random: fix bound check ordering (CVE-2007-3105)
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / dm.c
blob973b6f6ff3526bb4cd69ad31887e65641dca5031
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm.h"
9 #include "dm-bio-list.h"
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/moduleparam.h>
14 #include <linux/blkpg.h>
15 #include <linux/bio.h>
16 #include <linux/buffer_head.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
21 static const char *_name = DM_NAME;
23 static unsigned int major = 0;
24 static unsigned int _major = 0;
27 * One of these is allocated per bio.
29 struct dm_io {
30 struct mapped_device *md;
31 int error;
32 struct bio *bio;
33 atomic_t io_count;
34 unsigned long start_time;
38 * One of these is allocated per target within a bio. Hopefully
39 * this will be simplified out one day.
41 struct target_io {
42 struct dm_io *io;
43 struct dm_target *ti;
44 union map_info info;
47 union map_info *dm_get_mapinfo(struct bio *bio)
49 if (bio && bio->bi_private)
50 return &((struct target_io *)bio->bi_private)->info;
51 return NULL;
55 * Bits for the md->flags field.
57 #define DMF_BLOCK_IO 0
58 #define DMF_SUSPENDED 1
59 #define DMF_FROZEN 2
61 struct mapped_device {
62 struct rw_semaphore io_lock;
63 struct semaphore suspend_lock;
64 rwlock_t map_lock;
65 atomic_t holders;
67 unsigned long flags;
69 request_queue_t *queue;
70 struct gendisk *disk;
72 void *interface_ptr;
75 * A list of ios that arrived while we were suspended.
77 atomic_t pending;
78 wait_queue_head_t wait;
79 struct bio_list deferred;
82 * The current mapping.
84 struct dm_table *map;
87 * io objects are allocated from here.
89 mempool_t *io_pool;
90 mempool_t *tio_pool;
93 * Event handling.
95 atomic_t event_nr;
96 wait_queue_head_t eventq;
99 * freeze/thaw support require holding onto a super block
101 struct super_block *frozen_sb;
102 struct block_device *suspended_bdev;
105 #define MIN_IOS 256
106 static kmem_cache_t *_io_cache;
107 static kmem_cache_t *_tio_cache;
109 static struct bio_set *dm_set;
111 static int __init local_init(void)
113 int r;
115 dm_set = bioset_create(16, 16, 4);
116 if (!dm_set)
117 return -ENOMEM;
119 /* allocate a slab for the dm_ios */
120 _io_cache = kmem_cache_create("dm_io",
121 sizeof(struct dm_io), 0, 0, NULL, NULL);
122 if (!_io_cache)
123 return -ENOMEM;
125 /* allocate a slab for the target ios */
126 _tio_cache = kmem_cache_create("dm_tio", sizeof(struct target_io),
127 0, 0, NULL, NULL);
128 if (!_tio_cache) {
129 kmem_cache_destroy(_io_cache);
130 return -ENOMEM;
133 _major = major;
134 r = register_blkdev(_major, _name);
135 if (r < 0) {
136 kmem_cache_destroy(_tio_cache);
137 kmem_cache_destroy(_io_cache);
138 return r;
141 if (!_major)
142 _major = r;
144 return 0;
147 static void local_exit(void)
149 kmem_cache_destroy(_tio_cache);
150 kmem_cache_destroy(_io_cache);
152 bioset_free(dm_set);
154 if (unregister_blkdev(_major, _name) < 0)
155 DMERR("devfs_unregister_blkdev failed");
157 _major = 0;
159 DMINFO("cleaned up");
162 int (*_inits[])(void) __initdata = {
163 local_init,
164 dm_target_init,
165 dm_linear_init,
166 dm_stripe_init,
167 dm_interface_init,
170 void (*_exits[])(void) = {
171 local_exit,
172 dm_target_exit,
173 dm_linear_exit,
