Merge branch 'master' of /home/davem/src/GIT/linux-2.6/
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / core / sock.c
blobfcd397a762ff37d43846bb19a4db0211d9b88ae7
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
83 * To Fix:
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
96 #include <linux/in.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
114 #include <asm/uaccess.h>
115 #include <asm/system.h>
117 #include <linux/netdevice.h>
118 #include <net/protocol.h>
119 #include <linux/skbuff.h>
120 #include <net/net_namespace.h>
121 #include <net/request_sock.h>
122 #include <net/sock.h>
123 #include <linux/net_tstamp.h>
124 #include <net/xfrm.h>
125 #include <linux/ipsec.h>
127 #include <linux/filter.h>
129 #ifdef CONFIG_INET
130 #include <net/tcp.h>
131 #endif
134 * Each address family might have different locking rules, so we have
135 * one slock key per address family:
137 static struct lock_class_key af_family_keys[AF_MAX];
138 static struct lock_class_key af_family_slock_keys[AF_MAX];
141 * Make lock validator output more readable. (we pre-construct these
142 * strings build-time, so that runtime initialization of socket
143 * locks is fast):
145 static const char *const af_family_key_strings[AF_MAX+1] = {
146 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
147 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
148 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
149 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
150 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
151 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
152 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
153 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
154 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
155 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
156 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
157 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
158 "sk_lock-AF_IEEE802154",
159 "sk_lock-AF_MAX"
161 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
162 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
163 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
164 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
165 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
166 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
167 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
168 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
169 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
170 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
171 "slock-27" , "slock-28" , "slock-AF_CAN" ,
172 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
173 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
174 "slock-AF_IEEE802154",
175 "slock-AF_MAX"
177 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
178 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
179 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
180 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
181 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
182 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
183 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
184 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
185 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
186 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
187 "clock-27" , "clock-28" , "clock-AF_CAN" ,
188 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
189 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
190 "clock-AF_IEEE802154",
191 "clock-AF_MAX"
195 * sk_callback_lock locking rules are per-address-family,
196 * so split the lock classes by using a per-AF key:
198 static struct lock_class_key af_callback_keys[AF_MAX];
200 /* Take into consideration the size of the struct sk_buff overhead in the
201 * determination of these values, since that is non-constant across
202 * platforms. This makes socket queueing behavior and performance
203 * not depend upon such differences.
205 #define _SK_MEM_PACKETS 256
206 #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256)
207 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
208 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
210 /* Run time adjustable parameters. */
211 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
212 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
213 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
214 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
216 /* Maximal space eaten by iovec or ancilliary data plus some space */
217 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
218 EXPORT_SYMBOL(sysctl_optmem_max);
220 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
222 struct timeval tv;
224 if (optlen < sizeof(tv))
225 return -EINVAL;
226 if (copy_from_user(&tv, optval, sizeof(tv)))
227 return -EFAULT;
228 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
229 return -EDOM;
231 if (tv.tv_sec < 0) {
232 static int warned __read_mostly;
234 *timeo_p = 0;
235 if (warned < 10 && net_ratelimit()) {
236 warned++;
237 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
238 "tries to set negative timeout\n",
239 current->comm, task_pid_nr(current));
241 return 0;
243 *timeo_p = MAX_SCHEDULE_TIMEOUT;
244 if (tv.tv_sec == 0 && tv.tv_usec == 0)
245 return 0;
246 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
247 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
248 return 0;
251 static void sock_warn_obsolete_bsdism(const char *name)
253 static int warned;
254 static char warncomm[TASK_COMM_LEN];
255 if (strcmp(warncomm, current->comm) && warned < 5) {
256 strcpy(warncomm, current->comm);
257 printk(KERN_WARNING "process `%s' is using obsolete "
258 "%s SO_BSDCOMPAT\n", warncomm, name);
259 warned++;
263 static void sock_disable_timestamp(struct sock *sk, int flag)
265 if (sock_flag(sk, flag)) {
266 sock_reset_flag(sk, flag);
267 if (!sock_flag(sk, SOCK_TIMESTAMP) &&
268 !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
269 net_disable_timestamp();
275 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
277 int err;
278 int skb_len;
279 unsigned long flags;
280 struct sk_buff_head *list = &sk->sk_receive_queue;
282 /* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
283 number of warnings when compiling with -W --ANK
285 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
286 (unsigned)sk->sk_rcvbuf) {
287 atomic_inc(&sk->sk_drops);
288 return -ENOMEM;
291 err = sk_filter(sk, skb);
292 if (err)
293 return err;
295 if (!sk_rmem_schedule(sk, skb->truesize)) {
296 atomic_inc(&sk->sk_drops);
297 return -ENOBUFS;
300 skb->dev = NULL;
301 skb_set_owner_r(skb, sk);
303 /* Cache the SKB length before we tack it onto the receive
304 * queue. Once it is added it no longer belongs to us and
305 * may be freed by other threads of control pulling packets
306 * from the queue.
308 skb_len = skb->len;
310 spin_lock_irqsave(&list->lock, flags);
311 skb->dropcount = atomic_read(&sk->sk_drops);
312 __skb_queue_tail(list, skb);
313 spin_unlock_irqrestore(&list->lock, flags);
315 if (!sock_flag(sk, SOCK_DEAD))
316 sk->sk_data_ready(sk, skb_len);
317 return 0;
319 EXPORT_SYMBOL(sock_queue_rcv_skb);
321 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
323 int rc = NET_RX_SUCCESS;
325 if (sk_filter(sk, skb))
326 goto discard_and_relse;
328 skb->dev = NULL;
330 if (nested)
331 bh_lock_sock_nested(sk);
332 else
333 bh_lock_sock(sk);
334 if (!sock_owned_by_user(sk)) {
336 * trylock + unlock semantics:
338 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
340 rc = sk_backlog_rcv(sk, skb);
342 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
343 } else
344 sk_add_backlog(sk, skb);
345 bh_unlock_sock(sk);
346 out:
347 sock_put(sk);
348 return rc;
349 discard_and_relse:
350 kfree_skb(skb);
351 goto out;
353 EXPORT_SYMBOL(sk_receive_skb);
355 void sk_reset_txq(struct sock *sk)
357 sk_tx_queue_clear(sk);
359 EXPORT_SYMBOL(sk_reset_txq);
361 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
363 struct dst_entry *dst = sk->sk_dst_cache;
365 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
366 sk_tx_queue_clear(sk);
367 sk->sk_dst_cache = NULL;
368 dst_release(dst);
369 return NULL;
372 return dst;
374 EXPORT_SYMBOL(__sk_dst_check);
376 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
378 struct dst_entry *dst = sk_dst_get(sk);
380 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
381 sk_dst_reset(sk);
382 dst_release(dst);
383 return NULL;
386 return dst;
388 EXPORT_SYMBOL(sk_dst_check);
390 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
392 int ret = -ENOPROTOOPT;
393 #ifdef CONFIG_NETDEVICES
394 struct net *net = sock_net(sk);
395 char devname[IFNAMSIZ];
396 int index;
398 /* Sorry... */
399 ret = -EPERM;
400 if (!capable(CAP_NET_RAW))
401 goto out;
403 ret = -EINVAL;
404 if (optlen < 0)
405 goto out;
407 /* Bind this socket to a particular device like "eth0",
408 * as specified in the passed interface name. If the
409 * name is "" or the option length is zero the socket
410 * is not bound.
