thp: clear_copy_huge_page
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / linux / mm.h
blobcc6ab1038f6fa038e9e72a39a92df7306bc7ad60
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
4 #include <linux/errno.h>
6 #ifdef __KERNEL__
8 #include <linux/gfp.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/prio_tree.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
15 #include <linux/range.h>
16 #include <linux/pfn.h>
17 #include <linux/bit_spinlock.h>
19 struct mempolicy;
20 struct anon_vma;
21 struct file_ra_state;
22 struct user_struct;
23 struct writeback_control;
25 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
26 extern unsigned long max_mapnr;
27 #endif
29 extern unsigned long num_physpages;
30 extern unsigned long totalram_pages;
31 extern void * high_memory;
32 extern int page_cluster;
34 #ifdef CONFIG_SYSCTL
35 extern int sysctl_legacy_va_layout;
36 #else
37 #define sysctl_legacy_va_layout 0
38 #endif
40 #include <asm/page.h>
41 #include <asm/pgtable.h>
42 #include <asm/processor.h>
44 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
46 /* to align the pointer to the (next) page boundary */
47 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
50 * Linux kernel virtual memory manager primitives.
51 * The idea being to have a "virtual" mm in the same way
52 * we have a virtual fs - giving a cleaner interface to the
53 * mm details, and allowing different kinds of memory mappings
54 * (from shared memory to executable loading to arbitrary
55 * mmap() functions).
58 extern struct kmem_cache *vm_area_cachep;
60 #ifndef CONFIG_MMU
61 extern struct rb_root nommu_region_tree;
62 extern struct rw_semaphore nommu_region_sem;
64 extern unsigned int kobjsize(const void *objp);
65 #endif
68 * vm_flags in vm_area_struct, see mm_types.h.
70 #define VM_READ 0x00000001 /* currently active flags */
71 #define VM_WRITE 0x00000002
72 #define VM_EXEC 0x00000004
73 #define VM_SHARED 0x00000008
75 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
76 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
77 #define VM_MAYWRITE 0x00000020
78 #define VM_MAYEXEC 0x00000040
79 #define VM_MAYSHARE 0x00000080
81 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
82 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
83 #define VM_GROWSUP 0x00000200
84 #else
85 #define VM_GROWSUP 0x00000000
86 #endif
87 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
88 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
90 #define VM_EXECUTABLE 0x00001000
91 #define VM_LOCKED 0x00002000
92 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
94 /* Used by sys_madvise() */
95 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
96 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
98 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
99 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
100 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
101 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
102 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
103 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
104 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
105 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
106 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
107 #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
109 #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
110 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
111 #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
112 #define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */
113 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
115 /* Bits set in the VMA until the stack is in its final location */
116 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
118 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
119 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
120 #endif
122 #ifdef CONFIG_STACK_GROWSUP
123 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
124 #else
125 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
126 #endif
128 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
129 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
130 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
131 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
132 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
135 * special vmas that are non-mergable, non-mlock()able
137 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
140 * mapping from the currently active vm_flags protection bits (the
141 * low four bits) to a page protection mask..
143 extern pgprot_t protection_map[16];
145 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
146 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
147 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
148 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
151 * This interface is used by x86 PAT code to identify a pfn mapping that is
152 * linear over entire vma. This is to optimize PAT code that deals with
153 * marking the physical region with a particular prot. This is not for generic
154 * mm use. Note also that this check will not work if the pfn mapping is
155 * linear for a vma starting at physical address 0. In which case PAT code
156 * falls back to slow path of reserving physical range page by page.
158 static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
160 return (vma->vm_flags & VM_PFN_AT_MMAP);
163 static inline int is_pfn_mapping(struct vm_area_struct *vma)
165 return (vma->vm_flags & VM_PFNMAP);
169 * vm_fault is filled by the the pagefault handler and passed to the vma's
170 * ->fault function. The vma's ->fault is responsible for returning a bitmask
171 * of VM_FAULT_xxx flags that give details about how the fault was handled.
173 * pgoff should be used in favour of virtual_address, if possible. If pgoff
174 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
175 * mapping support.
177 struct vm_fault {
178 unsigned int flags; /* FAULT_FLAG_xxx flags */
179 pgoff_t pgoff; /* Logical page offset based on vma */
180 void __user *virtual_address; /* Faulting virtual address */
182 struct page *page; /* ->fault handlers should return a
183 * page here, unless VM_FAULT_NOPAGE
184 * is set (which is also implied by
185 * VM_FAULT_ERROR).
190 * These are the virtual MM functions - opening of an area, closing and
191 * unmapping it (needed to keep files on disk up-to-date etc), pointer
192 * to the functions called when a no-page or a wp-page exception occurs.
194 struct vm_operations_struct {
195 void (*open)(struct vm_area_struct * area);
196 void (*close)(struct vm_area_struct * area);
197 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
199 /* notification that a previously read-only page is about to become
200 * writable, if an error is returned it will cause a SIGBUS */
201 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
203 /* called by access_process_vm when get_user_pages() fails, typically
204 * for use by special VMAs that can switch between memory and hardware
206 int (*access)(struct vm_area_struct *vma, unsigned long addr,
207 void *buf, int len, int write);
208 #ifdef CONFIG_NUMA
210 * set_policy() op must add a reference to any non-NULL @new mempolicy
211 * to hold the policy upon return. Caller should pass NULL @new to
212 * remove a policy and fall back to surrounding context--i.e. do not
213 * install a MPOL_DEFAULT policy, nor the task or system default
214 * mempolicy.
