cover
1053 * the argument area.
1055 memcpy(kcb
->jprobes_stack
, (kprobe_opcode_t
*)addr
,
1056 MIN_STACK_SIZE(addr
));
1057 regs
->flags
&= ~X86_EFLAGS_IF
;
1058 trace_hardirqs_off();
1059 regs
->ip
= (unsigned long)(jp
->entry
);
1063 void __kprobes
jprobe_return(void)
1065 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
1068 #ifdef CONFIG_X86_64
1069 " xchg %%rbx,%%rsp \n"
1071 " xchgl %%ebx,%%esp \n"
1074 " .globl jprobe_return_end\n"
1075 " jprobe_return_end: \n"
1077 (kcb
->jprobe_saved_sp
):"memory");
1080 int __kprobes
longjmp_break_handler(struct kprobe
*p
, struct pt_regs
*regs
)
1082 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
1083 u8
*addr
= (u8
*) (regs
->ip
- 1);
1084 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
1086 if ((addr
> (u8
*) jprobe_return
) &&
1087 (addr
< (u8
*) jprobe_return_end
)) {
1088 if (stack_addr(regs
) != kcb
->jprobe_saved_sp
) {
1089 struct pt_regs
*saved_regs
= &kcb
->jprobe_saved_regs
;
1091 "current sp %p does not match saved sp %p\n",
1092 stack_addr(regs
), kcb
->jprobe_saved_sp
);
1093 printk(KERN_ERR
"Saved registers for jprobe %p\n", jp
);
1094 show_registers(saved_regs
);
1095 printk(KERN_ERR
"Current registers\n");
1096 show_registers(regs
);
1099 *regs
= kcb
->jprobe_saved_regs
;
1100 memcpy((kprobe_opcode_t
*)(kcb
->jprobe_saved_sp
),
1102 MIN_STACK_SIZE(kcb
->jprobe_saved_sp
));
1103 preempt_enable_no_resched();
1110 #ifdef CONFIG_OPTPROBES
1112 /* Insert a call instruction at address 'from', which calls address 'to'.*/
1113 static void __kprobes
synthesize_relcall(void *from
, void *to
)
1115 __synthesize_relative_insn(from
, to
, RELATIVECALL_OPCODE
);
1118 /* Insert a move instruction which sets a pointer to eax/rdi (1st arg). */
1119 static void __kprobes
synthesize_set_arg1(kprobe_opcode_t
*addr
,
1122 #ifdef CONFIG_X86_64
1128 *(unsigned long *)addr
= val
;
1131 static void __used __kprobes
kprobes_optinsn_template_holder(void)
1134 ".global optprobe_template_entry\n"
1135 "optprobe_template_entry: \n"
1136 #ifdef CONFIG_X86_64
1137 /* We don't bother saving the ss register */
1141 " movq %rsp, %rsi\n"
1142 ".global optprobe_template_val\n"
1143 "optprobe_template_val: \n"
1146 ".global optprobe_template_call\n"
1147 "optprobe_template_call: \n"
1149 /* Move flags to rsp */
1150 " movq 144(%rsp), %rdx\n"
1151 " movq %rdx, 152(%rsp)\n"
1153 /* Skip flags entry */
1156 #else /* CONFIG_X86_32 */
1159 " movl %esp, %edx\n"
1160 ".global optprobe_template_val\n"
1161 "optprobe_template_val: \n"
1163 ".global optprobe_template_call\n"
1164 "optprobe_template_call: \n"
1167 " addl $4, %esp\n" /* skip cs */
1170 ".global optprobe_template_end\n"
1171 "optprobe_template_end: \n");
1174 #define TMPL_MOVE_IDX \
1175 ((long)&optprobe_template_val - (long)&optprobe_template_entry)
1176 #define TMPL_CALL_IDX \
1177 ((long)&optprobe_template_call - (long)&optprobe_template_entry)
1178 #define TMPL_END_IDX \
1179 ((long)&optprobe_template_end - (long)&optprobe_template_entry)
1181 #define INT3_SIZE sizeof(kprobe_opcode_t)
1183 /* Optimized kprobe call back function: called from optinsn */
1184 static void __kprobes
