mac80211: reduce reliance on netdev
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / bnx2.c
blob4bfc8081292649114cf6bc8de011f8cf4b54797a
1 /* bnx2.c: Broadcom NX2 network driver.
3 * Copyright (c) 2004-2009 Broadcom Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
9 * Written by: Michael Chan (mchan@broadcom.com)
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
16 #include <linux/kernel.h>
17 #include <linux/timer.h>
18 #include <linux/errno.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/interrupt.h>
23 #include <linux/pci.h>
24 #include <linux/init.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/bitops.h>
30 #include <asm/io.h>
31 #include <asm/irq.h>
32 #include <linux/delay.h>
33 #include <asm/byteorder.h>
34 #include <asm/page.h>
35 #include <linux/time.h>
36 #include <linux/ethtool.h>
37 #include <linux/mii.h>
38 #include <linux/if_vlan.h>
39 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
40 #define BCM_VLAN 1
41 #endif
42 #include <net/ip.h>
43 #include <net/tcp.h>
44 #include <net/checksum.h>
45 #include <linux/workqueue.h>
46 #include <linux/crc32.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/firmware.h>
50 #include <linux/log2.h>
51 #include <linux/list.h>
53 #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
54 #define BCM_CNIC 1
55 #include "cnic_if.h"
56 #endif
57 #include "bnx2.h"
58 #include "bnx2_fw.h"
60 #define DRV_MODULE_NAME "bnx2"
61 #define PFX DRV_MODULE_NAME ": "
62 #define DRV_MODULE_VERSION "2.0.3"
63 #define DRV_MODULE_RELDATE "Dec 03, 2009"
64 #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-5.0.0.j3.fw"
65 #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-5.0.0.j3.fw"
66 #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-5.0.0.j3.fw"
67 #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-5.0.0.j3.fw"
68 #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-5.0.0.j3.fw"
70 #define RUN_AT(x) (jiffies + (x))
72 /* Time in jiffies before concluding the transmitter is hung. */
73 #define TX_TIMEOUT (5*HZ)
75 static char version[] __devinitdata =
76 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
78 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
79 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
80 MODULE_LICENSE("GPL");
81 MODULE_VERSION(DRV_MODULE_VERSION);
82 MODULE_FIRMWARE(FW_MIPS_FILE_06);
83 MODULE_FIRMWARE(FW_RV2P_FILE_06);
84 MODULE_FIRMWARE(FW_MIPS_FILE_09);
85 MODULE_FIRMWARE(FW_RV2P_FILE_09);
86 MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax);
88 static int disable_msi = 0;
90 module_param(disable_msi, int, 0);
91 MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
93 typedef enum {
94 BCM5706 = 0,
95 NC370T,
96 NC370I,
97 BCM5706S,
98 NC370F,
99 BCM5708,
100 BCM5708S,
101 BCM5709,
102 BCM5709S,
103 BCM5716,
104 BCM5716S,
105 } board_t;
107 /* indexed by board_t, above */
108 static struct {
109 char *name;
110 } board_info[] __devinitdata = {
111 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
112 { "HP NC370T Multifunction Gigabit Server Adapter" },
113 { "HP NC370i Multifunction Gigabit Server Adapter" },
114 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
115 { "HP NC370F Multifunction Gigabit Server Adapter" },
116 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
117 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
118 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
119 { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
120 { "Broadcom NetXtreme II BCM5716 1000Base-T" },
121 { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
124 static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
125 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
126 PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
127 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
128 PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
129 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
130 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
131 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
132 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
133 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
134 PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
135 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
136 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
137 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
138 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
139 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
140 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
141 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
142 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
143 { PCI_VENDOR_ID_BROADCOM, 0x163b,
144 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
145 { PCI_VENDOR_ID_BROADCOM, 0x163c,
146 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
147 { 0, }
150 static const struct flash_spec flash_table[] =
152 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
153 #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
154 /* Slow EEPROM */
155 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
156 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
157 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
158 "EEPROM - slow"},
159 /* Expansion entry 0001 */
160 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
161 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
162 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
163 "Entry 0001"},
164 /* Saifun SA25F010 (non-buffered flash) */
165 /* strap, cfg1, & write1 need updates */
166 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
167 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
168 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
169 "Non-buffered flash (128kB)"},
170 /* Saifun SA25F020 (non-buffered flash) */
171 /* strap, cfg1, & write1 need updates */
172 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
173 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
174 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
175 "Non-buffered flash (256kB)"},
176 /* Expansion entry 0100 */
177 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
178 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
179 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
180 "Entry 0100"},
181 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
182 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
183 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
184 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
185 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
186 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
187 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
188 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
189 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
190 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
191 /* Saifun SA25F005 (non-buffered flash) */
192 /* strap, cfg1, & write1 need updates */
193 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
194 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
195 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
196 "Non-buffered flash (64kB)"},
197 /* Fast EEPROM */
198 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
199 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
200 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
201 "EEPROM - fast"},
202 /* Expansion entry 1001 */
203 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
204 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
205 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
206 "Entry 1001"},
207 /* Expansion entry 1010 */
208 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
209 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
210 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
211 "Entry 1010"},
212 /* ATMEL AT45DB011B (buffered flash) */
213 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
214 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
215 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
216 "Buffered flash (128kB)"},
217 /* Expansion entry 1100 */
218 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
219 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
220 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
221 "Entry 1100"},
222 /* Expansion entry 1101 */
223 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
224 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
225 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
226 "Entry 1101"},
227 /* Ateml Expansion entry 1110 */
228 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
229 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
230 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
231 "Entry 1110 (Atmel)"},
232 /* ATMEL AT45DB021B (buffered flash) */
233 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
234 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
235 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
236 "Buffered flash (256kB)"},
239 static const struct flash_spec flash_5709 = {
240 .flags = BNX2_NV_BUFFERED,
241 .page_bits = BCM5709_FLASH_PAGE_BITS,
242 .page_size = BCM5709_FLASH_PAGE_SIZE,
243 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
244 .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
245 .name = "5709 Buffered flash (256kB)",
248 MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
250 static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
252 u32 diff;
254 smp_mb();
256 /* The ring uses 256 indices for 255 entries, one of them
257 * needs to be skipped.
259 diff = txr->tx_prod - txr->tx_cons;
260 if (unlikely(diff >= TX_DESC_CNT)) {
261 diff &= 0xffff;
262 if (diff == TX_DESC_CNT)
263 diff = MAX_TX_DESC_CNT;
265 return (bp->tx_ring_size - diff);
268 static u32
269 bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
271 u32 val;
273 spin_lock_bh(&bp->indirect_lock);
274 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
275 val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
276 spin_unlock_bh(&bp->indirect_lock);
277 return val;
280 static void
281 bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
283 spin_lock_bh(&bp->indirect_lock);
284 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
285 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
286 spin_unlock_bh(&bp->indirect_lock);
289 static void
290 bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
292 bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
295 static u32
296 bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
298 return (bnx2_reg_rd_ind(bp, bp->shmem_base + offset));
301 static void
302 bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
304 offset += cid_addr;
305 spin_lock_bh(&bp->indirect_lock);
306 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
307 int i;
309 REG_WR(bp, BNX2_CTX_CTX_DATA, val);
310 REG_WR(bp, BNX2_CTX_CTX_CTRL,
311 offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
312 for (i = 0; i < 5; i++) {
313 val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
314 if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
315 break;
316 udelay(5);
318 } else {
319 REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
320 REG_WR(bp, BNX2_CTX_DATA, val);
322 spin_unlock_bh(&bp->indirect_lock);
325 #ifdef BCM_CNIC
326 static int
327 bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
329 struct bnx2 *bp = netdev_priv(dev);
330 struct drv_ctl_io *io = &info->data.io;
332 switch (info->cmd) {
333 case DRV_CTL_IO_WR_CMD:
334 bnx2_reg_wr_ind(bp, io->offset, io->data);
335 break;
336 case DRV_CTL_IO_RD_CMD:
337 io->data = bnx2_reg_rd_ind(bp, io->offset);
338 break;
339 case DRV_CTL_CTX_WR_CMD:
340 bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
341 break;
342 default:
343 return -EINVAL;
345 return 0;
348 static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
350 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
351 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
352 int sb_id;
354 if (bp->flags & BNX2_FLAG_USING_MSIX) {
355 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
356 bnapi->cnic_present = 0;
357 sb_id = bp->irq_nvecs;
358 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
359 } else {
360 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
361 bnapi->cnic_tag = bnapi->last_status_idx;
362 bnapi->cnic_present = 1;
363 sb_id = 0;
364 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
367 cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
368 cp->irq_arr[0].status_blk = (void *)
369 ((unsigned long) bnapi->status_blk.msi +
370 (BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
371 cp->irq_arr[0].status_blk_num = sb_id;
372 cp->num_irq = 1;
375 static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
376 void *data)
378 struct bnx2 *bp = netdev_priv(dev);
379 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
381 if (ops == NULL)
382 return -EINVAL;
384 if (cp->drv_state & CNIC_DRV_STATE_REGD)
385 return -EBUSY;
387 bp->cnic_data = data;
388 rcu_assign_pointer(bp->cnic_ops, ops);
390 cp->num_irq = 0;
391 cp->drv_state = CNIC_DRV_STATE_REGD;
393 bnx2_setup_cnic_irq_info(bp);
395 return 0;
398 static int bnx2_unregister_cnic(struct net_device *dev)
400 struct bnx2 *bp = netdev_priv(dev);
401 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
402 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
404 mutex_lock(&bp->cnic_lock);
405 cp->drv_state = 0;
406 bnapi->cnic_present = 0;
407 rcu_assign_pointer(bp->cnic_ops, NULL);
408 mutex_unlock(&bp->cnic_lock);
409 synchronize_rcu();
410 return 0;
413 struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
415 struct bnx2 *bp = netdev_priv(dev);
416 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
418 cp->drv_owner = THIS_MODULE;
419 cp->chip_id = bp->chip_id;
420 cp->pdev = bp->pdev;
421 cp->io_base = bp->regview;
422 cp->drv_ctl = bnx2_drv_ctl;
423 cp->drv_register_cnic = bnx2_register_cnic;
424 cp->drv_unregister_cnic = bnx2_unregister_cnic;
426 return cp;
428 EXPORT_SYMBOL(bnx2_cnic_probe);
430 static void
431 bnx2_cnic_stop(struct bnx2 *bp)
433 struct cnic_ops *c_ops;
434 struct cnic_ctl_info info;
436 mutex_lock(&bp->cnic_lock);
437 c_ops = bp->cnic_ops;
438 if (c_ops) {
439 info.cmd = CNIC_CTL_STOP_CMD;
440 c_ops->cnic_ctl(bp->cnic_data, &info);
442 mutex_unlock(&bp->cnic_lock);
445 static void
446 bnx2_cnic_start(struct bnx2 *bp)
448 struct cnic_ops *c_ops;
449 struct cnic_ctl_info info;
451 mutex_lock(&bp->cnic_lock);
452 c_ops = bp->cnic_ops;
453 if (c_ops) {
454 if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
455 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
457 bnapi->cnic_tag = bnapi->last_status_idx;
459 info.cmd = CNIC_CTL_START_CMD;
460 c_ops->cnic_ctl(bp->cnic_data, &info);
462 mutex_unlock(&bp->cnic_lock);
465 #else
467 static void
468 bnx2_cnic_stop(struct bnx2 *bp)
472 static void
473 bnx2_cnic_start(struct bnx2 *bp)
477 #endif
479 static int
480 bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
482 u32 val1;
483 int i, ret;
485 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
486 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
487 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
489 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
490 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
492 udelay(40);
495 val1 = (bp->phy_addr << 21) | (reg << 16) |
496 BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
497 BNX2_EMAC_MDIO_COMM_START_BUSY;
498 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
500 for (i = 0; i < 50; i++) {
501 udelay(10);
503 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
504 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
505 udelay(5);
507 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
508 val1 &= BNX2_EMAC_MDIO_COMM_DATA;
510 break;
514 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
515 *val = 0x0;
516 ret = -EBUSY;
518 else {
519 *val = val1;
520 ret = 0;
523 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
524 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
525 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
527 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
528 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
530 udelay(40);
533 return ret;
536 static int
537 bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
539 u32 val1;
540 int i, ret;
542 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
543 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
544 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
546 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
547 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
549 udelay(40);
552 val1 = (bp->phy_addr << 21) | (reg << 16) | val |
553 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
554 BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
555 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
557 for (i = 0; i < 50; i++) {
558 udelay(10);
560 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
561 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
562 udelay(5);
563 break;
567 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
568 ret = -EBUSY;
569 else
570 ret = 0;
572 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
573 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
574 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
576 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
577 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
579 udelay(40);
582 return ret;
585 static void
586 bnx2_disable_int(struct bnx2 *bp)
588 int i;
589 struct bnx2_napi *bnapi;
591 for (i = 0; i < bp->irq_nvecs; i++) {
592 bnapi = &bp->bnx2_napi[i];
593 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
594 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
596 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
599 static void
600 bnx2_enable_int(struct bnx2 *bp)
602 int i;
603 struct bnx2_napi *bnapi;
605 for (i = 0; i < bp->irq_nvecs; i++) {
606 bnapi = &bp->bnx2_napi[i];
608 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
609 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
610 BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
611 bnapi->last_status_idx);
613 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
614 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
615 bnapi->last_status_idx);
617 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
620 static void
621 bnx2_disable_int_sync(struct bnx2 *bp)
623 int i;
625 atomic_inc(&bp->intr_sem);
626 if (!netif_running(bp->dev))
627 return;
629 bnx2_disable_int(bp);
630 for (i = 0; i < bp->irq_nvecs; i++)
631 synchronize_irq(bp->irq_tbl[i].vector);
634 static void
635 bnx2_napi_disable(struct bnx2 *bp)
637 int i;
639 for (i = 0; i < bp->irq_nvecs; i++)
640 napi_disable(&bp->bnx2_napi[i].napi);
643 static void
644 bnx2_napi_enable(struct bnx2 *bp)
646 int i;
648 for (i = 0; i < bp->irq_nvecs; i++)
649 napi_enable(&bp->bnx2_napi[i].napi);
652 static void
653 bnx2_netif_stop(struct bnx2 *bp)
655 bnx2_cnic_stop(bp);
656 bnx2_disable_int_sync(bp);
657 if (netif_running(bp->dev)) {
658 bnx2_napi_disable(bp);
659 netif_tx_disable(bp->dev);
660 bp->dev->trans_start = jiffies; /* prevent tx timeout */
664 static void
665 bnx2_netif_start(struct bnx2 *bp)
667 if (atomic_dec_and_test(&bp->intr_sem)) {
668 if (netif_running(bp->dev)) {
669 netif_tx_wake_all_queues(bp->dev);