216 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
219 * get_policy() op must add reference [mpol_get()] to any policy at
220 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
221 * in mm/mempolicy.c will do this automatically.
222 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
223 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
224 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
225 * must return NULL--i.e., do not "fallback" to task or system default
226 * policy.
228 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
229 unsigned long addr);
230 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
231 const nodemask_t *to, unsigned long flags);
232 #endif
235 struct mmu_gather;
236 struct inode;
238 #define page_private(page) ((page)->private)
239 #define set_page_private(page, v) ((page)->private = (v))
242 * FIXME: take this include out, include page-flags.h in
243 * files which need it (119 of them)
245 #include <linux/page-flags.h>
248 * Methods to modify the page usage count.
250 * What counts for a page usage:
251 * - cache mapping (page->mapping)
252 * - private data (page->private)
253 * - page mapped in a task's page tables, each mapping
254 * is counted separately
256 * Also, many kernel routines increase the page count before a critical
257 * routine so they can be sure the page doesn't go away from under them.
261 * Drop a ref, return true if the refcount fell to zero (the page has no users)
263 static inline int put_page_testzero(struct page *page)
265 VM_BUG_ON(atomic_read(&page->_count) == 0);
266 return atomic_dec_and_test(&page->_count);
270 * Try to grab a ref unless the page has a refcount of zero, return false if
271 * that is the case.
273 static inline int get_page_unless_zero(struct page *page)
275 return atomic_inc_not_zero(&page->_count);
278 extern int page_is_ram(unsigned long pfn);
280 /* Support for virtually mapped pages */
281 struct page *vmalloc_to_page(const void *addr);
282 unsigned long vmalloc_to_pfn(const void *addr);
285 * Determine if an address is within the vmalloc range
287 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
288 * is no special casing required.
290 static inline int is_vmalloc_addr(const void *x)
292 #ifdef CONFIG_MMU
293 unsigned long addr = (unsigned long)x;
295 return addr >= VMALLOC_START && addr < VMALLOC_END;
296 #else
297 return 0;
298 #endif
300 #ifdef CONFIG_MMU
301 extern int is_vmalloc_or_module_addr(const void *x);
302 #else
303 static inline int is_vmalloc_or_module_addr(const void *x)
305 return 0;
307 #endif
309 static inline void compound_lock(struct page *page)
311 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
312 bit_spin_lock(PG_compound_lock, &page->flags);
313 #endif
316 static inline void compound_unlock(struct page *page)
318 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
319 bit_spin_unlock(PG_compound_lock, &page->flags);
320 #endif
323 static inline unsigned long compound_lock_irqsave(struct page *page)
325 unsigned long uninitialized_var(flags);
326 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
327 local_irq_save(flags);
328 compound_lock(page);
329 #endif
330 return flags;
333 static inline void compound_unlock_irqrestore(struct page *page,
334 unsigned long flags)
336 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
337 compound_unlock(page);
338 local_irq_restore(flags);
339 #endif
342 static inline struct page *compound_head(struct page *page)
344 if (unlikely(PageTail(page)))
345 return page->first_page;
346 return page;
349 static inline int page_count(struct page *page)
351 return atomic_read(&compound_head(page)->_count);
354 static inline void get_page(struct page *page)
357 * Getting a normal page or the head of a compound page
358 * requires to already have an elevated page->_count. Only if
359 * we're getting a tail page, the elevated page->_count is
360 * required only in the head page, so for tail pages the
361 * bugcheck only verifies that the page->_count isn't
362 * negative.
364 VM_BUG_ON(atomic_read(&page->_count) < !PageTail(page));
365 atomic_inc(&page->_count);
367 * Getting a tail page will elevate both the head and tail
368 * page->_count(s).
370 if (unlikely(PageTail(page))) {
372 * This is safe only because
373 * __split_huge_page_refcount can't run under
374 * get_page().
376 VM_BUG_ON(atomic_read(&page->first_page->_count) <= 0);
377 atomic_inc(&page->first_page->_count);
381 static inline struct page *virt_to_head_page(const void *x)
383 struct page *page = virt_to_page(x);
384 return compound_head(page);
388 * Setup the page count before being freed into the page allocator for
389 * the first time (boot or memory hotplug)
391 static inline void init_page_count(struct page *page)
393 atomic_set(&page->_count, 1);
396 void put_page(struct page *page);
397 void put_pages_list(struct list_head *pages);
399 void split_page(struct page *page, unsigned int order);
400 int split_free_page(struct page *page);
403 * Compound pages have a destructor function. Provide a
404 * prototype for that function and accessor functions.
405 * These are _only_ valid on the head of a PG_compound page.
407 typedef void compound_page_dtor(struct page *);
409 static inline void set_compound_page_dtor(struct page *page,
410 compound_page_dtor *dtor)
412 page[1].lru.next = (void *)dtor;
415 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
417 return (compound_page_dtor *)page[1].lru.next;
420 static inline int compound_order(struct page *page)
422 if (!PageHead(page))
423 return 0;
424 return (unsigned long)page[1].lru.prev;
427 static inline void set_compound_order(struct page *page, unsigned long order)
429 page[1].lru.prev = (void *)order;
433 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
434 * servicing faults for write access. In the normal case, do always want
435 * pte_mkwrite. But get_user_pages can cause write faults for mappings
436 * that do not have writing enabled, when used by access_process_vm.