174 dm_stripe_exit,
175 dm_interface_exit,
178 static int __init dm_init(void)
180 const int count = ARRAY_SIZE(_inits);
182 int r, i;
184 for (i = 0; i < count; i++) {
185 r = _inits[i]();
186 if (r)
187 goto bad;
190 return 0;
192 bad:
193 while (i--)
194 _exits[i]();
196 return r;
199 static void __exit dm_exit(void)
201 int i = ARRAY_SIZE(_exits);
203 while (i--)
204 _exits[i]();
208 * Block device functions
210 static int dm_blk_open(struct inode *inode, struct file *file)
212 struct mapped_device *md;
214 md = inode->i_bdev->bd_disk->private_data;
215 dm_get(md);
216 return 0;
219 static int dm_blk_close(struct inode *inode, struct file *file)
221 struct mapped_device *md;
223 md = inode->i_bdev->bd_disk->private_data;
224 dm_put(md);
225 return 0;
228 static inline struct dm_io *alloc_io(struct mapped_device *md)
230 return mempool_alloc(md->io_pool, GFP_NOIO);
233 static inline void free_io(struct mapped_device *md, struct dm_io *io)
235 mempool_free(io, md->io_pool);
238 static inline struct target_io *alloc_tio(struct mapped_device *md)
240 return mempool_alloc(md->tio_pool, GFP_NOIO);
243 static inline void free_tio(struct mapped_device *md, struct target_io *tio)
245 mempool_free(tio, md->tio_pool);
248 static void start_io_acct(struct dm_io *io)
250 struct mapped_device *md = io->md;
252 io->start_time = jiffies;
254 preempt_disable();
255 disk_round_stats(dm_disk(md));
256 preempt_enable();
257 dm_disk(md)->in_flight = atomic_inc_return(&md->pending);
260 static int end_io_acct(struct dm_io *io)
262 struct mapped_device *md = io->md;
263 struct bio *bio = io->bio;
264 unsigned long duration = jiffies - io->start_time;
265 int pending;
266 int rw = bio_data_dir(bio);
268 preempt_disable();
269 disk_round_stats(dm_disk(md));
270 preempt_enable();
271 dm_disk(md)->in_flight = pending = atomic_dec_return(&md->pending);
273 disk_stat_add(dm_disk(md), ticks[rw], duration);
275 return !pending;
279 * Add the bio to the list of deferred io.
281 static int queue_io(struct mapped_device *md, struct bio *bio)
283 down_write(&md->io_lock);
285 if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
286 up_write(&md->io_lock);
287 return 1;
290 bio_list_add(&md->deferred, bio);
292 up_write(&md->io_lock);
293 return 0; /* deferred successfully */
297 * Everyone (including functions in this file), should use this
298 * function to access the md->map field, and make sure they call
299 * dm_table_put() when finished.
301 struct dm_table *dm_get_table(struct mapped_device *md)
303 struct dm_table *t;
305 read_lock(&md->map_lock);
306 t = md->map;
307 if (t)
308 dm_table_get(t);
309 read_unlock(&md->map_lock);
311 return t;
314 /*-----------------------------------------------------------------
315 * CRUD START:
316 * A more elegant soln is in the works that uses the queue
317 * merge fn, unfortunately there are a couple of changes to
318 * the block layer that I want to make for this. So in the
319 * interests of getting something for people to use I give
320 * you this clearly demarcated crap.
321 *---------------------------------------------------------------*/
324 * Decrements the number of outstanding ios that a bio has been
325 * cloned into, completing the original io if necc.