optimized_callback(struct optimized_kprobe
*op
,
1185 struct pt_regs
*regs
)
1187 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
1188 unsigned long flags
;
1190 /* This is possible if op is under delayed unoptimizing */
1191 if (kprobe_disabled(&op
->kp
))
1194 local_irq_save(flags
);
1195 if (kprobe_running()) {
1196 kprobes_inc_nmissed_count(&op
->kp
);
1198 /* Save skipped registers */
1199 #ifdef CONFIG_X86_64
1200 regs
->cs
= __KERNEL_CS
;
1202 regs
->cs
= __KERNEL_CS
| get_kernel_rpl();
1205 regs
->ip
= (unsigned long)op
->kp
.addr
+ INT3_SIZE
;
1206 regs
->orig_ax
= ~0UL;
1208 __this_cpu_write(current_kprobe
, &op
->kp
);
1209 kcb
->kprobe_status
= KPROBE_HIT_ACTIVE
;
1210 opt_pre_handler(&op
->kp
, regs
);
1211 __this_cpu_write(current_kprobe
, NULL
);
1213 local_irq_restore(flags
);
1216 static int __kprobes
copy_optimized_instructions(u8
*dest
, u8
*src
)
1220 while (len
< RELATIVEJUMP_SIZE
) {
1221 ret
= __copy_instruction(dest
+ len
, src
+ len
, 1);
1222 if (!ret
|| !can_boost(dest
+ len
))
1226 /* Check whether the address range is reserved */
1227 if (ftrace_text_reserved(src
, src
+ len
- 1) ||
1228 alternatives_text_reserved(src
, src
+ len
- 1) ||
1229 jump_label_text_reserved(src
, src
+ len
- 1))
1235 /* Check whether insn is indirect jump */
1236 static int __kprobes
insn_is_indirect_jump(struct insn
*insn
)
1238 return ((insn
->opcode
.bytes
[0] == 0xff &&
1239 (X86_MODRM_REG(insn
->modrm
.value
) & 6) == 4) || /* Jump */
1240 insn
->opcode
.bytes
[0] == 0xea); /* Segment based jump */
1243 /* Check whether insn jumps into specified address range */
1244 static int insn_jump_into_range(struct insn
*insn
, unsigned long start
, int len
)
1246 unsigned long target
= 0;
1248 switch (insn
->opcode
.bytes
[0]) {
1249 case 0xe0: /* loopne */
1250 case 0xe1: /* loope */
1251 case 0xe2: /* loop */
1252 case 0xe3: /* jcxz */
1253 case 0xe9: /* near relative jump */
1254 case 0xeb: /* short relative jump */
1257 if ((insn
->opcode
.bytes
[1] & 0xf0) == 0x80) /* jcc near */
1261 if ((insn
->opcode
.bytes
[0] & 0xf0) == 0x70) /* jcc short */
1265 target
= (unsigned long)insn
->next_byte
+ insn
->immediate
.value
;
1267 return (start
<= target
&& target
<= start
+ len
);
1270 /* Decode whole function to ensure any instructions don't jump into target */
1271 static int __kprobes
can_optimize(unsigned long paddr
)
1274 unsigned long addr
, size
= 0, offset
= 0;
1276 kprobe_opcode_t buf
[MAX_INSN_SIZE
];
1278 /* Lookup symbol including addr */
1279 if (!kallsyms_lookup_size_offset(paddr
, &size
, &offset
))
1283 * Do not optimize in the entry code due to the unstable
1286 if ((paddr
>= (unsigned long )__entry_text_start
) &&
1287 (paddr
< (unsigned long )__entry_text_end
))
1290 /* Check there is enough space for a relative jump. */
1291 if (size
- offset
< RELATIVEJUMP_SIZE
)
1294 /* Decode instructions */
1295 addr
= paddr
- offset
;
1296 while (addr
< paddr
- offset
+ size
) { /* Decode until function end */
1297 if (search_exception_tables(addr
))
1299 * Since some fixup code will jumps into this function,
1300 * we can't optimize kprobe in this function.