670 bnx2_napi_enable(bp);
671 bnx2_enable_int(bp);
672 bnx2_cnic_start(bp);
677 static void
678 bnx2_free_tx_mem(struct bnx2 *bp)
680 int i;
682 for (i = 0; i < bp->num_tx_rings; i++) {
683 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
684 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
686 if (txr->tx_desc_ring) {
687 pci_free_consistent(bp->pdev, TXBD_RING_SIZE,
688 txr->tx_desc_ring,
689 txr->tx_desc_mapping);
690 txr->tx_desc_ring = NULL;
692 kfree(txr->tx_buf_ring);
693 txr->tx_buf_ring = NULL;
697 static void
698 bnx2_free_rx_mem(struct bnx2 *bp)
700 int i;
702 for (i = 0; i < bp->num_rx_rings; i++) {
703 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
704 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
705 int j;
707 for (j = 0; j < bp->rx_max_ring; j++) {
708 if (rxr->rx_desc_ring[j])
709 pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
710 rxr->rx_desc_ring[j],
711 rxr->rx_desc_mapping[j]);
712 rxr->rx_desc_ring[j] = NULL;
714 vfree(rxr->rx_buf_ring);
715 rxr->rx_buf_ring = NULL;
717 for (j = 0; j < bp->rx_max_pg_ring; j++) {
718 if (rxr->rx_pg_desc_ring[j])
719 pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
720 rxr->rx_pg_desc_ring[j],
721 rxr->rx_pg_desc_mapping[j]);
722 rxr->rx_pg_desc_ring[j] = NULL;
724 vfree(rxr->rx_pg_ring);
725 rxr->rx_pg_ring = NULL;
729 static int
730 bnx2_alloc_tx_mem(struct bnx2 *bp)
732 int i;
734 for (i = 0; i < bp->num_tx_rings; i++) {
735 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
736 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
738 txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
739 if (txr->tx_buf_ring == NULL)
740 return -ENOMEM;
742 txr->tx_desc_ring =
743 pci_alloc_consistent(bp->pdev, TXBD_RING_SIZE,
744 &txr->tx_desc_mapping);
745 if (txr->tx_desc_ring == NULL)
746 return -ENOMEM;
748 return 0;
751 static int
752 bnx2_alloc_rx_mem(struct bnx2 *bp)
754 int i;
756 for (i = 0; i < bp->num_rx_rings; i++) {
757 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
758 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
759 int j;
761 rxr->rx_buf_ring =
762 vmalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
763 if (rxr->rx_buf_ring == NULL)
764 return -ENOMEM;
766 memset(rxr->rx_buf_ring, 0,
767 SW_RXBD_RING_SIZE * bp->rx_max_ring);
769 for (j = 0; j < bp->rx_max_ring; j++) {
770 rxr->rx_desc_ring[j] =
771 pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
772 &rxr->rx_desc_mapping[j]);
773 if (rxr->rx_desc_ring[j] == NULL)
774 return -ENOMEM;
778 if (bp->rx_pg_ring_size) {
779 rxr->rx_pg_ring = vmalloc(SW_RXPG_RING_SIZE *
780 bp->rx_max_pg_ring);
781 if (rxr->rx_pg_ring == NULL)
782 return -ENOMEM;
784 memset(rxr->rx_pg_ring, 0, SW_RXPG_RING_SIZE *
785 bp->rx_max_pg_ring);
788 for (j = 0; j < bp->rx_max_pg_ring; j++) {
789 rxr->rx_pg_desc_ring[j] =
790 pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
791 &rxr->rx_pg_desc_mapping[j]);
792 if (rxr->rx_pg_desc_ring[j] == NULL)
793 return -ENOMEM;
797 return 0;
800 static void
801 bnx2_free_mem(struct bnx2 *bp)
803 int i;
804 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
806 bnx2_free_tx_mem(bp);
807 bnx2_free_rx_mem(bp);
809 for (i = 0; i < bp->ctx_pages; i++) {
810 if (bp->ctx_blk[i]) {
811 pci_free_consistent(bp->pdev, BCM_PAGE_SIZE,
812 bp->ctx_blk[i],
813 bp->ctx_blk_mapping[i]);
814 bp->ctx_blk[i] = NULL;
817 if (bnapi->status_blk.msi) {
818 pci_free_consistent(bp->pdev, bp->status_stats_size,
819 bnapi->status_blk.msi,
820 bp->status_blk_mapping);
821 bnapi->status_blk.msi = NULL;
822 bp->stats_blk = NULL;
826 static int
827 bnx2_alloc_mem(struct bnx2 *bp)
829 int i, status_blk_size, err;
830 struct bnx2_napi *bnapi;
831 void *status_blk;
833 /* Combine status and statistics blocks into one allocation. */
834 status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
835 if (bp->flags & BNX2_FLAG_MSIX_CAP)
836 status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
837 BNX2_SBLK_MSIX_ALIGN_SIZE);
838 bp->status_stats_size = status_blk_size +
839 sizeof(struct statistics_block);
841 status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
842 &bp->status_blk_mapping);
843 if (status_blk == NULL)
844 goto alloc_mem_err;
846 memset(status_blk, 0, bp->status_stats_size);
848 bnapi = &bp->bnx2_napi[0];
849 bnapi->status_blk.msi = status_blk;
850 bnapi->hw_tx_cons_ptr =
851 &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
852 bnapi->hw_rx_cons_ptr =
853 &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
854 if (bp->flags & BNX2_FLAG_MSIX_CAP) {
855 for (i = 1; i < BNX2_MAX_MSIX_VEC; i++) {
856 struct status_block_msix *sblk;
858 bnapi = &bp->bnx2_napi[i];
860 sblk = (void *) (status_blk +
861 BNX2_SBLK_MSIX_ALIGN_SIZE * i);
862 bnapi->status_blk.msix = sblk;
863 bnapi->hw_tx_cons_ptr =
864 &sblk->status_tx_quick_consumer_index;
865 bnapi->hw_rx_cons_ptr =
866 &sblk->status_rx_quick_consumer_index;
867 bnapi->int_num = i << 24;
871 bp->stats_blk = status_blk + status_blk_size;
873 bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
875 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
876 bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
877 if (bp->ctx_pages == 0)
878 bp->ctx_pages = 1;
879 for (i = 0; i < bp->ctx_pages; i++) {
880 bp->ctx_blk[i] = pci_alloc_consistent(bp->pdev,
881 BCM_PAGE_SIZE,
882 &bp->ctx_blk_mapping[i]);
883 if (bp->ctx_blk[i] == NULL)
884 goto alloc_mem_err;
888 err = bnx2_alloc_rx_mem(bp);
889 if (err)
890 goto alloc_mem_err;
892 err = bnx2_alloc_tx_mem(bp);
893 if (err)
894 goto alloc_mem_err;
896 return 0;
898 alloc_mem_err:
899 bnx2_free_mem(bp);
900 return -ENOMEM;
903 static void
904 bnx2_report_fw_link(struct bnx2 *bp)
906 u32 fw_link_status = 0;
908 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
909 return;
911 if (bp->link_up) {
912 u32 bmsr;
914 switch (bp->line_speed) {
915 case SPEED_10:
916 if (bp->duplex == DUPLEX_HALF)
917 fw_link_status = BNX2_LINK_STATUS_10HALF;
918 else
919 fw_link_status = BNX2_LINK_STATUS_10FULL;
920 break;
921 case SPEED_100:
922 if (bp->duplex == DUPLEX_HALF)
923 fw_link_status = BNX2_LINK_STATUS_100HALF;
924 else
925 fw_link_status = BNX2_LINK_STATUS_100FULL;
926 break;
927 case SPEED_1000:
928 if (bp->duplex == DUPLEX_HALF)
929 fw_link_status = BNX2_LINK_STATUS_1000HALF;
930 else
931 fw_link_status = BNX2_LINK_STATUS_1000FULL;
932 break;
933 case SPEED_2500:
934 if (bp->duplex == DUPLEX_HALF)
935 fw_link_status = BNX2_LINK_STATUS_2500HALF;
936 else
937 fw_link_status = BNX2_LINK_STATUS_2500FULL;
938 break;
941 fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
943 if (bp->autoneg) {
944 fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
946 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
947 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
949 if (!(bmsr & BMSR_ANEGCOMPLETE) ||
950 bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
951 fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
952 else
953 fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
956 else
957 fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
959 bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
962 static char *
963 bnx2_xceiver_str(struct bnx2 *bp)
965 return ((bp->phy_port == PORT_FIBRE) ? "SerDes" :
966 ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
967 "Copper"));
970 static void
971 bnx2_report_link(struct bnx2 *bp)
973 if (bp->link_up) {
974 netif_carrier_on(bp->dev);
975 printk(KERN_INFO PFX "%s NIC %s Link is Up, ", bp->dev->name,
976 bnx2_xceiver_str(bp));
978 printk("%d Mbps ", bp->line_speed);
980 if (bp->duplex == DUPLEX_FULL)
981 printk("full duplex");
982 else
983 printk("half duplex");
985 if (bp->flow_ctrl) {
986 if (bp->flow_ctrl & FLOW_CTRL_RX) {
987 printk(", receive ");
988 if (bp->flow_ctrl & FLOW_CTRL_TX)
989 printk("& transmit ");
991 else {
992 printk(", transmit ");
994 printk("flow control ON");
996 printk("\n");
998 else {
999 netif_carrier_off(bp->dev);
1000 printk(KERN_ERR PFX "%s NIC %s Link is Down\n", bp->dev->name,
1001 bnx2_xceiver_str(bp));
1004 bnx2_report_fw_link(bp);
1007 static void
1008 bnx2_resolve_flow_ctrl(struct bnx2 *bp)
1010 u32 local_adv, remote_adv;
1012 bp->flow_ctrl = 0;
1013 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
1014 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
1016 if (bp->duplex == DUPLEX_FULL) {
1017 bp->flow_ctrl = bp->req_flow_ctrl;
1019 return;
1022 if (bp->duplex != DUPLEX_FULL) {
1023 return;
1026 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1027 (CHIP_NUM(bp) == CHIP_NUM_5708)) {
1028 u32 val;
1030 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
1031 if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
1032 bp->flow_ctrl |= FLOW_CTRL_TX;
1033 if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
1034 bp->flow_ctrl |= FLOW_CTRL_RX;
1035 return;
1038 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1039 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1041 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1042 u32 new_local_adv = 0;
1043 u32 new_remote_adv = 0;
1045 if (local_adv & ADVERTISE_1000XPAUSE)
1046 new_local_adv |= ADVERTISE_PAUSE_CAP;
1047 if (local_adv & ADVERTISE_1000XPSE_ASYM)
1048 new_local_adv |= ADVERTISE_PAUSE_ASYM;
1049 if (remote_adv & ADVERTISE_1000XPAUSE)
1050 new_remote_adv |= ADVERTISE_PAUSE_CAP;
1051 if (remote_adv & ADVERTISE_1000XPSE_ASYM)
1052 new_remote_adv |= ADVERTISE_PAUSE_ASYM;
1054 local_adv = new_local_adv;
1055 remote_adv = new_remote_adv;
1058 /* See Table 28B-3 of 802.3ab-1999 spec. */
1059 if (local_adv & ADVERTISE_PAUSE_CAP) {
1060 if(local_adv & ADVERTISE_PAUSE_ASYM) {
1061 if (remote_adv & ADVERTISE_PAUSE_CAP) {
1062 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
1064 else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
1065 bp->flow_ctrl = FLOW_CTRL_RX;
1068 else {
1069 if (remote_adv & ADVERTISE_PAUSE_CAP) {
1070 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
1074 else if (local_adv & ADVERTISE_PAUSE_ASYM) {
1075 if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
1076 (remote_adv & ADVERTISE_PAUSE_ASYM)) {
1078 bp->flow_ctrl = FLOW_CTRL_TX;
1083 static int
1084 bnx2_5709s_linkup(struct bnx2 *bp)
1086 u32 val, speed;
1088 bp->link_up = 1;
1090 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
1091 bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
1092 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1094 if ((bp->autoneg & AUTONEG_SPEED) == 0) {
1095 bp->line_speed = bp->req_line_speed;
1096 bp->duplex = bp->req_duplex;
1097 return 0;
1099 speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
1100 switch (speed) {
1101 case MII_BNX2_GP_TOP_AN_SPEED_10:
1102 bp->line_speed = SPEED_10;
1103 break;
1104 case MII_BNX2_GP_TOP_AN_SPEED_100:
1105 bp->line_speed = SPEED_100;
1106 break;
1107 case MII_BNX2_GP_TOP_AN_SPEED_1G:
1108 case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
1109 bp->line_speed = SPEED_1000;
1110 break;
1111 case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
1112 bp->line_speed = SPEED_2500;
1113 break;
1115 if (val & MII_BNX2_GP_TOP_AN_FD)
1116 bp->duplex = DUPLEX_FULL;
1117 else
1118 bp->duplex = DUPLEX_HALF;
1119 return 0;
1122 static int
1123 bnx2_5708s_linkup(struct bnx2 *bp)
1125 u32 val;
1127 bp->link_up = 1;
1128 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
1129 switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
1130 case BCM5708S_1000X_STAT1_SPEED_10:
1131 bp->line_speed = SPEED_10;
1132 break;
1133 case BCM5708S_1000X_STAT1_SPEED_100:
1134 bp->line_speed = SPEED_100;
1135 break;
1136 case BCM5708S_1000X_STAT1_SPEED_1G:
1137 bp->line_speed = SPEED_1000;
1138 break;
1139 case BCM5708S_1000X_STAT1_SPEED_2G5:
1140 bp->line_speed = SPEED_2500;
1141 break;
1143 if (val & BCM5708S_1000X_STAT1_FD)
1144 bp->duplex = DUPLEX_FULL;
1145 else
1146 bp->duplex = DUPLEX_HALF;
1148 return 0;
1151 static int
1152 bnx2_5706s_linkup(struct bnx2 *bp)
1154 u32 bmcr, local_adv, remote_adv, common;
1156 bp->link_up = 1;
1157 bp->line_speed = SPEED_1000;
1159 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1160 if (bmcr & BMCR_FULLDPLX) {
1161 bp->duplex = DUPLEX_FULL;
1163 else {
1164 bp->duplex = DUPLEX_HALF;
1167 if (!(bmcr & BMCR_ANENABLE)) {
1168 return 0;
1171 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1172 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1174 common = local_adv & remote_adv;
1175 if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
1177 if (common & ADVERTISE_1000XFULL) {
1178 bp->duplex = DUPLEX_FULL;
1180 else {
1181 bp->duplex = DUPLEX_HALF;
1185 return 0;
1188 static int
1189 bnx2_copper_linkup(struct bnx2 *bp)
1191 u32 bmcr;
1193 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1194 if (bmcr & BMCR_ANENABLE) {
1195 u32 local_adv, remote_adv, common;
1197 bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
1198 bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
1200 common = local_adv & (remote_adv >> 2);
1201 if (common & ADVERTISE_1000FULL) {
1202 bp->line_speed = SPEED_1000;
1203 bp->duplex = DUPLEX_FULL;
1205 else if (common & ADVERTISE_1000HALF) {
1206 bp->line_speed = SPEED_1000;
1207 bp->duplex = DUPLEX_HALF;
1209 else {
1210 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1211 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1213 common = local_adv & remote_adv;
1214 if (common & ADVERTISE_100FULL) {
1215 bp->line_speed = SPEED_100;
1216 bp->duplex = DUPLEX_FULL;
1218 else if (common & ADVERTISE_100HALF) {
1219 bp->line_speed = SPEED_100;
1220 bp->duplex = DUPLEX_HALF;
1222 else if (common & ADVERTISE_10FULL) {
1223 bp->line_speed = SPEED_10;
1224 bp->duplex = DUPLEX_FULL;
1226 else if (common & ADVERTISE_10HALF) {
1227 bp->line_speed = SPEED_10;
1228 bp->duplex = DUPLEX_HALF;
1230 else {
1231 bp->line_speed = 0;
1232 bp->link_up = 0;
1236 else {
1237 if (bmcr & BMCR_SPEED100) {
1238 bp->line_speed = SPEED_100;
1240 else {
1241 bp->line_speed = SPEED_10;
1243 if (bmcr & BMCR_FULLDPLX) {
1244 bp->duplex = DUPLEX_FULL;
1246 else {
1247 bp->duplex = DUPLEX_HALF;
1251 return 0;
1254 static void
1255 bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
1257 u32 val, rx_cid_addr = GET_CID_ADDR(cid);
1259 val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
1260 val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
1261 val |= 0x02 << 8;
1263 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1264 u32 lo_water, hi_water;
1266 if (bp->flow_ctrl & FLOW_CTRL_TX)
1267 lo_water = BNX2_L2CTX_LO_WATER_MARK_DEFAULT;
1268 else
1269 lo_water = BNX2_L2CTX_LO_WATER_MARK_DIS;
1270 if (lo_water >= bp->rx_ring_size)
1271 lo_water = 0;
1273 hi_water = bp->rx_ring_size / 4;
1275 if (hi_water <= lo_water)
1276 lo_water = 0;
1278 hi_water /= BNX2_L2CTX_HI_WATER_MARK_SCALE;
1279 lo_water /= BNX2_L2CTX_LO_WATER_MARK_SCALE;
1281 if (hi_water > 0xf)
1282 hi_water = 0xf;
1283 else if (hi_water == 0)
1284 lo_water = 0;
1285 val |= lo_water | (hi_water << BNX2_L2CTX_HI_WATER_MARK_SHIFT);
1287 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
1290 static void
1291 bnx2_init_all_rx_contexts(struct bnx2 *bp)
1293 int i;
1294 u32 cid;
1296 for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
1297 if (i == 1)
1298 cid = RX_RSS_CID;
1299 bnx2_init_rx_context(bp, cid);
1303 static void
1304 bnx2_set_mac_link(struct bnx2 *bp)
1306 u32 val;
1308 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
1309 if (bp->link_up && (bp->line_speed == SPEED_1000) &&
1310 (bp->duplex == DUPLEX_HALF)) {
1311 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
1314 /* Configure the EMAC mode register. */
1315 val = REG_RD(bp, BNX2_EMAC_MODE);
1317 val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
1318 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
1319 BNX2_EMAC_MODE_25G_MODE);
1321 if (bp->link_up) {
1322 switch (bp->line_speed) {
1323 case SPEED_10:
1324 if (CHIP_NUM(bp) != CHIP_NUM_5706) {
1325 val |= BNX2_EMAC_MODE_PORT_MII_10M;
1326 break;
1328 /* fall through */
1329 case SPEED_100:
1330 val |= BNX2_EMAC_MODE_PORT_MII;
1331 break;
1332 case SPEED_2500:
1333 val |= BNX2_EMAC_MODE_25G_MODE;
1334 /* fall through */
1335 case SPEED_1000:
1336 val |= BNX2_EMAC_MODE_PORT_GMII;
1337 break;
1340 else {
1341 val |= BNX2_EMAC_MODE_PORT_GMII;
1344 /* Set the MAC to operate in the appropriate duplex mode. */
1345 if (bp->duplex == DUPLEX_HALF)
1346 val |= BNX2_EMAC_MODE_HALF_DUPLEX;
1347 REG_WR(bp, BNX2_EMAC_MODE, val);
1349 /* Enable/disable rx PAUSE. */
1350 bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
1352 if (bp->flow_ctrl & FLOW_CTRL_RX)
1353 bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
1354 REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
1356 /* Enable/disable tx PAUSE. */
1357 val = REG_RD(bp, BNX2_EMAC_TX_MODE);
1358 val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
1360 if (bp->flow_ctrl & FLOW_CTRL_TX)
1361 val |= BNX2_EMAC_TX_MODE_FLOW_EN;
1362 REG_WR(bp, BNX2_EMAC_TX_MODE, val);
1364 /* Acknowledge the interrupt. */
1365 REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
1367 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1368 bnx2_init_all_rx_contexts(bp);
1371 static void
1372 bnx2_enable_bmsr1(struct bnx2 *bp)
1374 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1375 (CHIP_NUM(bp) == CHIP_NUM_5709))
1376 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1377 MII_BNX2_BLK_ADDR_GP_STATUS);
1380 static void
1381 bnx2_disable_bmsr1(struct bnx2 *bp)
1383 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1384 (CHIP_NUM(bp) == CHIP_NUM_5709))
1385 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1386 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1389 static int
1390 bnx2_test_and_enable_2g5(struct bnx2 *bp)
1392 u32 up1;
1393 int ret = 1;
1395 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1396 return 0;
1398 if (bp->autoneg & AUTONEG_SPEED)
1399 bp->advertising |= ADVERTISED_2500baseX_Full;
1401 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1402 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1404 bnx2_read_phy(bp, bp->mii_up1, &up1);
1405 if (!(up1 & BCM5708S_UP1_2G5)) {
1406 up1 |= BCM5708S_UP1_2G5;
1407 bnx2_write_phy(bp, bp->mii_up1, up1);
1408 ret = 0;
1411 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1412 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1413 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1415 return ret;
1418 static int
1419 bnx2_test_and_disable_2g5(struct bnx2 *bp)
1421 u32 up1;
1422 int ret = 0;
1424 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1425 return 0;
1427 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1428 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1430 bnx2_read_phy(bp, bp->mii_up1, &up1);
1431 if (up1 & BCM5708S_UP1_2G5) {
1432 up1 &= ~BCM5708S_UP1_2G5;
1433 bnx2_write_phy(bp, bp->mii_up1, up1);
1434 ret = 1;
1437 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1438 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1439 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1441 return ret;
1444 static void
1445 bnx2_enable_forced_2g5(struct bnx2 *bp)
1447 u32 bmcr;
1449 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1450 return;
1452 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1453 u32 val;
1455 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1456 MII_BNX2_BLK_ADDR_SERDES_DIG);
1457 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
1458 val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
