x86, iommu: Make all IOMMU's detection routines return a value.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / pci / dmar.c
blob5fa64ea5416fa5e0d96ffafc94ab01636138bc44
1 /*
2 * Copyright (c) 2006, Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
22 * This file implements early detection/parsing of Remapping Devices
23 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
24 * tables.
26 * These routines are used by both DMA-remapping and Interrupt-remapping
29 #include <linux/pci.h>
30 #include <linux/dmar.h>
31 #include <linux/iova.h>
32 #include <linux/intel-iommu.h>
33 #include <linux/timer.h>
34 #include <linux/irq.h>
35 #include <linux/interrupt.h>
36 #include <linux/tboot.h>
37 #include <linux/dmi.h>
38 #include <linux/slab.h>
40 #define PREFIX "DMAR: "
42 /* No locks are needed as DMA remapping hardware unit
43 * list is constructed at boot time and hotplug of
44 * these units are not supported by the architecture.
46 LIST_HEAD(dmar_drhd_units);
48 static struct acpi_table_header * __initdata dmar_tbl;
49 static acpi_size dmar_tbl_size;
51 static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
54 * add INCLUDE_ALL at the tail, so scan the list will find it at
55 * the very end.
57 if (drhd->include_all)
58 list_add_tail(&drhd->list, &dmar_drhd_units);
59 else
60 list_add(&drhd->list, &dmar_drhd_units);
63 static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
64 struct pci_dev **dev, u16 segment)
66 struct pci_bus *bus;
67 struct pci_dev *pdev = NULL;
68 struct acpi_dmar_pci_path *path;
69 int count;
71 bus = pci_find_bus(segment, scope->bus);
72 path = (struct acpi_dmar_pci_path *)(scope + 1);
73 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
74 / sizeof(struct acpi_dmar_pci_path);
76 while (count) {
77 if (pdev)
78 pci_dev_put(pdev);
80 * Some BIOSes list non-exist devices in DMAR table, just
81 * ignore it
83 if (!bus) {
84 printk(KERN_WARNING
85 PREFIX "Device scope bus [%d] not found\n",
86 scope->bus);
87 break;
89 pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
90 if (!pdev) {
91 printk(KERN_WARNING PREFIX
92 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
93 segment, bus->number, path->dev, path->fn);
94 break;
96 path ++;
97 count --;
98 bus = pdev->subordinate;
100 if (!pdev) {
101 printk(KERN_WARNING PREFIX
102 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
103 segment, scope->bus, path->dev, path->fn);
104 *dev = NULL;
105 return 0;
107 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
108 pdev->subordinate) || (scope->entry_type == \
109 ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
110 pci_dev_put(pdev);
111 printk(KERN_WARNING PREFIX
112 "Device scope type does not match for %s\n",
113 pci_name(pdev));
114 return -EINVAL;
116 *dev = pdev;
117 return 0;
120 static int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
121 struct pci_dev ***devices, u16 segment)
123 struct acpi_dmar_device_scope *scope;
124 void * tmp = start;
125 int index;
126 int ret;
128 *cnt = 0;
129 while (start < end) {
130 scope = start;
131 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
132 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
133 (*cnt)++;
134 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC) {
135 printk(KERN_WARNING PREFIX
136 "Unsupported device scope\n");
138 start += scope->length;
140 if (*cnt == 0)
141 return 0;
143 *devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
144 if (!*devices)
145 return -ENOMEM;
147 start = tmp;
148 index = 0;
149 while (start < end) {
150 scope = start;
151 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
152 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
153 ret = dmar_parse_one_dev_scope(scope,
154 &(*devices)[index], segment);
155 if (ret) {
156 kfree(*devices);
157 return ret;
159 index ++;
161 start += scope->length;
164 return 0;
168 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
169 * structure which uniquely represent one DMA remapping hardware unit
170 * present in the platform
172 static int __init
173 dmar_parse_one_drhd(struct acpi_dmar_header *header)
175 struct acpi_dmar_hardware_unit *drhd;
176 struct dmar_drhd_unit *dmaru;
177 int ret = 0;
179 drhd = (struct acpi_dmar_hardware_unit *)header;
180 dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
181 if (!dmaru)
182 return -ENOMEM;
184 dmaru->hdr = header;
185 dmaru->reg_base_addr = drhd->address;
186 dmaru->segment = drhd->segment;
187 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
189 ret = alloc_iommu(dmaru);
190 if (ret) {
191 kfree(dmaru);
192 return ret;
194 dmar_register_drhd_unit(dmaru);
195 return 0;
198 static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
200 struct acpi_dmar_hardware_unit *drhd;
201 int ret = 0;
203 drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;
205 if (dmaru->include_all)
206 return 0;
208 ret = dmar_parse_dev_scope((void *)(drhd + 1),
209 ((void *)drhd) + drhd->header.length,
210 &dmaru->devices_cnt, &dmaru->devices,
211 drhd->segment);
212 if (ret) {
213 list_del(&dmaru->list);
214 kfree(dmaru);
216 return ret;
219 #ifdef CONFIG_DMAR
220 LIST_HEAD(dmar_rmrr_units);
222 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
224 list_add(&rmrr->list, &dmar_rmrr_units);
228 static int __init
229 dmar_parse_one_rmrr(struct acpi_dmar_header *header)
231 struct acpi_dmar_reserved_memory *rmrr;
232 struct dmar_rmrr_unit *rmrru;
