4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
38 * FIXME: remove all knowledge of the buffer layer from the core VM
40 #include <linux/buffer_head.h> /* for generic_osync_inode */
45 generic_file_direct_IO(int rw
, struct kiocb
*iocb
, const struct iovec
*iov
,
46 loff_t offset
, unsigned long nr_segs
);
49 * Shared mappings implemented 30.11.1994. It's not fully working yet,
52 * Shared mappings now work. 15.8.1995 Bruno.
54 * finished 'unifying' the page and buffer cache and SMP-threaded the
55 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
63 * ->i_mmap_lock (vmtruncate)
64 * ->private_lock (__free_pte->__set_page_dirty_buffers)
65 * ->swap_lock (exclusive_swap_page, others)
66 * ->mapping->tree_lock
70 * ->i_mmap_lock (truncate->unmap_mapping_range)
74 * ->page_table_lock or pte_lock (various, mainly in memory.c)
75 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
78 * ->lock_page (access_process_vm)
80 * ->i_mutex (generic_file_buffered_write)
81 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
84 * ->i_alloc_sem (various)
87 * ->sb_lock (fs/fs-writeback.c)
88 * ->mapping->tree_lock (__sync_single_inode)
91 * ->anon_vma.lock (vma_adjust)
94 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
96 * ->page_table_lock or pte_lock
97 * ->swap_lock (try_to_unmap_one)
98 * ->private_lock (try_to_unmap_one)
99 * ->tree_lock (try_to_unmap_one)
100 * ->zone.lru_lock (follow_page->mark_page_accessed)
101 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
102 * ->private_lock (page_remove_rmap->set_page_dirty)
103 * ->tree_lock (page_remove_rmap->set_page_dirty)
104 * ->inode_lock (page_remove_rmap->set_page_dirty)
105 * ->inode_lock (zap_pte_range->set_page_dirty)
106 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
109 * ->dcache_lock (proc_pid_lookup)
113 * Remove a page from the page cache and free it. Caller has to make
114 * sure the page is locked and that nobody else uses it - or that usage
115 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
117 void __remove_from_page_cache(struct page
*page
)
119 struct address_space
*mapping
= page
->mapping
;
121 radix_tree_delete(&mapping
->page_tree
, page
->index
);
122 page
->mapping
= NULL
;
124 __dec_zone_page_state(page
, NR_FILE_PAGES
);
125 BUG_ON(page_mapped(page
));
128 void remove_from_page_cache(struct page
*page
)
130 struct address_space
*mapping
= page
->mapping
;
132 BUG_ON(!PageLocked(page
));
134 write_lock_irq(&mapping
->tree_lock
);
135 __remove_from_page_cache(page
);
136 write_unlock_irq(&mapping
->tree_lock
);
139 static int sync_page(void *word
)
141 struct address_space
*mapping
;
144 page
= container_of((unsigned long *)word
, struct page
, flags
);
147 * page_mapping() is being called without PG_locked held.
148 * Some knowledge of the state and use of the page is used to
149 * reduce the requirements down to a memory barrier.
150 * The danger here is of a stale page_mapping() return value
151 * indicating a struct address_space different from the one it's
152 * associated with when it is associated with one.
153 * After smp_mb(), it's either the correct page_mapping() for
154 * the page, or an old page_mapping() and the page's own
155 * page_mapping() has gone NULL.
156 * The ->sync_page() address_space operation must tolerate
157 * page_mapping() going NULL. By an amazing coincidence,
158 * this comes about because none of the users of the page
159 * in the ->sync_page() methods make essential use of the
160 * page_mapping(), merely passing the page down to the backing
161 * device's unplug functions when it's non-NULL, which in turn
162 * ignore it for all cases but swap, where only page_private(page) is
163 * of interest. When page_mapping() does go NULL, the entire
164 * call stack gracefully ignores the page and returns.
168 mapping
= page_mapping(page
);
169 if (mapping
&& mapping
->a_ops
&& mapping
->a_ops
->sync_page
)
170 mapping
->a_ops
->sync_page(page
);
176 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
177 * @mapping: address space structure to write
178 * @start: offset in bytes where the range starts
179 * @end: offset in bytes where the range ends (inclusive)
180 * @sync_mode: enable synchronous operation
182 * Start writeback against all of a mapping's dirty pages that lie
183 * within the byte offsets <start, end> inclusive.
185 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
186 * opposed to a regular memory cleansing writeback. The difference between
187 * these two operations is that if a dirty page/buffer is encountered, it must
188 * be waited upon, and not just skipped over.
190 int __filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
191 loff_t end
, int sync_mode
)
194 struct writeback_control wbc
= {
195 .sync_mode
= sync_mode
,
196 .nr_to_write
= mapping
->nrpages
* 2,
197 .range_start
= start
,
201 if (!mapping_cap_writeback_dirty(mapping
))
204 ret
= do_writepages(mapping
, &wbc
);
208 static inline int __filemap_fdatawrite(struct address_space
*mapping
,
211 return __filemap_fdatawrite_range(mapping
, 0, LLONG_MAX
, sync_mode
);
214 int filemap_fdatawrite(struct address_space
*mapping
)
216 return __filemap_fdatawrite(mapping
, WB_SYNC_ALL
);
218 EXPORT_SYMBOL(filemap_fdatawrite
);
220 static int filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
223 return __filemap_fdatawrite_range(mapping
, start
, end
, WB_SYNC_ALL
);
227 * filemap_flush - mostly a non-blocking flush
228 * @mapping: target address_space
230 * This is a mostly non-blocking flush. Not suitable for data-integrity
231 * purposes - I/O may not be started against all dirty pages.
233 int filemap_flush(struct address_space
*mapping
)
235 return __filemap_fdatawrite(mapping
, WB_SYNC_NONE
);
237 EXPORT_SYMBOL(filemap_flush
);
240 * wait_on_page_writeback_range - wait for writeback to complete
241 * @mapping: target address_space
242 * @start: beginning page index
243 * @end: ending page index
245 * Wait for writeback to complete against pages indexed by start->end
248 int wait_on_page_writeback_range(struct address_space
*mapping
,
249 pgoff_t start
, pgoff_t end
)
259 pagevec_init(&pvec
, 0);
261 while ((index
<= end
) &&
262 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
263 PAGECACHE_TAG_WRITEBACK
,
264 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1)) != 0) {
267 for (i
= 0; i
< nr_pages
; i
++) {
268 struct page
*page
= pvec
.pages
[i
];
270 /* until radix tree lookup accepts end_index */
271 if (page
->index
> end
)
274 wait_on_page_writeback(page
);
278 pagevec_release(&pvec
);
282 /* Check for outstanding write errors */
283 if (test_and_clear_bit(AS_ENOSPC
, &mapping
->flags
))
285 if (test_and_clear_bit(AS_EIO
, &mapping
->flags
))
292 * sync_page_range - write and wait on all pages in the passed range
293 * @inode: target inode
294 * @mapping: target address_space
295 * @pos: beginning offset in pages to write
296 * @count: number of bytes to write
298 * Write and wait upon all the pages in the passed range. This is a "data
299 * integrity" operation. It waits upon in-flight writeout before starting and
300 * waiting upon new writeout. If there was an IO error, return it.
302 * We need to re-take i_mutex during the generic_osync_inode list walk because
303 * it is otherwise livelockable.
305 int sync_page_range(struct inode
*inode
, struct address_space
*mapping
,
306 loff_t pos
, loff_t count
)
308 pgoff_t start
= pos
>> PAGE_CACHE_SHIFT
;
309 pgoff_t end
= (pos
+ count
- 1) >> PAGE_CACHE_SHIFT
;
312 if (!mapping_cap_writeback_dirty(mapping
) || !count
)
314 ret
= filemap_fdatawrite_range(mapping
, pos
, pos
+ count
- 1);
316 mutex_lock(&inode
->i_mutex
);
317 ret
= generic_osync_inode(inode
, mapping
, OSYNC_METADATA
);
318 mutex_unlock(&inode
->i_mutex
);
321 ret
= wait_on_page_writeback_range(mapping
, start
, end
);
324 EXPORT_SYMBOL(sync_page_range
);
327 * sync_page_range_nolock
328 * @inode: target inode
329 * @mapping: target address_space
330 * @pos: beginning offset in pages to write
331 * @count: number of bytes to write
333 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
334 * as it forces O_SYNC writers to different parts of the same file
335 * to be serialised right until io completion.