1303 kernel_insn_init(&insn
, (void *)addr
);
1304 insn_get_opcode(&insn
);
1305 if (insn
.opcode
.bytes
[0] == BREAKPOINT_INSTRUCTION
) {
1306 ret
= recover_probed_instruction(buf
, addr
);
1309 kernel_insn_init(&insn
, buf
);
1311 insn_get_length(&insn
);
1312 /* Recover address */
1313 insn
.kaddr
= (void *)addr
;
1314 insn
.next_byte
= (void *)(addr
+ insn
.length
);
1315 /* Check any instructions don't jump into target */
1316 if (insn_is_indirect_jump(&insn
) ||
1317 insn_jump_into_range(&insn
, paddr
+ INT3_SIZE
,
1318 RELATIVE_ADDR_SIZE
))
1320 addr
+= insn
.length
;
1326 /* Check optimized_kprobe can actually be optimized. */
1327 int __kprobes
arch_check_optimized_kprobe(struct optimized_kprobe
*op
)
1332 for (i
= 1; i
< op
->optinsn
.size
; i
++) {
1333 p
= get_kprobe(op
->kp
.addr
+ i
);
1334 if (p
&& !kprobe_disabled(p
))
1341 /* Check the addr is within the optimized instructions. */
1342 int __kprobes
arch_within_optimized_kprobe(struct optimized_kprobe
*op
,
1345 return ((unsigned long)op
->kp
.addr
<= addr
&&
1346 (unsigned long)op
->kp
.addr
+ op
->optinsn
.size
> addr
);
1349 /* Free optimized instruction slot */
1351 void __arch_remove_optimized_kprobe(struct optimized_kprobe
*op
, int dirty
)
1353 if (op
->optinsn
.insn
) {
1354 free_optinsn_slot(op
->optinsn
.insn
, dirty
);
1355 op
->optinsn
.insn
= NULL
;
1356 op
->optinsn
.size
= 0;
1360 void __kprobes
arch_remove_optimized_kprobe(struct optimized_kprobe
*op
)
1362 __arch_remove_optimized_kprobe(op
, 1);
1366 * Copy replacing target instructions
1367 * Target instructions MUST be relocatable (checked inside)
1369 int __kprobes
arch_prepare_optimized_kprobe(struct optimized_kprobe
*op
)
1375 if (!can_optimize((unsigned long)op
->kp
.addr
))
1378 op
->optinsn
.insn
= get_optinsn_slot();
1379 if (!op
->optinsn
.insn
)
1383 * Verify if the address gap is in 2GB range, because this uses
1386 rel
= (long)op
->optinsn
.insn
- (long)op
->kp
.addr
+ RELATIVEJUMP_SIZE
;
1387 if (abs(rel
) > 0x7fffffff)
1390 buf
= (u8
*)op
->optinsn
.insn
;
1392 /* Copy instructions into the out-of-line buffer */
1393 ret
= copy_optimized_instructions(buf
+ TMPL_END_IDX
, op
->kp
.addr
);
1395 __arch_remove_optimized_kprobe(op
, 0);
1398 op
->optinsn
.size
= ret
;
1400 /* Copy arch-dep-instance from template */
1401 memcpy(buf
, &optprobe_template_entry
, TMPL_END_IDX
);
1403 /* Set probe information */
1404 synthesize_set_arg1(buf
+ TMPL_MOVE_IDX
, (unsigned long)op
);
1406 /* Set probe function call */
1407 synthesize_relcall(buf
+ TMPL_CALL_IDX
, optimized_callback
);
1409 /* Set returning jmp instruction at the tail of out-of-line buffer */
1410 synthesize_reljump(buf
+ TMPL_END_IDX
+ op
->optinsn
.size
,
1411 (u8
*)op
->kp
.addr
+ op
->optinsn
.size
);
1413 flush_icache_range((unsigned long) buf
,
1414 (unsigned long) buf
+ TMPL_END_IDX
+
1415 op
->optinsn
.size
+ RELATIVEJUMP_SIZE
);
1419 #define MAX_OPTIMIZE_PROBES 256
1420 static struct text_poke_param
*jump_poke_params
;
1421 static struct jump_poke_buffer
{
1422 u8 buf
[RELATIVEJUMP_SIZE
];
1425 static void __kprobes
setup_optimize_kprobe(struct text_poke_param
*tprm
,
1427 struct optimized_kprobe
*op
)
1429 s32 rel
= (s32
)((long)op
->optinsn
.insn
-
1430 ((long)op
->kp
.addr
+ RELATIVEJUMP_SIZE
));
1432 /* Backup instructions which will be replaced by jump address */
1433 memcpy(op
->optinsn
.copied_insn
, op
->kp
.addr
+ INT3_SIZE
,
1434 RELATIVE_ADDR_SIZE
);
1436 insn_buf
[0] = RELATIVEJUMP_OPCODE
;
1437 *(s32
*)(&insn_buf
[1]) = rel
;
1439 tprm
->addr
= op
->kp
.addr
;
1440 tprm
->opcode
= insn_buf
;
1441 tprm
->len
= RELATIVEJUMP_SIZE
;
1445 * Replace breakpoints (int3) with relative jumps.
1446 * Caller must call with locking kprobe_mutex and text_mutex.