234 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
235 if (!rmrru)
236 return -ENOMEM;
238 rmrru->hdr = header;
239 rmrr = (struct acpi_dmar_reserved_memory *)header;
240 rmrru->base_address = rmrr->base_address;
241 rmrru->end_address = rmrr->end_address;
243 dmar_register_rmrr_unit(rmrru);
244 return 0;
247 static int __init
248 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
250 struct acpi_dmar_reserved_memory *rmrr;
251 int ret;
253 rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
254 ret = dmar_parse_dev_scope((void *)(rmrr + 1),
255 ((void *)rmrr) + rmrr->header.length,
256 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
258 if (ret || (rmrru->devices_cnt == 0)) {
259 list_del(&rmrru->list);
260 kfree(rmrru);
262 return ret;
265 static LIST_HEAD(dmar_atsr_units);
267 static int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
269 struct acpi_dmar_atsr *atsr;
270 struct dmar_atsr_unit *atsru;
272 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
273 atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
274 if (!atsru)
275 return -ENOMEM;
277 atsru->hdr = hdr;
278 atsru->include_all = atsr->flags & 0x1;
280 list_add(&atsru->list, &dmar_atsr_units);
282 return 0;
285 static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru)
287 int rc;
288 struct acpi_dmar_atsr *atsr;
290 if (atsru->include_all)
291 return 0;
293 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
294 rc = dmar_parse_dev_scope((void *)(atsr + 1),
295 (void *)atsr + atsr->header.length,
296 &atsru->devices_cnt, &atsru->devices,
297 atsr->segment);
298 if (rc || !atsru->devices_cnt) {
299 list_del(&atsru->list);
300 kfree(atsru);
303 return rc;
306 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
308 int i;
309 struct pci_bus *bus;
310 struct acpi_dmar_atsr *atsr;
311 struct dmar_atsr_unit *atsru;
313 dev = pci_physfn(dev);
315 list_for_each_entry(atsru, &dmar_atsr_units, list) {
316 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
317 if (atsr->segment == pci_domain_nr(dev->bus))
318 goto found;
321 return 0;
323 found:
324 for (bus = dev->bus; bus; bus = bus->parent) {
325 struct pci_dev *bridge = bus->self;
327 if (!bridge || !pci_is_pcie(bridge) ||
328 bridge->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
329 return 0;
331 if (bridge->pcie_type == PCI_EXP_TYPE_ROOT_PORT) {
332 for (i = 0; i < atsru->devices_cnt; i++)
333 if (atsru->devices[i] == bridge)
334 return 1;
335 break;
339 if (atsru->include_all)
340 return 1;
342 return 0;
344 #endif
346 #ifdef CONFIG_ACPI_NUMA
347 static int __init
348 dmar_parse_one_rhsa(struct acpi_dmar_header *header)
350 struct acpi_dmar_rhsa *rhsa;
351 struct dmar_drhd_unit *drhd;
353 rhsa = (struct acpi_dmar_rhsa *)header;
354 for_each_drhd_unit(drhd) {
355 if (drhd->reg_base_addr == rhsa->base_address) {
356 int node = acpi_map_pxm_to_node(rhsa->proximity_domain);
358 if (!node_online(node))
359 node = -1;
360 drhd->iommu->node = node;
361 return 0;
364 WARN_TAINT(
365 1, TAINT_FIRMWARE_WORKAROUND,
366 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
367 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
368 drhd->reg_base_addr,
369 dmi_get_system_info(DMI_BIOS_VENDOR),
370 dmi_get_system_info(DMI_BIOS_VERSION),
371 dmi_get_system_info(DMI_PRODUCT_VERSION));
373 return 0;
375 #endif
377 static void __init
378 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
380 struct acpi_dmar_hardware_unit *drhd;
381 struct acpi_dmar_reserved_memory *rmrr;
382 struct acpi_dmar_atsr *atsr;
383 struct acpi_dmar_rhsa *rhsa;
385 switch (header->type) {
386 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
387 drhd = container_of(header, struct acpi_dmar_hardware_unit,
388 header);
389 printk (KERN_INFO PREFIX
390 "DRHD base: %#016Lx flags: %#x\n",
391 (unsigned long long)drhd->address, drhd->flags);
392 break;
393 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
394 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
395 header);
396 printk (KERN_INFO PREFIX
397 "RMRR base: %#016Lx end: %#016Lx\n",
398 (unsigned long long)rmrr->base_address,
399 (unsigned long long)rmrr->end_address);
400 break;
401 case ACPI_DMAR_TYPE_ATSR:
402 atsr = container_of(header, struct acpi_dmar_atsr, header);
403 printk(KERN_INFO PREFIX "ATSR flags: %#x\n", atsr->flags);
404 break;
405 case ACPI_DMAR_HARDWARE_AFFINITY:
406 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
407 printk(KERN_INFO PREFIX "RHSA base: %#016Lx proximity domain: %#x\n",
408 (unsigned long long)rhsa->base_address,
409 rhsa->proximity_domain);
410 break;
415 * dmar_table_detect - checks to see if the platform supports DMAR devices
417 static int __init dmar_table_detect(void)
419 acpi_status status = AE_OK;
421 /* if we could find DMAR table, then there are DMAR devices */
422 status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
423 (struct acpi_table_header **)&dmar_tbl,
424 &dmar_tbl_size);
426 if (ACPI_SUCCESS(status) && !dmar_tbl) {
427 printk (KERN_WARNING PREFIX "Unable to map DMAR\n");
428 status = AE_NOT_FOUND;
431 return (ACPI_SUCCESS(status) ? 1 : 0);
435 * parse_dmar_table - parses the DMA reporting table
437 static int __init
438 parse_dmar_table(void)
440 struct acpi_table_dmar *dmar;
441 struct acpi_dmar_header *entry_header;
442 int ret = 0;
445 * Do it again, earlier dmar_tbl mapping could be mapped with
446 * fixed map.