327 static void dec_pending(struct dm_io *io, int error)
329 if (error)
330 io->error = error;
332 if (atomic_dec_and_test(&io->io_count)) {
333 if (end_io_acct(io))
334 /* nudge anyone waiting on suspend queue */
335 wake_up(&io->md->wait);
337 bio_endio(io->bio, io->bio->bi_size, io->error);
338 free_io(io->md, io);
342 static int clone_endio(struct bio *bio, unsigned int done, int error)
344 int r = 0;
345 struct target_io *tio = bio->bi_private;
346 struct dm_io *io = tio->io;
347 dm_endio_fn endio = tio->ti->type->end_io;
349 if (bio->bi_size)
350 return 1;
352 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
353 error = -EIO;
355 if (endio) {
356 r = endio(tio->ti, bio, error, &tio->info);
357 if (r < 0)
358 error = r;
360 else if (r > 0)
361 /* the target wants another shot at the io */
362 return 1;
365 free_tio(io->md, tio);
366 dec_pending(io, error);
367 bio_put(bio);
368 return r;
371 static sector_t max_io_len(struct mapped_device *md,
372 sector_t sector, struct dm_target *ti)
374 sector_t offset = sector - ti->begin;
375 sector_t len = ti->len - offset;
378 * Does the target need to split even further ?
380 if (ti->split_io) {
381 sector_t boundary;
382 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
383 - offset;
384 if (len > boundary)
385 len = boundary;
388 return len;
391 static void __map_bio(struct dm_target *ti, struct bio *clone,
392 struct target_io *tio)
394 int r;
397 * Sanity checks.
399 BUG_ON(!clone->bi_size);
401 clone->bi_end_io = clone_endio;
402 clone->bi_private = tio;
405 * Map the clone. If r == 0 we don't need to do
406 * anything, the target has assumed ownership of
407 * this io.
409 atomic_inc(&tio->io->io_count);
410 r = ti->type->map(ti, clone, &tio->info);
411 if (r > 0)
412 /* the bio has been remapped so dispatch it */
413 generic_make_request(clone);
415 else if (r < 0) {
416 /* error the io and bail out */
417 struct dm_io *io = tio->io;
418 free_tio(tio->io->md, tio);
419 dec_pending(io, r);
420 bio_put(clone);
424 struct clone_info {
425 struct mapped_device *md;
426 struct dm_table *map;
427 struct bio *bio;
428 struct dm_io *io;
429 sector_t sector;
430 sector_t sector_count;
431 unsigned short idx;
434 static void dm_bio_destructor(struct bio *bio)
436 bio_free(bio, dm_set);
440 * Creates a little bio that is just does part of a bvec.
442 static struct bio *split_bvec(struct bio *bio, sector_t sector,
443 unsigned short idx, unsigned int offset,
444 unsigned int len)
446 struct bio *clone;
447 struct bio_vec *bv = bio->bi_io_vec + idx;
449 clone = bio_alloc_bioset(GFP_NOIO, 1, dm_set);
450 clone->bi_destructor = dm_bio_destructor;
451 *clone->bi_io_vec = *bv;
453 clone->bi_sector = sector;
454 clone->bi_bdev = bio->bi_bdev;
455 clone->bi_rw = bio->bi_rw;
456 clone->bi_vcnt = 1;
457 clone->bi_size = to_bytes(len);
458 clone->bi_io_vec->bv_offset = offset;
459 clone->bi_io_vec->bv_len = clone->bi_size;
461 return clone;
465 * Creates a bio that consists of range of complete bvecs.
467 static struct bio *clone_bio(struct bio *bio, sector_t sector,
468 unsigned short idx, unsigned short bv_count,
469 unsigned int len)
471 struct bio *clone;
473 clone = bio_clone(bio, GFP_NOIO);
474 clone->bi_sector = sector;
475 clone->bi_idx = idx;
476 clone->bi_vcnt = idx + bv_count;
477 clone->bi_size = to_bytes(len);
478 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
480 return clone;
483 static void __clone_and_map(struct clone_info *ci)
485 struct bio *clone, *bio = ci->bio;
486 struct dm_target *ti = dm_table_find_target(ci->map, ci->sector);
487 sector_t len = 0, max = max_io_len(ci->md, ci->sector, ti);
488 struct target_io *tio;
491 * Allocate a target io object.