1459 val |= MII_BNX2_SD_MISC1_FORCE | MII_BNX2_SD_MISC1_FORCE_2_5G;
1460 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1462 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1463 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1464 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1466 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1467 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1468 bmcr |= BCM5708S_BMCR_FORCE_2500;
1469 } else {
1470 return;
1473 if (bp->autoneg & AUTONEG_SPEED) {
1474 bmcr &= ~BMCR_ANENABLE;
1475 if (bp->req_duplex == DUPLEX_FULL)
1476 bmcr |= BMCR_FULLDPLX;
1478 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1481 static void
1482 bnx2_disable_forced_2g5(struct bnx2 *bp)
1484 u32 bmcr;
1486 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1487 return;
1489 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1490 u32 val;
1492 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1493 MII_BNX2_BLK_ADDR_SERDES_DIG);
1494 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
1495 val &= ~MII_BNX2_SD_MISC1_FORCE;
1496 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1498 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1499 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1500 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1502 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1503 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1504 bmcr &= ~BCM5708S_BMCR_FORCE_2500;
1505 } else {
1506 return;
1509 if (bp->autoneg & AUTONEG_SPEED)
1510 bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
1511 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1514 static void
1515 bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
1517 u32 val;
1519 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
1520 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
1521 if (start)
1522 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
1523 else
1524 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
1527 static int
1528 bnx2_set_link(struct bnx2 *bp)
1530 u32 bmsr;
1531 u8 link_up;
1533 if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
1534 bp->link_up = 1;
1535 return 0;
1538 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
1539 return 0;
1541 link_up = bp->link_up;
1543 bnx2_enable_bmsr1(bp);
1544 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1545 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1546 bnx2_disable_bmsr1(bp);
1548 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1549 (CHIP_NUM(bp) == CHIP_NUM_5706)) {
1550 u32 val, an_dbg;
1552 if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
1553 bnx2_5706s_force_link_dn(bp, 0);
1554 bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
1556 val = REG_RD(bp, BNX2_EMAC_STATUS);
1558 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
1559 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
1560 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
1562 if ((val & BNX2_EMAC_STATUS_LINK) &&
1563 !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
1564 bmsr |= BMSR_LSTATUS;
1565 else
1566 bmsr &= ~BMSR_LSTATUS;
1569 if (bmsr & BMSR_LSTATUS) {
1570 bp->link_up = 1;
1572 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1573 if (CHIP_NUM(bp) == CHIP_NUM_5706)
1574 bnx2_5706s_linkup(bp);
1575 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
1576 bnx2_5708s_linkup(bp);
1577 else if (CHIP_NUM(bp) == CHIP_NUM_5709)
1578 bnx2_5709s_linkup(bp);
1580 else {
1581 bnx2_copper_linkup(bp);
1583 bnx2_resolve_flow_ctrl(bp);
1585 else {
1586 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1587 (bp->autoneg & AUTONEG_SPEED))
1588 bnx2_disable_forced_2g5(bp);
1590 if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
1591 u32 bmcr;
1593 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1594 bmcr |= BMCR_ANENABLE;
1595 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1597 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
1599 bp->link_up = 0;
1602 if (bp->link_up != link_up) {
1603 bnx2_report_link(bp);
1606 bnx2_set_mac_link(bp);
1608 return 0;
1611 static int
1612 bnx2_reset_phy(struct bnx2 *bp)
1614 int i;
1615 u32 reg;
1617 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
1619 #define PHY_RESET_MAX_WAIT 100
1620 for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
1621 udelay(10);
1623 bnx2_read_phy(bp, bp->mii_bmcr, &reg);
1624 if (!(reg & BMCR_RESET)) {
1625 udelay(20);
1626 break;
1629 if (i == PHY_RESET_MAX_WAIT) {
1630 return -EBUSY;
1632 return 0;
1635 static u32
1636 bnx2_phy_get_pause_adv(struct bnx2 *bp)
1638 u32 adv = 0;
1640 if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
1641 (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
1643 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1644 adv = ADVERTISE_1000XPAUSE;
1646 else {
1647 adv = ADVERTISE_PAUSE_CAP;
1650 else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
1651 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1652 adv = ADVERTISE_1000XPSE_ASYM;
1654 else {
1655 adv = ADVERTISE_PAUSE_ASYM;
1658 else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
1659 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1660 adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
1662 else {
1663 adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1666 return adv;
1669 static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
1671 static int
1672 bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
1673 __releases(&bp->phy_lock)
1674 __acquires(&bp->phy_lock)
1676 u32 speed_arg = 0, pause_adv;
1678 pause_adv = bnx2_phy_get_pause_adv(bp);
1680 if (bp->autoneg & AUTONEG_SPEED) {
1681 speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
1682 if (bp->advertising & ADVERTISED_10baseT_Half)
1683 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1684 if (bp->advertising & ADVERTISED_10baseT_Full)
1685 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1686 if (bp->advertising & ADVERTISED_100baseT_Half)
1687 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1688 if (bp->advertising & ADVERTISED_100baseT_Full)
1689 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1690 if (bp->advertising & ADVERTISED_1000baseT_Full)
1691 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1692 if (bp->advertising & ADVERTISED_2500baseX_Full)
1693 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1694 } else {
1695 if (bp->req_line_speed == SPEED_2500)
1696 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1697 else if (bp->req_line_speed == SPEED_1000)
1698 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1699 else if (bp->req_line_speed == SPEED_100) {
1700 if (bp->req_duplex == DUPLEX_FULL)
1701 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1702 else
1703 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1704 } else if (bp->req_line_speed == SPEED_10) {
1705 if (bp->req_duplex == DUPLEX_FULL)
1706 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1707 else
1708 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1712 if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
1713 speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
1714 if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
1715 speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
1717 if (port == PORT_TP)
1718 speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
1719 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
1721 bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
1723 spin_unlock_bh(&bp->phy_lock);
1724 bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
1725 spin_lock_bh(&bp->phy_lock);
1727 return 0;
1730 static int
1731 bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
1732 __releases(&bp->phy_lock)
1733 __acquires(&bp->phy_lock)
1735 u32 adv, bmcr;
1736 u32 new_adv = 0;
1738 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
1739 return (bnx2_setup_remote_phy(bp, port));
1741 if (!(bp->autoneg & AUTONEG_SPEED)) {
1742 u32 new_bmcr;
1743 int force_link_down = 0;
1745 if (bp->req_line_speed == SPEED_2500) {
1746 if (!bnx2_test_and_enable_2g5(bp))
1747 force_link_down = 1;
1748 } else if (bp->req_line_speed == SPEED_1000) {
1749 if (bnx2_test_and_disable_2g5(bp))
1750 force_link_down = 1;
1752 bnx2_read_phy(bp, bp->mii_adv, &adv);
1753 adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
1755 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1756 new_bmcr = bmcr & ~BMCR_ANENABLE;
1757 new_bmcr |= BMCR_SPEED1000;
1759 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1760 if (bp->req_line_speed == SPEED_2500)
1761 bnx2_enable_forced_2g5(bp);
1762 else if (bp->req_line_speed == SPEED_1000) {
1763 bnx2_disable_forced_2g5(bp);
1764 new_bmcr &= ~0x2000;
1767 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1768 if (bp->req_line_speed == SPEED_2500)
1769 new_bmcr |= BCM5708S_BMCR_FORCE_2500;
1770 else
1771 new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
1774 if (bp->req_duplex == DUPLEX_FULL) {
1775 adv |= ADVERTISE_1000XFULL;
1776 new_bmcr |= BMCR_FULLDPLX;
1778 else {
1779 adv |= ADVERTISE_1000XHALF;
1780 new_bmcr &= ~BMCR_FULLDPLX;
1782 if ((new_bmcr != bmcr) || (force_link_down)) {
1783 /* Force a link down visible on the other side */
1784 if (bp->link_up) {
1785 bnx2_write_phy(bp, bp->mii_adv, adv &
1786 ~(ADVERTISE_1000XFULL |
1787 ADVERTISE_1000XHALF));
1788 bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
1789 BMCR_ANRESTART | BMCR_ANENABLE);
1791 bp->link_up = 0;
1792 netif_carrier_off(bp->dev);
1793 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1794 bnx2_report_link(bp);
1796 bnx2_write_phy(bp, bp->mii_adv, adv);
1797 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1798 } else {
1799 bnx2_resolve_flow_ctrl(bp);
1800 bnx2_set_mac_link(bp);
1802 return 0;
1805 bnx2_test_and_enable_2g5(bp);
1807 if (bp->advertising & ADVERTISED_1000baseT_Full)
1808 new_adv |= ADVERTISE_1000XFULL;
1810 new_adv |= bnx2_phy_get_pause_adv(bp);
1812 bnx2_read_phy(bp, bp->mii_adv, &adv);
1813 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1815 bp->serdes_an_pending = 0;
1816 if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
1817 /* Force a link down visible on the other side */
1818 if (bp->link_up) {
1819 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
1820 spin_unlock_bh(&bp->phy_lock);
1821 msleep(20);
1822 spin_lock_bh(&bp->phy_lock);
1825 bnx2_write_phy(bp, bp->mii_adv, new_adv);
1826 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
1827 BMCR_ANENABLE);
1828 /* Speed up link-up time when the link partner
1829 * does not autonegotiate which is very common
1830 * in blade servers. Some blade servers use
1831 * IPMI for kerboard input and it's important
1832 * to minimize link disruptions. Autoneg. involves
1833 * exchanging base pages plus 3 next pages and
1834 * normally completes in about 120 msec.
1836 bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
1837 bp->serdes_an_pending = 1;
1838 mod_timer(&bp->timer, jiffies + bp->current_interval);
1839 } else {
1840 bnx2_resolve_flow_ctrl(bp);
1841 bnx2_set_mac_link(bp);
1844 return 0;
1847 #define ETHTOOL_ALL_FIBRE_SPEED \
1848 (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
1849 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1850 (ADVERTISED_1000baseT_Full)
1852 #define ETHTOOL_ALL_COPPER_SPEED \
1853 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1854 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1855 ADVERTISED_1000baseT_Full)
1857 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1858 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1860 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1862 static void
1863 bnx2_set_default_remote_link(struct bnx2 *bp)
1865 u32 link;
1867 if (bp->phy_port == PORT_TP)
1868 link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
1869 else
1870 link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
1872 if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
1873 bp->req_line_speed = 0;
1874 bp->autoneg |= AUTONEG_SPEED;
1875 bp->advertising = ADVERTISED_Autoneg;
1876 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1877 bp->advertising |= ADVERTISED_10baseT_Half;
1878 if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
1879 bp->advertising |= ADVERTISED_10baseT_Full;
1880 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1881 bp->advertising |= ADVERTISED_100baseT_Half;
1882 if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
1883 bp->advertising |= ADVERTISED_100baseT_Full;
1884 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1885 bp->advertising |= ADVERTISED_1000baseT_Full;
1886 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1887 bp->advertising |= ADVERTISED_2500baseX_Full;
1888 } else {
1889 bp->autoneg = 0;
1890 bp->advertising = 0;
1891 bp->req_duplex = DUPLEX_FULL;
1892 if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
1893 bp->req_line_speed = SPEED_10;
1894 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1895 bp->req_duplex = DUPLEX_HALF;
1897 if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
1898 bp->req_line_speed = SPEED_100;
1899 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1900 bp->req_duplex = DUPLEX_HALF;
1902 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1903 bp->req_line_speed = SPEED_1000;
1904 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1905 bp->req_line_speed = SPEED_2500;
1909 static void
1910 bnx2_set_default_link(struct bnx2 *bp)
1912 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
1913 bnx2_set_default_remote_link(bp);
1914 return;
1917 bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
1918 bp->req_line_speed = 0;
1919 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1920 u32 reg;
1922 bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
1924 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
1925 reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
1926 if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
1927 bp->autoneg = 0;
1928 bp->req_line_speed = bp->line_speed = SPEED_1000;
1929 bp->req_duplex = DUPLEX_FULL;
1931 } else
1932 bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
1935 static void
1936 bnx2_send_heart_beat(struct bnx2 *bp)
1938 u32 msg;
1939 u32 addr;
1941 spin_lock(&bp->indirect_lock);
1942 msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
1943 addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
1944 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
1945 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
1946 spin_unlock(&bp->indirect_lock);
1949 static void
1950 bnx2_remote_phy_event(struct bnx2 *bp)
1952 u32 msg;
1953 u8 link_up = bp->link_up;
1954 u8 old_port;
1956 msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
1958 if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
1959 bnx2_send_heart_beat(bp);
1961 msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
1963 if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
1964 bp->link_up = 0;
1965 else {
1966 u32 speed;
1968 bp->link_up = 1;
1969 speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
1970 bp->duplex = DUPLEX_FULL;
1971 switch (speed) {
1972 case BNX2_LINK_STATUS_10HALF:
1973 bp->duplex = DUPLEX_HALF;
1974 case BNX2_LINK_STATUS_10FULL:
1975 bp->line_speed = SPEED_10;
1976 break;
1977 case BNX2_LINK_STATUS_100HALF:
1978 bp->duplex = DUPLEX_HALF;
1979 case BNX2_LINK_STATUS_100BASE_T4:
1980 case BNX2_LINK_STATUS_100FULL:
1981 bp->line_speed = SPEED_100;
1982 break;
1983 case BNX2_LINK_STATUS_1000HALF:
1984 bp->duplex = DUPLEX_HALF;
1985 case BNX2_LINK_STATUS_1000FULL:
1986 bp->line_speed = SPEED_1000;
1987 break;
1988 case BNX2_LINK_STATUS_2500HALF:
1989 bp->duplex = DUPLEX_HALF;
1990 case BNX2_LINK_STATUS_2500FULL:
1991 bp->line_speed = SPEED_2500;
1992 break;
1993 default:
1994 bp->line_speed = 0;
1995 break;
1998 bp->flow_ctrl = 0;
1999 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
2000 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
2001 if (bp->duplex == DUPLEX_FULL)
2002 bp->flow_ctrl = bp->req_flow_ctrl;
2003 } else {
2004 if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
2005 bp->flow_ctrl |= FLOW_CTRL_TX;
2006 if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
2007 bp->flow_ctrl |= FLOW_CTRL_RX;
2010 old_port = bp->phy_port;
2011 if (msg & BNX2_LINK_STATUS_SERDES_LINK)
2012 bp->phy_port = PORT_FIBRE;
2013 else
2014 bp->phy_port = PORT_TP;
2016 if (old_port != bp->phy_port)
2017 bnx2_set_default_link(bp);
2020 if (bp->link_up != link_up)
2021 bnx2_report_link(bp);
2023 bnx2_set_mac_link(bp);
2026 static int
2027 bnx2_set_remote_link(struct bnx2 *bp)
2029 u32 evt_code;
2031 evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
2032 switch (evt_code) {
2033 case BNX2_FW_EVT_CODE_LINK_EVENT:
2034 bnx2_remote_phy_event(bp);
2035 break;
2036 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
2037 default:
2038 bnx2_send_heart_beat(bp);
2039 break;
2041 return 0;
2044 static int
2045 bnx2_setup_copper_phy(struct bnx2 *bp)
2046 __releases(&bp->phy_lock)
2047 __acquires(&bp->phy_lock)
2049 u32 bmcr;
2050 u32 new_bmcr;
2052 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
2054 if (bp->autoneg & AUTONEG_SPEED) {
2055 u32 adv_reg, adv1000_reg;
2056 u32 new_adv_reg = 0;
2057 u32 new_adv1000_reg = 0;
2059 bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
2060 adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
2061 ADVERTISE_PAUSE_ASYM);
2063 bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
2064 adv1000_reg &= PHY_ALL_1000_SPEED;
2066 if (bp->advertising & ADVERTISED_10baseT_Half)
2067 new_adv_reg |= ADVERTISE_10HALF;
2068 if (bp->advertising & ADVERTISED_10baseT_Full)
2069 new_adv_reg |= ADVERTISE_10FULL;
2070 if (bp->advertising & ADVERTISED_100baseT_Half)
2071 new_adv_reg |= ADVERTISE_100HALF;
2072 if (bp->advertising & ADVERTISED_100baseT_Full)
2073 new_adv_reg |= ADVERTISE_100FULL;
2074 if (bp->advertising & ADVERTISED_1000baseT_Full)
2075 new_adv1000_reg |= ADVERTISE_1000FULL;
2077 new_adv_reg |= ADVERTISE_CSMA;
2079 new_adv_reg |= bnx2_phy_get_pause_adv(bp);
2081 if ((adv1000_reg != new_adv1000_reg) ||
2082 (adv_reg != new_adv_reg) ||
2083 ((bmcr & BMCR_ANENABLE) == 0)) {
2085 bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
2086 bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
2087 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
2088 BMCR_ANENABLE);
2090 else if (bp->link_up) {
2091 /* Flow ctrl may have changed from auto to forced */
2092 /* or vice-versa. */
2094 bnx2_resolve_flow_ctrl(bp);
2095 bnx2_set_mac_link(bp);
2097 return 0;
2100 new_bmcr = 0;
2101 if (bp->req_line_speed == SPEED_100) {
2102 new_bmcr |= BMCR_SPEED100;
2104 if (bp->req_duplex == DUPLEX_FULL) {
2105 new_bmcr |= BMCR_FULLDPLX;
2107 if (new_bmcr != bmcr) {
2108 u32 bmsr;
2110 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2111 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2113 if (bmsr & BMSR_LSTATUS) {
2114 /* Force link down */
2115 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
2116 spin_unlock_bh(&bp->phy_lock);
2117 msleep(50);
2118 spin_lock_bh(&bp->phy_lock);
2120 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2121 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2124 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
2126 /* Normally, the new speed is setup after the link has
2127 * gone down and up again. In some cases, link will not go
2128 * down so we need to set up the new speed here.