448 dmar_table_detect();
451 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
452 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
454 dmar_tbl = tboot_get_dmar_table(dmar_tbl);
456 dmar = (struct acpi_table_dmar *)dmar_tbl;
457 if (!dmar)
458 return -ENODEV;
460 if (dmar->width < PAGE_SHIFT - 1) {
461 printk(KERN_WARNING PREFIX "Invalid DMAR haw\n");
462 return -EINVAL;
465 printk (KERN_INFO PREFIX "Host address width %d\n",
466 dmar->width + 1);
468 entry_header = (struct acpi_dmar_header *)(dmar + 1);
469 while (((unsigned long)entry_header) <
470 (((unsigned long)dmar) + dmar_tbl->length)) {
471 /* Avoid looping forever on bad ACPI tables */
472 if (entry_header->length == 0) {
473 printk(KERN_WARNING PREFIX
474 "Invalid 0-length structure\n");
475 ret = -EINVAL;
476 break;
479 dmar_table_print_dmar_entry(entry_header);
481 switch (entry_header->type) {
482 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
483 ret = dmar_parse_one_drhd(entry_header);
484 break;
485 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
486 #ifdef CONFIG_DMAR
487 ret = dmar_parse_one_rmrr(entry_header);
488 #endif
489 break;
490 case ACPI_DMAR_TYPE_ATSR:
491 #ifdef CONFIG_DMAR
492 ret = dmar_parse_one_atsr(entry_header);
493 #endif
494 break;
495 case ACPI_DMAR_HARDWARE_AFFINITY:
496 #ifdef CONFIG_ACPI_NUMA
497 ret = dmar_parse_one_rhsa(entry_header);
498 #endif
499 break;
500 default:
501 printk(KERN_WARNING PREFIX
502 "Unknown DMAR structure type %d\n",
503 entry_header->type);
504 ret = 0; /* for forward compatibility */
505 break;
507 if (ret)
508 break;
510 entry_header = ((void *)entry_header + entry_header->length);
512 return ret;
515 static int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
516 struct pci_dev *dev)
518 int index;
520 while (dev) {
521 for (index = 0; index < cnt; index++)
522 if (dev == devices[index])
523 return 1;
525 /* Check our parent */
526 dev = dev->bus->self;
529 return 0;
532 struct dmar_drhd_unit *
533 dmar_find_matched_drhd_unit(struct pci_dev *dev)
535 struct dmar_drhd_unit *dmaru = NULL;
536 struct acpi_dmar_hardware_unit *drhd;
538 dev = pci_physfn(dev);
540 list_for_each_entry(dmaru, &dmar_drhd_units, list) {
541 drhd = container_of(dmaru->hdr,
542 struct acpi_dmar_hardware_unit,
543 header);
545 if (dmaru->include_all &&
546 drhd->segment == pci_domain_nr(dev->bus))
547 return dmaru;
549 if (dmar_pci_device_match(dmaru->devices,
550 dmaru->devices_cnt, dev))
551 return dmaru;
554 return NULL;
557 int __init dmar_dev_scope_init(void)
559 struct dmar_drhd_unit *drhd, *drhd_n;
560 int ret = -ENODEV;
562 list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
563 ret = dmar_parse_dev(drhd);
564 if (ret)
565 return ret;
568 #ifdef CONFIG_DMAR
570 struct dmar_rmrr_unit *rmrr, *rmrr_n;
571 struct dmar_atsr_unit *atsr, *atsr_n;
573 list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
574 ret = rmrr_parse_dev(rmrr);
575 if (ret)