412 if (optlen > IFNAMSIZ - 1)
413 optlen = IFNAMSIZ - 1;
414 memset(devname, 0, sizeof(devname));
416 ret = -EFAULT;
417 if (copy_from_user(devname, optval, optlen))
418 goto out;
420 index = 0;
421 if (devname[0] != '\0') {
422 struct net_device *dev;
424 rcu_read_lock();
425 dev = dev_get_by_name_rcu(net, devname);
426 if (dev)
427 index = dev->ifindex;
428 rcu_read_unlock();
429 ret = -ENODEV;
430 if (!dev)
431 goto out;
434 lock_sock(sk);
435 sk->sk_bound_dev_if = index;
436 sk_dst_reset(sk);
437 release_sock(sk);
439 ret = 0;
441 out:
442 #endif
444 return ret;
447 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
449 if (valbool)
450 sock_set_flag(sk, bit);
451 else
452 sock_reset_flag(sk, bit);
456 * This is meant for all protocols to use and covers goings on
457 * at the socket level. Everything here is generic.
460 int sock_setsockopt(struct socket *sock, int level, int optname,
461 char __user *optval, unsigned int optlen)
463 struct sock *sk = sock->sk;
464 int val;
465 int valbool;
466 struct linger ling;
467 int ret = 0;
470 * Options without arguments
473 if (optname == SO_BINDTODEVICE)
474 return sock_bindtodevice(sk, optval, optlen);
476 if (optlen < sizeof(int))
477 return -EINVAL;
479 if (get_user(val, (int __user *)optval))
480 return -EFAULT;
482 valbool = val ? 1 : 0;
484 lock_sock(sk);
486 switch (optname) {
487 case SO_DEBUG:
488 if (val && !capable(CAP_NET_ADMIN))
489 ret = -EACCES;
490 else
491 sock_valbool_flag(sk, SOCK_DBG, valbool);
492 break;
493 case SO_REUSEADDR:
494 sk->sk_reuse = valbool;
495 break;
496 case SO_TYPE:
497 case SO_PROTOCOL:
498 case SO_DOMAIN:
499 case SO_ERROR:
500 ret = -ENOPROTOOPT;
501 break;
502 case SO_DONTROUTE:
503 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
504 break;
505 case SO_BROADCAST:
506 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
507 break;
508 case SO_SNDBUF:
509 /* Don't error on this BSD doesn't and if you think
510 about it this is right. Otherwise apps have to
511 play 'guess the biggest size' games. RCVBUF/SNDBUF
512 are treated in BSD as hints */
514 if (val > sysctl_wmem_max)
515 val = sysctl_wmem_max;
516 set_sndbuf:
517 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
518 if ((val * 2) < SOCK_MIN_SNDBUF)
519 sk->sk_sndbuf = SOCK_MIN_SNDBUF;
520 else
521 sk->sk_sndbuf = val * 2;
524 * Wake up sending tasks if we
525 * upped the value.
527 sk->sk_write_space(sk);
528 break;
530 case SO_SNDBUFFORCE:
531 if (!capable(CAP_NET_ADMIN)) {
532 ret = -EPERM;
533 break;
535 goto set_sndbuf;
537 case SO_RCVBUF:
538 /* Don't error on this BSD doesn't and if you think
539 about it this is right. Otherwise apps have to
540 play 'guess the biggest size' games. RCVBUF/SNDBUF
541 are treated in BSD as hints */
543 if (val > sysctl_rmem_max)
544 val = sysctl_rmem_max;
545 set_rcvbuf:
546 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
548 * We double it on the way in to account for
549 * "struct sk_buff" etc. overhead. Applications
550 * assume that the SO_RCVBUF setting they make will
551 * allow that much actual data to be received on that
552 * socket.
554 * Applications are unaware that "struct sk_buff" and
555 * other overheads allocate from the receive buffer
556 * during socket buffer allocation.
558 * And after considering the possible alternatives,
559 * returning the value we actually used in getsockopt
560 * is the most desirable behavior.
562 if ((val * 2) < SOCK_MIN_RCVBUF)
563 sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
564 else
565 sk->sk_rcvbuf = val * 2;
566 break;
568 case SO_RCVBUFFORCE:
569 if (!capable(CAP_NET_ADMIN)) {
570 ret = -EPERM;
571 break;
573 goto set_rcvbuf;
575 case SO_KEEPALIVE:
576 #ifdef CONFIG_INET
577 if (sk->sk_protocol == IPPROTO_TCP)
578 tcp_set_keepalive(sk, valbool);
579 #endif
580 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
581 break;
583 case SO_OOBINLINE:
584 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
585 break;
587 case SO_NO_CHECK:
588 sk->sk_no_check = valbool;
589 break;
591 case SO_PRIORITY:
592 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
593 sk->sk_priority = val;
594 else
595 ret = -EPERM;
596 break;
598 case SO_LINGER:
599 if (optlen < sizeof(ling)) {
600 ret = -EINVAL; /* 1003.1g */
601 break;
603 if (copy_from_user(&ling, optval, sizeof(ling))) {
604 ret = -EFAULT;
605 break;
607 if (!ling.l_onoff)
608 sock_reset_flag(sk, SOCK_LINGER);
609 else {
610 #if (BITS_PER_LONG == 32)
611 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
612 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
613 else
614 #endif
615 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
616 sock_set_flag(sk, SOCK_LINGER);
618 break;
620 case SO_BSDCOMPAT:
621 sock_warn_obsolete_bsdism("setsockopt");
622 break;
624 case SO_PASSCRED:
625 if (valbool)
626 set_bit(SOCK_PASSCRED, &sock->flags);
627 else
628 clear_bit(SOCK_PASSCRED, &sock->flags);
629 break;
631 case SO_TIMESTAMP:
632 case SO_TIMESTAMPNS:
633 if (valbool) {
634 if (optname == SO_TIMESTAMP)
635 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
636 else
637 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
638 sock_set_flag(sk, SOCK_RCVTSTAMP);
639 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
640 } else {
641 sock_reset_flag(sk, SOCK_RCVTSTAMP);
642 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
644 break;
646 case SO_TIMESTAMPING:
647 if (val & ~SOF_TIMESTAMPING_MASK) {
648 ret = -EINVAL;
649 break;
651 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
652 val & SOF_TIMESTAMPING_TX_HARDWARE);
653 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
654 val & SOF_TIMESTAMPING_TX_SOFTWARE);
655 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
656 val & SOF_TIMESTAMPING_RX_HARDWARE);
657 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
658 sock_enable_timestamp(sk,
659 SOCK_TIMESTAMPING_RX_SOFTWARE);
660 else
661 sock_disable_timestamp(sk,
662 SOCK_TIMESTAMPING_RX_SOFTWARE);
663 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
664 val & SOF_TIMESTAMPING_SOFTWARE);
665 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
666 val & SOF_TIMESTAMPING_SYS_HARDWARE);
667 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
668 val & SOF_TIMESTAMPING_RAW_HARDWARE);
669 break;
671 case SO_RCVLOWAT:
672 if (val < 0)
673 val = INT_MAX;
674 sk->sk_rcvlowat = val ? : 1;
675 break;
677 case SO_RCVTIMEO:
678 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
679 break;
681 case SO_SNDTIMEO:
682 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
683 break;
685 case SO_ATTACH_FILTER:
686 ret = -EINVAL;
687 if (optlen == sizeof(struct sock_fprog)) {
688 struct sock_fprog fprog;
690 ret = -EFAULT;
691 if (copy_from_user(&fprog, optval, sizeof(fprog)))
692 break;
694 ret = sk_attach_filter(&fprog, sk);