2130 if (bmsr & BMSR_LSTATUS) {
2131 bp->line_speed = bp->req_line_speed;
2132 bp->duplex = bp->req_duplex;
2133 bnx2_resolve_flow_ctrl(bp);
2134 bnx2_set_mac_link(bp);
2136 } else {
2137 bnx2_resolve_flow_ctrl(bp);
2138 bnx2_set_mac_link(bp);
2140 return 0;
2143 static int
2144 bnx2_setup_phy(struct bnx2 *bp, u8 port)
2145 __releases(&bp->phy_lock)
2146 __acquires(&bp->phy_lock)
2148 if (bp->loopback == MAC_LOOPBACK)
2149 return 0;
2151 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
2152 return (bnx2_setup_serdes_phy(bp, port));
2154 else {
2155 return (bnx2_setup_copper_phy(bp));
2159 static int
2160 bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
2162 u32 val;
2164 bp->mii_bmcr = MII_BMCR + 0x10;
2165 bp->mii_bmsr = MII_BMSR + 0x10;
2166 bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
2167 bp->mii_adv = MII_ADVERTISE + 0x10;
2168 bp->mii_lpa = MII_LPA + 0x10;
2169 bp->mii_up1 = MII_BNX2_OVER1G_UP1;
2171 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
2172 bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
2174 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
2175 if (reset_phy)
2176 bnx2_reset_phy(bp);
2178 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
2180 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
2181 val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
2182 val |= MII_BNX2_SD_1000XCTL1_FIBER;
2183 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
2185 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
2186 bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
2187 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
2188 val |= BCM5708S_UP1_2G5;
2189 else
2190 val &= ~BCM5708S_UP1_2G5;
2191 bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
2193 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
2194 bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
2195 val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
2196 bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
2198 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
2200 val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
2201 MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
2202 bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
2204 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
2206 return 0;
2209 static int
2210 bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
2212 u32 val;
2214 if (reset_phy)
2215 bnx2_reset_phy(bp);
2217 bp->mii_up1 = BCM5708S_UP1;
2219 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
2220 bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
2221 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
2223 bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
2224 val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
2225 bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
2227 bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
2228 val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
2229 bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
2231 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
2232 bnx2_read_phy(bp, BCM5708S_UP1, &val);
2233 val |= BCM5708S_UP1_2G5;
2234 bnx2_write_phy(bp, BCM5708S_UP1, val);
2237 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
2238 (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
2239 (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
2240 /* increase tx signal amplitude */
2241 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2242 BCM5708S_BLK_ADDR_TX_MISC);
2243 bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
2244 val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
2245 bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
2246 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
2249 val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
2250 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
2252 if (val) {
2253 u32 is_backplane;
2255 is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
2256 if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
2257 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2258 BCM5708S_BLK_ADDR_TX_MISC);
2259 bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
2260 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2261 BCM5708S_BLK_ADDR_DIG);
2264 return 0;
2267 static int
2268 bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
2270 if (reset_phy)
2271 bnx2_reset_phy(bp);
2273 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
2275 if (CHIP_NUM(bp) == CHIP_NUM_5706)
2276 REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
2278 if (bp->dev->mtu > 1500) {
2279 u32 val;
2281 /* Set extended packet length bit */
2282 bnx2_write_phy(bp, 0x18, 0x7);
2283 bnx2_read_phy(bp, 0x18, &val);
2284 bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
2286 bnx2_write_phy(bp, 0x1c, 0x6c00);
2287 bnx2_read_phy(bp, 0x1c, &val);
2288 bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
2290 else {
2291 u32 val;
2293 bnx2_write_phy(bp, 0x18, 0x7);
2294 bnx2_read_phy(bp, 0x18, &val);
2295 bnx2_write_phy(bp, 0x18, val & ~0x4007);
2297 bnx2_write_phy(bp, 0x1c, 0x6c00);
2298 bnx2_read_phy(bp, 0x1c, &val);
2299 bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
2302 return 0;
2305 static int
2306 bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
2308 u32 val;
2310 if (reset_phy)
2311 bnx2_reset_phy(bp);
2313 if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
2314 bnx2_write_phy(bp, 0x18, 0x0c00);
2315 bnx2_write_phy(bp, 0x17, 0x000a);
2316 bnx2_write_phy(bp, 0x15, 0x310b);
2317 bnx2_write_phy(bp, 0x17, 0x201f);
2318 bnx2_write_phy(bp, 0x15, 0x9506);
2319 bnx2_write_phy(bp, 0x17, 0x401f);
2320 bnx2_write_phy(bp, 0x15, 0x14e2);
2321 bnx2_write_phy(bp, 0x18, 0x0400);
2324 if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
2325 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
2326 MII_BNX2_DSP_EXPAND_REG | 0x8);
2327 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
2328 val &= ~(1 << 8);
2329 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
2332 if (bp->dev->mtu > 1500) {
2333 /* Set extended packet length bit */
2334 bnx2_write_phy(bp, 0x18, 0x7);
2335 bnx2_read_phy(bp, 0x18, &val);
2336 bnx2_write_phy(bp, 0x18, val | 0x4000);
2338 bnx2_read_phy(bp, 0x10, &val);
2339 bnx2_write_phy(bp, 0x10, val | 0x1);
2341 else {
2342 bnx2_write_phy(bp, 0x18, 0x7);
2343 bnx2_read_phy(bp, 0x18, &val);
2344 bnx2_write_phy(bp, 0x18, val & ~0x4007);
2346 bnx2_read_phy(bp, 0x10, &val);
2347 bnx2_write_phy(bp, 0x10, val & ~0x1);
2350 /* ethernet@wirespeed */
2351 bnx2_write_phy(bp, 0x18, 0x7007);
2352 bnx2_read_phy(bp, 0x18, &val);
2353 bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
2354 return 0;
2358 static int
2359 bnx2_init_phy(struct bnx2 *bp, int reset_phy)
2360 __releases(&bp->phy_lock)
2361 __acquires(&bp->phy_lock)
2363 u32 val;
2364 int rc = 0;
2366 bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
2367 bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
2369 bp->mii_bmcr = MII_BMCR;
2370 bp->mii_bmsr = MII_BMSR;
2371 bp->mii_bmsr1 = MII_BMSR;
2372 bp->mii_adv = MII_ADVERTISE;
2373 bp->mii_lpa = MII_LPA;
2375 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
2377 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
2378 goto setup_phy;
2380 bnx2_read_phy(bp, MII_PHYSID1, &val);
2381 bp->phy_id = val << 16;
2382 bnx2_read_phy(bp, MII_PHYSID2, &val);
2383 bp->phy_id |= val & 0xffff;
2385 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
2386 if (CHIP_NUM(bp) == CHIP_NUM_5706)
2387 rc = bnx2_init_5706s_phy(bp, reset_phy);
2388 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
2389 rc = bnx2_init_5708s_phy(bp, reset_phy);
2390 else if (CHIP_NUM(bp) == CHIP_NUM_5709)
2391 rc = bnx2_init_5709s_phy(bp, reset_phy);
2393 else {
2394 rc = bnx2_init_copper_phy(bp, reset_phy);
2397 setup_phy:
2398 if (!rc)
2399 rc = bnx2_setup_phy(bp, bp->phy_port);
2401 return rc;
2404 static int
2405 bnx2_set_mac_loopback(struct bnx2 *bp)
2407 u32 mac_mode;
2409 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
2410 mac_mode &= ~BNX2_EMAC_MODE_PORT;
2411 mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
2412 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
2413 bp->link_up = 1;
2414 return 0;
2417 static int bnx2_test_link(struct bnx2 *);
2419 static int
2420 bnx2_set_phy_loopback(struct bnx2 *bp)
2422 u32 mac_mode;
2423 int rc, i;
2425 spin_lock_bh(&bp->phy_lock);
2426 rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
2427 BMCR_SPEED1000);
2428 spin_unlock_bh(&bp->phy_lock);
2429 if (rc)
2430 return rc;
2432 for (i = 0; i < 10; i++) {
2433 if (bnx2_test_link(bp) == 0)
2434 break;
2435 msleep(100);
2438 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
2439 mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
2440 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
2441 BNX2_EMAC_MODE_25G_MODE);
2443 mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
2444 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
2445 bp->link_up = 1;
2446 return 0;
2449 static int
2450 bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
2452 int i;
2453 u32 val;
2455 bp->fw_wr_seq++;
2456 msg_data |= bp->fw_wr_seq;
2458 bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
2460 if (!ack)
2461 return 0;
2463 /* wait for an acknowledgement. */
2464 for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
2465 msleep(10);
2467 val = bnx2_shmem_rd(bp, BNX2_FW_MB);
2469 if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
2470 break;
2472 if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
2473 return 0;
2475 /* If we timed out, inform the firmware that this is the case. */
2476 if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
2477 if (!silent)
2478 printk(KERN_ERR PFX "fw sync timeout, reset code = "
2479 "%x\n", msg_data);
2481 msg_data &= ~BNX2_DRV_MSG_CODE;
2482 msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
2484 bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
2486 return -EBUSY;
2489 if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
2490 return -EIO;
2492 return 0;
2495 static int
2496 bnx2_init_5709_context(struct bnx2 *bp)
2498 int i, ret = 0;
2499 u32 val;
2501 val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
2502 val |= (BCM_PAGE_BITS - 8) << 16;
2503 REG_WR(bp, BNX2_CTX_COMMAND, val);
2504 for (i = 0; i < 10; i++) {
2505 val = REG_RD(bp, BNX2_CTX_COMMAND);
2506 if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
2507 break;
2508 udelay(2);
2510 if (val & BNX2_CTX_COMMAND_MEM_INIT)
2511 return -EBUSY;
2513 for (i = 0; i < bp->ctx_pages; i++) {
2514 int j;
2516 if (bp->ctx_blk[i])
2517 memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
2518 else
2519 return -ENOMEM;
2521 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
2522 (bp->ctx_blk_mapping[i] & 0xffffffff) |
2523 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
2524 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
2525 (u64) bp->ctx_blk_mapping[i] >> 32);
2526 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
2527 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
2528 for (j = 0; j < 10; j++) {
2530 val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
2531 if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
2532 break;
2533 udelay(5);
2535 if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
2536 ret = -EBUSY;
2537 break;
2540 return ret;
2543 static void
2544 bnx2_init_context(struct bnx2 *bp)
2546 u32 vcid;
2548 vcid = 96;
2549 while (vcid) {
2550 u32 vcid_addr, pcid_addr, offset;
2551 int i;
2553 vcid--;
2555 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
2556 u32 new_vcid;
2558 vcid_addr = GET_PCID_ADDR(vcid);
2559 if (vcid & 0x8) {
2560 new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
2562 else {
2563 new_vcid = vcid;
2565 pcid_addr = GET_PCID_ADDR(new_vcid);
2567 else {
2568 vcid_addr = GET_CID_ADDR(vcid);
2569 pcid_addr = vcid_addr;
2572 for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
2573 vcid_addr += (i << PHY_CTX_SHIFT);
2574 pcid_addr += (i << PHY_CTX_SHIFT);
2576 REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
2577 REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
2579 /* Zero out the context. */
2580 for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
2581 bnx2_ctx_wr(bp, vcid_addr, offset, 0);
2586 static int
2587 bnx2_alloc_bad_rbuf(struct bnx2 *bp)
2589 u16 *good_mbuf;
2590 u32 good_mbuf_cnt;
2591 u32 val;
2593 good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
2594 if (good_mbuf == NULL) {
2595 printk(KERN_ERR PFX "Failed to allocate memory in "
2596 "bnx2_alloc_bad_rbuf\n");
2597 return -ENOMEM;
2600 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
2601 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
2603 good_mbuf_cnt = 0;
2605 /* Allocate a bunch of mbufs and save the good ones in an array. */
2606 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
2607 while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
2608 bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
2609 BNX2_RBUF_COMMAND_ALLOC_REQ);
2611 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
2613 val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
2615 /* The addresses with Bit 9 set are bad memory blocks. */
2616 if (!(val & (1 << 9))) {
2617 good_mbuf[good_mbuf_cnt] = (u16) val;
2618 good_mbuf_cnt++;
2621 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
2624 /* Free the good ones back to the mbuf pool thus discarding
2625 * all the bad ones. */
2626 while (good_mbuf_cnt) {
2627 good_mbuf_cnt--;
2629 val = good_mbuf[good_mbuf_cnt];
2630 val = (val << 9) | val | 1;
2632 bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
2634 kfree(good_mbuf);
2635 return 0;
2638 static void
2639 bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
2641 u32 val;
2643 val = (mac_addr[0] << 8) | mac_addr[1];
2645 REG_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
2647 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
2648 (mac_addr[4] << 8) | mac_addr[5];
2650 REG_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
2653 static inline int
2654 bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2656 dma_addr_t mapping;
2657 struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
2658 struct rx_bd *rxbd =
2659 &rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
2660 struct page *page = alloc_page(GFP_ATOMIC);
2662 if (!page)
2663 return -ENOMEM;
2664 mapping = pci_map_page(bp->pdev, page, 0, PAGE_SIZE,
2665 PCI_DMA_FROMDEVICE);
2666 if (pci_dma_mapping_error(bp->pdev, mapping)) {
2667 __free_page(page);
2668 return -EIO;
2671 rx_pg->page = page;
2672 pci_unmap_addr_set(rx_pg, mapping, mapping);
2673 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
2674 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
2675 return 0;
2678 static void
2679 bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2681 struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
2682 struct page *page = rx_pg->page;
2684 if (!page)
2685 return;
2687 pci_unmap_page(bp->pdev, pci_unmap_addr(rx_pg, mapping), PAGE_SIZE,
2688 PCI_DMA_FROMDEVICE);
2690 __free_page(page);
2691 rx_pg->page = NULL;
2694 static inline int
2695 bnx2_alloc_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2697 struct sk_buff *skb;
2698 struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
2699 dma_addr_t mapping;
2700 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
2701 unsigned long align;
2703 skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
2704 if (skb == NULL) {
2705 return -ENOMEM;
2708 if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
2709 skb_reserve(skb, BNX2_RX_ALIGN - align);
2711 mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
2712 PCI_DMA_FROMDEVICE);
2713 if (pci_dma_mapping_error(bp->pdev, mapping)) {
2714 dev_kfree_skb(skb);
2715 return -EIO;
2718 rx_buf->skb = skb;
2719 pci_unmap_addr_set(rx_buf, mapping, mapping);
2721 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
2722 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
2724 rxr->rx_prod_bseq += bp->rx_buf_use_size;
2726 return 0;
2729 static int
2730 bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
2732 struct status_block *sblk = bnapi->status_blk.msi;
2733 u32 new_link_state, old_link_state;
2734 int is_set = 1;
2736 new_link_state = sblk->status_attn_bits & event;
2737 old_link_state = sblk->status_attn_bits_ack & event;
2738 if (new_link_state != old_link_state) {
2739 if (new_link_state)
2740 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
2741 else
2742 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
2743 } else
2744 is_set = 0;
2746 return is_set;
2749 static void
2750 bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
2752 spin_lock(&bp->phy_lock);
2754 if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
2755 bnx2_set_link(bp);
2756 if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
2757 bnx2_set_remote_link(bp);
2759 spin_unlock(&bp->phy_lock);
2763 static inline u16
2764 bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
2766 u16 cons;
2768 /* Tell compiler that status block fields can change. */
2769 barrier();
2770 cons = *bnapi->hw_tx_cons_ptr;
2771 barrier();
2772 if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
2773 cons++;
2774 return cons;
2777 static int
2778 bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
2780 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
2781 u16 hw_cons, sw_cons, sw_ring_cons;
2782 int tx_pkt = 0, index;
2783 struct netdev_queue *txq;
2785 index = (bnapi - bp->bnx2_napi);
2786 txq = netdev_get_tx_queue(bp->dev, index);
2788 hw_cons = bnx2_get_hw_tx_cons(bnapi);
2789 sw_cons = txr->tx_cons;
2791 while (sw_cons != hw_cons) {
2792 struct sw_tx_bd *tx_buf;
2793 struct sk_buff *skb;
2794 int i, last;
2796 sw_ring_cons = TX_RING_IDX(sw_cons);
2798 tx_buf = &txr->tx_buf_ring[sw_ring_cons];
2799 skb = tx_buf->skb;
2801 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
2802 prefetch(&skb->end);
2804 /* partial BD completions possible with TSO packets */
2805 if (tx_buf->is_gso) {
2806 u16 last_idx, last_ring_idx;
2808 last_idx = sw_cons + tx_buf->nr_frags + 1;
2809 last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
2810 if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
2811 last_idx++;
2813 if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
2814 break;
2818 pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
2819 skb_headlen(skb), PCI_DMA_TODEVICE);
2821 tx_buf->skb = NULL;
2822 last = tx_buf->nr_frags;
2824 for (i = 0; i < last; i++) {
2825 sw_cons = NEXT_TX_BD(sw_cons);
2827 pci_unmap_page(bp->pdev,
2828 pci_unmap_addr(
2829 &txr->tx_buf_ring[TX_RING_IDX(sw_cons)],
2830 mapping),
2831 skb_shinfo(skb)->frags[i].size,
2832 PCI_DMA_TODEVICE);
2835 sw_cons = NEXT_TX_BD(sw_cons);
2837 dev_kfree_skb(skb);
2838 tx_pkt++;
2839 if (tx_pkt == budget)
2840 break;
2842 if (hw_cons == sw_cons)
2843 hw_cons = bnx2_get_hw_tx_cons(bnapi);
2846 txr->hw_tx_cons = hw_cons;
2847 txr->tx_cons = sw_cons;
2849 /* Need to make the tx_cons update visible to bnx2_start_xmit()
2850 * before checking for netif_tx_queue_stopped(). Without the
2851 * memory barrier, there is a small possibility that bnx2_start_xmit()
2852 * will miss it and cause the queue to be stopped forever.
2854 smp_mb();
2856 if (unlikely(netif_tx_queue_stopped(txq)) &&
2857 (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
2858 __netif_tx_lock(txq, smp_processor_id());
2859 if ((netif_tx_queue_stopped(txq)) &&
2860 (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
2861 netif_tx_wake_queue(txq);
2862 __netif_tx_unlock(txq);
2865 return tx_pkt;
2868 static void
2869 bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
2870 struct sk_buff *skb, int count)
2872 struct sw_pg *cons_rx_pg, *prod_rx_pg;
2873 struct rx_bd *cons_bd, *prod_bd;
2874 int i;
2875 u16 hw_prod, prod;
2876 u16 cons = rxr->rx_pg_cons;
2878 cons_rx_pg = &rxr->rx_pg_ring[cons];
2880 /* The caller was unable to allocate a new page to replace the
2881 * last one in the frags array, so we need to recycle that page
2882 * and then free the skb.
2884 if (skb) {
2885 struct page *page;
2886 struct skb_shared_info *shinfo;
2888 shinfo = skb_shinfo(skb);
2889 shinfo->nr_frags--;
2890 page = shinfo->frags[shinfo->nr_frags].page;
2891 shinfo->frags[shinfo->nr_frags].page = NULL;
2893 cons_rx_pg->page = page;
2894 dev_kfree_skb(skb);
2897 hw_prod = rxr->rx_pg_prod;
2899 for (i = 0; i < count; i++) {
2900 prod = RX_PG_RING_IDX(hw_prod);
2902 prod_rx_pg = &rxr->rx_pg_ring[prod];
2903 cons_rx_pg = &rxr->rx_pg_ring[cons];
2904 cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
2905 prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
2907 if (prod != cons) {
2908 prod_rx_pg->page = cons_rx_pg->page;
2909 cons_rx_pg->page = NULL;
2910 pci_unmap_addr_set(prod_rx_pg, mapping,
2911 pci_unmap_addr(cons_rx_pg, mapping));
2913 prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
2914 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2917 cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
2918 hw_prod = NEXT_RX_BD(hw_prod);
2920 rxr->rx_pg_prod = hw_prod;
2921 rxr->rx_pg_cons = cons;
2924 static inline void
2925 bnx2_reuse_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
2926 struct sk_buff *skb, u16 cons, u16 prod)
2928 struct sw_bd *cons_rx_buf, *prod_rx_buf;
2929 struct rx_bd *cons_bd, *prod_bd;
2931 cons_rx_buf = &rxr->rx_buf_ring[cons];
2932 prod_rx_buf = &rxr->rx_buf_ring[prod];
2934 pci_dma_sync_single_for_device(bp->pdev,
2935 pci_unmap_addr(cons_rx_buf, mapping),
2936 BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
2938 rxr->rx_prod_bseq += bp->rx_buf_use_size;
2940 prod_rx_buf->skb = skb;
2942 if (cons == prod)
2943 return;
2945 pci_unmap_addr_set(prod_rx_buf, mapping,
2946 pci_unmap_addr(cons_rx_buf, mapping));
2948 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
2949 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
2950 prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
2951 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2954 static int
2955 bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, struct sk_buff *skb,
2956 unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
2957 u32 ring_idx)
2959 int err;
2960 u16 prod = ring_idx & 0xffff;
2962 err = bnx2_alloc_rx_skb(bp, rxr, prod);
2963 if (unlikely(err)) {
2964 bnx2_reuse_rx_skb(bp, rxr, skb, (u16) (ring_idx >> 16), prod);
2965 if (hdr_len) {
2966 unsigned int raw_len = len + 4;
2967 int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
2969 bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
2971 return err;
2974 skb_reserve(skb, BNX2_RX_OFFSET);
2975 pci_unmap_single(bp->pdev, dma_addr, bp->rx_buf_use_size,
2976 PCI_DMA_FROMDEVICE);
2978 if (hdr_len == 0) {
2979 skb_put(skb, len);
2980 return 0;
2981 } else {
2982 unsigned int i, frag_len, frag_size, pages;
2983 struct sw_pg *rx_pg;
2984 u16 pg_cons = rxr->rx_pg_cons;
2985 u16 pg_prod = rxr->rx_pg_prod;
2987 frag_size = len + 4 - hdr_len;
2988 pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
2989 skb_put(skb, hdr_len);
2991 for (i = 0; i < pages; i++) {
2992 dma_addr_t mapping_old;
2994 frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
2995 if (unlikely(frag_len <= 4)) {
2996 unsigned int tail = 4 - frag_len;
2998 rxr->rx_pg_cons = pg_cons;
2999 rxr->rx_pg_prod = pg_prod;
3000 bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
3001 pages - i);
3002 skb->len -= tail;
3003 if (i == 0) {
3004 skb->tail -= tail;
3005 } else {
3006 skb_frag_t *frag =
3007 &skb_shinfo(skb)->frags[i - 1];
3008 frag->size -= tail;
3009 skb->data_len -= tail;
3010 skb->truesize -= tail;
3012 return 0;
3014 rx_pg = &rxr->rx_pg_ring[pg_cons];
3016 /* Don't unmap yet. If we're unable to allocate a new
3017 * page, we need to recycle the page and the DMA addr.