576 return ret;
579 list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) {
580 ret = atsr_parse_dev(atsr);
581 if (ret)
582 return ret;
585 #endif
587 return ret;
591 int __init dmar_table_init(void)
593 static int dmar_table_initialized;
594 int ret;
596 if (dmar_table_initialized)
597 return 0;
599 dmar_table_initialized = 1;
601 ret = parse_dmar_table();
602 if (ret) {
603 if (ret != -ENODEV)
604 printk(KERN_INFO PREFIX "parse DMAR table failure.\n");
605 return ret;
608 if (list_empty(&dmar_drhd_units)) {
609 printk(KERN_INFO PREFIX "No DMAR devices found\n");
610 return -ENODEV;
613 #ifdef CONFIG_DMAR
614 if (list_empty(&dmar_rmrr_units))
615 printk(KERN_INFO PREFIX "No RMRR found\n");
617 if (list_empty(&dmar_atsr_units))
618 printk(KERN_INFO PREFIX "No ATSR found\n");
619 #endif
621 return 0;
624 static void warn_invalid_dmar(u64 addr, const char *message)
626 WARN_TAINT_ONCE(
627 1, TAINT_FIRMWARE_WORKAROUND,
628 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
629 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
630 addr, message,
631 dmi_get_system_info(DMI_BIOS_VENDOR),
632 dmi_get_system_info(DMI_BIOS_VERSION),
633 dmi_get_system_info(DMI_PRODUCT_VERSION));
636 int __init check_zero_address(void)
638 struct acpi_table_dmar *dmar;
639 struct acpi_dmar_header *entry_header;
640 struct acpi_dmar_hardware_unit *drhd;
642 dmar = (struct acpi_table_dmar *)dmar_tbl;
643 entry_header = (struct acpi_dmar_header *)(dmar + 1);
645 while (((unsigned long)entry_header) <
646 (((unsigned long)dmar) + dmar_tbl->length)) {
647 /* Avoid looping forever on bad ACPI tables */
648 if (entry_header->length == 0) {
649 printk(KERN_WARNING PREFIX
650 "Invalid 0-length structure\n");
651 return 0;
654 if (entry_header->type == ACPI_DMAR_TYPE_HARDWARE_UNIT) {
655 void __iomem *addr;
656 u64 cap, ecap;
658 drhd = (void *)entry_header;
659 if (!drhd->address) {
660 warn_invalid_dmar(0, "");
661 goto failed;
664 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
665 if (!addr ) {
666 printk("IOMMU: can't validate: %llx\n", drhd->address);
667 goto failed;
669 cap = dmar_readq(addr + DMAR_CAP_REG);
670 ecap = dmar_readq(addr + DMAR_ECAP_REG);
671 early_iounmap(addr, VTD_PAGE_SIZE);
672 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
673 warn_invalid_dmar(drhd->address,
674 " returns all ones");
675 goto failed;
679 entry_header = ((void *)entry_header + entry_header->length);
681 return 1;
683 failed:
684 #ifdef CONFIG_DMAR
685 dmar_disabled = 1;
686 #endif
687 return 0;
690 int __init detect_intel_iommu(void)
692 int ret;
694 ret = dmar_table_detect();
695 if (ret)
696 ret = check_zero_address();
698 #ifdef CONFIG_INTR_REMAP
699 struct acpi_table_dmar *dmar;
701 * for now we will disable dma-remapping when interrupt
702 * remapping is enabled.
703 * When support for queued invalidation for IOTLB invalidation
704 * is added, we will not need this any more.