337 int sync_page_range_nolock(struct inode
*inode
, struct address_space
*mapping
,
338 loff_t pos
, loff_t count
)
340 pgoff_t start
= pos
>> PAGE_CACHE_SHIFT
;
341 pgoff_t end
= (pos
+ count
- 1) >> PAGE_CACHE_SHIFT
;
344 if (!mapping_cap_writeback_dirty(mapping
) || !count
)
346 ret
= filemap_fdatawrite_range(mapping
, pos
, pos
+ count
- 1);
348 ret
= generic_osync_inode(inode
, mapping
, OSYNC_METADATA
);
350 ret
= wait_on_page_writeback_range(mapping
, start
, end
);
353 EXPORT_SYMBOL(sync_page_range_nolock
);
356 * filemap_fdatawait - wait for all under-writeback pages to complete
357 * @mapping: address space structure to wait for
359 * Walk the list of under-writeback pages of the given address space
360 * and wait for all of them.
362 int filemap_fdatawait(struct address_space
*mapping
)
364 loff_t i_size
= i_size_read(mapping
->host
);
369 return wait_on_page_writeback_range(mapping
, 0,
370 (i_size
- 1) >> PAGE_CACHE_SHIFT
);
372 EXPORT_SYMBOL(filemap_fdatawait
);
374 int filemap_write_and_wait(struct address_space
*mapping
)
378 if (mapping
->nrpages
) {
379 err
= filemap_fdatawrite(mapping
);
381 * Even if the above returned error, the pages may be
382 * written partially (e.g. -ENOSPC), so we wait for it.
383 * But the -EIO is special case, it may indicate the worst
384 * thing (e.g. bug) happened, so we avoid waiting for it.
387 int err2
= filemap_fdatawait(mapping
);
394 EXPORT_SYMBOL(filemap_write_and_wait
);
397 * filemap_write_and_wait_range - write out & wait on a file range
398 * @mapping: the address_space for the pages
399 * @lstart: offset in bytes where the range starts
400 * @lend: offset in bytes where the range ends (inclusive)
402 * Write out and wait upon file offsets lstart->lend, inclusive.
404 * Note that `lend' is inclusive (describes the last byte to be written) so
405 * that this function can be used to write to the very end-of-file (end = -1).
407 int filemap_write_and_wait_range(struct address_space
*mapping
,
408 loff_t lstart
, loff_t lend
)
412 if (mapping
->nrpages
) {
413 err
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
415 /* See comment of filemap_write_and_wait() */
417 int err2
= wait_on_page_writeback_range(mapping
,
418 lstart
>> PAGE_CACHE_SHIFT
,
419 lend
>> PAGE_CACHE_SHIFT
);
428 * add_to_page_cache - add newly allocated pagecache pages
430 * @mapping: the page's address_space
431 * @offset: page index
432 * @gfp_mask: page allocation mode
434 * This function is used to add newly allocated pagecache pages;
435 * the page is new, so we can just run SetPageLocked() against it.
436 * The other page state flags were set by rmqueue().
438 * This function does not add the page to the LRU. The caller must do that.
440 int add_to_page_cache(struct page
*page
, struct address_space
*mapping
,
441 pgoff_t offset
, gfp_t gfp_mask
)
443 int error
= radix_tree_preload(gfp_mask
& ~__GFP_HIGHMEM
);
446 write_lock_irq(&mapping
->tree_lock
);
447 error
= radix_tree_insert(&mapping
->page_tree
, offset
, page
);
449 page_cache_get(page
);
451 page
->mapping
= mapping
;
452 page
->index
= offset
;
454 __inc_zone_page_state(page
, NR_FILE_PAGES
);
456 write_unlock_irq(&mapping
->tree_lock
);
457 radix_tree_preload_end();
461 EXPORT_SYMBOL(add_to_page_cache
);
463 int add_to_page_cache_lru(struct page
*page
, struct address_space
*mapping
,
464 pgoff_t offset
, gfp_t gfp_mask
)
466 int ret
= add_to_page_cache(page
, mapping
, offset
, gfp_mask
);
473 struct page
*__page_cache_alloc(gfp_t gfp
)
475 if (cpuset_do_page_mem_spread()) {
476 int n
= cpuset_mem_spread_node();
477 return alloc_pages_node(n
, gfp
, 0);
479 return alloc_pages(gfp
, 0);
481 EXPORT_SYMBOL(__page_cache_alloc
);
484 static int __sleep_on_page_lock(void *word
)
491 * In order to wait for pages to become available there must be
492 * waitqueues associated with pages. By using a hash table of
493 * waitqueues where the bucket discipline is to maintain all
494 * waiters on the same queue and wake all when any of the pages
495 * become available, and for the woken contexts to check to be
496 * sure the appropriate page became available, this saves space
497 * at a cost of "thundering herd" phenomena during rare hash
500 static wait_queue_head_t
*page_waitqueue(struct page
*page
)
502 const struct zone
*zone
= page_zone(page
);
504 return &zone
->wait_table
[hash_ptr(page
, zone
->wait_table_bits
)];
507 static inline void wake_up_page(struct page
*page
, int bit
)
509 __wake_up_bit(page_waitqueue(page
), &page
->flags
, bit
);
512 void fastcall
wait_on_page_bit(struct page
*page
, int bit_nr
)
514 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
516 if (test_bit(bit_nr
, &page
->flags
))
517 __wait_on_bit(page_waitqueue(page
), &wait
, sync_page
,
518 TASK_UNINTERRUPTIBLE
);
520 EXPORT_SYMBOL(wait_on_page_bit
);
523 * unlock_page - unlock a locked page
526 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
527 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
528 * mechananism between PageLocked pages and PageWriteback pages is shared.
529 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
531 * The first mb is necessary to safely close the critical section opened by the
532 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
533 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
534 * parallel wait_on_page_locked()).
536 void fastcall
unlock_page(struct page
*page
)
538 smp_mb__before_clear_bit();
539 if (!TestClearPageLocked(page
))
541 smp_mb__after_clear_bit();
542 wake_up_page(page
, PG_locked
);
544 EXPORT_SYMBOL(unlock_page
);
547 * end_page_writeback - end writeback against a page
550 void end_page_writeback(struct page
*page
)
552 if (!TestClearPageReclaim(page
) || rotate_reclaimable_page(page
)) {
553 if (!test_clear_page_writeback(page
))
556 smp_mb__after_clear_bit();
557 wake_up_page(page
, PG_writeback
);
559 EXPORT_SYMBOL(end_page_writeback
);
562 * __lock_page - get a lock on the page, assuming we need to sleep to get it
563 * @page: the page to lock
565 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
566 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
567 * chances are that on the second loop, the block layer's plug list is empty,
568 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
570 void fastcall
__lock_page(struct page
*page
)
572 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
574 __wait_on_bit_lock(page_waitqueue(page
), &wait
, sync_page
,
575 TASK_UNINTERRUPTIBLE
);
577 EXPORT_SYMBOL(__lock_page
);
580 * Variant of lock_page that does not require the caller to hold a reference
581 * on the page's mapping.
583 void fastcall
__lock_page_nosync(struct page
*page
)
585 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
586 __wait_on_bit_lock(page_waitqueue(page
), &wait
, __sleep_on_page_lock
,
587 TASK_UNINTERRUPTIBLE
);
591 * find_get_page - find and get a page reference
592 * @mapping: the address_space to search
593 * @offset: the page index
595 * Is there a pagecache struct page at the given (mapping, offset) tuple?
596 * If yes, increment its refcount and return it; if no, return NULL.
598 struct page
* find_get_page(struct address_space
*mapping
, pgoff_t offset
)
602 read_lock_irq(&mapping
->tree_lock
);
603 page
= radix_tree_lookup(&mapping
->page_tree
, offset
);
605 page_cache_get(page
);
606 read_unlock_irq(&mapping
->tree_lock
);
609 EXPORT_SYMBOL(find_get_page
);
612 * find_lock_page - locate, pin and lock a pagecache page
613 * @mapping: the address_space to search
614 * @offset: the page index
616 * Locates the desired pagecache page, locks it, increments its reference
617 * count and returns its address.
619 * Returns zero if the page was not present. find_lock_page() may sleep.