493 tio = alloc_tio(ci->md);
494 tio->io = ci->io;
495 tio->ti = ti;
496 memset(&tio->info, 0, sizeof(tio->info));
498 if (ci->sector_count <= max) {
500 * Optimise for the simple case where we can do all of
501 * the remaining io with a single clone.
503 clone = clone_bio(bio, ci->sector, ci->idx,
504 bio->bi_vcnt - ci->idx, ci->sector_count);
505 __map_bio(ti, clone, tio);
506 ci->sector_count = 0;
508 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
510 * There are some bvecs that don't span targets.
511 * Do as many of these as possible.
513 int i;
514 sector_t remaining = max;
515 sector_t bv_len;
517 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
518 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
520 if (bv_len > remaining)
521 break;
523 remaining -= bv_len;
524 len += bv_len;
527 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len);
528 __map_bio(ti, clone, tio);
530 ci->sector += len;
531 ci->sector_count -= len;
532 ci->idx = i;
534 } else {
536 * Handle a bvec that must be split between two or more targets.
538 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
539 sector_t remaining = to_sector(bv->bv_len);
540 unsigned int offset = 0;
542 do {
543 if (offset) {
544 ti = dm_table_find_target(ci->map, ci->sector);
545 max = max_io_len(ci->md, ci->sector, ti);
547 tio = alloc_tio(ci->md);
548 tio->io = ci->io;
549 tio->ti = ti;
550 memset(&tio->info, 0, sizeof(tio->info));
553 len = min(remaining, max);
555 clone = split_bvec(bio, ci->sector, ci->idx,
556 bv->bv_offset + offset, len);
558 __map_bio(ti, clone, tio);
560 ci->sector += len;
561 ci->sector_count -= len;
562 offset += to_bytes(len);
563 } while (remaining -= len);
565 ci->idx++;
570 * Split the bio into several clones.
572 static void __split_bio(struct mapped_device *md, struct bio *bio)
574 struct clone_info ci;
576 ci.map = dm_get_table(md);
577 if (!ci.map) {
578 bio_io_error(bio, bio->bi_size);
579 return;
582 ci.md = md;
583 ci.bio = bio;
584 ci.io = alloc_io(md);
585 ci.io->error = 0;
586 atomic_set(&ci.io->io_count, 1);
587 ci.io->bio = bio;
588 ci.io->md = md;
589 ci.sector = bio->bi_sector;
590 ci.sector_count = bio_sectors(bio);
591 ci.idx = bio->bi_idx;
593 start_io_acct(ci.io);
594 while (ci.sector_count)
595 __clone_and_map(&ci);
597 /* drop the extra reference count */
598 dec_pending(ci.io, 0);
599 dm_table_put(ci.map);
601 /*-----------------------------------------------------------------
602 * CRUD END
603 *---------------------------------------------------------------*/
606 * The request function that just remaps the bio built up by
607 * dm_merge_bvec.
609 static int dm_request(request_queue_t *q, struct bio *bio)
611 int r;
612 int rw = bio_data_dir(bio);
613 struct mapped_device *md = q->queuedata;
615 down_read(&md->io_lock);
617 disk_stat_inc(dm_disk(md), ios[rw]);
618 disk_stat_add(dm_disk(md), sectors[rw], bio_sectors(bio));
621 * If we're suspended we have to queue
622 * this io for later.
624 while (test_bit(DMF_BLOCK_IO, &md->flags)) {
625 up_read(&md->io_lock);
627 if (bio_rw(bio) == READA) {
628 bio_io_error(bio, bio->bi_size);
629 return 0;
632 r = queue_io(md, bio);
633 if (r < 0) {
634 bio_io_error(bio, bio->bi_size);
635 return 0;
637 } else if (r == 0)
638 return 0; /* deferred successfully */
641 * We're in a while loop, because someone could suspend
642 * before we get to the following read lock.