696 break;
698 case SO_DETACH_FILTER:
699 ret = sk_detach_filter(sk);
700 break;
702 case SO_PASSSEC:
703 if (valbool)
704 set_bit(SOCK_PASSSEC, &sock->flags);
705 else
706 clear_bit(SOCK_PASSSEC, &sock->flags);
707 break;
708 case SO_MARK:
709 if (!capable(CAP_NET_ADMIN))
710 ret = -EPERM;
711 else
712 sk->sk_mark = val;
713 break;
715 /* We implement the SO_SNDLOWAT etc to
716 not be settable (1003.1g 5.3) */
717 case SO_RXQ_OVFL:
718 if (valbool)
719 sock_set_flag(sk, SOCK_RXQ_OVFL);
720 else
721 sock_reset_flag(sk, SOCK_RXQ_OVFL);
722 break;
723 default:
724 ret = -ENOPROTOOPT;
725 break;
727 release_sock(sk);
728 return ret;
730 EXPORT_SYMBOL(sock_setsockopt);
733 int sock_getsockopt(struct socket *sock, int level, int optname,
734 char __user *optval, int __user *optlen)
736 struct sock *sk = sock->sk;
738 union {
739 int val;
740 struct linger ling;
741 struct timeval tm;
742 } v;
744 int lv = sizeof(int);
745 int len;
747 if (get_user(len, optlen))
748 return -EFAULT;
749 if (len < 0)
750 return -EINVAL;
752 memset(&v, 0, sizeof(v));
754 switch (optname) {
755 case SO_DEBUG:
756 v.val = sock_flag(sk, SOCK_DBG);
757 break;
759 case SO_DONTROUTE:
760 v.val = sock_flag(sk, SOCK_LOCALROUTE);
761 break;
763 case SO_BROADCAST:
764 v.val = !!sock_flag(sk, SOCK_BROADCAST);
765 break;
767 case SO_SNDBUF:
768 v.val = sk->sk_sndbuf;
769 break;
771 case SO_RCVBUF:
772 v.val = sk->sk_rcvbuf;
773 break;
775 case SO_REUSEADDR:
776 v.val = sk->sk_reuse;
777 break;
779 case SO_KEEPALIVE:
780 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
781 break;
783 case SO_TYPE:
784 v.val = sk->sk_type;
785 break;
787 case SO_PROTOCOL:
788 v.val = sk->sk_protocol;
789 break;
791 case SO_DOMAIN:
792 v.val = sk->sk_family;
793 break;
795 case SO_ERROR:
796 v.val = -sock_error(sk);
797 if (v.val == 0)
798 v.val = xchg(&sk->sk_err_soft, 0);
799 break;
801 case SO_OOBINLINE:
802 v.val = !!sock_flag(sk, SOCK_URGINLINE);
803 break;
805 case SO_NO_CHECK:
806 v.val = sk->sk_no_check;
807 break;
809 case SO_PRIORITY:
810 v.val = sk->sk_priority;
811 break;
813 case SO_LINGER:
814 lv = sizeof(v.ling);
815 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
816 v.ling.l_linger = sk->sk_lingertime / HZ;
817 break;
819 case SO_BSDCOMPAT:
820 sock_warn_obsolete_bsdism("getsockopt");
821 break;
823 case SO_TIMESTAMP:
824 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
825 !sock_flag(sk, SOCK_RCVTSTAMPNS);
826 break;
828 case SO_TIMESTAMPNS:
829 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
830 break;
832 case SO_TIMESTAMPING:
833 v.val = 0;
834 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
835 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
836 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
837 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
838 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
839 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
840 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
841 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
842 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
843 v.val |= SOF_TIMESTAMPING_SOFTWARE;
844 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
845 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
846 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
847 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
848 break;
850 case SO_RCVTIMEO:
851 lv = sizeof(struct timeval);
852 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
853 v.tm.tv_sec = 0;
854 v.tm.tv_usec = 0;
855 } else {
856 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
857 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
859 break;
861 case SO_SNDTIMEO:
862 lv = sizeof(struct timeval);
863 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
864 v.tm.tv_sec = 0;
865 v.tm.tv_usec = 0;
866 } else {
867 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
868 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
870 break;
872 case SO_RCVLOWAT:
873 v.val = sk->sk_rcvlowat;
874 break;
876 case SO_SNDLOWAT:
877 v.val = 1;
878 break;
880 case SO_PASSCRED:
881 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
882 break;
884 case SO_PEERCRED:
885 if (len > sizeof(sk->sk_peercred))
886 len = sizeof(sk->sk_peercred);
887 if (copy_to_user(optval, &sk->sk_peercred, len))
888 return -EFAULT;
889 goto lenout;
891 case SO_PEERNAME:
893 char address[128];
895 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
896 return -ENOTCONN;
897 if (lv < len)
898 return -EINVAL;
899 if (copy_to_user(optval, address, len))
900 return -EFAULT;
901 goto lenout;
904 /* Dubious BSD thing... Probably nobody even uses it, but
905 * the UNIX standard wants it for whatever reason... -DaveM
907 case SO_ACCEPTCONN:
908 v.val = sk->sk_state == TCP_LISTEN;
909 break;
911 case SO_PASSSEC:
912 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
913 break;
915 case SO_PEERSEC:
916 return security_socket_getpeersec_stream(sock, optval, optlen, len);
918 case SO_MARK:
919 v.val = sk->sk_mark;
920 break;
922 case SO_RXQ_OVFL:
923 v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
924 break;
926 default:
927 return -ENOPROTOOPT;
930 if (len > lv)
931 len = lv;
932 if (copy_to_user(optval, &v, len))
933 return -EFAULT;
934 lenout:
935 if (put_user(len, optlen))
936 return -EFAULT;
937 return 0;
941 * Initialize an sk_lock.
943 * (We also register the sk_lock with the lock validator.)
945 static inline void sock_lock_init(struct sock *sk)
947 sock_lock_init_class_and_name(sk,
948 af_family_slock_key_strings[sk->sk_family],
949 af_family_slock_keys + sk->sk_family,
950 af_family_key_strings[sk->sk_family],
951 af_family_keys + sk->sk_family);
955 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
956 * even temporarly, because of RCU lookups. sk_node should also be left as is.
958 static void sock_copy(struct sock *nsk, const struct sock *osk)
960 #ifdef CONFIG_SECURITY_NETWORK
961 void *sptr = nsk->sk_security;
962 #endif
963 BUILD_BUG_ON(offsetof(struct sock, sk_copy_start) !=
964 sizeof(osk->sk_node) + sizeof(osk->sk_refcnt) +
965 sizeof(osk->sk_tx_queue_mapping));
966 memcpy(&nsk->sk_copy_start, &osk->sk_copy_start,
967 osk->sk_prot->obj_size - offsetof(struct sock, sk_copy_start));
968 #ifdef CONFIG_SECURITY_NETWORK
969 nsk->sk_security = sptr;
970 security_sk_clone(osk, nsk);
971 #endif
974 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
975 int family)
977 struct sock *sk;
978 struct kmem_cache *slab;
980 slab = prot->slab;
981 if (slab != NULL) {
982 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
983 if (!sk)
984 return sk;
985 if (priority & __GFP_ZERO) {
987 * caches using SLAB_DESTROY_BY_RCU should let
988 * sk_node.next un-modified. Special care is taken
989 * when initializing object to zero.