621 struct page
*find_lock_page(struct address_space
*mapping
,
627 read_lock_irq(&mapping
->tree_lock
);
628 page
= radix_tree_lookup(&mapping
->page_tree
, offset
);
630 page_cache_get(page
);
631 if (TestSetPageLocked(page
)) {
632 read_unlock_irq(&mapping
->tree_lock
);
635 /* Has the page been truncated while we slept? */
636 if (unlikely(page
->mapping
!= mapping
)) {
638 page_cache_release(page
);
641 VM_BUG_ON(page
->index
!= offset
);
645 read_unlock_irq(&mapping
->tree_lock
);
649 EXPORT_SYMBOL(find_lock_page
);
652 * find_or_create_page - locate or add a pagecache page
653 * @mapping: the page's address_space
654 * @index: the page's index into the mapping
655 * @gfp_mask: page allocation mode
657 * Locates a page in the pagecache. If the page is not present, a new page
658 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
659 * LRU list. The returned page is locked and has its reference count
662 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
665 * find_or_create_page() returns the desired page's address, or zero on
668 struct page
*find_or_create_page(struct address_space
*mapping
,
669 pgoff_t index
, gfp_t gfp_mask
)
674 page
= find_lock_page(mapping
, index
);
676 page
= __page_cache_alloc(gfp_mask
);
679 err
= add_to_page_cache_lru(page
, mapping
, index
, gfp_mask
);
681 page_cache_release(page
);
689 EXPORT_SYMBOL(find_or_create_page
);
692 * find_get_pages - gang pagecache lookup
693 * @mapping: The address_space to search
694 * @start: The starting page index
695 * @nr_pages: The maximum number of pages
696 * @pages: Where the resulting pages are placed
698 * find_get_pages() will search for and return a group of up to
699 * @nr_pages pages in the mapping. The pages are placed at @pages.
700 * find_get_pages() takes a reference against the returned pages.
702 * The search returns a group of mapping-contiguous pages with ascending
703 * indexes. There may be holes in the indices due to not-present pages.
705 * find_get_pages() returns the number of pages which were found.
707 unsigned find_get_pages(struct address_space
*mapping
, pgoff_t start
,
708 unsigned int nr_pages
, struct page
**pages
)
713 read_lock_irq(&mapping
->tree_lock
);
714 ret
= radix_tree_gang_lookup(&mapping
->page_tree
,
715 (void **)pages
, start
, nr_pages
);
716 for (i
= 0; i
< ret
; i
++)
717 page_cache_get(pages
[i
]);
718 read_unlock_irq(&mapping
->tree_lock
);
723 * find_get_pages_contig - gang contiguous pagecache lookup
724 * @mapping: The address_space to search
725 * @index: The starting page index
726 * @nr_pages: The maximum number of pages
727 * @pages: Where the resulting pages are placed
729 * find_get_pages_contig() works exactly like find_get_pages(), except
730 * that the returned number of pages are guaranteed to be contiguous.
732 * find_get_pages_contig() returns the number of pages which were found.
734 unsigned find_get_pages_contig(struct address_space
*mapping
, pgoff_t index
,
735 unsigned int nr_pages
, struct page
**pages
)
740 read_lock_irq(&mapping
->tree_lock
);
741 ret
= radix_tree_gang_lookup(&mapping
->page_tree
,
742 (void **)pages
, index
, nr_pages
);
743 for (i
= 0; i
< ret
; i
++) {
744 if (pages
[i
]->mapping
== NULL
|| pages
[i
]->index
!= index
)
747 page_cache_get(pages
[i
]);
750 read_unlock_irq(&mapping
->tree_lock
);
753 EXPORT_SYMBOL(find_get_pages_contig
);
756 * find_get_pages_tag - find and return pages that match @tag
757 * @mapping: the address_space to search
758 * @index: the starting page index
759 * @tag: the tag index
760 * @nr_pages: the maximum number of pages
761 * @pages: where the resulting pages are placed
763 * Like find_get_pages, except we only return pages which are tagged with
764 * @tag. We update @index to index the next page for the traversal.
766 unsigned find_get_pages_tag(struct address_space
*mapping
, pgoff_t
*index
,
767 int tag
, unsigned int nr_pages
, struct page
**pages
)
772 read_lock_irq(&mapping
->tree_lock
);
773 ret
= radix_tree_gang_lookup_tag(&mapping
->page_tree
,
774 (void **)pages
, *index
, nr_pages
, tag
);
775 for (i
= 0; i
< ret
; i
++)
776 page_cache_get(pages
[i
]);
778 *index
= pages
[ret
- 1]->index
+ 1;
779 read_unlock_irq(&mapping
->tree_lock
);
782 EXPORT_SYMBOL(find_get_pages_tag
);
785 * grab_cache_page_nowait - returns locked page at given index in given cache
786 * @mapping: target address_space
787 * @index: the page index
789 * Same as grab_cache_page(), but do not wait if the page is unavailable.
790 * This is intended for speculative data generators, where the data can
791 * be regenerated if the page couldn't be grabbed. This routine should
792 * be safe to call while holding the lock for another page.
794 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
795 * and deadlock against the caller's locked page.
798 grab_cache_page_nowait(struct address_space
*mapping
, pgoff_t index
)
800 struct page
*page
= find_get_page(mapping
, index
);
803 if (!TestSetPageLocked(page
))
805 page_cache_release(page
);
808 page
= __page_cache_alloc(mapping_gfp_mask(mapping
) & ~__GFP_FS
);
809 if (page
&& add_to_page_cache_lru(page
, mapping
, index
, GFP_KERNEL
)) {
810 page_cache_release(page
);
815 EXPORT_SYMBOL(grab_cache_page_nowait
);
818 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
819 * a _large_ part of the i/o request. Imagine the worst scenario:
821 * ---R__________________________________________B__________
822 * ^ reading here ^ bad block(assume 4k)
824 * read(R) => miss => readahead(R...B) => media error => frustrating retries
825 * => failing the whole request => read(R) => read(R+1) =>
826 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
827 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
828 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
830 * It is going insane. Fix it by quickly scaling down the readahead size.
832 static void shrink_readahead_size_eio(struct file
*filp
,
833 struct file_ra_state
*ra
)
842 * do_generic_mapping_read - generic file read routine
843 * @mapping: address_space to be read
844 * @ra: file's readahead state
845 * @filp: the file to read
846 * @ppos: current file position
847 * @desc: read_descriptor
848 * @actor: read method
850 * This is a generic file read routine, and uses the
851 * mapping->a_ops->readpage() function for the actual low-level stuff.
853 * This is really ugly. But the goto's actually try to clarify some
854 * of the logic when it comes to error handling etc.
856 * Note the struct file* is only passed for the use of readpage.
859 void do_generic_mapping_read(struct address_space
*mapping
,
860 struct file_ra_state
*ra
,
863 read_descriptor_t
*desc
,
866 struct inode
*inode
= mapping
->host
;
870 unsigned long offset
; /* offset into pagecache page */
871 unsigned int prev_offset
;
874 index
= *ppos
>> PAGE_CACHE_SHIFT
;
875 prev_index
= ra
->prev_pos
>> PAGE_CACHE_SHIFT
;
876 prev_offset
= ra
->prev_pos
& (PAGE_CACHE_SIZE
-1);
877 last_index
= (*ppos
+ desc
->count
+ PAGE_CACHE_SIZE
-1) >> PAGE_CACHE_SHIFT
;
878 offset
= *ppos
& ~PAGE_CACHE_MASK
;
884 unsigned long nr
, ret
;
888 page
= find_get_page(mapping
, index
);
890 page_cache_sync_readahead(mapping
,
892 index
, last_index
- index
);
893 page
= find_get_page(mapping
, index
);
894 if (unlikely(page
== NULL
))
897 if (PageReadahead(page
)) {
898 page_cache_async_readahead(mapping
,
900 index
, last_index
- index
);
902 if (!PageUptodate(page
))
903 goto page_not_up_to_date
;
906 * i_size must be checked after we know the page is Uptodate.
908 * Checking i_size after the check allows us to calculate
909 * the correct value for "nr", which means the zero-filled
910 * part of the page is not copied back to userspace (unless
911 * another truncate extends the file - this is desired though).
914 isize
= i_size_read(inode
);
915 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
916 if (unlikely(!isize
|| index
> end_index
)) {
917 page_cache_release(page
);
921 /* nr is the maximum number of bytes to copy from this page */
922 nr
= PAGE_CACHE_SIZE
;
923 if (index
== end_index
) {
924 nr
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
926 page_cache_release(page
);
932 /* If users can be writing to this page using arbitrary
933 * virtual addresses, take care about potential aliasing
934 * before reading the page on the kernel side.
936 if (mapping_writably_mapped(mapping
))
937 flush_dcache_page(page
);
940 * When a sequential read accesses a page several times,
941 * only mark it as accessed the first time.