644 down_read(&md->io_lock);
647 __split_bio(md, bio);
648 up_read(&md->io_lock);
649 return 0;
652 static int dm_flush_all(request_queue_t *q, struct gendisk *disk,
653 sector_t *error_sector)
655 struct mapped_device *md = q->queuedata;
656 struct dm_table *map = dm_get_table(md);
657 int ret = -ENXIO;
659 if (map) {
660 ret = dm_table_flush_all(map);
661 dm_table_put(map);
664 return ret;
667 static void dm_unplug_all(request_queue_t *q)
669 struct mapped_device *md = q->queuedata;
670 struct dm_table *map = dm_get_table(md);
672 if (map) {
673 dm_table_unplug_all(map);
674 dm_table_put(map);
678 static int dm_any_congested(void *congested_data, int bdi_bits)
680 int r;
681 struct mapped_device *md = (struct mapped_device *) congested_data;
682 struct dm_table *map = dm_get_table(md);
684 if (!map || test_bit(DMF_BLOCK_IO, &md->flags))
685 r = bdi_bits;
686 else
687 r = dm_table_any_congested(map, bdi_bits);
689 dm_table_put(map);
690 return r;
693 /*-----------------------------------------------------------------
694 * An IDR is used to keep track of allocated minor numbers.
695 *---------------------------------------------------------------*/
696 static DECLARE_MUTEX(_minor_lock);
697 static DEFINE_IDR(_minor_idr);
699 static void free_minor(unsigned int minor)
701 down(&_minor_lock);
702 idr_remove(&_minor_idr, minor);
703 up(&_minor_lock);
707 * See if the device with a specific minor # is free.
709 static int specific_minor(struct mapped_device *md, unsigned int minor)
711 int r, m;
713 if (minor >= (1 << MINORBITS))
714 return -EINVAL;
716 down(&_minor_lock);
718 if (idr_find(&_minor_idr, minor)) {
719 r = -EBUSY;
720 goto out;
723 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
724 if (!r) {
725 r = -ENOMEM;
726 goto out;
729 r = idr_get_new_above(&_minor_idr, md, minor, &m);
730 if (r) {
731 goto out;
734 if (m != minor) {
735 idr_remove(&_minor_idr, m);
736 r = -EBUSY;
737 goto out;
740 out:
741 up(&_minor_lock);
742 return r;
745 static int next_free_minor(struct mapped_device *md, unsigned int *minor)
747 int r;
748 unsigned int m;
750 down(&_minor_lock);
752 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
753 if (!r) {
754 r = -ENOMEM;
755 goto out;
758 r = idr_get_new(&_minor_idr, md, &m);
759 if (r) {
760 goto out;
763 if (m >= (1 << MINORBITS)) {
764 idr_remove(&_minor_idr, m);
765 r = -ENOSPC;
766 goto out;
769 *minor = m;
771 out:
772 up(&_minor_lock);
773 return r;
776 static struct block_device_operations dm_blk_dops;
779 * Allocate and initialise a blank device with a given minor.