438 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
440 if (likely(vma->vm_flags & VM_WRITE))
441 pte = pte_mkwrite(pte);
442 return pte;
446 * Multiple processes may "see" the same page. E.g. for untouched
447 * mappings of /dev/null, all processes see the same page full of
448 * zeroes, and text pages of executables and shared libraries have
449 * only one copy in memory, at most, normally.
451 * For the non-reserved pages, page_count(page) denotes a reference count.
452 * page_count() == 0 means the page is free. page->lru is then used for
453 * freelist management in the buddy allocator.
454 * page_count() > 0 means the page has been allocated.
456 * Pages are allocated by the slab allocator in order to provide memory
457 * to kmalloc and kmem_cache_alloc. In this case, the management of the
458 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
459 * unless a particular usage is carefully commented. (the responsibility of
460 * freeing the kmalloc memory is the caller's, of course).
462 * A page may be used by anyone else who does a __get_free_page().
463 * In this case, page_count still tracks the references, and should only
464 * be used through the normal accessor functions. The top bits of page->flags
465 * and page->virtual store page management information, but all other fields
466 * are unused and could be used privately, carefully. The management of this
467 * page is the responsibility of the one who allocated it, and those who have
468 * subsequently been given references to it.
470 * The other pages (we may call them "pagecache pages") are completely
471 * managed by the Linux memory manager: I/O, buffers, swapping etc.
472 * The following discussion applies only to them.
474 * A pagecache page contains an opaque `private' member, which belongs to the
475 * page's address_space. Usually, this is the address of a circular list of
476 * the page's disk buffers. PG_private must be set to tell the VM to call
477 * into the filesystem to release these pages.
479 * A page may belong to an inode's memory mapping. In this case, page->mapping
480 * is the pointer to the inode, and page->index is the file offset of the page,
481 * in units of PAGE_CACHE_SIZE.
483 * If pagecache pages are not associated with an inode, they are said to be
484 * anonymous pages. These may become associated with the swapcache, and in that
485 * case PG_swapcache is set, and page->private is an offset into the swapcache.
487 * In either case (swapcache or inode backed), the pagecache itself holds one
488 * reference to the page. Setting PG_private should also increment the
489 * refcount. The each user mapping also has a reference to the page.
491 * The pagecache pages are stored in a per-mapping radix tree, which is
492 * rooted at mapping->page_tree, and indexed by offset.
493 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
494 * lists, we instead now tag pages as dirty/writeback in the radix tree.
496 * All pagecache pages may be subject to I/O:
497 * - inode pages may need to be read from disk,
498 * - inode pages which have been modified and are MAP_SHARED may need
499 * to be written back to the inode on disk,
500 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
501 * modified may need to be swapped out to swap space and (later) to be read
502 * back into memory.
506 * The zone field is never updated after free_area_init_core()
507 * sets it, so none of the operations on it need to be atomic.
512 * page->flags layout:
514 * There are three possibilities for how page->flags get
515 * laid out. The first is for the normal case, without
516 * sparsemem. The second is for sparsemem when there is
517 * plenty of space for node and section. The last is when
518 * we have run out of space and have to fall back to an
519 * alternate (slower) way of determining the node.
521 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
522 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
523 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
525 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
526 #define SECTIONS_WIDTH SECTIONS_SHIFT
527 #else
528 #define SECTIONS_WIDTH 0
529 #endif
531 #define ZONES_WIDTH ZONES_SHIFT
533 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
534 #define NODES_WIDTH NODES_SHIFT
535 #else
536 #ifdef CONFIG_SPARSEMEM_VMEMMAP
537 #error "Vmemmap: No space for nodes field in page flags"
538 #endif
539 #define NODES_WIDTH 0
540 #endif
542 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
543 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
544 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
545 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
548 * We are going to use the flags for the page to node mapping if its in
549 * there. This includes the case where there is no node, so it is implicit.
551 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
552 #define NODE_NOT_IN_PAGE_FLAGS
553 #endif
555 #ifndef PFN_SECTION_SHIFT
556 #define PFN_SECTION_SHIFT 0
557 #endif
560 * Define the bit shifts to access each section. For non-existant
561 * sections we define the shift as 0; that plus a 0 mask ensures
562 * the compiler will optimise away reference to them.
564 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
565 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
566 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
568 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
569 #ifdef NODE_NOT_IN_PAGE_FLAGS
570 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
571 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
572 SECTIONS_PGOFF : ZONES_PGOFF)
573 #else
574 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
575 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
576 NODES_PGOFF : ZONES_PGOFF)
577 #endif
579 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
581 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
582 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
583 #endif
585 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
586 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
587 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
588 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
590 static inline enum zone_type page_zonenum(struct page *page)
592 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
596 * The identification function is only used by the buddy allocator for
597 * determining if two pages could be buddies. We are not really
598 * identifying a zone since we could be using a the section number
599 * id if we have not node id available in page flags.
600 * We guarantee only that it will return the same value for two
601 * combinable pages in a zone.