943 if (prev_index
!= index
|| offset
!= prev_offset
)
944 mark_page_accessed(page
);
948 * Ok, we have the page, and it's up-to-date, so
949 * now we can copy it to user space...
951 * The actor routine returns how many bytes were actually used..
952 * NOTE! This may not be the same as how much of a user buffer
953 * we filled up (we may be padding etc), so we can only update
954 * "pos" here (the actor routine has to update the user buffer
955 * pointers and the remaining count).
957 ret
= actor(desc
, page
, offset
, nr
);
959 index
+= offset
>> PAGE_CACHE_SHIFT
;
960 offset
&= ~PAGE_CACHE_MASK
;
961 prev_offset
= offset
;
963 page_cache_release(page
);
964 if (ret
== nr
&& desc
->count
)
969 /* Get exclusive access to the page ... */
972 /* Did it get truncated before we got the lock? */
973 if (!page
->mapping
) {
975 page_cache_release(page
);
979 /* Did somebody else fill it already? */
980 if (PageUptodate(page
)) {
986 /* Start the actual read. The read will unlock the page. */
987 error
= mapping
->a_ops
->readpage(filp
, page
);
989 if (unlikely(error
)) {
990 if (error
== AOP_TRUNCATED_PAGE
) {
991 page_cache_release(page
);
997 if (!PageUptodate(page
)) {
999 if (!PageUptodate(page
)) {
1000 if (page
->mapping
== NULL
) {
1002 * invalidate_inode_pages got it
1005 page_cache_release(page
);
1010 shrink_readahead_size_eio(filp
, ra
);
1011 goto readpage_error
;
1019 /* UHHUH! A synchronous read error occurred. Report it */
1020 desc
->error
= error
;
1021 page_cache_release(page
);
1026 * Ok, it wasn't cached, so we need to create a new
1029 page
= page_cache_alloc_cold(mapping
);
1031 desc
->error
= -ENOMEM
;
1034 error
= add_to_page_cache_lru(page
, mapping
,
1037 page_cache_release(page
);
1038 if (error
== -EEXIST
)
1040 desc
->error
= error
;
1047 ra
->prev_pos
= prev_index
;
1048 ra
->prev_pos
<<= PAGE_CACHE_SHIFT
;
1049 ra
->prev_pos
|= prev_offset
;
1051 *ppos
= ((loff_t
)index
<< PAGE_CACHE_SHIFT
) + offset
;
1053 file_accessed(filp
);
1055 EXPORT_SYMBOL(do_generic_mapping_read
);
1057 int file_read_actor(read_descriptor_t
*desc
, struct page
*page
,
1058 unsigned long offset
, unsigned long size
)
1061 unsigned long left
, count
= desc
->count
;
1067 * Faults on the destination of a read are common, so do it before
1070 if (!fault_in_pages_writeable(desc
->arg
.buf
, size
)) {
1071 kaddr
= kmap_atomic(page
, KM_USER0
);
1072 left
= __copy_to_user_inatomic(desc
->arg
.buf
,
1073 kaddr
+ offset
, size
);
1074 kunmap_atomic(kaddr
, KM_USER0
);
1079 /* Do it the slow way */
1081 left
= __copy_to_user(desc
->arg
.buf
, kaddr
+ offset
, size
);
1086 desc
->error
= -EFAULT
;
1089 desc
->count
= count
- size
;
1090 desc
->written
+= size
;
1091 desc
->arg
.buf
+= size
;
1096 * Performs necessary checks before doing a write
1097 * @iov: io vector request
1098 * @nr_segs: number of segments in the iovec
1099 * @count: number of bytes to write
1100 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1102 * Adjust number of segments and amount of bytes to write (nr_segs should be
1103 * properly initialized first). Returns appropriate error code that caller
1104 * should return or zero in case that write should be allowed.
1106 int generic_segment_checks(const struct iovec
*iov
,
1107 unsigned long *nr_segs
, size_t *count
, int access_flags
)
1111 for (seg
= 0; seg
< *nr_segs
; seg
++) {
1112 const struct iovec
*iv
= &iov
[seg
];
1115 * If any segment has a negative length, or the cumulative
1116 * length ever wraps negative then return -EINVAL.
1119 if (unlikely((ssize_t
)(cnt
|iv
->iov_len
) < 0))
1121 if (access_ok(access_flags
, iv
->iov_base
, iv
->iov_len
))
1126 cnt
-= iv
->iov_len
; /* This segment is no good */
1132 EXPORT_SYMBOL(generic_segment_checks
);
1135 * generic_file_aio_read - generic filesystem read routine
1136 * @iocb: kernel I/O control block
1137 * @iov: io vector request
1138 * @nr_segs: number of segments in the iovec
1139 * @pos: current file position
1141 * This is the "read()" routine for all filesystems
1142 * that can use the page cache directly.
1145 generic_file_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
1146 unsigned long nr_segs
, loff_t pos
)
1148 struct file
*filp
= iocb
->ki_filp
;
1152 loff_t
*ppos
= &iocb
->ki_pos
;
1155 retval
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_WRITE
);
1159 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1160 if (filp
->f_flags
& O_DIRECT
) {
1162 struct address_space
*mapping
;
1163 struct inode
*inode
;
1165 mapping
= filp
->f_mapping
;
1166 inode
= mapping
->host
;
1169 goto out
; /* skip atime */
1170 size
= i_size_read(inode
);
1172 retval
= generic_file_direct_IO(READ
, iocb
,
1175 *ppos
= pos
+ retval
;
1177 if (likely(retval
!= 0)) {
1178 file_accessed(filp
);
1185 for (seg
= 0; seg
< nr_segs
; seg
++) {
1186 read_descriptor_t desc
;
1189 desc
.arg
.buf
= iov
[seg
].iov_base
;
1190 desc
.count
= iov
[seg
].iov_len
;
1191 if (desc
.count
== 0)
1194 do_generic_file_read(filp
,ppos
,&desc
,file_read_actor
);
1195 retval
+= desc
.written
;
1197 retval
= retval
?: desc
.error
;
1207 EXPORT_SYMBOL(generic_file_aio_read
);
1210 do_readahead(struct address_space
*mapping
, struct file
*filp
,
1211 pgoff_t index
, unsigned long nr
)
1213 if (!mapping
|| !mapping
->a_ops
|| !mapping
->a_ops
->readpage
)
1216 force_page_cache_readahead(mapping
, filp
, index
,
1217 max_sane_readahead(nr
));
1221 asmlinkage ssize_t
sys_readahead(int fd
, loff_t offset
, size_t count
)
1229 if (file
->f_mode
& FMODE_READ
) {
1230 struct address_space
*mapping
= file
->f_mapping
;
1231 pgoff_t start
= offset
>> PAGE_CACHE_SHIFT
;
1232 pgoff_t end
= (offset
+ count
- 1) >> PAGE_CACHE_SHIFT
;
1233 unsigned long len
= end
- start
+ 1;
1234 ret
= do_readahead(mapping
, file
, start
, len
);
1243 * page_cache_read - adds requested page to the page cache if not already there
1244 * @file: file to read
1245 * @offset: page index
1247 * This adds the requested page to the page cache if it isn't already there,
1248 * and schedules an I/O to read in its contents from disk.
1250 static int fastcall
page_cache_read(struct file
* file
, pgoff_t offset
)
1252 struct address_space
*mapping
= file
->f_mapping
;
1257 page
= page_cache_alloc_cold(mapping
);
1261 ret
= add_to_page_cache_lru(page
, mapping
, offset
, GFP_KERNEL
);
1263 ret
= mapping
->a_ops
->readpage(file
, page
);
1264 else if (ret
== -EEXIST
)
1265 ret
= 0; /* losing race to add is OK */
1267 page_cache_release(page
);
1269 } while (ret
== AOP_TRUNCATED_PAGE
);
1274 #define MMAP_LOTSAMISS (100)
1277 * filemap_fault - read in file data for page fault handling
1278 * @vma: vma in which the fault was taken
1279 * @vmf: struct vm_fault containing details of the fault
1281 * filemap_fault() is invoked via the vma operations vector for a
1282 * mapped memory region to read in file data during a page fault.
1284 * The goto's are kind of ugly, but this streamlines the normal case of having
1285 * it in the page cache, and handles the special cases reasonably without
1286 * having a lot of duplicated code.