706 dmar = (struct acpi_table_dmar *) dmar_tbl;
707 if (ret && cpu_has_x2apic && dmar->flags & 0x1)
708 printk(KERN_INFO
709 "Queued invalidation will be enabled to support "
710 "x2apic and Intr-remapping.\n");
711 #endif
712 #ifdef CONFIG_DMAR
713 if (ret && !no_iommu && !iommu_detected && !dmar_disabled) {
714 iommu_detected = 1;
715 /* Make sure ACS will be enabled */
716 pci_request_acs();
718 #endif
719 #ifdef CONFIG_X86
720 if (ret)
721 x86_init.iommu.iommu_init = intel_iommu_init;
722 #endif
724 early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size);
725 dmar_tbl = NULL;
727 return (ret ? 1 : -ENODEV);
731 int alloc_iommu(struct dmar_drhd_unit *drhd)
733 struct intel_iommu *iommu;
734 int map_size;
735 u32 ver;
736 static int iommu_allocated = 0;
737 int agaw = 0;
738 int msagaw = 0;
740 if (!drhd->reg_base_addr) {
741 warn_invalid_dmar(0, "");
742 return -EINVAL;
745 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
746 if (!iommu)
747 return -ENOMEM;
749 iommu->seq_id = iommu_allocated++;
750 sprintf (iommu->name, "dmar%d", iommu->seq_id);
752 iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE);
753 if (!iommu->reg) {
754 printk(KERN_ERR "IOMMU: can't map the region\n");
755 goto error;
757 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
758 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
760 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
761 warn_invalid_dmar(drhd->reg_base_addr, " returns all ones");
762 goto err_unmap;
765 #ifdef CONFIG_DMAR
766 agaw = iommu_calculate_agaw(iommu);
767 if (agaw < 0) {
768 printk(KERN_ERR
769 "Cannot get a valid agaw for iommu (seq_id = %d)\n",
770 iommu->seq_id);
771 goto err_unmap;
773 msagaw = iommu_calculate_max_sagaw(iommu);
774 if (msagaw < 0) {
775 printk(KERN_ERR
776 "Cannot get a valid max agaw for iommu (seq_id = %d)\n",
777 iommu->seq_id);
778 goto err_unmap;
780 #endif
781 iommu->agaw = agaw;
782 iommu->msagaw = msagaw;
784 iommu->node = -1;
786 /* the registers might be more than one page */
787 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
788 cap_max_fault_reg_offset(iommu->cap));
789 map_size = VTD_PAGE_ALIGN(map_size);
790 if (map_size > VTD_PAGE_SIZE) {
791 iounmap(iommu->reg);
792 iommu->reg = ioremap(drhd->reg_base_addr, map_size);
793 if (!iommu->reg) {
794 printk(KERN_ERR "IOMMU: can't map the region\n");
795 goto error;
799 ver = readl(iommu->reg + DMAR_VER_REG);
800 pr_info("IOMMU %d: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
801 iommu->seq_id,
802 (unsigned long long)drhd->reg_base_addr,
803 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
804 (unsigned long long)iommu->cap,
805 (unsigned long long)iommu->ecap);
807 spin_lock_init(&iommu->register_lock);
809 drhd->iommu = iommu;
810 return 0;
812 err_unmap:
813 iounmap(iommu->reg);
814 error:
815 kfree(iommu);
816 return -1;
819 void free_iommu(struct intel_iommu *iommu)
821 if (!iommu)
822 return;
824 #ifdef CONFIG_DMAR
825 free_dmar_iommu(iommu);
826 #endif
828 if (iommu->reg)
829 iounmap(iommu->reg);
830 kfree(iommu);
834 * Reclaim all the submitted descriptors which have completed its work.
836 static inline void reclaim_free_desc(struct q_inval *qi)
838 while (qi->desc_status[qi->free_tail] == QI_DONE ||
839 qi->desc_status[qi->free_tail] == QI_ABORT) {
840 qi->desc_status[qi->free_tail] = QI_FREE;
841 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
842 qi->free_cnt++;
846 static int qi_check_fault(struct intel_iommu *iommu, int index)
848 u32 fault;
849 int head, tail;
850 struct q_inval *qi = iommu->qi;
851 int wait_index = (index + 1) % QI_LENGTH;
853 if (qi->desc_status[wait_index] == QI_ABORT)
854 return -EAGAIN;
856 fault = readl(iommu->reg + DMAR_FSTS_REG);
859 * If IQE happens, the head points to the descriptor associated
860 * with the error. No new descriptors are fetched until the IQE
861 * is cleared.
863 if (fault & DMA_FSTS_IQE) {
864 head = readl(iommu->reg + DMAR_IQH_REG);
865 if ((head >> DMAR_IQ_SHIFT) == index) {
866 printk(KERN_ERR "VT-d detected invalid descriptor: "
867 "low=%llx, high=%llx\n",
868 (unsigned long long)qi->desc[index].low,
869 (unsigned long long)qi->desc[index].high);
870 memcpy(&qi->desc[index], &qi->desc[wait_index],
871 sizeof(struct qi_desc));
872 __iommu_flush_cache(iommu, &qi->desc[index],
873 sizeof(struct qi_desc));
874 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
875 return -EINVAL;
880 * If ITE happens, all pending wait_desc commands are aborted.
881 * No new descriptors are fetched until the ITE is cleared.
883 if (fault & DMA_FSTS_ITE) {
884 head = readl(iommu->reg + DMAR_IQH_REG);
885 head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
886 head |= 1;
887 tail = readl(iommu->reg + DMAR_IQT_REG);
888 tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
890 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
892 do {
893 if (qi->desc_status[head] == QI_IN_USE)
894 qi->desc_status[head] = QI_ABORT;
895 head = (head - 2 + QI_LENGTH) % QI_LENGTH;
896 } while (head != tail);
898 if (qi->desc_status[wait_index] == QI_ABORT)
899 return -EAGAIN;
902 if (fault & DMA_FSTS_ICE)
903 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
905 return 0;
909 * Submit the queued invalidation descriptor to the remapping
910 * hardware unit and wait for its completion.