603 static inline int page_zone_id(struct page *page)
605 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
608 static inline int zone_to_nid(struct zone *zone)
610 #ifdef CONFIG_NUMA
611 return zone->node;
612 #else
613 return 0;
614 #endif
617 #ifdef NODE_NOT_IN_PAGE_FLAGS
618 extern int page_to_nid(struct page *page);
619 #else
620 static inline int page_to_nid(struct page *page)
622 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
624 #endif
626 static inline struct zone *page_zone(struct page *page)
628 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
631 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
632 static inline unsigned long page_to_section(struct page *page)
634 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
636 #endif
638 static inline void set_page_zone(struct page *page, enum zone_type zone)
640 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
641 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
644 static inline void set_page_node(struct page *page, unsigned long node)
646 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
647 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
650 static inline void set_page_section(struct page *page, unsigned long section)
652 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
653 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
656 static inline void set_page_links(struct page *page, enum zone_type zone,
657 unsigned long node, unsigned long pfn)
659 set_page_zone(page, zone);
660 set_page_node(page, node);
661 set_page_section(page, pfn_to_section_nr(pfn));
665 * Some inline functions in vmstat.h depend on page_zone()
667 #include <linux/vmstat.h>
669 static __always_inline void *lowmem_page_address(struct page *page)
671 return __va(PFN_PHYS(page_to_pfn(page)));
674 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
675 #define HASHED_PAGE_VIRTUAL
676 #endif
678 #if defined(WANT_PAGE_VIRTUAL)
679 #define page_address(page) ((page)->virtual)
680 #define set_page_address(page, address) \
681 do { \
682 (page)->virtual = (address); \
683 } while(0)
684 #define page_address_init() do { } while(0)
685 #endif
687 #if defined(HASHED_PAGE_VIRTUAL)
688 void *page_address(struct page *page);
689 void set_page_address(struct page *page, void *virtual);
690 void page_address_init(void);
691 #endif
693 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
694 #define page_address(page) lowmem_page_address(page)
695 #define set_page_address(page, address) do { } while(0)
696 #define page_address_init() do { } while(0)
697 #endif
700 * On an anonymous page mapped into a user virtual memory area,
701 * page->mapping points to its anon_vma, not to a struct address_space;
702 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
704 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
705 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
706 * and then page->mapping points, not to an anon_vma, but to a private
707 * structure which KSM associates with that merged page. See ksm.h.
709 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
711 * Please note that, confusingly, "page_mapping" refers to the inode
712 * address_space which maps the page from disk; whereas "page_mapped"
713 * refers to user virtual address space into which the page is mapped.
715 #define PAGE_MAPPING_ANON 1
716 #define PAGE_MAPPING_KSM 2
717 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
719 extern struct address_space swapper_space;
720 static inline struct address_space *page_mapping(struct page *page)
722 struct address_space *mapping = page->mapping;
724 VM_BUG_ON(PageSlab(page));
725 if (unlikely(PageSwapCache(page)))
726 mapping = &swapper_space;
727 else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
728 mapping = NULL;
729 return mapping;
732 /* Neutral page->mapping pointer to address_space or anon_vma or other */
733 static inline void *page_rmapping(struct page *page)
735 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
738 static inline int PageAnon(struct page *page)
740 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
744 * Return the pagecache index of the passed page. Regular pagecache pages
745 * use ->index whereas swapcache pages use ->private
747 static inline pgoff_t page_index(struct page *page)
749 if (unlikely(PageSwapCache(page)))
750 return page_private(page);
751 return page->index;
755 * The atomic page->_mapcount, like _count, starts from -1:
756 * so that transitions both from it and to it can be tracked,
757 * using atomic_inc_and_test and atomic_add_negative(-1).
759 static inline void reset_page_mapcount(struct page *page)
761 atomic_set(&(page)->_mapcount, -1);
764 static inline int page_mapcount(struct page *page)
766 return atomic_read(&(page)->_mapcount) + 1;
770 * Return true if this page is mapped into pagetables.
772 static inline int page_mapped(struct page *page)
774 return atomic_read(&(page)->_mapcount) >= 0;
778 * Different kinds of faults, as returned by handle_mm_fault().
779 * Used to decide whether a process gets delivered SIGBUS or
780 * just gets major/minor fault counters bumped up.
783 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
785 #define VM_FAULT_OOM 0x0001
786 #define VM_FAULT_SIGBUS 0x0002
787 #define VM_FAULT_MAJOR 0x0004
788 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
789 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
790 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
792 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
793 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
794 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
796 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
798 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
799 VM_FAULT_HWPOISON_LARGE)
801 /* Encode hstate index for a hwpoisoned large page */
802 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
803 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
806 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
808 extern void pagefault_out_of_memory(void);
810 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
812 extern void show_free_areas(void);
814 int shmem_lock(struct file *file, int lock, struct user_struct *user);
815 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags);
816 int shmem_zero_setup(struct vm_area_struct *);
818 #ifndef CONFIG_MMU
819 extern unsigned long shmem_get_unmapped_area(struct file *file,
820 unsigned long addr,
821 unsigned long len,
822 unsigned long pgoff,
823 unsigned long flags);
824 #endif
826 extern int can_do_mlock(void);
827 extern int user_shm_lock(size_t, struct user_struct *);
828 extern void user_shm_unlock(size_t, struct user_struct *);
831 * Parameter block passed down to zap_pte_range in exceptional cases.