781 static struct mapped_device *alloc_dev(unsigned int minor, int persistent)
783 int r;
784 struct mapped_device *md = kmalloc(sizeof(*md), GFP_KERNEL);
786 if (!md) {
787 DMWARN("unable to allocate device, out of memory.");
788 return NULL;
791 if (!try_module_get(THIS_MODULE))
792 goto bad0;
794 /* get a minor number for the dev */
795 r = persistent ? specific_minor(md, minor) : next_free_minor(md, &minor);
796 if (r < 0)
797 goto bad1;
799 memset(md, 0, sizeof(*md));
800 init_rwsem(&md->io_lock);
801 init_MUTEX(&md->suspend_lock);
802 rwlock_init(&md->map_lock);
803 atomic_set(&md->holders, 1);
804 atomic_set(&md->event_nr, 0);
806 md->queue = blk_alloc_queue(GFP_KERNEL);
807 if (!md->queue)
808 goto bad1;
810 md->queue->queuedata = md;
811 md->queue->backing_dev_info.congested_fn = dm_any_congested;
812 md->queue->backing_dev_info.congested_data = md;
813 blk_queue_make_request(md->queue, dm_request);
814 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
815 md->queue->unplug_fn = dm_unplug_all;
816 md->queue->issue_flush_fn = dm_flush_all;
818 md->io_pool = mempool_create(MIN_IOS, mempool_alloc_slab,
819 mempool_free_slab, _io_cache);
820 if (!md->io_pool)
821 goto bad2;
823 md->tio_pool = mempool_create(MIN_IOS, mempool_alloc_slab,
824 mempool_free_slab, _tio_cache);
825 if (!md->tio_pool)
826 goto bad3;
828 md->disk = alloc_disk(1);
829 if (!md->disk)
830 goto bad4;
832 md->disk->major = _major;
833 md->disk->first_minor = minor;
834 md->disk->fops = &dm_blk_dops;
835 md->disk->queue = md->queue;
836 md->disk->private_data = md;
837 sprintf(md->disk->disk_name, "dm-%d", minor);
838 add_disk(md->disk);
840 atomic_set(&md->pending, 0);
841 init_waitqueue_head(&md->wait);
842 init_waitqueue_head(&md->eventq);
844 return md;
846 bad4:
847 mempool_destroy(md->tio_pool);
848 bad3:
849 mempool_destroy(md->io_pool);
850 bad2:
851 blk_put_queue(md->queue);
852 free_minor(minor);
853 bad1:
854 module_put(THIS_MODULE);
855 bad0:
856 kfree(md);
857 return NULL;
860 static void free_dev(struct mapped_device *md)
862 unsigned int minor = md->disk->first_minor;
864 if (md->suspended_bdev) {
865 thaw_bdev(md->suspended_bdev, NULL);
866 bdput(md->suspended_bdev);
868 mempool_destroy(md->tio_pool);
869 mempool_destroy(md->io_pool);
870 del_gendisk(md->disk);
871 free_minor(minor);
872 put_disk(md->disk);
873 blk_put_queue(md->queue);
874 module_put(THIS_MODULE);
875 kfree(md);
879 * Bind a table to the device.
881 static void event_callback(void *context)
883 struct mapped_device *md = (struct mapped_device *) context;
885 atomic_inc(&md->event_nr);
886 wake_up(&md->eventq);
889 static void __set_size(struct mapped_device *md, sector_t size)
891 set_capacity(md->disk, size);
893 mutex_lock(&md->suspended_bdev->bd_inode->i_mutex);
894 i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
895 mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex);
898 static int __bind(struct mapped_device *md, struct dm_table *t)
900 request_queue_t *q = md->queue;
901 sector_t size;
903 size = dm_table_get_size(t);
904 __set_size(md, size);
905 if (size == 0)
906 return 0;
908 dm_table_get(t);
909 dm_table_event_callback(t, event_callback, md);
911 write_lock(&md->map_lock);
912 md->map = t;
913 dm_table_set_restrictions(t, q);
914 write_unlock(&md->map_lock);
916 return 0;
919 static void __unbind(struct mapped_device *md)
921 struct dm_table *map = md->map;
923 if (!map)
924 return;
926 dm_table_event_callback(map, NULL, NULL);
927 write_lock(&md->map_lock);
928 md->map = NULL;
929 write_unlock(&md->map_lock);
930 dm_table_put(map);
934 * Constructor for a new device.