991 if (offsetof(struct sock, sk_node.next) != 0)
992 memset(sk, 0, offsetof(struct sock, sk_node.next));
993 memset(&sk->sk_node.pprev, 0,
994 prot->obj_size - offsetof(struct sock,
995 sk_node.pprev));
998 else
999 sk = kmalloc(prot->obj_size, priority);
1001 if (sk != NULL) {
1002 kmemcheck_annotate_bitfield(sk, flags);
1004 if (security_sk_alloc(sk, family, priority))
1005 goto out_free;
1007 if (!try_module_get(prot->owner))
1008 goto out_free_sec;
1009 sk_tx_queue_clear(sk);
1012 return sk;
1014 out_free_sec:
1015 security_sk_free(sk);
1016 out_free:
1017 if (slab != NULL)
1018 kmem_cache_free(slab, sk);
1019 else
1020 kfree(sk);
1021 return NULL;
1024 static void sk_prot_free(struct proto *prot, struct sock *sk)
1026 struct kmem_cache *slab;
1027 struct module *owner;
1029 owner = prot->owner;
1030 slab = prot->slab;
1032 security_sk_free(sk);
1033 if (slab != NULL)
1034 kmem_cache_free(slab, sk);
1035 else
1036 kfree(sk);
1037 module_put(owner);
1041 * sk_alloc - All socket objects are allocated here
1042 * @net: the applicable net namespace
1043 * @family: protocol family
1044 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1045 * @prot: struct proto associated with this new sock instance
1047 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1048 struct proto *prot)
1050 struct sock *sk;
1052 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1053 if (sk) {
1054 sk->sk_family = family;
1056 * See comment in struct sock definition to understand
1057 * why we need sk_prot_creator -acme
1059 sk->sk_prot = sk->sk_prot_creator = prot;
1060 sock_lock_init(sk);
1061 sock_net_set(sk, get_net(net));
1062 atomic_set(&sk->sk_wmem_alloc, 1);
1065 return sk;
1067 EXPORT_SYMBOL(sk_alloc);
1069 static void __sk_free(struct sock *sk)
1071 struct sk_filter *filter;
1073 if (sk->sk_destruct)
1074 sk->sk_destruct(sk);
1076 filter = rcu_dereference_check(sk->sk_filter,
1077 atomic_read(&sk->sk_wmem_alloc) == 0);
1078 if (filter) {
1079 sk_filter_uncharge(sk, filter);
1080 rcu_assign_pointer(sk->sk_filter, NULL);
1083 sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1084 sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
1086 if (atomic_read(&sk->sk_omem_alloc))
1087 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1088 __func__, atomic_read(&sk->sk_omem_alloc));
1090 put_net(sock_net(sk));
1091 sk_prot_free(sk->sk_prot_creator, sk);
1094 void sk_free(struct sock *sk)
1097 * We substract one from sk_wmem_alloc and can know if
1098 * some packets are still in some tx queue.
1099 * If not null, sock_wfree() will call __sk_free(sk) later
1101 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1102 __sk_free(sk);
1104 EXPORT_SYMBOL(sk_free);
1107 * Last sock_put should drop referrence to sk->sk_net. It has already
1108 * been dropped in sk_change_net. Taking referrence to stopping namespace
1109 * is not an option.
1110 * Take referrence to a socket to remove it from hash _alive_ and after that
1111 * destroy it in the context of init_net.
1113 void sk_release_kernel(struct sock *sk)
1115 if (sk == NULL || sk->sk_socket == NULL)
1116 return;
1118 sock_hold(sk);
1119 sock_release(sk->sk_socket);
1120 release_net(sock_net(sk));
1121 sock_net_set(sk, get_net(&init_net));
1122 sock_put(sk);
1124 EXPORT_SYMBOL(sk_release_kernel);
1126 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1128 struct sock *newsk;
1130 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1131 if (newsk != NULL) {
1132 struct sk_filter *filter;
1134 sock_copy(newsk, sk);
1136 /* SANITY */
1137 get_net(sock_net(newsk));
1138 sk_node_init(&newsk->sk_node);
1139 sock_lock_init(newsk);
1140 bh_lock_sock(newsk);
1141 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1143 atomic_set(&newsk->sk_rmem_alloc, 0);
1145 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1147 atomic_set(&newsk->sk_wmem_alloc, 1);
1148 atomic_set(&newsk->sk_omem_alloc, 0);
1149 skb_queue_head_init(&newsk->sk_receive_queue);
1150 skb_queue_head_init(&newsk->sk_write_queue);
1151 #ifdef CONFIG_NET_DMA
1152 skb_queue_head_init(&newsk->sk_async_wait_queue);
1153 #endif
1155 rwlock_init(&newsk->sk_dst_lock);
1156 rwlock_init(&newsk->sk_callback_lock);
1157 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1158 af_callback_keys + newsk->sk_family,
1159 af_family_clock_key_strings[newsk->sk_family]);
1161 newsk->sk_dst_cache = NULL;
1162 newsk->sk_wmem_queued = 0;
1163 newsk->sk_forward_alloc = 0;
1164 newsk->sk_send_head = NULL;
1165 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1167 sock_reset_flag(newsk, SOCK_DONE);
1168 skb_queue_head_init(&newsk->sk_error_queue);
1170 filter = newsk->sk_filter;
1171 if (filter != NULL)
1172 sk_filter_charge(newsk, filter);
1174 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1175 /* It is still raw copy of parent, so invalidate
1176 * destructor and make plain sk_free() */
1177 newsk->sk_destruct = NULL;
1178 sk_free(newsk);
1179 newsk = NULL;
1180 goto out;
1183 newsk->sk_err = 0;
1184 newsk->sk_priority = 0;
1186 * Before updating sk_refcnt, we must commit prior changes to memory
1187 * (Documentation/RCU/rculist_nulls.txt for details)
1189 smp_wmb();
1190 atomic_set(&newsk->sk_refcnt, 2);
1193 * Increment the counter in the same struct proto as the master
1194 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1195 * is the same as sk->sk_prot->socks, as this field was copied
1196 * with memcpy).
1198 * This _changes_ the previous behaviour, where
1199 * tcp_create_openreq_child always was incrementing the
1200 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1201 * to be taken into account in all callers. -acme
1203 sk_refcnt_debug_inc(newsk);
1204 sk_set_socket(newsk, NULL);
1205 newsk->sk_sleep = NULL;
1207 if (newsk->sk_prot->sockets_allocated)
1208 percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1210 if (sock_flag(newsk, SOCK_TIMESTAMP) ||
1211 sock_flag(newsk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1212 net_enable_timestamp();
1214 out:
1215 return newsk;
1217 EXPORT_SYMBOL_GPL(sk_clone);
1219 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1221 __sk_dst_set(sk, dst);
1222 sk->sk_route_caps = dst->dev->features;
1223 if (sk->sk_route_caps & NETIF_F_GSO)
1224 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1225 if (sk_can_gso(sk)) {
1226 if (dst->header_len) {
1227 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1228 } else {
1229 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1230 sk->sk_gso_max_size = dst->dev->gso_max_size;
1234 EXPORT_SYMBOL_GPL(sk_setup_caps);
1236 void __init sk_init(void)
1238 if (totalram_pages <= 4096) {
1239 sysctl_wmem_max = 32767;
1240 sysctl_rmem_max = 32767;
1241 sysctl_wmem_default = 32767;
1242 sysctl_rmem_default = 32767;
1243 } else if (totalram_pages >= 131072) {
1244 sysctl_wmem_max = 131071;
1245 sysctl_rmem_max = 131071;
1250 * Simple resource managers for sockets.
1255 * Write buffer destructor automatically called from kfree_skb.
1257 void sock_wfree(struct sk_buff *skb)
1259 struct sock *sk = skb->sk;
1260 unsigned int len = skb->truesize;
1262 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1264 * Keep a reference on sk_wmem_alloc, this will be released
1265 * after sk_write_space() call
1267 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1268 sk->sk_write_space(sk);
1269 len = 1;
1272 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1273 * could not do because of in-flight packets
1275 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1276 __sk_free(sk);
1278 EXPORT_SYMBOL(sock_wfree);
1281 * Read buffer destructor automatically called from kfree_skb.