912 int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
914 int rc;
915 struct q_inval *qi = iommu->qi;
916 struct qi_desc *hw, wait_desc;
917 int wait_index, index;
918 unsigned long flags;
920 if (!qi)
921 return 0;
923 hw = qi->desc;
925 restart:
926 rc = 0;
928 spin_lock_irqsave(&qi->q_lock, flags);
929 while (qi->free_cnt < 3) {
930 spin_unlock_irqrestore(&qi->q_lock, flags);
931 cpu_relax();
932 spin_lock_irqsave(&qi->q_lock, flags);
935 index = qi->free_head;
936 wait_index = (index + 1) % QI_LENGTH;
938 qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
940 hw[index] = *desc;
942 wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
943 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
944 wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
946 hw[wait_index] = wait_desc;
948 __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
949 __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
951 qi->free_head = (qi->free_head + 2) % QI_LENGTH;
952 qi->free_cnt -= 2;
955 * update the HW tail register indicating the presence of
956 * new descriptors.
958 writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
960 while (qi->desc_status[wait_index] != QI_DONE) {
962 * We will leave the interrupts disabled, to prevent interrupt
963 * context to queue another cmd while a cmd is already submitted
964 * and waiting for completion on this cpu. This is to avoid
965 * a deadlock where the interrupt context can wait indefinitely
966 * for free slots in the queue.
968 rc = qi_check_fault(iommu, index);
969 if (rc)
970 break;
972 spin_unlock(&qi->q_lock);
973 cpu_relax();
974 spin_lock(&qi->q_lock);
977 qi->desc_status[index] = QI_DONE;
979 reclaim_free_desc(qi);
980 spin_unlock_irqrestore(&qi->q_lock, flags);
982 if (rc == -EAGAIN)
983 goto restart;
985 return rc;
989 * Flush the global interrupt entry cache.
991 void qi_global_iec(struct intel_iommu *iommu)
993 struct qi_desc desc;
995 desc.low = QI_IEC_TYPE;
996 desc.high = 0;
998 /* should never fail */
999 qi_submit_sync(&desc, iommu);
1002 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1003 u64 type)
1005 struct qi_desc desc;
1007 desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1008 | QI_CC_GRAN(type) | QI_CC_TYPE;
1009 desc.high = 0;
1011 qi_submit_sync(&desc, iommu);
1014 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1015 unsigned int size_order, u64 type)
1017 u8 dw = 0, dr = 0;
1019 struct qi_desc desc;
1020 int ih = 0;
1022 if (cap_write_drain(iommu->cap))
1023 dw = 1;
1025 if (cap_read_drain(iommu->cap))
1026 dr = 1;
1028 desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1029 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1030 desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1031 | QI_IOTLB_AM(size_order);
1033 qi_submit_sync(&desc, iommu);
1036 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
1037 u64 addr, unsigned mask)
1039 struct qi_desc desc;
1041 if (mask) {
1042 BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
1043 addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1044 desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1045 } else
1046 desc.high = QI_DEV_IOTLB_ADDR(addr);
1048 if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1049 qdep = 0;
1051 desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1052 QI_DIOTLB_TYPE;
1054 qi_submit_sync(&desc, iommu);
1058 * Disable Queued Invalidation interface.
1060 void dmar_disable_qi(struct intel_iommu *iommu)
1062 unsigned long flags;
1063 u32 sts;
1064 cycles_t start_time = get_cycles();
1066 if (!ecap_qis(iommu->ecap))
1067 return;
1069 spin_lock_irqsave(&iommu->register_lock, flags);
1071 sts = dmar_readq(iommu->reg + DMAR_GSTS_REG);
1072 if (!(sts & DMA_GSTS_QIES))
1073 goto end;
1076 * Give a chance to HW to complete the pending invalidation requests.
1078 while ((readl(iommu->reg + DMAR_IQT_REG) !=
1079 readl(iommu->reg + DMAR_IQH_REG)) &&
1080 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1081 cpu_relax();
1083 iommu->gcmd &= ~DMA_GCMD_QIE;
1084 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1086 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1087 !(sts & DMA_GSTS_QIES), sts);
1088 end:
1089 spin_unlock_irqrestore(&iommu->register_lock, flags);
1093 * Enable queued invalidation.
1095 static void __dmar_enable_qi(struct intel_iommu *iommu)
1097 u32 sts;
1098 unsigned long flags;
1099 struct q_inval *qi = iommu->qi;
1101 qi->free_head = qi->free_tail = 0;
1102 qi->free_cnt = QI_LENGTH;
1104 spin_lock_irqsave(&iommu->register_lock, flags);
1106 /* write zero to the tail reg */
1107 writel(0, iommu->reg + DMAR_IQT_REG);
1109 dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
1111 iommu->gcmd |= DMA_GCMD_QIE;
1112 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1114 /* Make sure hardware complete it */
1115 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1117 spin_unlock_irqrestore(&iommu->register_lock, flags);
1121 * Enable Queued Invalidation interface. This is a must to support
1122 * interrupt-remapping. Also used by DMA-remapping, which replaces
1123 * register based IOTLB invalidation.