1288 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1291 struct file
*file
= vma
->vm_file
;
1292 struct address_space
*mapping
= file
->f_mapping
;
1293 struct file_ra_state
*ra
= &file
->f_ra
;
1294 struct inode
*inode
= mapping
->host
;
1297 int did_readaround
= 0;
1300 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1301 if (vmf
->pgoff
>= size
)
1302 goto outside_data_content
;
1304 /* If we don't want any read-ahead, don't bother */
1305 if (VM_RandomReadHint(vma
))
1306 goto no_cached_page
;
1309 * Do we have something in the page cache already?
1312 page
= find_lock_page(mapping
, vmf
->pgoff
);
1314 * For sequential accesses, we use the generic readahead logic.
1316 if (VM_SequentialReadHint(vma
)) {
1318 page_cache_sync_readahead(mapping
, ra
, file
,
1320 page
= find_lock_page(mapping
, vmf
->pgoff
);
1322 goto no_cached_page
;
1324 if (PageReadahead(page
)) {
1325 page_cache_async_readahead(mapping
, ra
, file
, page
,
1331 unsigned long ra_pages
;
1336 * Do we miss much more than hit in this file? If so,
1337 * stop bothering with read-ahead. It will only hurt.
1339 if (ra
->mmap_miss
> MMAP_LOTSAMISS
)
1340 goto no_cached_page
;
1343 * To keep the pgmajfault counter straight, we need to
1344 * check did_readaround, as this is an inner loop.
1346 if (!did_readaround
) {
1347 ret
= VM_FAULT_MAJOR
;
1348 count_vm_event(PGMAJFAULT
);
1351 ra_pages
= max_sane_readahead(file
->f_ra
.ra_pages
);
1355 if (vmf
->pgoff
> ra_pages
/ 2)
1356 start
= vmf
->pgoff
- ra_pages
/ 2;
1357 do_page_cache_readahead(mapping
, file
, start
, ra_pages
);
1359 page
= find_lock_page(mapping
, vmf
->pgoff
);
1361 goto no_cached_page
;
1364 if (!did_readaround
)
1368 * We have a locked page in the page cache, now we need to check
1369 * that it's up-to-date. If not, it is going to be due to an error.
1371 if (unlikely(!PageUptodate(page
)))
1372 goto page_not_uptodate
;
1374 /* Must recheck i_size under page lock */
1375 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1376 if (unlikely(vmf
->pgoff
>= size
)) {
1378 page_cache_release(page
);
1379 goto outside_data_content
;
1383 * Found the page and have a reference on it.
1385 mark_page_accessed(page
);
1386 ra
->prev_pos
= (loff_t
)page
->index
<< PAGE_CACHE_SHIFT
;
1388 return ret
| VM_FAULT_LOCKED
;
1390 outside_data_content
:
1392 * An external ptracer can access pages that normally aren't
1395 if (vma
->vm_mm
== current
->mm
)
1396 return VM_FAULT_SIGBUS
;
1398 /* Fall through to the non-read-ahead case */
1401 * We're only likely to ever get here if MADV_RANDOM is in
1404 error
= page_cache_read(file
, vmf
->pgoff
);
1407 * The page we want has now been added to the page cache.
1408 * In the unlikely event that someone removed it in the
1409 * meantime, we'll just come back here and read it again.
1415 * An error return from page_cache_read can result if the
1416 * system is low on memory, or a problem occurs while trying
1419 if (error
== -ENOMEM
)
1420 return VM_FAULT_OOM
;
1421 return VM_FAULT_SIGBUS
;
1425 if (!did_readaround
) {
1426 ret
= VM_FAULT_MAJOR
;
1427 count_vm_event(PGMAJFAULT
);
1431 * Umm, take care of errors if the page isn't up-to-date.
1432 * Try to re-read it _once_. We do this synchronously,
1433 * because there really aren't any performance issues here
1434 * and we need to check for errors.
1436 ClearPageError(page
);
1437 error
= mapping
->a_ops
->readpage(file
, page
);
1438 page_cache_release(page
);
1440 if (!error
|| error
== AOP_TRUNCATED_PAGE
)
1443 /* Things didn't work out. Return zero to tell the mm layer so. */
1444 shrink_readahead_size_eio(file
, ra
);
1445 return VM_FAULT_SIGBUS
;
1447 EXPORT_SYMBOL(filemap_fault
);
1449 struct vm_operations_struct generic_file_vm_ops
= {
1450 .fault
= filemap_fault
,
1453 /* This is used for a general mmap of a disk file */
1455 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1457 struct address_space
*mapping
= file
->f_mapping
;
1459 if (!mapping
->a_ops
->readpage
)
1461 file_accessed(file
);
1462 vma
->vm_ops
= &generic_file_vm_ops
;
1463 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
1468 * This is for filesystems which do not implement ->writepage.
1470 int generic_file_readonly_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1472 if ((vma
->vm_flags
& VM_SHARED
) && (vma
->vm_flags
& VM_MAYWRITE
))
1474 return generic_file_mmap(file
, vma
);
1477 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1481 int generic_file_readonly_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1485 #endif /* CONFIG_MMU */
1487 EXPORT_SYMBOL(generic_file_mmap
);
1488 EXPORT_SYMBOL(generic_file_readonly_mmap
);
1490 static struct page
*__read_cache_page(struct address_space
*mapping
,
1492 int (*filler
)(void *,struct page
*),
1498 page
= find_get_page(mapping
, index
);
1500 page
= page_cache_alloc_cold(mapping
);
1502 return ERR_PTR(-ENOMEM
);
1503 err
= add_to_page_cache_lru(page
, mapping
, index
, GFP_KERNEL
);
1504 if (unlikely(err
)) {
1505 page_cache_release(page
);
1508 /* Presumably ENOMEM for radix tree node */
1509 return ERR_PTR(err
);
1511 err
= filler(data
, page
);
1513 page_cache_release(page
);
1514 page
= ERR_PTR(err
);
1521 * Same as read_cache_page, but don't wait for page to become unlocked
1522 * after submitting it to the filler.
1524 struct page
*read_cache_page_async(struct address_space
*mapping
,
1526 int (*filler
)(void *,struct page
*),
1533 page
= __read_cache_page(mapping
, index
, filler
, data
);
1536 if (PageUptodate(page
))
1540 if (!page
->mapping
) {
1542 page_cache_release(page
);
1545 if (PageUptodate(page
)) {
1549 err
= filler(data
, page
);
1551 page_cache_release(page
);
1552 return ERR_PTR(err
);
1555 mark_page_accessed(page
);
1558 EXPORT_SYMBOL(read_cache_page_async
);
1561 * read_cache_page - read into page cache, fill it if needed
1562 * @mapping: the page's address_space
1563 * @index: the page index
1564 * @filler: function to perform the read
1565 * @data: destination for read data
1567 * Read into the page cache. If a page already exists, and PageUptodate() is
1568 * not set, try to fill the page then wait for it to become unlocked.
1570 * If the page does not get brought uptodate, return -EIO.
1572 struct page
*read_cache_page(struct address_space
*mapping
,
1574 int (*filler
)(void *,struct page
*),
1579 page
= read_cache_page_async(mapping
, index
, filler
, data
);
1582 wait_on_page_locked(page
);
1583 if (!PageUptodate(page
)) {
1584 page_cache_release(page
);
1585 page
= ERR_PTR(-EIO
);
1590 EXPORT_SYMBOL(read_cache_page
);
1593 * The logic we want is
1595 * if suid or (sgid and xgrp)
1598 int should_remove_suid(struct dentry
*dentry
)
1600 mode_t mode
= dentry
->d_inode
->i_mode
;
1603 /* suid always must be killed */
1604 if (unlikely(mode
& S_ISUID
))
1605 kill
= ATTR_KILL_SUID
;
1608 * sgid without any exec bits is just a mandatory locking mark; leave
1609 * it alone. If some exec bits are set, it's a real sgid; kill it.
1611 if (unlikely((mode
& S_ISGID
) && (mode
& S_IXGRP
)))
1612 kill
|= ATTR_KILL_SGID
;
1614 if (unlikely(kill
&& !capable(CAP_FSETID
)))
1619 EXPORT_SYMBOL(should_remove_suid
);
1621 int __remove_suid(struct dentry
*dentry
, int kill
)
1623 struct iattr newattrs
;
1625 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
1626 return notify_change(dentry
, &newattrs
);
1629 int remove_suid(struct dentry
*dentry
)
1631 int killsuid
= should_remove_suid(dentry
);
1632 int killpriv
= security_inode_need_killpriv(dentry
);
1638 error
= security_inode_killpriv(dentry
);
1639 if (!error
&& killsuid
)
1640 error
= __remove_suid(dentry
, killsuid
);
1644 EXPORT_SYMBOL(remove_suid
);
1646 static size_t __iovec_copy_from_user_inatomic(char *vaddr
,
1647 const struct iovec
*iov
, size_t base
, size_t bytes
)
1649 size_t copied
= 0, left
= 0;
1652 char __user
*buf
= iov
->iov_base
+ base
;
1653 int copy
= min(bytes
, iov
->iov_len
- base
);
1656 left
= __copy_from_user_inatomic_nocache(vaddr
, buf
, copy
);
1665 return copied
- left
;
1669 * Copy as much as we can into the page and return the number of bytes which
1670 * were sucessfully copied. If a fault is encountered then return the number of
1671 * bytes which were copied.