833 struct zap_details {
834 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
835 struct address_space *check_mapping; /* Check page->mapping if set */
836 pgoff_t first_index; /* Lowest page->index to unmap */
837 pgoff_t last_index; /* Highest page->index to unmap */
838 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
839 unsigned long truncate_count; /* Compare vm_truncate_count */
842 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
843 pte_t pte);
845 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
846 unsigned long size);
847 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
848 unsigned long size, struct zap_details *);
849 unsigned long unmap_vmas(struct mmu_gather **tlb,
850 struct vm_area_struct *start_vma, unsigned long start_addr,
851 unsigned long end_addr, unsigned long *nr_accounted,
852 struct zap_details *);
855 * mm_walk - callbacks for walk_page_range
856 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
857 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
858 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
859 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
860 * @pte_hole: if set, called for each hole at all levels
861 * @hugetlb_entry: if set, called for each hugetlb entry
863 * (see walk_page_range for more details)
865 struct mm_walk {
866 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
867 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
868 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
869 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
870 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
871 int (*hugetlb_entry)(pte_t *, unsigned long,
872 unsigned long, unsigned long, struct mm_walk *);
873 struct mm_struct *mm;
874 void *private;
877 int walk_page_range(unsigned long addr, unsigned long end,
878 struct mm_walk *walk);
879 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
880 unsigned long end, unsigned long floor, unsigned long ceiling);
881 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
882 struct vm_area_struct *vma);
883 void unmap_mapping_range(struct address_space *mapping,
884 loff_t const holebegin, loff_t const holelen, int even_cows);
885 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
886 unsigned long *pfn);
887 int follow_phys(struct vm_area_struct *vma, unsigned long address,
888 unsigned int flags, unsigned long *prot, resource_size_t *phys);
889 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
890 void *buf, int len, int write);
892 static inline void unmap_shared_mapping_range(struct address_space *mapping,
893 loff_t const holebegin, loff_t const holelen)
895 unmap_mapping_range(mapping, holebegin, holelen, 0);
898 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
899 extern void truncate_setsize(struct inode *inode, loff_t newsize);
900 extern int vmtruncate(struct inode *inode, loff_t offset);
901 extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
903 int truncate_inode_page(struct address_space *mapping, struct page *page);
904 int generic_error_remove_page(struct address_space *mapping, struct page *page);
906 int invalidate_inode_page(struct page *page);
908 #ifdef CONFIG_MMU
909 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
910 unsigned long address, unsigned int flags);
911 #else
912 static inline int handle_mm_fault(struct mm_struct *mm,
913 struct vm_area_struct *vma, unsigned long address,
914 unsigned int flags)
916 /* should never happen if there's no MMU */
917 BUG();
918 return VM_FAULT_SIGBUS;
920 #endif
922 extern int make_pages_present(unsigned long addr, unsigned long end);
923 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
925 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
926 unsigned long start, int nr_pages, int write, int force,
927 struct page **pages, struct vm_area_struct **vmas);
928 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
929 struct page **pages);
930 struct page *get_dump_page(unsigned long addr);
932 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
933 extern void do_invalidatepage(struct page *page, unsigned long offset);
935 int __set_page_dirty_nobuffers(struct page *page);
936 int __set_page_dirty_no_writeback(struct page *page);
937 int redirty_page_for_writepage(struct writeback_control *wbc,
938 struct page *page);
939 void account_page_dirtied(struct page *page, struct address_space *mapping);
940 void account_page_writeback(struct page *page);
941 int set_page_dirty(struct page *page);
942 int set_page_dirty_lock(struct page *page);
943 int clear_page_dirty_for_io(struct page *page);
945 /* Is the vma a continuation of the stack vma above it? */
946 static inline int vma_stack_continue(struct vm_area_struct *vma, unsigned long addr)
948 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
951 extern unsigned long move_page_tables(struct vm_area_struct *vma,
952 unsigned long old_addr, struct vm_area_struct *new_vma,
953 unsigned long new_addr, unsigned long len);
954 extern unsigned long do_mremap(unsigned long addr,
955 unsigned long old_len, unsigned long new_len,
956 unsigned long flags, unsigned long new_addr);
957 extern int mprotect_fixup(struct vm_area_struct *vma,
958 struct vm_area_struct **pprev, unsigned long start,
959 unsigned long end, unsigned long newflags);
962 * doesn't attempt to fault and will return short.
964 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
965 struct page **pages);
967 * per-process(per-mm_struct) statistics.
969 #if defined(SPLIT_RSS_COUNTING)
971 * The mm counters are not protected by its page_table_lock,
972 * so must be incremented atomically.
974 static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
976 atomic_long_set(&mm->rss_stat.count[member], value);
979 unsigned long get_mm_counter(struct mm_struct *mm, int member);
981 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
983 atomic_long_add(value, &mm->rss_stat.count[member]);
986 static inline void inc_mm_counter(struct mm_struct *mm, int member)
988 atomic_long_inc(&mm->rss_stat.count[member]);
991 static inline void dec_mm_counter(struct mm_struct *mm, int member)
993 atomic_long_dec(&mm->rss_stat.count[member]);
996 #else /* !USE_SPLIT_PTLOCKS */
998 * The mm counters are protected by its page_table_lock,
999 * so can be incremented directly.
1001 static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
1003 mm->rss_stat.count[member] = value;
1006 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1008 return mm->rss_stat.count[member];
1011 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1013 mm->rss_stat.count[member] += value;
1016 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1018 mm->rss_stat.count[member]++;
1021 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1023 mm->rss_stat.count[member]--;
1026 #endif /* !USE_SPLIT_PTLOCKS */
1028 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1030 return get_mm_counter(mm, MM_FILEPAGES) +
1031 get_mm_counter(mm, MM_ANONPAGES);
1034 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1036 return max(mm->hiwater_rss, get_mm_rss(mm));
1039 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1041 return max(mm->hiwater_vm, mm->total_vm);
1044 static inline void update_hiwater_rss(struct mm_struct *mm)
1046 unsigned long _rss = get_mm_rss(mm);
1048 if ((mm)->hiwater_rss < _rss)
1049 (mm)->hiwater_rss = _rss;
1052 static inline void update_hiwater_vm(struct mm_struct *mm)
1054 if (mm->hiwater_vm < mm->total_vm)
1055 mm->hiwater_vm = mm->total_vm;
1058 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1059 struct mm_struct *mm)
1061 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1063 if (*maxrss < hiwater_rss)
1064 *maxrss = hiwater_rss;
1067 #if defined(SPLIT_RSS_COUNTING)
1068 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm);
1069 #else
1070 static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
1073 #endif
1076 * A callback you can register to apply pressure to ageable caches.