3019 mapping_old = pci_unmap_addr(rx_pg, mapping);
3020 if (i == pages - 1)
3021 frag_len -= 4;
3023 skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
3024 rx_pg->page = NULL;
3026 err = bnx2_alloc_rx_page(bp, rxr,
3027 RX_PG_RING_IDX(pg_prod));
3028 if (unlikely(err)) {
3029 rxr->rx_pg_cons = pg_cons;
3030 rxr->rx_pg_prod = pg_prod;
3031 bnx2_reuse_rx_skb_pages(bp, rxr, skb,
3032 pages - i);
3033 return err;
3036 pci_unmap_page(bp->pdev, mapping_old,
3037 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3039 frag_size -= frag_len;
3040 skb->data_len += frag_len;
3041 skb->truesize += frag_len;
3042 skb->len += frag_len;
3044 pg_prod = NEXT_RX_BD(pg_prod);
3045 pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
3047 rxr->rx_pg_prod = pg_prod;
3048 rxr->rx_pg_cons = pg_cons;
3050 return 0;
3053 static inline u16
3054 bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
3056 u16 cons;
3058 /* Tell compiler that status block fields can change. */
3059 barrier();
3060 cons = *bnapi->hw_rx_cons_ptr;
3061 barrier();
3062 if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
3063 cons++;
3064 return cons;
3067 static int
3068 bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
3070 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3071 u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
3072 struct l2_fhdr *rx_hdr;
3073 int rx_pkt = 0, pg_ring_used = 0;
3075 hw_cons = bnx2_get_hw_rx_cons(bnapi);
3076 sw_cons = rxr->rx_cons;
3077 sw_prod = rxr->rx_prod;
3079 /* Memory barrier necessary as speculative reads of the rx
3080 * buffer can be ahead of the index in the status block
3082 rmb();
3083 while (sw_cons != hw_cons) {
3084 unsigned int len, hdr_len;
3085 u32 status;
3086 struct sw_bd *rx_buf;
3087 struct sk_buff *skb;
3088 dma_addr_t dma_addr;
3089 u16 vtag = 0;
3090 int hw_vlan __maybe_unused = 0;
3092 sw_ring_cons = RX_RING_IDX(sw_cons);
3093 sw_ring_prod = RX_RING_IDX(sw_prod);
3095 rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
3096 skb = rx_buf->skb;
3098 rx_buf->skb = NULL;
3100 dma_addr = pci_unmap_addr(rx_buf, mapping);
3102 pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
3103 BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
3104 PCI_DMA_FROMDEVICE);
3106 rx_hdr = (struct l2_fhdr *) skb->data;
3107 len = rx_hdr->l2_fhdr_pkt_len;
3108 status = rx_hdr->l2_fhdr_status;
3110 hdr_len = 0;
3111 if (status & L2_FHDR_STATUS_SPLIT) {
3112 hdr_len = rx_hdr->l2_fhdr_ip_xsum;
3113 pg_ring_used = 1;
3114 } else if (len > bp->rx_jumbo_thresh) {
3115 hdr_len = bp->rx_jumbo_thresh;
3116 pg_ring_used = 1;
3119 if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
3120 L2_FHDR_ERRORS_PHY_DECODE |
3121 L2_FHDR_ERRORS_ALIGNMENT |
3122 L2_FHDR_ERRORS_TOO_SHORT |
3123 L2_FHDR_ERRORS_GIANT_FRAME))) {
3125 bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
3126 sw_ring_prod);
3127 if (pg_ring_used) {
3128 int pages;
3130 pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
3132 bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
3134 goto next_rx;
3137 len -= 4;
3139 if (len <= bp->rx_copy_thresh) {
3140 struct sk_buff *new_skb;
3142 new_skb = netdev_alloc_skb(bp->dev, len + 6);
3143 if (new_skb == NULL) {
3144 bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
3145 sw_ring_prod);
3146 goto next_rx;
3149 /* aligned copy */
3150 skb_copy_from_linear_data_offset(skb,
3151 BNX2_RX_OFFSET - 6,
3152 new_skb->data, len + 6);
3153 skb_reserve(new_skb, 6);
3154 skb_put(new_skb, len);
3156 bnx2_reuse_rx_skb(bp, rxr, skb,
3157 sw_ring_cons, sw_ring_prod);
3159 skb = new_skb;
3160 } else if (unlikely(bnx2_rx_skb(bp, rxr, skb, len, hdr_len,
3161 dma_addr, (sw_ring_cons << 16) | sw_ring_prod)))
3162 goto next_rx;
3164 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
3165 !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
3166 vtag = rx_hdr->l2_fhdr_vlan_tag;
3167 #ifdef BCM_VLAN
3168 if (bp->vlgrp)
3169 hw_vlan = 1;
3170 else
3171 #endif
3173 struct vlan_ethhdr *ve = (struct vlan_ethhdr *)
3174 __skb_push(skb, 4);
3176 memmove(ve, skb->data + 4, ETH_ALEN * 2);
3177 ve->h_vlan_proto = htons(ETH_P_8021Q);
3178 ve->h_vlan_TCI = htons(vtag);
3179 len += 4;
3183 skb->protocol = eth_type_trans(skb, bp->dev);
3185 if ((len > (bp->dev->mtu + ETH_HLEN)) &&
3186 (ntohs(skb->protocol) != 0x8100)) {
3188 dev_kfree_skb(skb);
3189 goto next_rx;
3193 skb->ip_summed = CHECKSUM_NONE;
3194 if (bp->rx_csum &&
3195 (status & (L2_FHDR_STATUS_TCP_SEGMENT |
3196 L2_FHDR_STATUS_UDP_DATAGRAM))) {
3198 if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
3199 L2_FHDR_ERRORS_UDP_XSUM)) == 0))
3200 skb->ip_summed = CHECKSUM_UNNECESSARY;
3203 skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
3205 #ifdef BCM_VLAN
3206 if (hw_vlan)
3207 vlan_hwaccel_receive_skb(skb, bp->vlgrp, vtag);
3208 else
3209 #endif
3210 netif_receive_skb(skb);
3212 rx_pkt++;
3214 next_rx:
3215 sw_cons = NEXT_RX_BD(sw_cons);
3216 sw_prod = NEXT_RX_BD(sw_prod);
3218 if ((rx_pkt == budget))
3219 break;
3221 /* Refresh hw_cons to see if there is new work */
3222 if (sw_cons == hw_cons) {
3223 hw_cons = bnx2_get_hw_rx_cons(bnapi);
3224 rmb();
3227 rxr->rx_cons = sw_cons;
3228 rxr->rx_prod = sw_prod;
3230 if (pg_ring_used)
3231 REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
3233 REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
3235 REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
3237 mmiowb();
3239 return rx_pkt;
3243 /* MSI ISR - The only difference between this and the INTx ISR
3244 * is that the MSI interrupt is always serviced.
3246 static irqreturn_t
3247 bnx2_msi(int irq, void *dev_instance)
3249 struct bnx2_napi *bnapi = dev_instance;
3250 struct bnx2 *bp = bnapi->bp;
3252 prefetch(bnapi->status_blk.msi);
3253 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3254 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
3255 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3257 /* Return here if interrupt is disabled. */
3258 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3259 return IRQ_HANDLED;
3261 napi_schedule(&bnapi->napi);
3263 return IRQ_HANDLED;
3266 static irqreturn_t
3267 bnx2_msi_1shot(int irq, void *dev_instance)
3269 struct bnx2_napi *bnapi = dev_instance;
3270 struct bnx2 *bp = bnapi->bp;
3272 prefetch(bnapi->status_blk.msi);
3274 /* Return here if interrupt is disabled. */
3275 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3276 return IRQ_HANDLED;
3278 napi_schedule(&bnapi->napi);
3280 return IRQ_HANDLED;
3283 static irqreturn_t
3284 bnx2_interrupt(int irq, void *dev_instance)
3286 struct bnx2_napi *bnapi = dev_instance;
3287 struct bnx2 *bp = bnapi->bp;
3288 struct status_block *sblk = bnapi->status_blk.msi;
3290 /* When using INTx, it is possible for the interrupt to arrive
3291 * at the CPU before the status block posted prior to the
3292 * interrupt. Reading a register will flush the status block.
3293 * When using MSI, the MSI message will always complete after
3294 * the status block write.
3296 if ((sblk->status_idx == bnapi->last_status_idx) &&
3297 (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
3298 BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
3299 return IRQ_NONE;
3301 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3302 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
3303 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3305 /* Read back to deassert IRQ immediately to avoid too many
3306 * spurious interrupts.
3308 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
3310 /* Return here if interrupt is shared and is disabled. */
3311 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3312 return IRQ_HANDLED;
3314 if (napi_schedule_prep(&bnapi->napi)) {
3315 bnapi->last_status_idx = sblk->status_idx;
3316 __napi_schedule(&bnapi->napi);
3319 return IRQ_HANDLED;
3322 static inline int
3323 bnx2_has_fast_work(struct bnx2_napi *bnapi)
3325 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
3326 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3328 if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
3329 (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
3330 return 1;
3331 return 0;
3334 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
3335 STATUS_ATTN_BITS_TIMER_ABORT)
3337 static inline int
3338 bnx2_has_work(struct bnx2_napi *bnapi)
3340 struct status_block *sblk = bnapi->status_blk.msi;
3342 if (bnx2_has_fast_work(bnapi))
3343 return 1;
3345 #ifdef BCM_CNIC
3346 if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
3347 return 1;
3348 #endif
3350 if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
3351 (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
3352 return 1;
3354 return 0;
3357 static void
3358 bnx2_chk_missed_msi(struct bnx2 *bp)
3360 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
3361 u32 msi_ctrl;
3363 if (bnx2_has_work(bnapi)) {
3364 msi_ctrl = REG_RD(bp, BNX2_PCICFG_MSI_CONTROL);
3365 if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
3366 return;
3368 if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
3369 REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
3370 ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
3371 REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
3372 bnx2_msi(bp->irq_tbl[0].vector, bnapi);
3376 bp->idle_chk_status_idx = bnapi->last_status_idx;
3379 #ifdef BCM_CNIC
3380 static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
3382 struct cnic_ops *c_ops;
3384 if (!bnapi->cnic_present)
3385 return;
3387 rcu_read_lock();
3388 c_ops = rcu_dereference(bp->cnic_ops);
3389 if (c_ops)
3390 bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
3391 bnapi->status_blk.msi);
3392 rcu_read_unlock();
3394 #endif
3396 static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
3398 struct status_block *sblk = bnapi->status_blk.msi;
3399 u32 status_attn_bits = sblk->status_attn_bits;
3400 u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
3402 if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
3403 (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
3405 bnx2_phy_int(bp, bnapi);
3407 /* This is needed to take care of transient status
3408 * during link changes.
3410 REG_WR(bp, BNX2_HC_COMMAND,
3411 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
3412 REG_RD(bp, BNX2_HC_COMMAND);
3416 static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
3417 int work_done, int budget)
3419 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
3420 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3422 if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
3423 bnx2_tx_int(bp, bnapi, 0);
3425 if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
3426 work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
3428 return work_done;
3431 static int bnx2_poll_msix(struct napi_struct *napi, int budget)
3433 struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
3434 struct bnx2 *bp = bnapi->bp;
3435 int work_done = 0;
3436 struct status_block_msix *sblk = bnapi->status_blk.msix;
3438 while (1) {
3439 work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
3440 if (unlikely(work_done >= budget))
3441 break;
3443 bnapi->last_status_idx = sblk->status_idx;
3444 /* status idx must be read before checking for more work. */
3445 rmb();
3446 if (likely(!bnx2_has_fast_work(bnapi))) {
3448 napi_complete(napi);
3449 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
3450 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3451 bnapi->last_status_idx);
3452 break;
3455 return work_done;
3458 static int bnx2_poll(struct napi_struct *napi, int budget)
3460 struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
3461 struct bnx2 *bp = bnapi->bp;
3462 int work_done = 0;
3463 struct status_block *sblk = bnapi->status_blk.msi;
3465 while (1) {
3466 bnx2_poll_link(bp, bnapi);
3468 work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
3470 #ifdef BCM_CNIC
3471 bnx2_poll_cnic(bp, bnapi);
3472 #endif
3474 /* bnapi->last_status_idx is used below to tell the hw how
3475 * much work has been processed, so we must read it before
3476 * checking for more work.
3478 bnapi->last_status_idx = sblk->status_idx;
3480 if (unlikely(work_done >= budget))
3481 break;
3483 rmb();
3484 if (likely(!bnx2_has_work(bnapi))) {
3485 napi_complete(napi);
3486 if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
3487 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3488 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3489 bnapi->last_status_idx);
3490 break;
3492 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3493 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3494 BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
3495 bnapi->last_status_idx);
3497 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3498 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3499 bnapi->last_status_idx);
3500 break;
3504 return work_done;
3507 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
3508 * from set_multicast.