1283 void sock_rfree(struct sk_buff *skb)
1285 struct sock *sk = skb->sk;
1287 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1288 sk_mem_uncharge(skb->sk, skb->truesize);
1290 EXPORT_SYMBOL(sock_rfree);
1293 int sock_i_uid(struct sock *sk)
1295 int uid;
1297 read_lock(&sk->sk_callback_lock);
1298 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1299 read_unlock(&sk->sk_callback_lock);
1300 return uid;
1302 EXPORT_SYMBOL(sock_i_uid);
1304 unsigned long sock_i_ino(struct sock *sk)
1306 unsigned long ino;
1308 read_lock(&sk->sk_callback_lock);
1309 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1310 read_unlock(&sk->sk_callback_lock);
1311 return ino;
1313 EXPORT_SYMBOL(sock_i_ino);
1316 * Allocate a skb from the socket's send buffer.
1318 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1319 gfp_t priority)
1321 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1322 struct sk_buff *skb = alloc_skb(size, priority);
1323 if (skb) {
1324 skb_set_owner_w(skb, sk);
1325 return skb;
1328 return NULL;
1330 EXPORT_SYMBOL(sock_wmalloc);
1333 * Allocate a skb from the socket's receive buffer.
1335 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1336 gfp_t priority)
1338 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1339 struct sk_buff *skb = alloc_skb(size, priority);
1340 if (skb) {
1341 skb_set_owner_r(skb, sk);
1342 return skb;
1345 return NULL;
1349 * Allocate a memory block from the socket's option memory buffer.
1351 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1353 if ((unsigned)size <= sysctl_optmem_max &&
1354 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1355 void *mem;
1356 /* First do the add, to avoid the race if kmalloc
1357 * might sleep.
1359 atomic_add(size, &sk->sk_omem_alloc);
1360 mem = kmalloc(size, priority);
1361 if (mem)
1362 return mem;
1363 atomic_sub(size, &sk->sk_omem_alloc);
1365 return NULL;
1367 EXPORT_SYMBOL(sock_kmalloc);
1370 * Free an option memory block.
1372 void sock_kfree_s(struct sock *sk, void *mem, int size)
1374 kfree(mem);
1375 atomic_sub(size, &sk->sk_omem_alloc);
1377 EXPORT_SYMBOL(sock_kfree_s);
1379 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1380 I think, these locks should be removed for datagram sockets.
1382 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1384 DEFINE_WAIT(wait);
1386 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1387 for (;;) {
1388 if (!timeo)
1389 break;
1390 if (signal_pending(current))
1391 break;
1392 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1393 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1394 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1395 break;
1396 if (sk->sk_shutdown & SEND_SHUTDOWN)
1397 break;
1398 if (sk->sk_err)
1399 break;
1400 timeo = schedule_timeout(timeo);
1402 finish_wait(sk->sk_sleep, &wait);
1403 return timeo;
1408 * Generic send/receive buffer handlers
1411 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1412 unsigned long data_len, int noblock,
1413 int *errcode)
1415 struct sk_buff *skb;
1416 gfp_t gfp_mask;
1417 long timeo;
1418 int err;
1420 gfp_mask = sk->sk_allocation;
1421 if (gfp_mask & __GFP_WAIT)
1422 gfp_mask |= __GFP_REPEAT;
1424 timeo = sock_sndtimeo(sk, noblock);
1425 while (1) {
1426 err = sock_error(sk);
1427 if (err != 0)
1428 goto failure;
1430 err = -EPIPE;
1431 if (sk->sk_shutdown & SEND_SHUTDOWN)
1432 goto failure;
1434 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1435 skb = alloc_skb(header_len, gfp_mask);
1436 if (skb) {
1437 int npages;
1438 int i;
1440 /* No pages, we're done... */
1441 if (!data_len)
1442 break;
1444 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1445 skb->truesize += data_len;
1446 skb_shinfo(skb)->nr_frags = npages;
1447 for (i = 0; i < npages; i++) {
1448 struct page *page;
1449 skb_frag_t *frag;
1451 page = alloc_pages(sk->sk_allocation, 0);
1452 if (!page) {
1453 err = -ENOBUFS;
1454 skb_shinfo(skb)->nr_frags = i;
1455 kfree_skb(skb);
1456 goto failure;
1459 frag = &skb_shinfo(skb)->frags[i];
1460 frag->page = page;
1461 frag->page_offset = 0;
1462 frag->size = (data_len >= PAGE_SIZE ?
1463 PAGE_SIZE :
1464 data_len);
1465 data_len -= PAGE_SIZE;
1468 /* Full success... */
1469 break;
1471 err = -ENOBUFS;
1472 goto failure;
1474 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1475 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1476 err = -EAGAIN;
1477 if (!timeo)
1478 goto failure;
1479 if (signal_pending(current))
1480 goto interrupted;
1481 timeo = sock_wait_for_wmem(sk, timeo);
1484 skb_set_owner_w(skb, sk);
1485 return skb;
1487 interrupted:
1488 err = sock_intr_errno(timeo);
1489 failure:
1490 *errcode = err;
1491 return NULL;
1493 EXPORT_SYMBOL(sock_alloc_send_pskb);
1495 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1496 int noblock, int *errcode)
1498 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1500 EXPORT_SYMBOL(sock_alloc_send_skb);
1502 static void __lock_sock(struct sock *sk)
1504 DEFINE_WAIT(wait);
1506 for (;;) {
1507 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1508 TASK_UNINTERRUPTIBLE);
1509 spin_unlock_bh(&sk->sk_lock.slock);
1510 schedule();
1511 spin_lock_bh(&sk->sk_lock.slock);
1512 if (!sock_owned_by_user(sk))
1513 break;
1515 finish_wait(&sk->sk_lock.wq, &wait);
1518 static void __release_sock(struct sock *sk)
1520 struct sk_buff *skb = sk->sk_backlog.head;
1522 do {
1523 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1524 bh_unlock_sock(sk);
1526 do {
1527 struct sk_buff *next = skb->next;
1529 skb->next = NULL;
1530 sk_backlog_rcv(sk, skb);
1533 * We are in process context here with softirqs
1534 * disabled, use cond_resched_softirq() to preempt.
1535 * This is safe to do because we've taken the backlog
1536 * queue private:
1538 cond_resched_softirq();
1540 skb = next;
1541 } while (skb != NULL);
1543 bh_lock_sock(sk);
1544 } while ((skb = sk->sk_backlog.head) != NULL);
1548 * sk_wait_data - wait for data to arrive at sk_receive_queue
1549 * @sk: sock to wait on
1550 * @timeo: for how long
1552 * Now socket state including sk->sk_err is changed only under lock,
1553 * hence we may omit checks after joining wait queue.
1554 * We check receive queue before schedule() only as optimization;
1555 * it is very likely that release_sock() added new data.
1557 int sk_wait_data(struct sock *sk, long *timeo)
1559 int rc;
1560 DEFINE_WAIT(wait);
1562 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1563 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1564 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1565 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1566 finish_wait(sk->sk_sleep, &wait);
1567 return rc;
1569 EXPORT_SYMBOL(sk_wait_data);
1572 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1573 * @sk: socket
1574 * @size: memory size to allocate
1575 * @kind: allocation type
1577 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1578 * rmem allocation. This function assumes that protocols which have
1579 * memory_pressure use sk_wmem_queued as write buffer accounting.