1673 size_t iov_iter_copy_from_user_atomic(struct page
*page
,
1674 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
1679 BUG_ON(!in_atomic());
1680 kaddr
= kmap_atomic(page
, KM_USER0
);
1681 if (likely(i
->nr_segs
== 1)) {
1683 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
1684 left
= __copy_from_user_inatomic_nocache(kaddr
+ offset
,
1686 copied
= bytes
- left
;
1688 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
1689 i
->iov
, i
->iov_offset
, bytes
);
1691 kunmap_atomic(kaddr
, KM_USER0
);
1695 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic
);
1698 * This has the same sideeffects and return value as
1699 * iov_iter_copy_from_user_atomic().
1700 * The difference is that it attempts to resolve faults.
1701 * Page must not be locked.
1703 size_t iov_iter_copy_from_user(struct page
*page
,
1704 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
1710 if (likely(i
->nr_segs
== 1)) {
1712 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
1713 left
= __copy_from_user_nocache(kaddr
+ offset
, buf
, bytes
);
1714 copied
= bytes
- left
;
1716 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
1717 i
->iov
, i
->iov_offset
, bytes
);
1722 EXPORT_SYMBOL(iov_iter_copy_from_user
);
1724 static void __iov_iter_advance_iov(struct iov_iter
*i
, size_t bytes
)
1726 if (likely(i
->nr_segs
== 1)) {
1727 i
->iov_offset
+= bytes
;
1729 const struct iovec
*iov
= i
->iov
;
1730 size_t base
= i
->iov_offset
;
1733 int copy
= min(bytes
, iov
->iov_len
- base
);
1737 if (iov
->iov_len
== base
) {
1743 i
->iov_offset
= base
;
1747 void iov_iter_advance(struct iov_iter
*i
, size_t bytes
)
1749 BUG_ON(i
->count
< bytes
);
1751 __iov_iter_advance_iov(i
, bytes
);
1754 EXPORT_SYMBOL(iov_iter_advance
);
1757 * Fault in the first iovec of the given iov_iter, to a maximum length
1758 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1759 * accessed (ie. because it is an invalid address).
1761 * writev-intensive code may want this to prefault several iovecs -- that
1762 * would be possible (callers must not rely on the fact that _only_ the
1763 * first iovec will be faulted with the current implementation).
1765 int iov_iter_fault_in_readable(struct iov_iter
*i
, size_t bytes
)
1767 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
1768 bytes
= min(bytes
, i
->iov
->iov_len
- i
->iov_offset
);
1769 return fault_in_pages_readable(buf
, bytes
);
1771 EXPORT_SYMBOL(iov_iter_fault_in_readable
);
1774 * Return the count of just the current iov_iter segment.
1776 size_t iov_iter_single_seg_count(struct iov_iter
*i
)
1778 const struct iovec
*iov
= i
->iov
;
1779 if (i
->nr_segs
== 1)
1782 return min(i
->count
, iov
->iov_len
- i
->iov_offset
);
1784 EXPORT_SYMBOL(iov_iter_single_seg_count
);
1787 * Performs necessary checks before doing a write
1789 * Can adjust writing position or amount of bytes to write.
1790 * Returns appropriate error code that caller should return or
1791 * zero in case that write should be allowed.
1793 inline int generic_write_checks(struct file
*file
, loff_t
*pos
, size_t *count
, int isblk
)
1795 struct inode
*inode
= file
->f_mapping
->host
;
1796 unsigned long limit
= current
->signal
->rlim
[RLIMIT_FSIZE
].rlim_cur
;
1798 if (unlikely(*pos
< 0))
1802 /* FIXME: this is for backwards compatibility with 2.4 */
1803 if (file
->f_flags
& O_APPEND
)
1804 *pos
= i_size_read(inode
);
1806 if (limit
!= RLIM_INFINITY
) {
1807 if (*pos
>= limit
) {
1808 send_sig(SIGXFSZ
, current
, 0);
1811 if (*count
> limit
- (typeof(limit
))*pos
) {
1812 *count
= limit
- (typeof(limit
))*pos
;
1820 if (unlikely(*pos
+ *count
> MAX_NON_LFS
&&
1821 !(file
->f_flags
& O_LARGEFILE
))) {
1822 if (*pos
>= MAX_NON_LFS
) {
1825 if (*count
> MAX_NON_LFS
- (unsigned long)*pos
) {
1826 *count
= MAX_NON_LFS
- (unsigned long)*pos
;
1831 * Are we about to exceed the fs block limit ?
1833 * If we have written data it becomes a short write. If we have
1834 * exceeded without writing data we send a signal and return EFBIG.
1835 * Linus frestrict idea will clean these up nicely..
1837 if (likely(!isblk
)) {
1838 if (unlikely(*pos
>= inode
->i_sb
->s_maxbytes
)) {
1839 if (*count
|| *pos
> inode
->i_sb
->s_maxbytes
) {
1842 /* zero-length writes at ->s_maxbytes are OK */
1845 if (unlikely(*pos
+ *count
> inode
->i_sb
->s_maxbytes
))
1846 *count
= inode
->i_sb
->s_maxbytes
- *pos
;
1850 if (bdev_read_only(I_BDEV(inode
)))
1852 isize
= i_size_read(inode
);
1853 if (*pos
>= isize
) {
1854 if (*count
|| *pos
> isize
)
1858 if (*pos
+ *count
> isize
)
1859 *count
= isize
- *pos
;
1866 EXPORT_SYMBOL(generic_write_checks
);
1868 int pagecache_write_begin(struct file
*file
, struct address_space
*mapping
,
1869 loff_t pos
, unsigned len
, unsigned flags
,
1870 struct page
**pagep
, void **fsdata
)
1872 const struct address_space_operations
*aops
= mapping
->a_ops
;
1874 if (aops
->write_begin
) {
1875 return aops
->write_begin(file
, mapping
, pos
, len
, flags
,
1879 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
1880 unsigned offset
= pos
& (PAGE_CACHE_SIZE
- 1);
1881 struct inode
*inode
= mapping
->host
;
1884 page
= __grab_cache_page(mapping
, index
);
1889 if (flags
& AOP_FLAG_UNINTERRUPTIBLE
&& !PageUptodate(page
)) {
1891 * There is no way to resolve a short write situation
1892 * for a !Uptodate page (except by double copying in
1893 * the caller done by generic_perform_write_2copy).
1895 * Instead, we have to bring it uptodate here.
1897 ret
= aops
->readpage(file
, page
);
1898 page_cache_release(page
);
1900 if (ret
== AOP_TRUNCATED_PAGE
)
1907 ret
= aops
->prepare_write(file
, page
, offset
, offset
+len
);
1910 page_cache_release(page
);
1911 if (pos
+ len
> inode
->i_size
)
1912 vmtruncate(inode
, inode
->i_size
);
1917 EXPORT_SYMBOL(pagecache_write_begin
);
1919 int pagecache_write_end(struct file
*file
, struct address_space
*mapping
,
1920 loff_t pos
, unsigned len
, unsigned copied
,
1921 struct page
*page
, void *fsdata
)
1923 const struct address_space_operations
*aops
= mapping
->a_ops
;
1926 if (aops
->write_end
) {
1927 mark_page_accessed(page
);
1928 ret
= aops
->write_end(file
, mapping
, pos
, len
, copied
,
1931 unsigned offset
= pos
& (PAGE_CACHE_SIZE
- 1);
1932 struct inode
*inode
= mapping
->host
;
1934 flush_dcache_page(page
);
1935 ret
= aops
->commit_write(file
, page
, offset
, offset
+len
);
1937 mark_page_accessed(page
);
1938 page_cache_release(page
);
1941 if (pos
+ len
> inode
->i_size
)
1942 vmtruncate(inode
, inode
->i_size
);
1944 ret
= min_t(size_t, copied
, ret
);
1951 EXPORT_SYMBOL(pagecache_write_end
);
1954 generic_file_direct_write(struct kiocb
*iocb
, const struct iovec
*iov
,
1955 unsigned long *nr_segs
, loff_t pos
, loff_t
*ppos
,
1956 size_t count
, size_t ocount
)
1958 struct file
*file
= iocb
->ki_filp
;
1959 struct address_space
*mapping
= file
->f_mapping
;
1960 struct inode
*inode
= mapping
->host
;
1963 if (count
!= ocount
)
1964 *nr_segs
= iov_shorten((struct iovec
*)iov
, *nr_segs
, count
);
1966 written
= generic_file_direct_IO(WRITE
, iocb
, iov
, pos
, *nr_segs
);
1968 loff_t end
= pos
+ written
;
1969 if (end
> i_size_read(inode
) && !S_ISBLK(inode
->i_mode
)) {
1970 i_size_write(inode
, end
);
1971 mark_inode_dirty(inode
);
1977 * Sync the fs metadata but not the minor inode changes and
1978 * of course not the data as we did direct DMA for the IO.