3510 static void
3511 bnx2_set_rx_mode(struct net_device *dev)
3513 struct bnx2 *bp = netdev_priv(dev);
3514 u32 rx_mode, sort_mode;
3515 struct netdev_hw_addr *ha;
3516 int i;
3518 if (!netif_running(dev))
3519 return;
3521 spin_lock_bh(&bp->phy_lock);
3523 rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
3524 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
3525 sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
3526 #ifdef BCM_VLAN
3527 if (!bp->vlgrp && (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
3528 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
3529 #else
3530 if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
3531 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
3532 #endif
3533 if (dev->flags & IFF_PROMISC) {
3534 /* Promiscuous mode. */
3535 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
3536 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
3537 BNX2_RPM_SORT_USER0_PROM_VLAN;
3539 else if (dev->flags & IFF_ALLMULTI) {
3540 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3541 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3542 0xffffffff);
3544 sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
3546 else {
3547 /* Accept one or more multicast(s). */
3548 struct dev_mc_list *mclist;
3549 u32 mc_filter[NUM_MC_HASH_REGISTERS];
3550 u32 regidx;
3551 u32 bit;
3552 u32 crc;
3554 memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
3556 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
3557 i++, mclist = mclist->next) {
3559 crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
3560 bit = crc & 0xff;
3561 regidx = (bit & 0xe0) >> 5;
3562 bit &= 0x1f;
3563 mc_filter[regidx] |= (1 << bit);
3566 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3567 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3568 mc_filter[i]);
3571 sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
3574 if (dev->uc.count > BNX2_MAX_UNICAST_ADDRESSES) {
3575 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
3576 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
3577 BNX2_RPM_SORT_USER0_PROM_VLAN;
3578 } else if (!(dev->flags & IFF_PROMISC)) {
3579 /* Add all entries into to the match filter list */
3580 i = 0;
3581 list_for_each_entry(ha, &dev->uc.list, list) {
3582 bnx2_set_mac_addr(bp, ha->addr,
3583 i + BNX2_START_UNICAST_ADDRESS_INDEX);
3584 sort_mode |= (1 <<
3585 (i + BNX2_START_UNICAST_ADDRESS_INDEX));
3586 i++;
3591 if (rx_mode != bp->rx_mode) {
3592 bp->rx_mode = rx_mode;
3593 REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
3596 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
3597 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
3598 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
3600 spin_unlock_bh(&bp->phy_lock);
3603 static int __devinit
3604 check_fw_section(const struct firmware *fw,
3605 const struct bnx2_fw_file_section *section,
3606 u32 alignment, bool non_empty)
3608 u32 offset = be32_to_cpu(section->offset);
3609 u32 len = be32_to_cpu(section->len);
3611 if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
3612 return -EINVAL;
3613 if ((non_empty && len == 0) || len > fw->size - offset ||
3614 len & (alignment - 1))
3615 return -EINVAL;
3616 return 0;
3619 static int __devinit
3620 check_mips_fw_entry(const struct firmware *fw,
3621 const struct bnx2_mips_fw_file_entry *entry)
3623 if (check_fw_section(fw, &entry->text, 4, true) ||
3624 check_fw_section(fw, &entry->data, 4, false) ||
3625 check_fw_section(fw, &entry->rodata, 4, false))
3626 return -EINVAL;
3627 return 0;
3630 static int __devinit
3631 bnx2_request_firmware(struct bnx2 *bp)
3633 const char *mips_fw_file, *rv2p_fw_file;
3634 const struct bnx2_mips_fw_file *mips_fw;
3635 const struct bnx2_rv2p_fw_file *rv2p_fw;
3636 int rc;
3638 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
3639 mips_fw_file = FW_MIPS_FILE_09;
3640 if ((CHIP_ID(bp) == CHIP_ID_5709_A0) ||
3641 (CHIP_ID(bp) == CHIP_ID_5709_A1))
3642 rv2p_fw_file = FW_RV2P_FILE_09_Ax;
3643 else
3644 rv2p_fw_file = FW_RV2P_FILE_09;
3645 } else {
3646 mips_fw_file = FW_MIPS_FILE_06;
3647 rv2p_fw_file = FW_RV2P_FILE_06;
3650 rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
3651 if (rc) {
3652 printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
3653 mips_fw_file);
3654 return rc;
3657 rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
3658 if (rc) {
3659 printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
3660 rv2p_fw_file);
3661 return rc;
3663 mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
3664 rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
3665 if (bp->mips_firmware->size < sizeof(*mips_fw) ||
3666 check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
3667 check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
3668 check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
3669 check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
3670 check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
3671 printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
3672 mips_fw_file);
3673 return -EINVAL;
3675 if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
3676 check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
3677 check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
3678 printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
3679 rv2p_fw_file);
3680 return -EINVAL;
3683 return 0;
3686 static u32
3687 rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
3689 switch (idx) {
3690 case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
3691 rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
3692 rv2p_code |= RV2P_BD_PAGE_SIZE;
3693 break;
3695 return rv2p_code;
3698 static int
3699 load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
3700 const struct bnx2_rv2p_fw_file_entry *fw_entry)
3702 u32 rv2p_code_len, file_offset;
3703 __be32 *rv2p_code;
3704 int i;
3705 u32 val, cmd, addr;
3707 rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
3708 file_offset = be32_to_cpu(fw_entry->rv2p.offset);
3710 rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
3712 if (rv2p_proc == RV2P_PROC1) {
3713 cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
3714 addr = BNX2_RV2P_PROC1_ADDR_CMD;
3715 } else {
3716 cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
3717 addr = BNX2_RV2P_PROC2_ADDR_CMD;
3720 for (i = 0; i < rv2p_code_len; i += 8) {
3721 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
3722 rv2p_code++;
3723 REG_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
3724 rv2p_code++;
3726 val = (i / 8) | cmd;
3727 REG_WR(bp, addr, val);
3730 rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
3731 for (i = 0; i < 8; i++) {
3732 u32 loc, code;
3734 loc = be32_to_cpu(fw_entry->fixup[i]);
3735 if (loc && ((loc * 4) < rv2p_code_len)) {
3736 code = be32_to_cpu(*(rv2p_code + loc - 1));
3737 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
3738 code = be32_to_cpu(*(rv2p_code + loc));
3739 code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
3740 REG_WR(bp, BNX2_RV2P_INSTR_LOW, code);
3742 val = (loc / 2) | cmd;
3743 REG_WR(bp, addr, val);
3747 /* Reset the processor, un-stall is done later. */
3748 if (rv2p_proc == RV2P_PROC1) {
3749 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
3751 else {
3752 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
3755 return 0;
3758 static int
3759 load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
3760 const struct bnx2_mips_fw_file_entry *fw_entry)
3762 u32 addr, len, file_offset;
3763 __be32 *data;
3764 u32 offset;
3765 u32 val;
3767 /* Halt the CPU. */
3768 val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
3769 val |= cpu_reg->mode_value_halt;
3770 bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
3771 bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
3773 /* Load the Text area. */
3774 addr = be32_to_cpu(fw_entry->text.addr);
3775 len = be32_to_cpu(fw_entry->text.len);
3776 file_offset = be32_to_cpu(fw_entry->text.offset);
3777 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3779 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3780 if (len) {
3781 int j;
3783 for (j = 0; j < (len / 4); j++, offset += 4)
3784 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3787 /* Load the Data area. */
3788 addr = be32_to_cpu(fw_entry->data.addr);
3789 len = be32_to_cpu(fw_entry->data.len);
3790 file_offset = be32_to_cpu(fw_entry->data.offset);
3791 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3793 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3794 if (len) {
3795 int j;
3797 for (j = 0; j < (len / 4); j++, offset += 4)
3798 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3801 /* Load the Read-Only area. */
3802 addr = be32_to_cpu(fw_entry->rodata.addr);
3803 len = be32_to_cpu(fw_entry->rodata.len);
3804 file_offset = be32_to_cpu(fw_entry->rodata.offset);
3805 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3807 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3808 if (len) {
3809 int j;
3811 for (j = 0; j < (len / 4); j++, offset += 4)
3812 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3815 /* Clear the pre-fetch instruction. */
3816 bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
3818 val = be32_to_cpu(fw_entry->start_addr);
3819 bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
3821 /* Start the CPU. */
3822 val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
3823 val &= ~cpu_reg->mode_value_halt;
3824 bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
3825 bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
3827 return 0;
3830 static int
3831 bnx2_init_cpus(struct bnx2 *bp)
3833 const struct bnx2_mips_fw_file *mips_fw =
3834 (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
3835 const struct bnx2_rv2p_fw_file *rv2p_fw =
3836 (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
3837 int rc;
3839 /* Initialize the RV2P processor. */
3840 load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
3841 load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
3843 /* Initialize the RX Processor. */
3844 rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
3845 if (rc)
3846 goto init_cpu_err;
3848 /* Initialize the TX Processor. */
3849 rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
3850 if (rc)
3851 goto init_cpu_err;
3853 /* Initialize the TX Patch-up Processor. */
3854 rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
3855 if (rc)
3856 goto init_cpu_err;
3858 /* Initialize the Completion Processor. */
3859 rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
3860 if (rc)
3861 goto init_cpu_err;
3863 /* Initialize the Command Processor. */
3864 rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
3866 init_cpu_err:
3867 return rc;
3870 static int
3871 bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
3873 u16 pmcsr;
3875 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
3877 switch (state) {
3878 case PCI_D0: {
3879 u32 val;
3881 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
3882 (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3883 PCI_PM_CTRL_PME_STATUS);
3885 if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3886 /* delay required during transition out of D3hot */
3887 msleep(20);
3889 val = REG_RD(bp, BNX2_EMAC_MODE);
3890 val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
3891 val &= ~BNX2_EMAC_MODE_MPKT;
3892 REG_WR(bp, BNX2_EMAC_MODE, val);
3894 val = REG_RD(bp, BNX2_RPM_CONFIG);
3895 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
3896 REG_WR(bp, BNX2_RPM_CONFIG, val);
3897 break;
3899 case PCI_D3hot: {
3900 int i;
3901 u32 val, wol_msg;
3903 if (bp->wol) {
3904 u32 advertising;
3905 u8 autoneg;
3907 autoneg = bp->autoneg;
3908 advertising = bp->advertising;
3910 if (bp->phy_port == PORT_TP) {
3911 bp->autoneg = AUTONEG_SPEED;
3912 bp->advertising = ADVERTISED_10baseT_Half |
3913 ADVERTISED_10baseT_Full |
3914 ADVERTISED_100baseT_Half |
3915 ADVERTISED_100baseT_Full |
3916 ADVERTISED_Autoneg;
3919 spin_lock_bh(&bp->phy_lock);
3920 bnx2_setup_phy(bp, bp->phy_port);
3921 spin_unlock_bh(&bp->phy_lock);
3923 bp->autoneg = autoneg;
3924 bp->advertising = advertising;
3926 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
3928 val = REG_RD(bp, BNX2_EMAC_MODE);
3930 /* Enable port mode. */
3931 val &= ~BNX2_EMAC_MODE_PORT;
3932 val |= BNX2_EMAC_MODE_MPKT_RCVD |
3933 BNX2_EMAC_MODE_ACPI_RCVD |
3934 BNX2_EMAC_MODE_MPKT;
3935 if (bp->phy_port == PORT_TP)
3936 val |= BNX2_EMAC_MODE_PORT_MII;
3937 else {
3938 val |= BNX2_EMAC_MODE_PORT_GMII;
3939 if (bp->line_speed == SPEED_2500)
3940 val |= BNX2_EMAC_MODE_25G_MODE;
3943 REG_WR(bp, BNX2_EMAC_MODE, val);
3945 /* receive all multicast */
3946 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3947 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3948 0xffffffff);
3950 REG_WR(bp, BNX2_EMAC_RX_MODE,
3951 BNX2_EMAC_RX_MODE_SORT_MODE);
3953 val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
3954 BNX2_RPM_SORT_USER0_MC_EN;
3955 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
3956 REG_WR(bp, BNX2_RPM_SORT_USER0, val);
3957 REG_WR(bp, BNX2_RPM_SORT_USER0, val |
3958 BNX2_RPM_SORT_USER0_ENA);
3960 /* Need to enable EMAC and RPM for WOL. */
3961 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
3962 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
3963 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
3964 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
3966 val = REG_RD(bp, BNX2_RPM_CONFIG);
3967 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
3968 REG_WR(bp, BNX2_RPM_CONFIG, val);
3970 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
3972 else {
3973 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
3976 if (!(bp->flags & BNX2_FLAG_NO_WOL))
3977 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
3978 1, 0);
3980 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3981 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
3982 (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
3984 if (bp->wol)
3985 pmcsr |= 3;
3987 else {
3988 pmcsr |= 3;
3990 if (bp->wol) {
3991 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3993 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
3994 pmcsr);
3996 /* No more memory access after this point until
3997 * device is brought back to D0.
3999 udelay(50);
4000 break;
4002 default:
4003 return -EINVAL;
4005 return 0;
4008 static int
4009 bnx2_acquire_nvram_lock(struct bnx2 *bp)
4011 u32 val;
4012 int j;
4014 /* Request access to the flash interface. */
4015 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
4016 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4017 val = REG_RD(bp, BNX2_NVM_SW_ARB);
4018 if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
4019 break;
4021 udelay(5);
4024 if (j >= NVRAM_TIMEOUT_COUNT)
4025 return -EBUSY;
4027 return 0;
4030 static int
4031 bnx2_release_nvram_lock(struct bnx2 *bp)
4033 int j;
4034 u32 val;
4036 /* Relinquish nvram interface. */
4037 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
4039 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4040 val = REG_RD(bp, BNX2_NVM_SW_ARB);
4041 if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
4042 break;
4044 udelay(5);
4047 if (j >= NVRAM_TIMEOUT_COUNT)
4048 return -EBUSY;
4050 return 0;
4054 static int
4055 bnx2_enable_nvram_write(struct bnx2 *bp)
4057 u32 val;
4059 val = REG_RD(bp, BNX2_MISC_CFG);
4060 REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
4062 if (bp->flash_info->flags & BNX2_NV_WREN) {
4063 int j;
4065 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4066 REG_WR(bp, BNX2_NVM_COMMAND,
4067 BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
4069 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4070 udelay(5);
4072 val = REG_RD(bp, BNX2_NVM_COMMAND);
4073 if (val & BNX2_NVM_COMMAND_DONE)
4074 break;
4077 if (j >= NVRAM_TIMEOUT_COUNT)
4078 return -EBUSY;
4080 return 0;
4083 static void
4084 bnx2_disable_nvram_write(struct bnx2 *bp)
4086 u32 val;
4088 val = REG_RD(bp, BNX2_MISC_CFG);
4089 REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
4093 static void
4094 bnx2_enable_nvram_access(struct bnx2 *bp)
4096 u32 val;
4098 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
4099 /* Enable both bits, even on read. */
4100 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
4101 val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
4104 static void
4105 bnx2_disable_nvram_access(struct bnx2 *bp)
4107 u32 val;
4109 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
4110 /* Disable both bits, even after read. */
4111 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
4112 val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
4113 BNX2_NVM_ACCESS_ENABLE_WR_EN));
4116 static int
4117 bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
4119 u32 cmd;
4120 int j;
4122 if (bp->flash_info->flags & BNX2_NV_BUFFERED)
4123 /* Buffered flash, no erase needed */
4124 return 0;
4126 /* Build an erase command */
4127 cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
4128 BNX2_NVM_COMMAND_DOIT;
4130 /* Need to clear DONE bit separately. */
4131 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4133 /* Address of the NVRAM to read from. */
4134 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4136 /* Issue an erase command. */
4137 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4139 /* Wait for completion. */
4140 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4141 u32 val;
4143 udelay(5);
4145 val = REG_RD(bp, BNX2_NVM_COMMAND);
4146 if (val & BNX2_NVM_COMMAND_DONE)
4147 break;
4150 if (j >= NVRAM_TIMEOUT_COUNT)
4151 return -EBUSY;
4153 return 0;
4156 static int
4157 bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
4159 u32 cmd;
4160 int j;
4162 /* Build the command word. */
4163 cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
4165 /* Calculate an offset of a buffered flash, not needed for 5709. */
4166 if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
4167 offset = ((offset / bp->flash_info->page_size) <<
4168 bp->flash_info->page_bits) +
4169 (offset % bp->flash_info->page_size);
4172 /* Need to clear DONE bit separately. */
4173 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4175 /* Address of the NVRAM to read from. */
4176 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4178 /* Issue a read command. */
4179 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4181 /* Wait for completion. */
4182 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4183 u32 val;
4185 udelay(5);
4187 val = REG_RD(bp, BNX2_NVM_COMMAND);
4188 if (val & BNX2_NVM_COMMAND_DONE) {
4189 __be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
4190 memcpy(ret_val, &v, 4);
4191 break;
4194 if (j >= NVRAM_TIMEOUT_COUNT)
4195 return -EBUSY;
4197 return 0;
4201 static int
4202 bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
4204 u32 cmd;
4205 __be32 val32;
4206 int j;
4208 /* Build the command word. */
4209 cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
4211 /* Calculate an offset of a buffered flash, not needed for 5709. */
4212 if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
4213 offset = ((offset / bp->flash_info->page_size) <<
4214 bp->flash_info->page_bits) +
4215 (offset % bp->flash_info->page_size);
4218 /* Need to clear DONE bit separately. */
4219 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4221 memcpy(&val32, val, 4);
4223 /* Write the data. */
4224 REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
4226 /* Address of the NVRAM to write to. */
4227 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4229 /* Issue the write command. */
4230 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4232 /* Wait for completion. */
4233 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4234 udelay(5);
4236 if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
4237 break;
4239 if (j >= NVRAM_TIMEOUT_COUNT)
4240 return -EBUSY;
4242 return 0;
4245 static int
4246 bnx2_init_nvram(struct bnx2 *bp)
4248 u32 val;
4249 int j, entry_count, rc = 0;
4250 const struct flash_spec *flash;
4252 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4253 bp->flash_info = &flash_5709;
4254 goto get_flash_size;
4257 /* Determine the selected interface. */
4258 val = REG_RD(bp, BNX2_NVM_CFG1);
4260 entry_count = ARRAY_SIZE(flash_table);
4262 if (val & 0x40000000) {
4264 /* Flash interface has been reconfigured */
4265 for (j = 0, flash = &flash_table[0]; j < entry_count;
4266 j++, flash++) {
4267 if ((val & FLASH_BACKUP_STRAP_MASK) ==
4268 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
4269 bp->flash_info = flash;
4270 break;
4274 else {
4275 u32 mask;
4276 /* Not yet been reconfigured */
4278 if (val & (1 << 23))
4279 mask = FLASH_BACKUP_STRAP_MASK;
4280 else
4281 mask = FLASH_STRAP_MASK;
4283 for (j = 0, flash = &flash_table[0]; j < entry_count;
4284 j++, flash++) {
4286 if ((val & mask) == (flash->strapping & mask)) {
4287 bp->flash_info = flash;
4289 /* Request access to the flash interface. */
4290 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4291 return rc;
4293 /* Enable access to flash interface */
4294 bnx2_enable_nvram_access(bp);
4296 /* Reconfigure the flash interface */
4297 REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
4298 REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
4299 REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
4300 REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
4302 /* Disable access to flash interface */
4303 bnx2_disable_nvram_access(bp);
4304 bnx2_release_nvram_lock(bp);
4306 break;
4309 } /* if (val & 0x40000000) */
4311 if (j == entry_count) {
4312 bp->flash_info = NULL;
4313 printk(KERN_ALERT PFX "Unknown flash/EEPROM type.\n");
4314 return -ENODEV;
4317 get_flash_size:
4318 val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
4319 val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
4320 if (val)
4321 bp->flash_size = val;
4322 else
4323 bp->flash_size = bp->flash_info->total_size;
4325 return rc;
4328 static int
4329 bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
4330 int buf_size)
4332 int rc = 0;
4333 u32 cmd_flags, offset32, len32, extra;
4335 if (buf_size == 0)
4336 return 0;
4338 /* Request access to the flash interface. */
4339 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4340 return rc;
4342 /* Enable access to flash interface */
4343 bnx2_enable_nvram_access(bp);
4345 len32 = buf_size;
4346 offset32 = offset;
4347 extra = 0;
4349 cmd_flags = 0;
4351 if (offset32 & 3) {
4352 u8 buf[4];
4353 u32 pre_len;
4355 offset32 &= ~3;
4356 pre_len = 4 - (offset & 3);
4358 if (pre_len >= len32) {
4359 pre_len = len32;
4360 cmd_flags = BNX2_NVM_COMMAND_FIRST |
4361 BNX2_NVM_COMMAND_LAST;
4363 else {
4364 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4367 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4369 if (rc)
4370 return rc;
4372 memcpy(ret_buf, buf + (offset & 3), pre_len);
4374 offset32 += 4;
4375 ret_buf += pre_len;
4376 len32 -= pre_len;
4378 if (len32 & 3) {
4379 extra = 4 - (len32 & 3);
4380 len32 = (len32 + 4) & ~3;
4383 if (len32 == 4) {
4384 u8 buf[4];
4386 if (cmd_flags)
4387 cmd_flags = BNX2_NVM_COMMAND_LAST;
4388 else
4389 cmd_flags = BNX2_NVM_COMMAND_FIRST |
4390 BNX2_NVM_COMMAND_LAST;
4392 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4394 memcpy(ret_buf, buf, 4 - extra);
4396 else if (len32 > 0) {
4397 u8 buf[4];
4399 /* Read the first word. */
4400 if (cmd_flags)
4401 cmd_flags = 0;
4402 else
4403 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4405 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
4407 /* Advance to the next dword. */
4408 offset32 += 4;
4409 ret_buf += 4;
4410 len32 -= 4;
4412 while (len32 > 4 && rc == 0) {
4413 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
4415 /* Advance to the next dword. */
4416 offset32 += 4;
4417 ret_buf += 4;
4418 len32 -= 4;
4421 if (rc)
4422 return rc;
4424 cmd_flags = BNX2_NVM_COMMAND_LAST;
4425 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4427 memcpy(ret_buf, buf, 4 - extra);
4430 /* Disable access to flash interface */
4431 bnx2_disable_nvram_access(bp);
4433 bnx2_release_nvram_lock(bp);
4435 return rc;
4438 static int
4439 bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
4440 int buf_size)
4442 u32 written, offset32, len32;
4443 u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
4444 int rc = 0;
4445 int align_start, align_end;
4447 buf = data_buf;
4448 offset32 = offset;
4449 len32 = buf_size;
4450 align_start = align_end = 0;
4452 if ((align_start = (offset32 & 3))) {
4453 offset32 &= ~3;
4454 len32 += align_start;
4455 if (len32 < 4)
4456 len32 = 4;
4457 if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
4458 return rc;
4461 if (len32 & 3) {
4462 align_end = 4 - (len32 & 3);
4463 len32 += align_end;
4464 if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
4465 return rc;
4468 if (align_start || align_end) {
4469 align_buf = kmalloc(len32, GFP_KERNEL);
4470 if (align_buf == NULL)
4471 return -ENOMEM;
4472 if (align_start) {
4473 memcpy(align_buf, start, 4);
4475 if (align_end) {
4476 memcpy(align_buf + len32 - 4, end, 4);
4478 memcpy(align_buf + align_start, data_buf, buf_size);
4479 buf = align_buf;
4482 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4483 flash_buffer = kmalloc(264, GFP_KERNEL);
4484 if (flash_buffer == NULL) {
4485 rc = -ENOMEM;
4486 goto nvram_write_end;
4490 written = 0;
4491 while ((written < len32) && (rc == 0)) {
4492 u32 page_start, page_end, data_start, data_end;
4493 u32 addr, cmd_flags;
4494 int i;
4496 /* Find the page_start addr */
4497 page_start = offset32 + written;
4498 page_start -= (page_start % bp->flash_info->page_size);
4499 /* Find the page_end addr */
4500 page_end = page_start + bp->flash_info->page_size;
4501 /* Find the data_start addr */
4502 data_start = (written == 0) ? offset32 : page_start;
4503 /* Find the data_end addr */
4504 data_end = (page_end > offset32 + len32) ?