1125 int dmar_enable_qi(struct intel_iommu *iommu)
1127 struct q_inval *qi;
1128 struct page *desc_page;
1130 if (!ecap_qis(iommu->ecap))
1131 return -ENOENT;
1134 * queued invalidation is already setup and enabled.
1136 if (iommu->qi)
1137 return 0;
1139 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1140 if (!iommu->qi)
1141 return -ENOMEM;
1143 qi = iommu->qi;
1146 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 0);
1147 if (!desc_page) {
1148 kfree(qi);
1149 iommu->qi = 0;
1150 return -ENOMEM;
1153 qi->desc = page_address(desc_page);
1155 qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1156 if (!qi->desc_status) {
1157 free_page((unsigned long) qi->desc);
1158 kfree(qi);
1159 iommu->qi = 0;
1160 return -ENOMEM;
1163 qi->free_head = qi->free_tail = 0;
1164 qi->free_cnt = QI_LENGTH;
1166 spin_lock_init(&qi->q_lock);
1168 __dmar_enable_qi(iommu);
1170 return 0;
1173 /* iommu interrupt handling. Most stuff are MSI-like. */
1175 enum faulttype {
1176 DMA_REMAP,
1177 INTR_REMAP,
1178 UNKNOWN,
1181 static const char *dma_remap_fault_reasons[] =
1183 "Software",
1184 "Present bit in root entry is clear",
1185 "Present bit in context entry is clear",
1186 "Invalid context entry",
1187 "Access beyond MGAW",
1188 "PTE Write access is not set",
1189 "PTE Read access is not set",
1190 "Next page table ptr is invalid",
1191 "Root table address invalid",
1192 "Context table ptr is invalid",
1193 "non-zero reserved fields in RTP",
1194 "non-zero reserved fields in CTP",
1195 "non-zero reserved fields in PTE",
1198 static const char *intr_remap_fault_reasons[] =
1200 "Detected reserved fields in the decoded interrupt-remapped request",
1201 "Interrupt index exceeded the interrupt-remapping table size",
1202 "Present field in the IRTE entry is clear",
1203 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1204 "Detected reserved fields in the IRTE entry",
1205 "Blocked a compatibility format interrupt request",
1206 "Blocked an interrupt request due to source-id verification failure",
1209 #define MAX_FAULT_REASON_IDX (ARRAY_SIZE(fault_reason_strings) - 1)
1211 const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1213 if (fault_reason >= 0x20 && (fault_reason <= 0x20 +
1214 ARRAY_SIZE(intr_remap_fault_reasons))) {
1215 *fault_type = INTR_REMAP;
1216 return intr_remap_fault_reasons[fault_reason - 0x20];
1217 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1218 *fault_type = DMA_REMAP;
1219 return dma_remap_fault_reasons[fault_reason];
1220 } else {
1221 *fault_type = UNKNOWN;
1222 return "Unknown";
1226 void dmar_msi_unmask(unsigned int irq)
1228 struct intel_iommu *iommu = get_irq_data(irq);
1229 unsigned long flag;
1231 /* unmask it */
1232 spin_lock_irqsave(&iommu->register_lock, flag);
1233 writel(0, iommu->reg + DMAR_FECTL_REG);
1234 /* Read a reg to force flush the post write */
1235 readl(iommu->reg + DMAR_FECTL_REG);
1236 spin_unlock_irqrestore(&iommu->register_lock, flag);
1239 void dmar_msi_mask(unsigned int irq)
1241 unsigned long flag;
1242 struct intel_iommu *iommu = get_irq_data(irq);
1244 /* mask it */
1245 spin_lock_irqsave(&iommu->register_lock, flag);
1246 writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
1247 /* Read a reg to force flush the post write */
1248 readl(iommu->reg + DMAR_FECTL_REG);
1249 spin_unlock_irqrestore(&iommu->register_lock, flag);
1252 void dmar_msi_write(int irq, struct msi_msg *msg)
1254 struct intel_iommu *iommu = get_irq_data(irq);
1255 unsigned long flag;
1257 spin_lock_irqsave(&iommu->register_lock, flag);
1258 writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
1259 writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
1260 writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
1261 spin_unlock_irqrestore(&iommu->register_lock, flag);
1264 void dmar_msi_read(int irq, struct msi_msg *msg)
1266 struct intel_iommu *iommu = get_irq_data(irq);
1267 unsigned long flag;
1269 spin_lock_irqsave(&iommu->register_lock, flag);
1270 msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
1271 msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
1272 msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
1273 spin_unlock_irqrestore(&iommu->register_lock, flag);
1276 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1277 u8 fault_reason, u16 source_id, unsigned long long addr)
1279 const char *reason;
1280 int fault_type;