1581 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1583 struct proto *prot = sk->sk_prot;
1584 int amt = sk_mem_pages(size);
1585 int allocated;
1587 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1588 allocated = atomic_add_return(amt, prot->memory_allocated);
1590 /* Under limit. */
1591 if (allocated <= prot->sysctl_mem[0]) {
1592 if (prot->memory_pressure && *prot->memory_pressure)
1593 *prot->memory_pressure = 0;
1594 return 1;
1597 /* Under pressure. */
1598 if (allocated > prot->sysctl_mem[1])
1599 if (prot->enter_memory_pressure)
1600 prot->enter_memory_pressure(sk);
1602 /* Over hard limit. */
1603 if (allocated > prot->sysctl_mem[2])
1604 goto suppress_allocation;
1606 /* guarantee minimum buffer size under pressure */
1607 if (kind == SK_MEM_RECV) {
1608 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1609 return 1;
1610 } else { /* SK_MEM_SEND */
1611 if (sk->sk_type == SOCK_STREAM) {
1612 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1613 return 1;
1614 } else if (atomic_read(&sk->sk_wmem_alloc) <
1615 prot->sysctl_wmem[0])
1616 return 1;
1619 if (prot->memory_pressure) {
1620 int alloc;
1622 if (!*prot->memory_pressure)
1623 return 1;
1624 alloc = percpu_counter_read_positive(prot->sockets_allocated);
1625 if (prot->sysctl_mem[2] > alloc *
1626 sk_mem_pages(sk->sk_wmem_queued +
1627 atomic_read(&sk->sk_rmem_alloc) +
1628 sk->sk_forward_alloc))
1629 return 1;
1632 suppress_allocation:
1634 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1635 sk_stream_moderate_sndbuf(sk);
1637 /* Fail only if socket is _under_ its sndbuf.
1638 * In this case we cannot block, so that we have to fail.
1640 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1641 return 1;
1644 /* Alas. Undo changes. */
1645 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1646 atomic_sub(amt, prot->memory_allocated);
1647 return 0;
1649 EXPORT_SYMBOL(__sk_mem_schedule);
1652 * __sk_reclaim - reclaim memory_allocated
1653 * @sk: socket
1655 void __sk_mem_reclaim(struct sock *sk)
1657 struct proto *prot = sk->sk_prot;
1659 atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1660 prot->memory_allocated);
1661 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1663 if (prot->memory_pressure && *prot->memory_pressure &&
1664 (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1665 *prot->memory_pressure = 0;
1667 EXPORT_SYMBOL(__sk_mem_reclaim);
1671 * Set of default routines for initialising struct proto_ops when
1672 * the protocol does not support a particular function. In certain
1673 * cases where it makes no sense for a protocol to have a "do nothing"
1674 * function, some default processing is provided.
1677 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1679 return -EOPNOTSUPP;
1681 EXPORT_SYMBOL(sock_no_bind);
1683 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1684 int len, int flags)
1686 return -EOPNOTSUPP;
1688 EXPORT_SYMBOL(sock_no_connect);
1690 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1692 return -EOPNOTSUPP;
1694 EXPORT_SYMBOL(sock_no_socketpair);
1696 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1698 return -EOPNOTSUPP;
1700 EXPORT_SYMBOL(sock_no_accept);
1702 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1703 int *len, int peer)
1705 return -EOPNOTSUPP;
1707 EXPORT_SYMBOL(sock_no_getname);
1709 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1711 return 0;
1713 EXPORT_SYMBOL(sock_no_poll);
1715 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1717 return -EOPNOTSUPP;
1719 EXPORT_SYMBOL(sock_no_ioctl);
1721 int sock_no_listen(struct socket *sock, int backlog)
1723 return -EOPNOTSUPP;
1725 EXPORT_SYMBOL(sock_no_listen);
1727 int sock_no_shutdown(struct socket *sock, int how)
1729 return -EOPNOTSUPP;
1731 EXPORT_SYMBOL(sock_no_shutdown);
1733 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1734 char __user *optval, unsigned int optlen)
1736 return -EOPNOTSUPP;
1738 EXPORT_SYMBOL(sock_no_setsockopt);
1740 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1741 char __user *optval, int __user *optlen)
1743 return -EOPNOTSUPP;
1745 EXPORT_SYMBOL(sock_no_getsockopt);
1747 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1748 size_t len)
1750 return -EOPNOTSUPP;
1752 EXPORT_SYMBOL(sock_no_sendmsg);
1754 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1755 size_t len, int flags)
1757 return -EOPNOTSUPP;
1759 EXPORT_SYMBOL(sock_no_recvmsg);
1761 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1763 /* Mirror missing mmap method error code */
1764 return -ENODEV;
1766 EXPORT_SYMBOL(sock_no_mmap);
1768 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1770 ssize_t res;
1771 struct msghdr msg = {.msg_flags = flags};
1772 struct kvec iov;
1773 char *kaddr = kmap(page);
1774 iov.iov_base = kaddr + offset;
1775 iov.iov_len = size;
1776 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1777 kunmap(page);
1778 return res;
1780 EXPORT_SYMBOL(sock_no_sendpage);
1783 * Default Socket Callbacks
1786 static void sock_def_wakeup(struct sock *sk)
1788 read_lock(&sk->sk_callback_lock);
1789 if (sk_has_sleeper(sk))
1790 wake_up_interruptible_all(sk->sk_sleep);
1791 read_unlock(&sk->sk_callback_lock);
1794 static void sock_def_error_report(struct sock *sk)
1796 read_lock(&sk->sk_callback_lock);
1797 if (sk_has_sleeper(sk))
1798 wake_up_interruptible_poll(sk->sk_sleep, POLLERR);
1799 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1800 read_unlock(&sk->sk_callback_lock);
1803 static void sock_def_readable(struct sock *sk, int len)
1805 read_lock(&sk->sk_callback_lock);
1806 if (sk_has_sleeper(sk))
1807 wake_up_interruptible_sync_poll(sk->sk_sleep, POLLIN |
1808 POLLRDNORM | POLLRDBAND);
1809 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1810 read_unlock(&sk->sk_callback_lock);
1813 static void sock_def_write_space(struct sock *sk)
1815 read_lock(&sk->sk_callback_lock);
1817 /* Do not wake up a writer until he can make "significant"
1818 * progress. --DaveM
1820 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1821 if (sk_has_sleeper(sk))
1822 wake_up_interruptible_sync_poll(sk->sk_sleep, POLLOUT |
1823 POLLWRNORM | POLLWRBAND);
1825 /* Should agree with poll, otherwise some programs break */
1826 if (sock_writeable(sk))
1827 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1830 read_unlock(&sk->sk_callback_lock);
1833 static void sock_def_destruct(struct sock *sk)
1835 kfree(sk->sk_protinfo);
1838 void sk_send_sigurg(struct sock *sk)
1840 if (sk->sk_socket && sk->sk_socket->file)
1841 if (send_sigurg(&sk->sk_socket->file->f_owner))
1842 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1844 EXPORT_SYMBOL(sk_send_sigurg);
1846 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1847 unsigned long expires)
1849 if (!mod_timer(timer, expires))
1850 sock_hold(sk);
1852 EXPORT_SYMBOL(sk_reset_timer);
1854 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1856 if (timer_pending(timer) && del_timer(timer))