1078 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
1079 * look through the least-recently-used 'nr_to_scan' entries and
1080 * attempt to free them up. It should return the number of objects
1081 * which remain in the cache. If it returns -1, it means it cannot do
1082 * any scanning at this time (eg. there is a risk of deadlock).
1084 * The 'gfpmask' refers to the allocation we are currently trying to
1085 * fulfil.
1087 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
1088 * querying the cache size, so a fastpath for that case is appropriate.
1090 struct shrinker {
1091 int (*shrink)(struct shrinker *, int nr_to_scan, gfp_t gfp_mask);
1092 int seeks; /* seeks to recreate an obj */
1094 /* These are for internal use */
1095 struct list_head list;
1096 long nr; /* objs pending delete */
1098 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
1099 extern void register_shrinker(struct shrinker *);
1100 extern void unregister_shrinker(struct shrinker *);
1102 int vma_wants_writenotify(struct vm_area_struct *vma);
1104 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1105 spinlock_t **ptl);
1106 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1107 spinlock_t **ptl)
1109 pte_t *ptep;
1110 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1111 return ptep;
1114 #ifdef __PAGETABLE_PUD_FOLDED
1115 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1116 unsigned long address)
1118 return 0;
1120 #else
1121 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1122 #endif
1124 #ifdef __PAGETABLE_PMD_FOLDED
1125 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1126 unsigned long address)
1128 return 0;
1130 #else
1131 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1132 #endif
1134 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1135 pmd_t *pmd, unsigned long address);
1136 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1139 * The following ifdef needed to get the 4level-fixup.h header to work.
1140 * Remove it when 4level-fixup.h has been removed.
1142 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1143 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1145 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1146 NULL: pud_offset(pgd, address);
1149 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1151 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1152 NULL: pmd_offset(pud, address);
1154 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1156 #if USE_SPLIT_PTLOCKS
1158 * We tuck a spinlock to guard each pagetable page into its struct page,
1159 * at page->private, with BUILD_BUG_ON to make sure that this will not
1160 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1161 * When freeing, reset page->mapping so free_pages_check won't complain.
1163 #define __pte_lockptr(page) &((page)->ptl)
1164 #define pte_lock_init(_page) do { \
1165 spin_lock_init(__pte_lockptr(_page)); \
1166 } while (0)
1167 #define pte_lock_deinit(page) ((page)->mapping = NULL)
1168 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1169 #else /* !USE_SPLIT_PTLOCKS */
1171 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1173 #define pte_lock_init(page) do {} while (0)
1174 #define pte_lock_deinit(page) do {} while (0)
1175 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
1176 #endif /* USE_SPLIT_PTLOCKS */
1178 static inline void pgtable_page_ctor(struct page *page)
1180 pte_lock_init(page);
1181 inc_zone_page_state(page, NR_PAGETABLE);
1184 static inline void pgtable_page_dtor(struct page *page)
1186 pte_lock_deinit(page);
1187 dec_zone_page_state(page, NR_PAGETABLE);
1190 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1191 ({ \
1192 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1193 pte_t *__pte = pte_offset_map(pmd, address); \
1194 *(ptlp) = __ptl; \
1195 spin_lock(__ptl); \
1196 __pte; \
1199 #define pte_unmap_unlock(pte, ptl) do { \
1200 spin_unlock(ptl); \
1201 pte_unmap(pte); \
1202 } while (0)
1204 #define pte_alloc_map(mm, vma, pmd, address) \
1205 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1206 pmd, address))? \
1207 NULL: pte_offset_map(pmd, address))
1209 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1210 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1211 pmd, address))? \
1212 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1214 #define pte_alloc_kernel(pmd, address) \
1215 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1216 NULL: pte_offset_kernel(pmd, address))
1218 extern void free_area_init(unsigned long * zones_size);
1219 extern void free_area_init_node(int nid, unsigned long * zones_size,
1220 unsigned long zone_start_pfn, unsigned long *zholes_size);
1221 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
1223 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
1224 * zones, allocate the backing mem_map and account for memory holes in a more
1225 * architecture independent manner. This is a substitute for creating the
1226 * zone_sizes[] and zholes_size[] arrays and passing them to
1227 * free_area_init_node()
1229 * An architecture is expected to register range of page frames backed by
1230 * physical memory with add_active_range() before calling
1231 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1232 * usage, an architecture is expected to do something like
1234 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1235 * max_highmem_pfn};
1236 * for_each_valid_physical_page_range()
1237 * add_active_range(node_id, start_pfn, end_pfn)
1238 * free_area_init_nodes(max_zone_pfns);
1240 * If the architecture guarantees that there are no holes in the ranges
1241 * registered with add_active_range(), free_bootmem_active_regions()
1242 * will call free_bootmem_node() for each registered physical page range.
1243 * Similarly sparse_memory_present_with_active_regions() calls
1244 * memory_present() for each range when SPARSEMEM is enabled.