936 static int create_aux(unsigned int minor, int persistent,
937 struct mapped_device **result)
939 struct mapped_device *md;
941 md = alloc_dev(minor, persistent);
942 if (!md)
943 return -ENXIO;
945 *result = md;
946 return 0;
949 int dm_create(struct mapped_device **result)
951 return create_aux(0, 0, result);
954 int dm_create_with_minor(unsigned int minor, struct mapped_device **result)
956 return create_aux(minor, 1, result);
959 static struct mapped_device *dm_find_md(dev_t dev)
961 struct mapped_device *md;
962 unsigned minor = MINOR(dev);
964 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
965 return NULL;
967 down(&_minor_lock);
969 md = idr_find(&_minor_idr, minor);
970 if (!md || (dm_disk(md)->first_minor != minor))
971 md = NULL;
973 up(&_minor_lock);
975 return md;
978 struct mapped_device *dm_get_md(dev_t dev)
980 struct mapped_device *md = dm_find_md(dev);
982 if (md)
983 dm_get(md);
985 return md;
988 void *dm_get_mdptr(dev_t dev)
990 struct mapped_device *md;
991 void *mdptr = NULL;
993 md = dm_find_md(dev);
994 if (md)
995 mdptr = md->interface_ptr;
996 return mdptr;
999 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1001 md->interface_ptr = ptr;
1004 void dm_get(struct mapped_device *md)
1006 atomic_inc(&md->holders);
1009 void dm_put(struct mapped_device *md)
1011 struct dm_table *map = dm_get_table(md);
1013 if (atomic_dec_and_test(&md->holders)) {
1014 if (!dm_suspended(md)) {
1015 dm_table_presuspend_targets(map);
1016 dm_table_postsuspend_targets(map);
1018 __unbind(md);
1019 free_dev(md);
1022 dm_table_put(map);
1026 * Process the deferred bios
1028 static void __flush_deferred_io(struct mapped_device *md, struct bio *c)
1030 struct bio *n;
1032 while (c) {
1033 n = c->bi_next;
1034 c->bi_next = NULL;
1035 __split_bio(md, c);
1036 c = n;
1041 * Swap in a new table (destroying old one).
1043 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
1045 int r = -EINVAL;
1047 down(&md->suspend_lock);
1049 /* device must be suspended */
1050 if (!dm_suspended(md))
1051 goto out;
1053 __unbind(md);
1054 r = __bind(md, table);
1056 out:
1057 up(&md->suspend_lock);
1058 return r;
1062 * Functions to lock and unlock any filesystem running on the
1063 * device.
1065 static int lock_fs(struct mapped_device *md)
1067 int r;
1069 WARN_ON(md->frozen_sb);
1071 md->frozen_sb = freeze_bdev(md->suspended_bdev);
1072 if (IS_ERR(md->frozen_sb)) {
1073 r = PTR_ERR(md->frozen_sb);
1074 md->frozen_sb = NULL;
1075 return r;
1078 set_bit(DMF_FROZEN, &md->flags);
1080 /* don't bdput right now, we don't want the bdev
1081 * to go away while it is locked.
1083 return 0;
1086 static void unlock_fs(struct mapped_device *md)
1088 if (!test_bit(DMF_FROZEN, &md->flags))
1089 return;
1091 thaw_bdev(md->suspended_bdev, md->frozen_sb);
1092 md->frozen_sb = NULL;
1093 clear_bit(DMF_FROZEN, &md->flags);
1097 * We need to be able to change a mapping table under a mounted
1098 * filesystem. For example we might want to move some data in
1099 * the background. Before the table can be swapped with
1100 * dm_bind_table, dm_suspend must be called to flush any in
1101 * flight bios and ensure that any further io gets deferred.
1103 int dm_suspend(struct mapped_device *md, int do_lockfs)
1105 struct dm_table *map = NULL;
1106 DECLARE_WAITQUEUE(wait, current);
1107 struct bio *def;
1108 int r = -EINVAL;
1110 down(&md->suspend_lock);
1112 if (dm_suspended(md))
1113 goto out;
1115 map = dm_get_table(md);
1117 /* This does not get reverted if there's an error later. */
1118 dm_table_presuspend_targets(map);
1120 md->suspended_bdev = bdget_disk(md->disk, 0);
1121 if (!md->suspended_bdev) {
1122 DMWARN("bdget failed in dm_suspend");
1123 r = -ENOMEM;
1124 goto out;
1127 /* Flush I/O to the device. */
1128 if (do_lockfs) {
1129 r = lock_fs(md);
1130 if (r)
1131 goto out;
1135 * First we set the BLOCK_IO flag so no more ios will be mapped.