1857 __sock_put(sk);
1859 EXPORT_SYMBOL(sk_stop_timer);
1861 void sock_init_data(struct socket *sock, struct sock *sk)
1863 skb_queue_head_init(&sk->sk_receive_queue);
1864 skb_queue_head_init(&sk->sk_write_queue);
1865 skb_queue_head_init(&sk->sk_error_queue);
1866 #ifdef CONFIG_NET_DMA
1867 skb_queue_head_init(&sk->sk_async_wait_queue);
1868 #endif
1870 sk->sk_send_head = NULL;
1872 init_timer(&sk->sk_timer);
1874 sk->sk_allocation = GFP_KERNEL;
1875 sk->sk_rcvbuf = sysctl_rmem_default;
1876 sk->sk_sndbuf = sysctl_wmem_default;
1877 sk->sk_state = TCP_CLOSE;
1878 sk_set_socket(sk, sock);
1880 sock_set_flag(sk, SOCK_ZAPPED);
1882 if (sock) {
1883 sk->sk_type = sock->type;
1884 sk->sk_sleep = &sock->wait;
1885 sock->sk = sk;
1886 } else
1887 sk->sk_sleep = NULL;
1889 rwlock_init(&sk->sk_dst_lock);
1890 rwlock_init(&sk->sk_callback_lock);
1891 lockdep_set_class_and_name(&sk->sk_callback_lock,
1892 af_callback_keys + sk->sk_family,
1893 af_family_clock_key_strings[sk->sk_family]);
1895 sk->sk_state_change = sock_def_wakeup;
1896 sk->sk_data_ready = sock_def_readable;
1897 sk->sk_write_space = sock_def_write_space;
1898 sk->sk_error_report = sock_def_error_report;
1899 sk->sk_destruct = sock_def_destruct;
1901 sk->sk_sndmsg_page = NULL;
1902 sk->sk_sndmsg_off = 0;
1904 sk->sk_peercred.pid = 0;
1905 sk->sk_peercred.uid = -1;
1906 sk->sk_peercred.gid = -1;
1907 sk->sk_write_pending = 0;
1908 sk->sk_rcvlowat = 1;
1909 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1910 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1912 sk->sk_stamp = ktime_set(-1L, 0);
1915 * Before updating sk_refcnt, we must commit prior changes to memory
1916 * (Documentation/RCU/rculist_nulls.txt for details)
1918 smp_wmb();
1919 atomic_set(&sk->sk_refcnt, 1);
1920 atomic_set(&sk->sk_drops, 0);
1922 EXPORT_SYMBOL(sock_init_data);
1924 void lock_sock_nested(struct sock *sk, int subclass)
1926 might_sleep();
1927 spin_lock_bh(&sk->sk_lock.slock);
1928 if (sk->sk_lock.owned)
1929 __lock_sock(sk);
1930 sk->sk_lock.owned = 1;
1931 spin_unlock(&sk->sk_lock.slock);
1933 * The sk_lock has mutex_lock() semantics here:
1935 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1936 local_bh_enable();
1938 EXPORT_SYMBOL(lock_sock_nested);
1940 void release_sock(struct sock *sk)
1943 * The sk_lock has mutex_unlock() semantics:
1945 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1947 spin_lock_bh(&sk->sk_lock.slock);
1948 if (sk->sk_backlog.tail)
1949 __release_sock(sk);
1950 sk->sk_lock.owned = 0;
1951 if (waitqueue_active(&sk->sk_lock.wq))
1952 wake_up(&sk->sk_lock.wq);
1953 spin_unlock_bh(&sk->sk_lock.slock);
1955 EXPORT_SYMBOL(release_sock);
1957 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1959 struct timeval tv;
1960 if (!sock_flag(sk, SOCK_TIMESTAMP))
1961 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1962 tv = ktime_to_timeval(sk->sk_stamp);
1963 if (tv.tv_sec == -1)
1964 return -ENOENT;
1965 if (tv.tv_sec == 0) {
1966 sk->sk_stamp = ktime_get_real();
1967 tv = ktime_to_timeval(sk->sk_stamp);
1969 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1971 EXPORT_SYMBOL(sock_get_timestamp);
1973 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1975 struct timespec ts;
1976 if (!sock_flag(sk, SOCK_TIMESTAMP))
1977 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1978 ts = ktime_to_timespec(sk->sk_stamp);
1979 if (ts.tv_sec == -1)
1980 return -ENOENT;
1981 if (ts.tv_sec == 0) {
1982 sk->sk_stamp = ktime_get_real();
1983 ts = ktime_to_timespec(sk->sk_stamp);
1985 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1987 EXPORT_SYMBOL(sock_get_timestampns);
1989 void sock_enable_timestamp(struct sock *sk, int flag)
1991 if (!sock_flag(sk, flag)) {
1992 sock_set_flag(sk, flag);
1994 * we just set one of the two flags which require net
1995 * time stamping, but time stamping might have been on
1996 * already because of the other one
1998 if (!sock_flag(sk,
1999 flag == SOCK_TIMESTAMP ?
2000 SOCK_TIMESTAMPING_RX_SOFTWARE :
2001 SOCK_TIMESTAMP))
2002 net_enable_timestamp();
2007 * Get a socket option on an socket.
2009 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2010 * asynchronous errors should be reported by getsockopt. We assume
2011 * this means if you specify SO_ERROR (otherwise whats the point of it).
2013 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2014 char __user *optval, int __user *optlen)
2016 struct sock *sk = sock->sk;
2018 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2020 EXPORT_SYMBOL(sock_common_getsockopt);
2022 #ifdef CONFIG_COMPAT
2023 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2024 char __user *optval, int __user *optlen)
2026 struct sock *sk = sock->sk;
2028 if (sk->sk_prot->compat_getsockopt != NULL)
2029 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2030 optval, optlen);
2031 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2033 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2034 #endif
2036 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2037 struct msghdr *msg, size_t size, int flags)
2039 struct sock *sk = sock->sk;
2040 int addr_len = 0;
2041 int err;
2043 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2044 flags & ~MSG_DONTWAIT, &addr_len);
2045 if (err >= 0)
2046 msg->msg_namelen = addr_len;
2047 return err;
2049 EXPORT_SYMBOL(sock_common_recvmsg);
2052 * Set socket options on an inet socket.
2054 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2055 char __user *optval, unsigned int optlen)
2057 struct sock *sk = sock->sk;
2059 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2061 EXPORT_SYMBOL(sock_common_setsockopt);
2063 #ifdef CONFIG_COMPAT
2064 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2065 char __user *optval, unsigned int optlen)
2067 struct sock *sk = sock->sk;
2069 if (sk->sk_prot->compat_setsockopt != NULL)
2070 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2071 optval, optlen);
2072 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2074 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2075 #endif
2077 void sk_common_release(struct sock *sk)
2079 if (sk->sk_prot->destroy)
2080 sk->sk_prot->destroy(sk);
2083 * Observation: when sock_common_release is called, processes have
2084 * no access to socket. But net still has.
2085 * Step one, detach it from networking:
2087 * A. Remove from hash tables.
2090 sk->sk_prot->unhash(sk);
2093 * In this point socket cannot receive new packets, but it is possible
2094 * that some packets are in flight because some CPU runs receiver and
2095 * did hash table lookup before we unhashed socket. They will achieve
2096 * receive queue and will be purged by socket destructor.
2098 * Also we still have packets pending on receive queue and probably,
2099 * our own packets waiting in device queues. sock_destroy will drain
2100 * receive queue, but transmitted packets will delay socket destruction
2101 * until the last reference will be released.