1979 * i_mutex is held, which protects generic_osync_inode() from
1980 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
1982 if ((written
>= 0 || written
== -EIOCBQUEUED
) &&
1983 ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
1984 int err
= generic_osync_inode(inode
, mapping
, OSYNC_METADATA
);
1990 EXPORT_SYMBOL(generic_file_direct_write
);
1993 * Find or create a page at the given pagecache position. Return the locked
1994 * page. This function is specifically for buffered writes.
1996 struct page
*__grab_cache_page(struct address_space
*mapping
, pgoff_t index
)
2001 page
= find_lock_page(mapping
, index
);
2005 page
= page_cache_alloc(mapping
);
2008 status
= add_to_page_cache_lru(page
, mapping
, index
, GFP_KERNEL
);
2009 if (unlikely(status
)) {
2010 page_cache_release(page
);
2011 if (status
== -EEXIST
)
2017 EXPORT_SYMBOL(__grab_cache_page
);
2019 static ssize_t
generic_perform_write_2copy(struct file
*file
,
2020 struct iov_iter
*i
, loff_t pos
)
2022 struct address_space
*mapping
= file
->f_mapping
;
2023 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2024 struct inode
*inode
= mapping
->host
;
2026 ssize_t written
= 0;
2029 struct page
*src_page
;
2031 pgoff_t index
; /* Pagecache index for current page */
2032 unsigned long offset
; /* Offset into pagecache page */
2033 unsigned long bytes
; /* Bytes to write to page */
2034 size_t copied
; /* Bytes copied from user */
2036 offset
= (pos
& (PAGE_CACHE_SIZE
- 1));
2037 index
= pos
>> PAGE_CACHE_SHIFT
;
2038 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2042 * a non-NULL src_page indicates that we're doing the
2043 * copy via get_user_pages and kmap.
2048 * Bring in the user page that we will copy from _first_.
2049 * Otherwise there's a nasty deadlock on copying from the
2050 * same page as we're writing to, without it being marked
2053 * Not only is this an optimisation, but it is also required
2054 * to check that the address is actually valid, when atomic
2055 * usercopies are used, below.
2057 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
2062 page
= __grab_cache_page(mapping
, index
);
2069 * non-uptodate pages cannot cope with short copies, and we
2070 * cannot take a pagefault with the destination page locked.
2071 * So pin the source page to copy it.
2073 if (!PageUptodate(page
) && !segment_eq(get_fs(), KERNEL_DS
)) {
2076 src_page
= alloc_page(GFP_KERNEL
);
2078 page_cache_release(page
);
2084 * Cannot get_user_pages with a page locked for the
2085 * same reason as we can't take a page fault with a
2086 * page locked (as explained below).
2088 copied
= iov_iter_copy_from_user(src_page
, i
,
2090 if (unlikely(copied
== 0)) {
2092 page_cache_release(page
);
2093 page_cache_release(src_page
);
2100 * Can't handle the page going uptodate here, because
2101 * that means we would use non-atomic usercopies, which
2102 * zero out the tail of the page, which can cause
2103 * zeroes to become transiently visible. We could just
2104 * use a non-zeroing copy, but the APIs aren't too
2107 if (unlikely(!page
->mapping
|| PageUptodate(page
))) {
2109 page_cache_release(page
);
2110 page_cache_release(src_page
);
2115 status
= a_ops
->prepare_write(file
, page
, offset
, offset
+bytes
);
2116 if (unlikely(status
))
2117 goto fs_write_aop_error
;
2121 * Must not enter the pagefault handler here, because
2122 * we hold the page lock, so we might recursively
2123 * deadlock on the same lock, or get an ABBA deadlock
2124 * against a different lock, or against the mmap_sem
2125 * (which nests outside the page lock). So increment
2126 * preempt count, and use _atomic usercopies.
2128 * The page is uptodate so we are OK to encounter a
2129 * short copy: if unmodified parts of the page are
2130 * marked dirty and written out to disk, it doesn't
2133 pagefault_disable();
2134 copied
= iov_iter_copy_from_user_atomic(page
, i
,
2139 src
= kmap_atomic(src_page
, KM_USER0
);
2140 dst
= kmap_atomic(page
, KM_USER1
);
2141 memcpy(dst
+ offset
, src
+ offset
, bytes
);
2142 kunmap_atomic(dst
, KM_USER1
);
2143 kunmap_atomic(src
, KM_USER0
);
2146 flush_dcache_page(page
);
2148 status
= a_ops
->commit_write(file
, page
, offset
, offset
+bytes
);
2149 if (unlikely(status
< 0))
2150 goto fs_write_aop_error
;
2151 if (unlikely(status
> 0)) /* filesystem did partial write */
2152 copied
= min_t(size_t, copied
, status
);
2155 mark_page_accessed(page
);
2156 page_cache_release(page
);
2158 page_cache_release(src_page
);
2160 iov_iter_advance(i
, copied
);
2164 balance_dirty_pages_ratelimited(mapping
);
2170 page_cache_release(page
);
2172 page_cache_release(src_page
);
2175 * prepare_write() may have instantiated a few blocks
2176 * outside i_size. Trim these off again. Don't need
2177 * i_size_read because we hold i_mutex.
2179 if (pos
+ bytes
> inode
->i_size
)
2180 vmtruncate(inode
, inode
->i_size
);
2182 } while (iov_iter_count(i
));
2184 return written
? written
: status
;
2187 static ssize_t
generic_perform_write(struct file
*file
,
2188 struct iov_iter
*i
, loff_t pos
)
2190 struct address_space
*mapping
= file
->f_mapping
;
2191 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2193 ssize_t written
= 0;
2194 unsigned int flags
= 0;
2197 * Copies from kernel address space cannot fail (NFSD is a big user).
2199 if (segment_eq(get_fs(), KERNEL_DS
))
2200 flags
|= AOP_FLAG_UNINTERRUPTIBLE
;
2204 pgoff_t index
; /* Pagecache index for current page */
2205 unsigned long offset
; /* Offset into pagecache page */
2206 unsigned long bytes
; /* Bytes to write to page */
2207 size_t copied
; /* Bytes copied from user */
2210 offset
= (pos
& (PAGE_CACHE_SIZE
- 1));
2211 index
= pos
>> PAGE_CACHE_SHIFT
;
2212 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2218 * Bring in the user page that we will copy from _first_.
2219 * Otherwise there's a nasty deadlock on copying from the
2220 * same page as we're writing to, without it being marked
2223 * Not only is this an optimisation, but it is also required
2224 * to check that the address is actually valid, when atomic
2225 * usercopies are used, below.
2227 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
2232 status
= a_ops
->write_begin(file
, mapping
, pos
, bytes
, flags
,
2234 if (unlikely(status
))
2237 pagefault_disable();
2238 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, bytes
);
2240 flush_dcache_page(page
);
2242 status
= a_ops
->write_end(file
, mapping
, pos
, bytes
, copied
,
2244 if (unlikely(status
< 0))
2250 if (unlikely(copied
== 0)) {
2252 * If we were unable to copy any data at all, we must
2253 * fall back to a single segment length write.
2255 * If we didn't fallback here, we could livelock
2256 * because not all segments in the iov can be copied at
2257 * once without a pagefault.