1282 reason = dmar_get_fault_reason(fault_reason, &fault_type);
1284 if (fault_type == INTR_REMAP)
1285 printk(KERN_ERR "INTR-REMAP: Request device [[%02x:%02x.%d] "
1286 "fault index %llx\n"
1287 "INTR-REMAP:[fault reason %02d] %s\n",
1288 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1289 PCI_FUNC(source_id & 0xFF), addr >> 48,
1290 fault_reason, reason);
1291 else
1292 printk(KERN_ERR
1293 "DMAR:[%s] Request device [%02x:%02x.%d] "
1294 "fault addr %llx \n"
1295 "DMAR:[fault reason %02d] %s\n",
1296 (type ? "DMA Read" : "DMA Write"),
1297 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1298 PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1299 return 0;
1302 #define PRIMARY_FAULT_REG_LEN (16)
1303 irqreturn_t dmar_fault(int irq, void *dev_id)
1305 struct intel_iommu *iommu = dev_id;
1306 int reg, fault_index;
1307 u32 fault_status;
1308 unsigned long flag;
1310 spin_lock_irqsave(&iommu->register_lock, flag);
1311 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1312 if (fault_status)
1313 printk(KERN_ERR "DRHD: handling fault status reg %x\n",
1314 fault_status);
1316 /* TBD: ignore advanced fault log currently */
1317 if (!(fault_status & DMA_FSTS_PPF))
1318 goto clear_rest;
1320 fault_index = dma_fsts_fault_record_index(fault_status);
1321 reg = cap_fault_reg_offset(iommu->cap);
1322 while (1) {
1323 u8 fault_reason;
1324 u16 source_id;
1325 u64 guest_addr;
1326 int type;
1327 u32 data;
1329 /* highest 32 bits */
1330 data = readl(iommu->reg + reg +
1331 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1332 if (!(data & DMA_FRCD_F))
1333 break;
1335 fault_reason = dma_frcd_fault_reason(data);
1336 type = dma_frcd_type(data);
1338 data = readl(iommu->reg + reg +
1339 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1340 source_id = dma_frcd_source_id(data);
1342 guest_addr = dmar_readq(iommu->reg + reg +
1343 fault_index * PRIMARY_FAULT_REG_LEN);
1344 guest_addr = dma_frcd_page_addr(guest_addr);
1345 /* clear the fault */
1346 writel(DMA_FRCD_F, iommu->reg + reg +
1347 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1349 spin_unlock_irqrestore(&iommu->register_lock, flag);
1351 dmar_fault_do_one(iommu, type, fault_reason,
1352 source_id, guest_addr);
1354 fault_index++;
1355 if (fault_index >= cap_num_fault_regs(iommu->cap))
1356 fault_index = 0;
1357 spin_lock_irqsave(&iommu->register_lock, flag);
1359 clear_rest:
1360 /* clear all the other faults */
1361 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1362 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1364 spin_unlock_irqrestore(&iommu->register_lock, flag);
1365 return IRQ_HANDLED;
1368 int dmar_set_interrupt(struct intel_iommu *iommu)
1370 int irq, ret;
1373 * Check if the fault interrupt is already initialized.
1375 if (iommu->irq)
1376 return 0;
1378 irq = create_irq();
1379 if (!irq) {
1380 printk(KERN_ERR "IOMMU: no free vectors\n");
1381 return -EINVAL;
1384 set_irq_data(irq, iommu);
1385 iommu->irq = irq;
1387 ret = arch_setup_dmar_msi(irq);
1388 if (ret) {
1389 set_irq_data(irq, NULL);
1390 iommu->irq = 0;
1391 destroy_irq(irq);
1392 return ret;
1395 ret = request_irq(irq, dmar_fault, 0, iommu->name, iommu);
1396 if (ret)
1397 printk(KERN_ERR "IOMMU: can't request irq\n");
1398 return ret;
1401 int __init enable_drhd_fault_handling(void)
1403 struct dmar_drhd_unit *drhd;
1406 * Enable fault control interrupt.
1408 for_each_drhd_unit(drhd) {
1409 int ret;
1410 struct intel_iommu *iommu = drhd->iommu;
1411 ret = dmar_set_interrupt(iommu);
1413 if (ret) {
1414 printk(KERN_ERR "DRHD %Lx: failed to enable fault, "
1415 " interrupt, ret %d\n",
1416 (unsigned long long)drhd->reg_base_addr, ret);
1417 return -1;
1421 return 0;
1425 * Re-enable Queued Invalidation interface.
1427 int dmar_reenable_qi(struct intel_iommu *iommu)
1429 if (!ecap_qis(iommu->ecap))
1430 return -ENOENT;
1432 if (!iommu->qi)
1433 return -ENOENT;
1436 * First disable queued invalidation.
1438 dmar_disable_qi(iommu);
1440 * Then enable queued invalidation again. Since there is no pending
1441 * invalidation requests now, it's safe to re-enable queued
1442 * invalidation.
1444 __dmar_enable_qi(iommu);
1446 return 0;
1450 * Check interrupt remapping support in DMAR table description.
1452 int __init dmar_ir_support(void)
1454 struct acpi_table_dmar *dmar;
1455 dmar = (struct acpi_table_dmar *)dmar_tbl;
1456 if (!dmar)
1457 return 0;
1458 return dmar->flags & 0x1;