2104 sock_orphan(sk);
2106 xfrm_sk_free_policy(sk);
2108 sk_refcnt_debug_release(sk);
2109 sock_put(sk);
2111 EXPORT_SYMBOL(sk_common_release);
2113 static DEFINE_RWLOCK(proto_list_lock);
2114 static LIST_HEAD(proto_list);
2116 #ifdef CONFIG_PROC_FS
2117 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2118 struct prot_inuse {
2119 int val[PROTO_INUSE_NR];
2122 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2124 #ifdef CONFIG_NET_NS
2125 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2127 int cpu = smp_processor_id();
2128 per_cpu_ptr(net->core.inuse, cpu)->val[prot->inuse_idx] += val;
2130 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2132 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2134 int cpu, idx = prot->inuse_idx;
2135 int res = 0;
2137 for_each_possible_cpu(cpu)
2138 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2140 return res >= 0 ? res : 0;
2142 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2144 static int __net_init sock_inuse_init_net(struct net *net)
2146 net->core.inuse = alloc_percpu(struct prot_inuse);
2147 return net->core.inuse ? 0 : -ENOMEM;
2150 static void __net_exit sock_inuse_exit_net(struct net *net)
2152 free_percpu(net->core.inuse);
2155 static struct pernet_operations net_inuse_ops = {
2156 .init = sock_inuse_init_net,
2157 .exit = sock_inuse_exit_net,
2160 static __init int net_inuse_init(void)
2162 if (register_pernet_subsys(&net_inuse_ops))
2163 panic("Cannot initialize net inuse counters");
2165 return 0;
2168 core_initcall(net_inuse_init);
2169 #else
2170 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2172 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2174 __get_cpu_var(prot_inuse).val[prot->inuse_idx] += val;
2176 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2178 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2180 int cpu, idx = prot->inuse_idx;
2181 int res = 0;
2183 for_each_possible_cpu(cpu)
2184 res += per_cpu(prot_inuse, cpu).val[idx];
2186 return res >= 0 ? res : 0;
2188 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2189 #endif
2191 static void assign_proto_idx(struct proto *prot)
2193 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2195 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2196 printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2197 return;
2200 set_bit(prot->inuse_idx, proto_inuse_idx);
2203 static void release_proto_idx(struct proto *prot)
2205 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2206 clear_bit(prot->inuse_idx, proto_inuse_idx);
2208 #else
2209 static inline void assign_proto_idx(struct proto *prot)
2213 static inline void release_proto_idx(struct proto *prot)
2216 #endif
2218 int proto_register(struct proto *prot, int alloc_slab)
2220 if (alloc_slab) {
2221 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2222 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2223 NULL);
2225 if (prot->slab == NULL) {
2226 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2227 prot->name);
2228 goto out;
2231 if (prot->rsk_prot != NULL) {
2232 prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2233 if (prot->rsk_prot->slab_name == NULL)
2234 goto out_free_sock_slab;
2236 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2237 prot->rsk_prot->obj_size, 0,
2238 SLAB_HWCACHE_ALIGN, NULL);
2240 if (prot->rsk_prot->slab == NULL) {
2241 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2242 prot->name);
2243 goto out_free_request_sock_slab_name;
2247 if (prot->twsk_prot != NULL) {
2248 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2250 if (prot->twsk_prot->twsk_slab_name == NULL)
2251 goto out_free_request_sock_slab;
2253 prot->twsk_prot->twsk_slab =
2254 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2255 prot->twsk_prot->twsk_obj_size,
2257 SLAB_HWCACHE_ALIGN |
2258 prot->slab_flags,
2259 NULL);
2260 if (prot->twsk_prot->twsk_slab == NULL)
2261 goto out_free_timewait_sock_slab_name;
2265 write_lock(&proto_list_lock);
2266 list_add(&prot->node, &proto_list);
2267 assign_proto_idx(prot);
2268 write_unlock(&proto_list_lock);
2269 return 0;
2271 out_free_timewait_sock_slab_name:
2272 kfree(prot->twsk_prot->twsk_slab_name);
2273 out_free_request_sock_slab:
2274 if (prot->rsk_prot && prot->rsk_prot->slab) {
2275 kmem_cache_destroy(prot->rsk_prot->slab);
2276 prot->rsk_prot->slab = NULL;
2278 out_free_request_sock_slab_name:
2279 kfree(prot->rsk_prot->slab_name);
2280 out_free_sock_slab:
2281 kmem_cache_destroy(prot->slab);
2282 prot->slab = NULL;
2283 out:
2284 return -ENOBUFS;
2286 EXPORT_SYMBOL(proto_register);
2288 void proto_unregister(struct proto *prot)
2290 write_lock(&proto_list_lock);
2291 release_proto_idx(prot);
2292 list_del(&prot->node);
2293 write_unlock(&proto_list_lock);
2295 if (prot->slab != NULL) {
2296 kmem_cache_destroy(prot->slab);
2297 prot->slab = NULL;
2300 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2301 kmem_cache_destroy(prot->rsk_prot->slab);
2302 kfree(prot->rsk_prot->slab_name);
2303 prot->rsk_prot->slab = NULL;
2306 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2307 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2308 kfree(prot->twsk_prot->twsk_slab_name);
2309 prot->twsk_prot->twsk_slab = NULL;
2312 EXPORT_SYMBOL(proto_unregister);
2314 #ifdef CONFIG_PROC_FS
2315 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2316 __acquires(proto_list_lock)
2318 read_lock(&proto_list_lock);
2319 return seq_list_start_head(&proto_list, *pos);
2322 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2324 return seq_list_next(v, &proto_list, pos);
2327 static void proto_seq_stop(struct seq_file *seq, void *v)
2328 __releases(proto_list_lock)
2330 read_unlock(&proto_list_lock);
2333 static char proto_method_implemented(const void *method)
2335 return method == NULL ? 'n' : 'y';
2338 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2340 seq_printf(seq, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s "
2341 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2342 proto->name,
2343 proto->obj_size,
2344 sock_prot_inuse_get(seq_file_net(seq), proto),
2345 proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2346 proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2347 proto->max_header,
2348 proto->slab == NULL ? "no" : "yes",
2349 module_name(proto->owner),
2350 proto_method_implemented(proto->close),
2351 proto_method_implemented(proto->connect),
2352 proto_method_implemented(proto->disconnect),
2353 proto_method_implemented(proto->accept),
2354 proto_method_implemented(proto->ioctl),
2355 proto_method_implemented(proto->init),
2356 proto_method_implemented(proto->destroy),
2357 proto_method_implemented(proto->shutdown),
2358 proto_method_implemented(proto->setsockopt),
2359 proto_method_implemented(proto->getsockopt),
2360 proto_method_implemented(proto->sendmsg),
2361 proto_method_implemented(proto->recvmsg),
2362 proto_method_implemented(proto->sendpage),
2363 proto_method_implemented(proto->bind),
2364 proto_method_implemented(proto->backlog_rcv),
2365 proto_method_implemented(proto->hash),
2366 proto_method_implemented(proto->unhash),
2367 proto_method_implemented(proto->get_port),
2368 proto_method_implemented(proto->enter_memory_pressure));
2371 static int proto_seq_show(struct seq_file *seq, void *v)
2373 if (v == &proto_list)
2374 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2375 "protocol",
2376 "size",
2377 "sockets",
2378 "memory",
2379 "press",
2380 "maxhdr",
2381 "slab",
2382 "module",
2383 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2384 else
2385 proto_seq_printf(seq, list_entry(v, struct proto, node));
2386 return 0;
2389 static const struct seq_operations proto_seq_ops = {
2390 .start = proto_seq_start,
2391 .next = proto_seq_next,
2392 .stop = proto_seq_stop,
2393 .show = proto_seq_show,
2396 static int proto_seq_open(struct inode *inode, struct file *file)
2398 return seq_open_net(inode, file, &proto_seq_ops,
2399 sizeof(struct seq_net_private));
2402 static const struct file_operations proto_seq_fops = {
2403 .owner = THIS_MODULE,
2404 .open = proto_seq_open,
2405 .read = seq_read,
2406 .llseek = seq_lseek,
2407 .release = seq_release_net,
2410 static __net_init int proto_init_net(struct net *net)
2412 if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2413 return -ENOMEM;
2415 return 0;
2418 static __net_exit void proto_exit_net(struct net *net)
2420 proc_net_remove(net, "protocols");
2424 static __net_initdata struct pernet_operations proto_net_ops = {
2425 .init = proto_init_net,
2426 .exit = proto_exit_net,
2429 static int __init proto_init(void)
2431 return register_pernet_subsys(&proto_net_ops);
2434 subsys_initcall(proto_init);
2436 #endif /* PROC_FS */