1137 down_write(&md->io_lock);
1138 set_bit(DMF_BLOCK_IO, &md->flags);
1140 add_wait_queue(&md->wait, &wait);
1141 up_write(&md->io_lock);
1143 /* unplug */
1144 if (map)
1145 dm_table_unplug_all(map);
1148 * Then we wait for the already mapped ios to
1149 * complete.
1151 while (1) {
1152 set_current_state(TASK_INTERRUPTIBLE);
1154 if (!atomic_read(&md->pending) || signal_pending(current))
1155 break;
1157 io_schedule();
1159 set_current_state(TASK_RUNNING);
1161 down_write(&md->io_lock);
1162 remove_wait_queue(&md->wait, &wait);
1164 /* were we interrupted ? */
1165 r = -EINTR;
1166 if (atomic_read(&md->pending)) {
1167 clear_bit(DMF_BLOCK_IO, &md->flags);
1168 def = bio_list_get(&md->deferred);
1169 __flush_deferred_io(md, def);
1170 up_write(&md->io_lock);
1171 unlock_fs(md);
1172 goto out;
1174 up_write(&md->io_lock);
1176 dm_table_postsuspend_targets(map);
1178 set_bit(DMF_SUSPENDED, &md->flags);
1180 r = 0;
1182 out:
1183 if (r && md->suspended_bdev) {
1184 bdput(md->suspended_bdev);
1185 md->suspended_bdev = NULL;
1188 dm_table_put(map);
1189 up(&md->suspend_lock);
1190 return r;
1193 int dm_resume(struct mapped_device *md)
1195 int r = -EINVAL;
1196 struct bio *def;
1197 struct dm_table *map = NULL;
1199 down(&md->suspend_lock);
1200 if (!dm_suspended(md))
1201 goto out;
1203 map = dm_get_table(md);
1204 if (!map || !dm_table_get_size(map))
1205 goto out;
1207 dm_table_resume_targets(map);
1209 down_write(&md->io_lock);
1210 clear_bit(DMF_BLOCK_IO, &md->flags);
1212 def = bio_list_get(&md->deferred);
1213 __flush_deferred_io(md, def);
1214 up_write(&md->io_lock);
1216 unlock_fs(md);
1218 bdput(md->suspended_bdev);
1219 md->suspended_bdev = NULL;
1221 clear_bit(DMF_SUSPENDED, &md->flags);
1223 dm_table_unplug_all(map);
1225 r = 0;
1227 out:
1228 dm_table_put(map);
1229 up(&md->suspend_lock);
1231 return r;
1234 /*-----------------------------------------------------------------
1235 * Event notification.
1236 *---------------------------------------------------------------*/
1237 uint32_t dm_get_event_nr(struct mapped_device *md)
1239 return atomic_read(&md->event_nr);
1242 int dm_wait_event(struct mapped_device *md, int event_nr)
1244 return wait_event_interruptible(md->eventq,
1245 (event_nr != atomic_read(&md->event_nr)));
1249 * The gendisk is only valid as long as you have a reference
1250 * count on 'md'.
1252 struct gendisk *dm_disk(struct mapped_device *md)
1254 return md->disk;
1257 int dm_suspended(struct mapped_device *md)
1259 return test_bit(DMF_SUSPENDED, &md->flags);
1262 static struct block_device_operations dm_blk_dops = {
1263 .open = dm_blk_open,
1264 .release = dm_blk_close,
1265 .owner = THIS_MODULE
1268 EXPORT_SYMBOL(dm_get_mapinfo);
1271 * module hooks
1273 module_init(dm_init);
1274 module_exit(dm_exit);
1276 module_param(major, uint, 0);
1277 MODULE_PARM_DESC(major, "The major number of the device mapper");
1278 MODULE_DESCRIPTION(DM_NAME " driver");
1279 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1280 MODULE_LICENSE("GPL");