4505 (offset32 + len32) : page_end;
4507 /* Request access to the flash interface. */
4508 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4509 goto nvram_write_end;
4511 /* Enable access to flash interface */
4512 bnx2_enable_nvram_access(bp);
4514 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4515 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4516 int j;
4518 /* Read the whole page into the buffer
4519 * (non-buffer flash only) */
4520 for (j = 0; j < bp->flash_info->page_size; j += 4) {
4521 if (j == (bp->flash_info->page_size - 4)) {
4522 cmd_flags |= BNX2_NVM_COMMAND_LAST;
4524 rc = bnx2_nvram_read_dword(bp,
4525 page_start + j,
4526 &flash_buffer[j],
4527 cmd_flags);
4529 if (rc)
4530 goto nvram_write_end;
4532 cmd_flags = 0;
4536 /* Enable writes to flash interface (unlock write-protect) */
4537 if ((rc = bnx2_enable_nvram_write(bp)) != 0)
4538 goto nvram_write_end;
4540 /* Loop to write back the buffer data from page_start to
4541 * data_start */
4542 i = 0;
4543 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4544 /* Erase the page */
4545 if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
4546 goto nvram_write_end;
4548 /* Re-enable the write again for the actual write */
4549 bnx2_enable_nvram_write(bp);
4551 for (addr = page_start; addr < data_start;
4552 addr += 4, i += 4) {
4554 rc = bnx2_nvram_write_dword(bp, addr,
4555 &flash_buffer[i], cmd_flags);
4557 if (rc != 0)
4558 goto nvram_write_end;
4560 cmd_flags = 0;
4564 /* Loop to write the new data from data_start to data_end */
4565 for (addr = data_start; addr < data_end; addr += 4, i += 4) {
4566 if ((addr == page_end - 4) ||
4567 ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
4568 (addr == data_end - 4))) {
4570 cmd_flags |= BNX2_NVM_COMMAND_LAST;
4572 rc = bnx2_nvram_write_dword(bp, addr, buf,
4573 cmd_flags);
4575 if (rc != 0)
4576 goto nvram_write_end;
4578 cmd_flags = 0;
4579 buf += 4;
4582 /* Loop to write back the buffer data from data_end
4583 * to page_end */
4584 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4585 for (addr = data_end; addr < page_end;
4586 addr += 4, i += 4) {
4588 if (addr == page_end-4) {
4589 cmd_flags = BNX2_NVM_COMMAND_LAST;
4591 rc = bnx2_nvram_write_dword(bp, addr,
4592 &flash_buffer[i], cmd_flags);
4594 if (rc != 0)
4595 goto nvram_write_end;
4597 cmd_flags = 0;
4601 /* Disable writes to flash interface (lock write-protect) */
4602 bnx2_disable_nvram_write(bp);
4604 /* Disable access to flash interface */
4605 bnx2_disable_nvram_access(bp);
4606 bnx2_release_nvram_lock(bp);
4608 /* Increment written */
4609 written += data_end - data_start;
4612 nvram_write_end:
4613 kfree(flash_buffer);
4614 kfree(align_buf);
4615 return rc;
4618 static void
4619 bnx2_init_fw_cap(struct bnx2 *bp)
4621 u32 val, sig = 0;
4623 bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
4624 bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
4626 if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
4627 bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
4629 val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
4630 if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
4631 return;
4633 if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
4634 bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
4635 sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
4638 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
4639 (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
4640 u32 link;
4642 bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
4644 link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
4645 if (link & BNX2_LINK_STATUS_SERDES_LINK)
4646 bp->phy_port = PORT_FIBRE;
4647 else
4648 bp->phy_port = PORT_TP;
4650 sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
4651 BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
4654 if (netif_running(bp->dev) && sig)
4655 bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
4658 static void
4659 bnx2_setup_msix_tbl(struct bnx2 *bp)
4661 REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
4663 REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
4664 REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
4667 static int
4668 bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
4670 u32 val;
4671 int i, rc = 0;
4672 u8 old_port;
4674 /* Wait for the current PCI transaction to complete before
4675 * issuing a reset. */
4676 REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
4677 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4678 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4679 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4680 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
4681 val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
4682 udelay(5);
4684 /* Wait for the firmware to tell us it is ok to issue a reset. */
4685 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
4687 /* Deposit a driver reset signature so the firmware knows that
4688 * this is a soft reset. */
4689 bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
4690 BNX2_DRV_RESET_SIGNATURE_MAGIC);
4692 /* Do a dummy read to force the chip to complete all current transaction
4693 * before we issue a reset. */
4694 val = REG_RD(bp, BNX2_MISC_ID);
4696 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4697 REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
4698 REG_RD(bp, BNX2_MISC_COMMAND);
4699 udelay(5);
4701 val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4702 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4704 pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
4706 } else {
4707 val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4708 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4709 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4711 /* Chip reset. */
4712 REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
4714 /* Reading back any register after chip reset will hang the
4715 * bus on 5706 A0 and A1. The msleep below provides plenty
4716 * of margin for write posting.
4718 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
4719 (CHIP_ID(bp) == CHIP_ID_5706_A1))
4720 msleep(20);
4722 /* Reset takes approximate 30 usec */
4723 for (i = 0; i < 10; i++) {
4724 val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
4725 if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4726 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
4727 break;
4728 udelay(10);
4731 if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4732 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
4733 printk(KERN_ERR PFX "Chip reset did not complete\n");
4734 return -EBUSY;
4738 /* Make sure byte swapping is properly configured. */
4739 val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
4740 if (val != 0x01020304) {
4741 printk(KERN_ERR PFX "Chip not in correct endian mode\n");
4742 return -ENODEV;
4745 /* Wait for the firmware to finish its initialization. */
4746 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
4747 if (rc)
4748 return rc;
4750 spin_lock_bh(&bp->phy_lock);
4751 old_port = bp->phy_port;
4752 bnx2_init_fw_cap(bp);
4753 if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
4754 old_port != bp->phy_port)
4755 bnx2_set_default_remote_link(bp);
4756 spin_unlock_bh(&bp->phy_lock);
4758 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
4759 /* Adjust the voltage regular to two steps lower. The default
4760 * of this register is 0x0000000e. */
4761 REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
4763 /* Remove bad rbuf memory from the free pool. */
4764 rc = bnx2_alloc_bad_rbuf(bp);
4767 if (bp->flags & BNX2_FLAG_USING_MSIX)
4768 bnx2_setup_msix_tbl(bp);
4770 return rc;
4773 static int
4774 bnx2_init_chip(struct bnx2 *bp)
4776 u32 val, mtu;
4777 int rc, i;
4779 /* Make sure the interrupt is not active. */
4780 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
4782 val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
4783 BNX2_DMA_CONFIG_DATA_WORD_SWAP |
4784 #ifdef __BIG_ENDIAN
4785 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
4786 #endif
4787 BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
4788 DMA_READ_CHANS << 12 |
4789 DMA_WRITE_CHANS << 16;
4791 val |= (0x2 << 20) | (1 << 11);
4793 if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
4794 val |= (1 << 23);
4796 if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
4797 (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
4798 val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
4800 REG_WR(bp, BNX2_DMA_CONFIG, val);
4802 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
4803 val = REG_RD(bp, BNX2_TDMA_CONFIG);
4804 val |= BNX2_TDMA_CONFIG_ONE_DMA;
4805 REG_WR(bp, BNX2_TDMA_CONFIG, val);
4808 if (bp->flags & BNX2_FLAG_PCIX) {
4809 u16 val16;
4811 pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
4812 &val16);
4813 pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
4814 val16 & ~PCI_X_CMD_ERO);
4817 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
4818 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
4819 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
4820 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
4822 /* Initialize context mapping and zero out the quick contexts. The
4823 * context block must have already been enabled. */
4824 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4825 rc = bnx2_init_5709_context(bp);
4826 if (rc)
4827 return rc;
4828 } else
4829 bnx2_init_context(bp);
4831 if ((rc = bnx2_init_cpus(bp)) != 0)
4832 return rc;
4834 bnx2_init_nvram(bp);
4836 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
4838 val = REG_RD(bp, BNX2_MQ_CONFIG);
4839 val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
4840 val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
4841 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4842 val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
4843 if (CHIP_REV(bp) == CHIP_REV_Ax)
4844 val |= BNX2_MQ_CONFIG_HALT_DIS;
4847 REG_WR(bp, BNX2_MQ_CONFIG, val);
4849 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
4850 REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
4851 REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
4853 val = (BCM_PAGE_BITS - 8) << 24;
4854 REG_WR(bp, BNX2_RV2P_CONFIG, val);
4856 /* Configure page size. */
4857 val = REG_RD(bp, BNX2_TBDR_CONFIG);
4858 val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
4859 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
4860 REG_WR(bp, BNX2_TBDR_CONFIG, val);
4862 val = bp->mac_addr[0] +
4863 (bp->mac_addr[1] << 8) +
4864 (bp->mac_addr[2] << 16) +
4865 bp->mac_addr[3] +
4866 (bp->mac_addr[4] << 8) +
4867 (bp->mac_addr[5] << 16);
4868 REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
4870 /* Program the MTU. Also include 4 bytes for CRC32. */
4871 mtu = bp->dev->mtu;
4872 val = mtu + ETH_HLEN + ETH_FCS_LEN;
4873 if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
4874 val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
4875 REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
4877 if (mtu < 1500)
4878 mtu = 1500;
4880 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
4881 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
4882 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
4884 memset(bp->bnx2_napi[0].status_blk.msi, 0, bp->status_stats_size);
4885 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
4886 bp->bnx2_napi[i].last_status_idx = 0;
4888 bp->idle_chk_status_idx = 0xffff;
4890 bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
4892 /* Set up how to generate a link change interrupt. */
4893 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
4895 REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
4896 (u64) bp->status_blk_mapping & 0xffffffff);
4897 REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
4899 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
4900 (u64) bp->stats_blk_mapping & 0xffffffff);
4901 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
4902 (u64) bp->stats_blk_mapping >> 32);
4904 REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
4905 (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
4907 REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
4908 (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
4910 REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
4911 (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
4913 REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
4915 REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
4917 REG_WR(bp, BNX2_HC_COM_TICKS,
4918 (bp->com_ticks_int << 16) | bp->com_ticks);
4920 REG_WR(bp, BNX2_HC_CMD_TICKS,
4921 (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
4923 if (bp->flags & BNX2_FLAG_BROKEN_STATS)
4924 REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
4925 else
4926 REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
4927 REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
4929 if (CHIP_ID(bp) == CHIP_ID_5706_A1)
4930 val = BNX2_HC_CONFIG_COLLECT_STATS;
4931 else {
4932 val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
4933 BNX2_HC_CONFIG_COLLECT_STATS;
4936 if (bp->irq_nvecs > 1) {
4937 REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
4938 BNX2_HC_MSIX_BIT_VECTOR_VAL);
4940 val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
4943 if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
4944 val |= BNX2_HC_CONFIG_ONE_SHOT | BNX2_HC_CONFIG_USE_INT_PARAM;
4946 REG_WR(bp, BNX2_HC_CONFIG, val);
4948 for (i = 1; i < bp->irq_nvecs; i++) {
4949 u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
4950 BNX2_HC_SB_CONFIG_1;
4952 REG_WR(bp, base,
4953 BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
4954 BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
4955 BNX2_HC_SB_CONFIG_1_ONE_SHOT);
4957 REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
4958 (bp->tx_quick_cons_trip_int << 16) |
4959 bp->tx_quick_cons_trip);
4961 REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
4962 (bp->tx_ticks_int << 16) | bp->tx_ticks);
4964 REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
4965 (bp->rx_quick_cons_trip_int << 16) |
4966 bp->rx_quick_cons_trip);
4968 REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
4969 (bp->rx_ticks_int << 16) | bp->rx_ticks);
4972 /* Clear internal stats counters. */
4973 REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
4975 REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
4977 /* Initialize the receive filter. */
4978 bnx2_set_rx_mode(bp->dev);
4980 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4981 val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
4982 val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
4983 REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
4985 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
4986 1, 0);
4988 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
4989 REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
4991 udelay(20);
4993 bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
4995 return rc;
4998 static void
4999 bnx2_clear_ring_states(struct bnx2 *bp)
5001 struct bnx2_napi *bnapi;
5002 struct bnx2_tx_ring_info *txr;
5003 struct bnx2_rx_ring_info *rxr;
5004 int i;
5006 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
5007 bnapi = &bp->bnx2_napi[i];
5008 txr = &bnapi->tx_ring;
5009 rxr = &bnapi->rx_ring;
5011 txr->tx_cons = 0;
5012 txr->hw_tx_cons = 0;
5013 rxr->rx_prod_bseq = 0;
5014 rxr->rx_prod = 0;
5015 rxr->rx_cons = 0;
5016 rxr->rx_pg_prod = 0;
5017 rxr->rx_pg_cons = 0;
5021 static void
5022 bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
5024 u32 val, offset0, offset1, offset2, offset3;
5025 u32 cid_addr = GET_CID_ADDR(cid);
5027 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
5028 offset0 = BNX2_L2CTX_TYPE_XI;
5029 offset1 = BNX2_L2CTX_CMD_TYPE_XI;
5030 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
5031 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
5032 } else {
5033 offset0 = BNX2_L2CTX_TYPE;
5034 offset1 = BNX2_L2CTX_CMD_TYPE;
5035 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
5036 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
5038 val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
5039 bnx2_ctx_wr(bp, cid_addr, offset0, val);
5041 val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
5042 bnx2_ctx_wr(bp, cid_addr, offset1, val);
5044 val = (u64) txr->tx_desc_mapping >> 32;
5045 bnx2_ctx_wr(bp, cid_addr, offset2, val);
5047 val = (u64) txr->tx_desc_mapping & 0xffffffff;
5048 bnx2_ctx_wr(bp, cid_addr, offset3, val);
5051 static void
5052 bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
5054 struct tx_bd *txbd;
5055 u32 cid = TX_CID;
5056 struct bnx2_napi *bnapi;
5057 struct bnx2_tx_ring_info *txr;
5059 bnapi = &bp->bnx2_napi[ring_num];
5060 txr = &bnapi->tx_ring;
5062 if (ring_num == 0)
5063 cid = TX_CID;
5064 else
5065 cid = TX_TSS_CID + ring_num - 1;
5067 bp->tx_wake_thresh = bp->tx_ring_size / 2;
5069 txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
5071 txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
5072 txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
5074 txr->tx_prod = 0;
5075 txr->tx_prod_bseq = 0;
5077 txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
5078 txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
5080 bnx2_init_tx_context(bp, cid, txr);
5083 static void
5084 bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
5085 int num_rings)
5087 int i;
5088 struct rx_bd *rxbd;
5090 for (i = 0; i < num_rings; i++) {
5091 int j;
5093 rxbd = &rx_ring[i][0];
5094 for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
5095 rxbd->rx_bd_len = buf_size;
5096 rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
5098 if (i == (num_rings - 1))
5099 j = 0;
5100 else
5101 j = i + 1;
5102 rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
5103 rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
5107 static void
5108 bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
5110 int i;
5111 u16 prod, ring_prod;
5112 u32 cid, rx_cid_addr, val;
5113 struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
5114 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5116 if (ring_num == 0)
5117 cid = RX_CID;
5118 else
5119 cid = RX_RSS_CID + ring_num - 1;
5121 rx_cid_addr = GET_CID_ADDR(cid);
5123 bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
5124 bp->rx_buf_use_size, bp->rx_max_ring);
5126 bnx2_init_rx_context(bp, cid);
5128 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
5129 val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
5130 REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
5133 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
5134 if (bp->rx_pg_ring_size) {
5135 bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
5136 rxr->rx_pg_desc_mapping,
5137 PAGE_SIZE, bp->rx_max_pg_ring);
5138 val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
5139 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
5140 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
5141 BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
5143 val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
5144 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
5146 val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
5147 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
5149 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5150 REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
5153 val = (u64) rxr->rx_desc_mapping[0] >> 32;
5154 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
5156 val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
5157 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
5159 ring_prod = prod = rxr->rx_pg_prod;