1246 * See mm/page_alloc.c for more information on each function exposed by
1247 * CONFIG_ARCH_POPULATES_NODE_MAP
1249 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1250 extern void add_active_range(unsigned int nid, unsigned long start_pfn,
1251 unsigned long end_pfn);
1252 extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
1253 unsigned long end_pfn);
1254 extern void remove_all_active_ranges(void);
1255 void sort_node_map(void);
1256 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1257 unsigned long end_pfn);
1258 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1259 unsigned long end_pfn);
1260 extern void get_pfn_range_for_nid(unsigned int nid,
1261 unsigned long *start_pfn, unsigned long *end_pfn);
1262 extern unsigned long find_min_pfn_with_active_regions(void);
1263 extern void free_bootmem_with_active_regions(int nid,
1264 unsigned long max_low_pfn);
1265 int add_from_early_node_map(struct range *range, int az,
1266 int nr_range, int nid);
1267 u64 __init find_memory_core_early(int nid, u64 size, u64 align,
1268 u64 goal, u64 limit);
1269 void *__alloc_memory_core_early(int nodeid, u64 size, u64 align,
1270 u64 goal, u64 limit);
1271 typedef int (*work_fn_t)(unsigned long, unsigned long, void *);
1272 extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);
1273 extern void sparse_memory_present_with_active_regions(int nid);
1274 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1276 #if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \
1277 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1278 static inline int __early_pfn_to_nid(unsigned long pfn)
1280 return 0;
1282 #else
1283 /* please see mm/page_alloc.c */
1284 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1285 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1286 /* there is a per-arch backend function. */
1287 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1288 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1289 #endif
1291 extern void set_dma_reserve(unsigned long new_dma_reserve);
1292 extern void memmap_init_zone(unsigned long, int, unsigned long,
1293 unsigned long, enum memmap_context);
1294 extern void setup_per_zone_wmarks(void);
1295 extern void calculate_zone_inactive_ratio(struct zone *zone);
1296 extern void mem_init(void);
1297 extern void __init mmap_init(void);
1298 extern void show_mem(void);
1299 extern void si_meminfo(struct sysinfo * val);
1300 extern void si_meminfo_node(struct sysinfo *val, int nid);
1301 extern int after_bootmem;
1303 extern void setup_per_cpu_pageset(void);
1305 extern void zone_pcp_update(struct zone *zone);
1307 /* nommu.c */
1308 extern atomic_long_t mmap_pages_allocated;
1309 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1311 /* prio_tree.c */
1312 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1313 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1314 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1315 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1316 struct prio_tree_iter *iter);
1318 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1319 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1320 (vma = vma_prio_tree_next(vma, iter)); )
1322 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1323 struct list_head *list)
1325 vma->shared.vm_set.parent = NULL;
1326 list_add_tail(&vma->shared.vm_set.list, list);
1329 /* mmap.c */
1330 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1331 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1332 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1333 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1334 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1335 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1336 struct mempolicy *);
1337 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1338 extern int split_vma(struct mm_struct *,
1339 struct vm_area_struct *, unsigned long addr, int new_below);
1340 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1341 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1342 struct rb_node **, struct rb_node *);
1343 extern void unlink_file_vma(struct vm_area_struct *);
1344 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1345 unsigned long addr, unsigned long len, pgoff_t pgoff);
1346 extern void exit_mmap(struct mm_struct *);
1348 extern int mm_take_all_locks(struct mm_struct *mm);
1349 extern void mm_drop_all_locks(struct mm_struct *mm);
1351 #ifdef CONFIG_PROC_FS
1352 /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1353 extern void added_exe_file_vma(struct mm_struct *mm);
1354 extern void removed_exe_file_vma(struct mm_struct *mm);
1355 #else
1356 static inline void added_exe_file_vma(struct mm_struct *mm)
1359 static inline void removed_exe_file_vma(struct mm_struct *mm)
1361 #endif /* CONFIG_PROC_FS */
1363 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1364 extern int install_special_mapping(struct mm_struct *mm,
1365 unsigned long addr, unsigned long len,
1366 unsigned long flags, struct page **pages);
1368 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1370 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1371 unsigned long len, unsigned long prot,
1372 unsigned long flag, unsigned long pgoff);
1373 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1374 unsigned long len, unsigned long flags,
1375 unsigned int vm_flags, unsigned long pgoff);
1377 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1378 unsigned long len, unsigned long prot,
1379 unsigned long flag, unsigned long offset)
1381 unsigned long ret = -EINVAL;
1382 if ((offset + PAGE_ALIGN(len)) < offset)
1383 goto out;
1384 if (!(offset & ~PAGE_MASK))
1385 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1386 out:
1387 return ret;
1390 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1392 extern unsigned long do_brk(unsigned long, unsigned long);
1394 /* filemap.c */
1395 extern unsigned long page_unuse(struct page *);
1396 extern void truncate_inode_pages(struct address_space *, loff_t);
1397 extern void truncate_inode_pages_range(struct address_space *,
1398 loff_t lstart, loff_t lend);
1400 /* generic vm_area_ops exported for stackable file systems */
1401 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1403 /* mm/page-writeback.c */
1404 int write_one_page(struct page *page, int wait);
1405 void task_dirty_inc(struct task_struct *tsk);
1407 /* readahead.c */
1408 #define VM_MAX_READAHEAD 128 /* kbytes */
1409 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1411 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1412 pgoff_t offset, unsigned long nr_to_read);