1448 void __kprobes
arch_optimize_kprobes(struct list_head
*oplist
)
1450 struct optimized_kprobe
*op
, *tmp
;
1453 list_for_each_entry_safe(op
, tmp
, oplist
, list
) {
1454 WARN_ON(kprobe_disabled(&op
->kp
));
1456 setup_optimize_kprobe(&jump_poke_params
[c
],
1457 jump_poke_bufs
[c
].buf
, op
);
1458 list_del_init(&op
->list
);
1459 if (++c
>= MAX_OPTIMIZE_PROBES
)
1464 * text_poke_smp doesn't support NMI/MCE code modifying.
1465 * However, since kprobes itself also doesn't support NMI/MCE
1466 * code probing, it's not a problem.
1468 text_poke_smp_batch(jump_poke_params
, c
);
1471 static void __kprobes
setup_unoptimize_kprobe(struct text_poke_param
*tprm
,
1473 struct optimized_kprobe
*op
)
1475 /* Set int3 to first byte for kprobes */
1476 insn_buf
[0] = BREAKPOINT_INSTRUCTION
;
1477 memcpy(insn_buf
+ 1, op
->optinsn
.copied_insn
, RELATIVE_ADDR_SIZE
);
1479 tprm
->addr
= op
->kp
.addr
;
1480 tprm
->opcode
= insn_buf
;
1481 tprm
->len
= RELATIVEJUMP_SIZE
;
1485 * Recover original instructions and breakpoints from relative jumps.
1486 * Caller must call with locking kprobe_mutex.
1488 extern void arch_unoptimize_kprobes(struct list_head
*oplist
,
1489 struct list_head
*done_list
)
1491 struct optimized_kprobe
*op
, *tmp
;
1494 list_for_each_entry_safe(op
, tmp
, oplist
, list
) {
1496 setup_unoptimize_kprobe(&jump_poke_params
[c
],
1497 jump_poke_bufs
[c
].buf
, op
);
1498 list_move(&op
->list
, done_list
);
1499 if (++c
>= MAX_OPTIMIZE_PROBES
)
1504 * text_poke_smp doesn't support NMI/MCE code modifying.
1505 * However, since kprobes itself also doesn't support NMI/MCE
1506 * code probing, it's not a problem.
1508 text_poke_smp_batch(jump_poke_params
, c
);
1511 /* Replace a relative jump with a breakpoint (int3). */
1512 void __kprobes
arch_unoptimize_kprobe(struct optimized_kprobe
*op
)
1514 u8 buf
[RELATIVEJUMP_SIZE
];
1516 /* Set int3 to first byte for kprobes */
1517 buf
[0] = BREAKPOINT_INSTRUCTION
;
1518 memcpy(buf
+ 1, op
->optinsn
.copied_insn
, RELATIVE_ADDR_SIZE
);
1519 text_poke_smp(op
->kp
.addr
, buf
, RELATIVEJUMP_SIZE
);
1522 static int __kprobes
setup_detour_execution(struct kprobe
*p
,
1523 struct pt_regs
*regs
,
1526 struct optimized_kprobe
*op
;
1528 if (p
->flags
& KPROBE_FLAG_OPTIMIZED
) {
1529 /* This kprobe is really able to run optimized path. */
1530 op
= container_of(p
, struct optimized_kprobe
, kp
);
1531 /* Detour through copied instructions */
1532 regs
->ip
= (unsigned long)op
->optinsn
.insn
+ TMPL_END_IDX
;
1534 reset_current_kprobe();
1535 preempt_enable_no_resched();
1541 static int __kprobes
init_poke_params(void)
1543 /* Allocate code buffer and parameter array */
1544 jump_poke_bufs
= kmalloc(sizeof(struct jump_poke_buffer
) *
1545 MAX_OPTIMIZE_PROBES
, GFP_KERNEL
);
1546 if (!jump_poke_bufs
)
1549 jump_poke_params
= kmalloc(sizeof(struct text_poke_param
) *
1550 MAX_OPTIMIZE_PROBES
, GFP_KERNEL
);
1551 if (!jump_poke_params
) {
1552 kfree(jump_poke_bufs
);
1553 jump_poke_bufs
= NULL
;
1559 #else /* !CONFIG_OPTPROBES */
1560 static int __kprobes
init_poke_params(void)
1566 int __init
arch_init_kprobes(void)
1568 return init_poke_params();
1571 int __kprobes
arch_trampoline_kprobe(struct kprobe
*p
)