2259 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2260 iov_iter_single_seg_count(i
));
2263 iov_iter_advance(i
, copied
);
2267 balance_dirty_pages_ratelimited(mapping
);
2269 } while (iov_iter_count(i
));
2271 return written
? written
: status
;
2275 generic_file_buffered_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2276 unsigned long nr_segs
, loff_t pos
, loff_t
*ppos
,
2277 size_t count
, ssize_t written
)
2279 struct file
*file
= iocb
->ki_filp
;
2280 struct address_space
*mapping
= file
->f_mapping
;
2281 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2282 struct inode
*inode
= mapping
->host
;
2286 iov_iter_init(&i
, iov
, nr_segs
, count
, written
);
2287 if (a_ops
->write_begin
)
2288 status
= generic_perform_write(file
, &i
, pos
);
2290 status
= generic_perform_write_2copy(file
, &i
, pos
);
2292 if (likely(status
>= 0)) {
2294 *ppos
= pos
+ status
;
2297 * For now, when the user asks for O_SYNC, we'll actually give
2300 if (unlikely((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2301 if (!a_ops
->writepage
|| !is_sync_kiocb(iocb
))
2302 status
= generic_osync_inode(inode
, mapping
,
2303 OSYNC_METADATA
|OSYNC_DATA
);
2308 * If we get here for O_DIRECT writes then we must have fallen through
2309 * to buffered writes (block instantiation inside i_size). So we sync
2310 * the file data here, to try to honour O_DIRECT expectations.
2312 if (unlikely(file
->f_flags
& O_DIRECT
) && written
)
2313 status
= filemap_write_and_wait(mapping
);
2315 return written
? written
: status
;
2317 EXPORT_SYMBOL(generic_file_buffered_write
);
2320 __generic_file_aio_write_nolock(struct kiocb
*iocb
, const struct iovec
*iov
,
2321 unsigned long nr_segs
, loff_t
*ppos
)
2323 struct file
*file
= iocb
->ki_filp
;
2324 struct address_space
* mapping
= file
->f_mapping
;
2325 size_t ocount
; /* original count */
2326 size_t count
; /* after file limit checks */
2327 struct inode
*inode
= mapping
->host
;
2333 err
= generic_segment_checks(iov
, &nr_segs
, &ocount
, VERIFY_READ
);
2340 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
2342 /* We can write back this queue in page reclaim */
2343 current
->backing_dev_info
= mapping
->backing_dev_info
;
2346 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
2353 err
= remove_suid(file
->f_path
.dentry
);
2357 file_update_time(file
);
2359 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2360 if (unlikely(file
->f_flags
& O_DIRECT
)) {
2362 ssize_t written_buffered
;
2364 written
= generic_file_direct_write(iocb
, iov
, &nr_segs
, pos
,
2365 ppos
, count
, ocount
);
2366 if (written
< 0 || written
== count
)
2369 * direct-io write to a hole: fall through to buffered I/O
2370 * for completing the rest of the request.
2374 written_buffered
= generic_file_buffered_write(iocb
, iov
,
2375 nr_segs
, pos
, ppos
, count
,
2378 * If generic_file_buffered_write() retuned a synchronous error
2379 * then we want to return the number of bytes which were
2380 * direct-written, or the error code if that was zero. Note
2381 * that this differs from normal direct-io semantics, which
2382 * will return -EFOO even if some bytes were written.
2384 if (written_buffered
< 0) {
2385 err
= written_buffered
;
2390 * We need to ensure that the page cache pages are written to
2391 * disk and invalidated to preserve the expected O_DIRECT
2394 endbyte
= pos
+ written_buffered
- written
- 1;
2395 err
= do_sync_mapping_range(file
->f_mapping
, pos
, endbyte
,
2396 SYNC_FILE_RANGE_WAIT_BEFORE
|
2397 SYNC_FILE_RANGE_WRITE
|
2398 SYNC_FILE_RANGE_WAIT_AFTER
);
2400 written
= written_buffered
;
2401 invalidate_mapping_pages(mapping
,
2402 pos
>> PAGE_CACHE_SHIFT
,
2403 endbyte
>> PAGE_CACHE_SHIFT
);
2406 * We don't know how much we wrote, so just return
2407 * the number of bytes which were direct-written
2411 written
= generic_file_buffered_write(iocb
, iov
, nr_segs
,
2412 pos
, ppos
, count
, written
);
2415 current
->backing_dev_info
= NULL
;
2416 return written
? written
: err
;
2419 ssize_t
generic_file_aio_write_nolock(struct kiocb
*iocb
,
2420 const struct iovec
*iov
, unsigned long nr_segs
, loff_t pos
)
2422 struct file
*file
= iocb
->ki_filp
;
2423 struct address_space
*mapping
= file
->f_mapping
;
2424 struct inode
*inode
= mapping
->host
;
2427 BUG_ON(iocb
->ki_pos
!= pos
);
2429 ret
= __generic_file_aio_write_nolock(iocb
, iov
, nr_segs
,
2432 if (ret
> 0 && ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2435 err
= sync_page_range_nolock(inode
, mapping
, pos
, ret
);
2441 EXPORT_SYMBOL(generic_file_aio_write_nolock
);
2443 ssize_t
generic_file_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2444 unsigned long nr_segs
, loff_t pos
)
2446 struct file
*file
= iocb
->ki_filp
;
2447 struct address_space
*mapping
= file
->f_mapping
;
2448 struct inode
*inode
= mapping
->host
;
2451 BUG_ON(iocb
->ki_pos
!= pos
);
2453 mutex_lock(&inode
->i_mutex
);
2454 ret
= __generic_file_aio_write_nolock(iocb
, iov
, nr_segs
,
2456 mutex_unlock(&inode
->i_mutex
);
2458 if (ret
> 0 && ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2461 err
= sync_page_range(inode
, mapping
, pos
, ret
);
2467 EXPORT_SYMBOL(generic_file_aio_write
);
2470 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something
2471 * went wrong during pagecache shootdown.
2474 generic_file_direct_IO(int rw
, struct kiocb
*iocb
, const struct iovec
*iov
,
2475 loff_t offset
, unsigned long nr_segs
)
2477 struct file
*file
= iocb
->ki_filp
;
2478 struct address_space
*mapping
= file
->f_mapping
;
2481 pgoff_t end
= 0; /* silence gcc */
2484 * If it's a write, unmap all mmappings of the file up-front. This
2485 * will cause any pte dirty bits to be propagated into the pageframes
2486 * for the subsequent filemap_write_and_wait().
2489 write_len
= iov_length(iov
, nr_segs
);
2490 end
= (offset
+ write_len
- 1) >> PAGE_CACHE_SHIFT
;
2491 if (mapping_mapped(mapping
))
2492 unmap_mapping_range(mapping
, offset
, write_len
, 0);
2495 retval
= filemap_write_and_wait(mapping
);
2500 * After a write we want buffered reads to be sure to go to disk to get
2501 * the new data. We invalidate clean cached page from the region we're
2502 * about to write. We do this *before* the write so that we can return
2503 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2505 if (rw
== WRITE
&& mapping
->nrpages
) {
2506 retval
= invalidate_inode_pages2_range(mapping
,
2507 offset
>> PAGE_CACHE_SHIFT
, end
);
2512 retval
= mapping
->a_ops
->direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
2517 * Finally, try again to invalidate clean pages which might have been
2518 * faulted in by get_user_pages() if the source of the write was an
2519 * mmap()ed region of the file we're writing. That's a pretty crazy
2520 * thing to do, so we don't support it 100%. If this invalidation
2521 * fails and we have -EIOCBQUEUED we ignore the failure.
2523 if (rw
== WRITE
&& mapping
->nrpages
) {
2524 int err
= invalidate_inode_pages2_range(mapping
,
2525 offset
>> PAGE_CACHE_SHIFT
, end
);
2526 if (err
&& retval
>= 0)
2534 * try_to_release_page() - release old fs-specific metadata on a page
2536 * @page: the page which the kernel is trying to free
2537 * @gfp_mask: memory allocation flags (and I/O mode)
2539 * The address_space is to try to release any data against the page
2540 * (presumably at page->private). If the release was successful, return `1'.
2541 * Otherwise return zero.
2543 * The @gfp_mask argument specifies whether I/O may be performed to release
2544 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2546 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2548 int try_to_release_page(struct page
*page
, gfp_t gfp_mask
)
2550 struct address_space
* const mapping
= page
->mapping
;
2552 BUG_ON(!PageLocked(page
));
2553 if (PageWriteback(page
))
2556 if (mapping
&& mapping
->a_ops
->releasepage
)
2557 return mapping
->a_ops
->releasepage(page
, gfp_mask
);
2558 return try_to_free_buffers(page
);
2561 EXPORT_SYMBOL(try_to_release_page
);