1414 void page_cache_sync_readahead(struct address_space *mapping,
1415 struct file_ra_state *ra,
1416 struct file *filp,
1417 pgoff_t offset,
1418 unsigned long size);
1420 void page_cache_async_readahead(struct address_space *mapping,
1421 struct file_ra_state *ra,
1422 struct file *filp,
1423 struct page *pg,
1424 pgoff_t offset,
1425 unsigned long size);
1427 unsigned long max_sane_readahead(unsigned long nr);
1428 unsigned long ra_submit(struct file_ra_state *ra,
1429 struct address_space *mapping,
1430 struct file *filp);
1432 /* Do stack extension */
1433 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1434 #if VM_GROWSUP
1435 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1436 #else
1437 #define expand_upwards(vma, address) do { } while (0)
1438 #endif
1439 extern int expand_stack_downwards(struct vm_area_struct *vma,
1440 unsigned long address);
1442 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1443 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1444 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1445 struct vm_area_struct **pprev);
1447 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1448 NULL if none. Assume start_addr < end_addr. */
1449 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1451 struct vm_area_struct * vma = find_vma(mm,start_addr);
1453 if (vma && end_addr <= vma->vm_start)
1454 vma = NULL;
1455 return vma;
1458 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1460 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1463 #ifdef CONFIG_MMU
1464 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1465 #else
1466 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1468 return __pgprot(0);
1470 #endif
1472 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1473 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1474 unsigned long pfn, unsigned long size, pgprot_t);
1475 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1476 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1477 unsigned long pfn);
1478 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1479 unsigned long pfn);
1481 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1482 unsigned int foll_flags);
1483 #define FOLL_WRITE 0x01 /* check pte is writable */
1484 #define FOLL_TOUCH 0x02 /* mark page accessed */
1485 #define FOLL_GET 0x04 /* do get_page on page */
1486 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1487 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1488 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
1490 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1491 void *data);
1492 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1493 unsigned long size, pte_fn_t fn, void *data);
1495 #ifdef CONFIG_PROC_FS
1496 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1497 #else
1498 static inline void vm_stat_account(struct mm_struct *mm,
1499 unsigned long flags, struct file *file, long pages)
1502 #endif /* CONFIG_PROC_FS */
1504 #ifdef CONFIG_DEBUG_PAGEALLOC
1505 extern int debug_pagealloc_enabled;
1507 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1509 static inline void enable_debug_pagealloc(void)
1511 debug_pagealloc_enabled = 1;
1513 #ifdef CONFIG_HIBERNATION
1514 extern bool kernel_page_present(struct page *page);
1515 #endif /* CONFIG_HIBERNATION */
1516 #else
1517 static inline void
1518 kernel_map_pages(struct page *page, int numpages, int enable) {}
1519 static inline void enable_debug_pagealloc(void)
1522 #ifdef CONFIG_HIBERNATION
1523 static inline bool kernel_page_present(struct page *page) { return true; }
1524 #endif /* CONFIG_HIBERNATION */
1525 #endif
1527 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1528 #ifdef __HAVE_ARCH_GATE_AREA
1529 int in_gate_area_no_task(unsigned long addr);
1530 int in_gate_area(struct task_struct *task, unsigned long addr);
1531 #else
1532 int in_gate_area_no_task(unsigned long addr);
1533 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1534 #endif /* __HAVE_ARCH_GATE_AREA */
1536 int drop_caches_sysctl_handler(struct ctl_table *, int,
1537 void __user *, size_t *, loff_t *);
1538 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
1539 unsigned long lru_pages);
1541 #ifndef CONFIG_MMU
1542 #define randomize_va_space 0
1543 #else
1544 extern int randomize_va_space;
1545 #endif
1547 const char * arch_vma_name(struct vm_area_struct *vma);
1548 void print_vma_addr(char *prefix, unsigned long rip);
1550 void sparse_mem_maps_populate_node(struct page **map_map,
1551 unsigned long pnum_begin,
1552 unsigned long pnum_end,
1553 unsigned long map_count,
1554 int nodeid);
1556 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1557 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1558 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1559 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1560 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1561 void *vmemmap_alloc_block(unsigned long size, int node);
1562 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1563 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1564 int vmemmap_populate_basepages(struct page *start_page,
1565 unsigned long pages, int node);
1566 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1567 void vmemmap_populate_print_last(void);
1570 enum mf_flags {
1571 MF_COUNT_INCREASED = 1 << 0,
1573 extern void memory_failure(unsigned long pfn, int trapno);
1574 extern int __memory_failure(unsigned long pfn, int trapno, int flags);
1575 extern int unpoison_memory(unsigned long pfn);
1576 extern int sysctl_memory_failure_early_kill;
1577 extern int sysctl_memory_failure_recovery;
1578 extern void shake_page(struct page *p, int access);
1579 extern atomic_long_t mce_bad_pages;
1580 extern int soft_offline_page(struct page *page, int flags);
1581 #ifdef CONFIG_MEMORY_FAILURE
1582 int is_hwpoison_address(unsigned long addr);
1583 #else
1584 static inline int is_hwpoison_address(unsigned long addr)
1586 return 0;
1588 #endif
1590 extern void dump_page(struct page *page);
1592 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1593 extern void clear_huge_page(struct page *page,
1594 unsigned long addr,
1595 unsigned int pages_per_huge_page);
1596 extern void copy_user_huge_page(struct page *dst, struct page *src,
1597 unsigned long addr, struct vm_area_struct *vma,
1598 unsigned int pages_per_huge_page);
1599 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1601 #endif /* __KERNEL__ */
1602 #endif /* _LINUX_MM_H */