5160 for (i = 0; i < bp->rx_pg_ring_size; i++) {
5161 if (bnx2_alloc_rx_page(bp, rxr, ring_prod) < 0) {
5162 printk(KERN_WARNING PFX "%s: init'ed rx page ring %d "
5163 "with %d/%d pages only\n",
5164 bp->dev->name, ring_num, i, bp->rx_pg_ring_size);
5165 break;
5167 prod = NEXT_RX_BD(prod);
5168 ring_prod = RX_PG_RING_IDX(prod);
5170 rxr->rx_pg_prod = prod;
5172 ring_prod = prod = rxr->rx_prod;
5173 for (i = 0; i < bp->rx_ring_size; i++) {
5174 if (bnx2_alloc_rx_skb(bp, rxr, ring_prod) < 0) {
5175 printk(KERN_WARNING PFX "%s: init'ed rx ring %d with "
5176 "%d/%d skbs only\n",
5177 bp->dev->name, ring_num, i, bp->rx_ring_size);
5178 break;
5180 prod = NEXT_RX_BD(prod);
5181 ring_prod = RX_RING_IDX(prod);
5183 rxr->rx_prod = prod;
5185 rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
5186 rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
5187 rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
5189 REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
5190 REG_WR16(bp, rxr->rx_bidx_addr, prod);
5192 REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
5195 static void
5196 bnx2_init_all_rings(struct bnx2 *bp)
5198 int i;
5199 u32 val;
5201 bnx2_clear_ring_states(bp);
5203 REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
5204 for (i = 0; i < bp->num_tx_rings; i++)
5205 bnx2_init_tx_ring(bp, i);
5207 if (bp->num_tx_rings > 1)
5208 REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
5209 (TX_TSS_CID << 7));
5211 REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
5212 bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
5214 for (i = 0; i < bp->num_rx_rings; i++)
5215 bnx2_init_rx_ring(bp, i);
5217 if (bp->num_rx_rings > 1) {
5218 u32 tbl_32;
5219 u8 *tbl = (u8 *) &tbl_32;
5221 bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ,
5222 BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES);
5224 for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
5225 tbl[i % 4] = i % (bp->num_rx_rings - 1);
5226 if ((i % 4) == 3)
5227 bnx2_reg_wr_ind(bp,
5228 BNX2_RXP_SCRATCH_RSS_TBL + i,
5229 cpu_to_be32(tbl_32));
5232 val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
5233 BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
5235 REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
5240 static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
5242 u32 max, num_rings = 1;
5244 while (ring_size > MAX_RX_DESC_CNT) {
5245 ring_size -= MAX_RX_DESC_CNT;
5246 num_rings++;
5248 /* round to next power of 2 */
5249 max = max_size;
5250 while ((max & num_rings) == 0)
5251 max >>= 1;
5253 if (num_rings != max)
5254 max <<= 1;
5256 return max;
5259 static void
5260 bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
5262 u32 rx_size, rx_space, jumbo_size;
5264 /* 8 for CRC and VLAN */
5265 rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
5267 rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
5268 sizeof(struct skb_shared_info);
5270 bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
5271 bp->rx_pg_ring_size = 0;
5272 bp->rx_max_pg_ring = 0;
5273 bp->rx_max_pg_ring_idx = 0;
5274 if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
5275 int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
5277 jumbo_size = size * pages;
5278 if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
5279 jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
5281 bp->rx_pg_ring_size = jumbo_size;
5282 bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
5283 MAX_RX_PG_RINGS);
5284 bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
5285 rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
5286 bp->rx_copy_thresh = 0;
5289 bp->rx_buf_use_size = rx_size;
5290 /* hw alignment */
5291 bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
5292 bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
5293 bp->rx_ring_size = size;
5294 bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
5295 bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
5298 static void
5299 bnx2_free_tx_skbs(struct bnx2 *bp)
5301 int i;
5303 for (i = 0; i < bp->num_tx_rings; i++) {
5304 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
5305 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
5306 int j;
5308 if (txr->tx_buf_ring == NULL)
5309 continue;
5311 for (j = 0; j < TX_DESC_CNT; ) {
5312 struct sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
5313 struct sk_buff *skb = tx_buf->skb;
5314 int k, last;
5316 if (skb == NULL) {
5317 j++;
5318 continue;
5321 pci_unmap_single(bp->pdev,
5322 pci_unmap_addr(tx_buf, mapping),
5323 skb_headlen(skb),
5324 PCI_DMA_TODEVICE);
5326 tx_buf->skb = NULL;
5328 last = tx_buf->nr_frags;
5329 j++;
5330 for (k = 0; k < last; k++, j++) {
5331 tx_buf = &txr->tx_buf_ring[TX_RING_IDX(j)];
5332 pci_unmap_page(bp->pdev,
5333 pci_unmap_addr(tx_buf, mapping),
5334 skb_shinfo(skb)->frags[k].size,
5335 PCI_DMA_TODEVICE);
5337 dev_kfree_skb(skb);
5342 static void
5343 bnx2_free_rx_skbs(struct bnx2 *bp)
5345 int i;
5347 for (i = 0; i < bp->num_rx_rings; i++) {
5348 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
5349 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5350 int j;
5352 if (rxr->rx_buf_ring == NULL)
5353 return;
5355 for (j = 0; j < bp->rx_max_ring_idx; j++) {
5356 struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
5357 struct sk_buff *skb = rx_buf->skb;
5359 if (skb == NULL)
5360 continue;
5362 pci_unmap_single(bp->pdev,
5363 pci_unmap_addr(rx_buf, mapping),
5364 bp->rx_buf_use_size,
5365 PCI_DMA_FROMDEVICE);
5367 rx_buf->skb = NULL;
5369 dev_kfree_skb(skb);
5371 for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
5372 bnx2_free_rx_page(bp, rxr, j);
5376 static void
5377 bnx2_free_skbs(struct bnx2 *bp)
5379 bnx2_free_tx_skbs(bp);
5380 bnx2_free_rx_skbs(bp);
5383 static int
5384 bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
5386 int rc;
5388 rc = bnx2_reset_chip(bp, reset_code);
5389 bnx2_free_skbs(bp);
5390 if (rc)
5391 return rc;
5393 if ((rc = bnx2_init_chip(bp)) != 0)
5394 return rc;
5396 bnx2_init_all_rings(bp);
5397 return 0;
5400 static int
5401 bnx2_init_nic(struct bnx2 *bp, int reset_phy)
5403 int rc;
5405 if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
5406 return rc;
5408 spin_lock_bh(&bp->phy_lock);
5409 bnx2_init_phy(bp, reset_phy);
5410 bnx2_set_link(bp);
5411 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5412 bnx2_remote_phy_event(bp);
5413 spin_unlock_bh(&bp->phy_lock);
5414 return 0;
5417 static int
5418 bnx2_shutdown_chip(struct bnx2 *bp)
5420 u32 reset_code;
5422 if (bp->flags & BNX2_FLAG_NO_WOL)
5423 reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
5424 else if (bp->wol)
5425 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
5426 else
5427 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
5429 return bnx2_reset_chip(bp, reset_code);
5432 static int
5433 bnx2_test_registers(struct bnx2 *bp)
5435 int ret;
5436 int i, is_5709;
5437 static const struct {
5438 u16 offset;
5439 u16 flags;
5440 #define BNX2_FL_NOT_5709 1
5441 u32 rw_mask;
5442 u32 ro_mask;
5443 } reg_tbl[] = {
5444 { 0x006c, 0, 0x00000000, 0x0000003f },
5445 { 0x0090, 0, 0xffffffff, 0x00000000 },
5446 { 0x0094, 0, 0x00000000, 0x00000000 },
5448 { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
5449 { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5450 { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5451 { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
5452 { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
5453 { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
5454 { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
5455 { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5456 { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5458 { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5459 { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5460 { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5461 { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5462 { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5463 { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5465 { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
5466 { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
5467 { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
5469 { 0x1000, 0, 0x00000000, 0x00000001 },
5470 { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
5472 { 0x1408, 0, 0x01c00800, 0x00000000 },
5473 { 0x149c, 0, 0x8000ffff, 0x00000000 },
5474 { 0x14a8, 0, 0x00000000, 0x000001ff },
5475 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
5476 { 0x14b0, 0, 0x00000002, 0x00000001 },
5477 { 0x14b8, 0, 0x00000000, 0x00000000 },
5478 { 0x14c0, 0, 0x00000000, 0x00000009 },
5479 { 0x14c4, 0, 0x00003fff, 0x00000000 },
5480 { 0x14cc, 0, 0x00000000, 0x00000001 },
5481 { 0x14d0, 0, 0xffffffff, 0x00000000 },
5483 { 0x1800, 0, 0x00000000, 0x00000001 },
5484 { 0x1804, 0, 0x00000000, 0x00000003 },
5486 { 0x2800, 0, 0x00000000, 0x00000001 },
5487 { 0x2804, 0, 0x00000000, 0x00003f01 },
5488 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
5489 { 0x2810, 0, 0xffff0000, 0x00000000 },
5490 { 0x2814, 0, 0xffff0000, 0x00000000 },
5491 { 0x2818, 0, 0xffff0000, 0x00000000 },
5492 { 0x281c, 0, 0xffff0000, 0x00000000 },
5493 { 0x2834, 0, 0xffffffff, 0x00000000 },
5494 { 0x2840, 0, 0x00000000, 0xffffffff },
5495 { 0x2844, 0, 0x00000000, 0xffffffff },
5496 { 0x2848, 0, 0xffffffff, 0x00000000 },
5497 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
5499 { 0x2c00, 0, 0x00000000, 0x00000011 },
5500 { 0x2c04, 0, 0x00000000, 0x00030007 },
5502 { 0x3c00, 0, 0x00000000, 0x00000001 },
5503 { 0x3c04, 0, 0x00000000, 0x00070000 },
5504 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
5505 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
5506 { 0x3c10, 0, 0xffffffff, 0x00000000 },
5507 { 0x3c14, 0, 0x00000000, 0xffffffff },
5508 { 0x3c18, 0, 0x00000000, 0xffffffff },
5509 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
5510 { 0x3c20, 0, 0xffffff00, 0x00000000 },
5512 { 0x5004, 0, 0x00000000, 0x0000007f },
5513 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
5515 { 0x5c00, 0, 0x00000000, 0x00000001 },
5516 { 0x5c04, 0, 0x00000000, 0x0003000f },
5517 { 0x5c08, 0, 0x00000003, 0x00000000 },
5518 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
5519 { 0x5c10, 0, 0x00000000, 0xffffffff },
5520 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
5521 { 0x5c84, 0, 0x00000000, 0x0000f333 },
5522 { 0x5c88, 0, 0x00000000, 0x00077373 },
5523 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
5525 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
5526 { 0x680c, 0, 0xffffffff, 0x00000000 },
5527 { 0x6810, 0, 0xffffffff, 0x00000000 },
5528 { 0x6814, 0, 0xffffffff, 0x00000000 },
5529 { 0x6818, 0, 0xffffffff, 0x00000000 },
5530 { 0x681c, 0, 0xffffffff, 0x00000000 },
5531 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
5532 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
5533 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
5534 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
5535 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
5536 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
5537 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
5538 { 0x683c, 0, 0x0000ffff, 0x00000000 },
5539 { 0x6840, 0, 0x00000ff0, 0x00000000 },
5540 { 0x6844, 0, 0x00ffff00, 0x00000000 },
5541 { 0x684c, 0, 0xffffffff, 0x00000000 },
5542 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
5543 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
5544 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
5545 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
5546 { 0x6908, 0, 0x00000000, 0x0001ff0f },
5547 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
5549 { 0xffff, 0, 0x00000000, 0x00000000 },
5552 ret = 0;
5553 is_5709 = 0;
5554 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5555 is_5709 = 1;
5557 for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
5558 u32 offset, rw_mask, ro_mask, save_val, val;
5559 u16 flags = reg_tbl[i].flags;
5561 if (is_5709 && (flags & BNX2_FL_NOT_5709))
5562 continue;
5564 offset = (u32) reg_tbl[i].offset;
5565 rw_mask = reg_tbl[i].rw_mask;
5566 ro_mask = reg_tbl[i].ro_mask;
5568 save_val = readl(bp->regview + offset);
5570 writel(0, bp->regview + offset);
5572 val = readl(bp->regview + offset);
5573 if ((val & rw_mask) != 0) {
5574 goto reg_test_err;
5577 if ((val & ro_mask) != (save_val & ro_mask)) {
5578 goto reg_test_err;
5581 writel(0xffffffff, bp->regview + offset);
5583 val = readl(bp->regview + offset);
5584 if ((val & rw_mask) != rw_mask) {
5585 goto reg_test_err;
5588 if ((val & ro_mask) != (save_val & ro_mask)) {
5589 goto reg_test_err;
5592 writel(save_val, bp->regview + offset);
5593 continue;
5595 reg_test_err:
5596 writel(save_val, bp->regview + offset);
5597 ret = -ENODEV;
5598 break;
5600 return ret;
5603 static int
5604 bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
5606 static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
5607 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
5608 int i;
5610 for (i = 0; i < sizeof(test_pattern) / 4; i++) {
5611 u32 offset;
5613 for (offset = 0; offset < size; offset += 4) {
5615 bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
5617 if (bnx2_reg_rd_ind(bp, start + offset) !=
5618 test_pattern[i]) {
5619 return -ENODEV;
5623 return 0;
5626 static int
5627 bnx2_test_memory(struct bnx2 *bp)
5629 int ret = 0;
5630 int i;
5631 static struct mem_entry {
5632 u32 offset;
5633 u32 len;
5634 } mem_tbl_5706[] = {
5635 { 0x60000, 0x4000 },
5636 { 0xa0000, 0x3000 },
5637 { 0xe0000, 0x4000 },
5638 { 0x120000, 0x4000 },
5639 { 0x1a0000, 0x4000 },
5640 { 0x160000, 0x4000 },
5641 { 0xffffffff, 0 },
5643 mem_tbl_5709[] = {
5644 { 0x60000, 0x4000 },
5645 { 0xa0000, 0x3000 },
5646 { 0xe0000, 0x4000 },
5647 { 0x120000, 0x4000 },
5648 { 0x1a0000, 0x4000 },
5649 { 0xffffffff, 0 },
5651 struct mem_entry *mem_tbl;
5653 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5654 mem_tbl = mem_tbl_5709;
5655 else
5656 mem_tbl = mem_tbl_5706;
5658 for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
5659 if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
5660 mem_tbl[i].len)) != 0) {
5661 return ret;
5665 return ret;
5668 #define BNX2_MAC_LOOPBACK 0
5669 #define BNX2_PHY_LOOPBACK 1
5671 static int
5672 bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
5674 unsigned int pkt_size, num_pkts, i;
5675 struct sk_buff *skb, *rx_skb;
5676 unsigned char *packet;
5677 u16 rx_start_idx, rx_idx;
5678 dma_addr_t map;
5679 struct tx_bd *txbd;
5680 struct sw_bd *rx_buf;
5681 struct l2_fhdr *rx_hdr;
5682 int ret = -ENODEV;
5683 struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
5684 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
5685 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5687 tx_napi = bnapi;
5689 txr = &tx_napi->tx_ring;
5690 rxr = &bnapi->rx_ring;
5691 if (loopback_mode == BNX2_MAC_LOOPBACK) {
5692 bp->loopback = MAC_LOOPBACK;
5693 bnx2_set_mac_loopback(bp);
5695 else if (loopback_mode == BNX2_PHY_LOOPBACK) {
5696 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5697 return 0;
5699 bp->loopback = PHY_LOOPBACK;
5700 bnx2_set_phy_loopback(bp);
5702 else
5703 return -EINVAL;
5705 pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
5706 skb = netdev_alloc_skb(bp->dev, pkt_size);
5707 if (!skb)
5708 return -ENOMEM;
5709 packet = skb_put(skb, pkt_size);
5710 memcpy(packet, bp->dev->dev_addr, 6);
5711 memset(packet + 6, 0x0, 8);
5712 for (i = 14; i < pkt_size; i++)
5713 packet[i] = (unsigned char) (i & 0xff);
5715 map = pci_map_single(bp->pdev, skb->data, pkt_size,
5716 PCI_DMA_TODEVICE);
5717 if (pci_dma_mapping_error(bp->pdev, map)) {
5718 dev_kfree_skb(skb);
5719 return -EIO;
5722 REG_WR(bp, BNX2_HC_COMMAND,
5723 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
5725 REG_RD(bp, BNX2_HC_COMMAND);
5727 udelay(5);
5728 rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
5730 num_pkts = 0;
5732 txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
5734 txbd->tx_bd_haddr_hi = (u64) map >> 32;
5735 txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
5736 txbd->tx_bd_mss_nbytes = pkt_size;
5737 txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
5739 num_pkts++;
5740 txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
5741 txr->tx_prod_bseq += pkt_size;
5743 REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
5744 REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
5746 udelay(100);
5748 REG_WR(bp, BNX2_HC_COMMAND,
5749 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
5751 REG_RD(bp, BNX2_HC_COMMAND);
5753 udelay(5);
5755 pci_unmap_single(bp->pdev, map, pkt_size, PCI_DMA_TODEVICE);
5756 dev_kfree_skb(skb);
5758 if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
5759 goto loopback_test_done;
5761 rx_idx = bnx2_get_hw_rx_cons(bnapi);
5762 if (rx_idx != rx_start_idx + num_pkts) {
5763 goto loopback_test_done;
5766 rx_buf = &rxr->rx_buf_ring[rx_start_idx];
5767 rx_skb = rx_buf->skb;
5769 rx_hdr = (struct l2_fhdr *) rx_skb->data;
5770 skb_reserve(rx_skb, BNX2_RX_OFFSET);
5772 pci_dma_sync_single_for_cpu(bp->pdev,
5773 pci_unmap_addr(rx_buf, mapping),
5774 bp->rx_buf_size, PCI_DMA_FROMDEVICE);
5776 if (rx_hdr->l2_fhdr_status &
5777 (L2_FHDR_ERRORS_BAD_CRC |
5778 L2_FHDR_ERRORS_PHY_DECODE |
5779 L2_FHDR_ERRORS_ALIGNMENT |
5780 L2_FHDR_ERRORS_TOO_SHORT |
5781 L2_FHDR_ERRORS_GIANT_FRAME)) {
5783 goto loopback_test_done;
5786 if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
5787 goto loopback_test_done;
5790 for (i = 14; i < pkt_size; i++) {
5791 if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
5792 goto loopback_test_done;
5796 ret = 0;
5798 loopback_test_done:
5799 bp->loopback = 0;
5800 return ret;
5803 #define BNX2_MAC_LOOPBACK_FAILED 1
5804 #define BNX2_PHY_LOOPBACK_FAILED 2
5805 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
5806 BNX2_PHY_LOOPBACK_FAILED)
5808 static int
5809 bnx2_test_loopback(struct bnx2 *bp)
5811 int rc = 0;
5813 if (!netif_running(bp->dev))
5814 return BNX2_LOOPBACK_FAILED;
5816 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
5817 spin_lock_bh(&bp->phy_lock);
5818 bnx2_init_phy(bp, 1);
5819 spin_unlock_bh(&bp->phy_lock);
5820 if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
5821 rc |= BNX2_MAC_LOOPBACK_FAILED;
5822 if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
5823 rc |= BNX2_PHY_LOOPBACK_FAILED;
5824 return rc;
5827 #define NVRAM_SIZE 0x200
5828 #define CRC32_RESIDUAL 0xdebb20e3
5830 static int
5831 bnx2_test_nvram(struct bnx2 *bp)
5833 __be32 buf[NVRAM_SIZE / 4];
5834 u8 *data = (u8 *) buf;
5835 int rc = 0;
5836 u32 magic, csum;
5838 if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
5839 goto test_nvram_done;
5841 magic = be32_to_cpu(buf[0]);
5842 if (magic != 0x669955aa) {
5843 rc = -ENODEV;
5844 goto test_nvram_done;
5847 if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
5848 goto test_nvram_done;
5850 csum = ether_crc_le(0x100, data);
5851 if (csum != CRC32_RESIDUAL) {
5852 rc = -ENODEV;
5853 goto test_nvram_done;
5856 csum = ether_crc_le(0x100, data + 0x100);
5857 if (csum != CRC32_RESIDUAL) {
5858 rc = -ENODEV;
5861 test_nvram_done:
5862 return rc;
5865 static int
5866 bnx2_test_link(struct bnx2 *bp)
5868 u32 bmsr;
5870 if (!netif_running(bp->dev))
5871 return -ENODEV;
5873 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
5874 if (bp->link_up)
5875 return 0;
5876 return -ENODEV;
5878 spin_lock_bh(&bp->phy_lock);
5879 bnx2_enable_bmsr1(bp);
5880 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
5881 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
5882 bnx2_disable_bmsr1(bp);
5883 spin_unlock_bh(&bp->phy_lock);
5885 if (bmsr & BMSR_LSTATUS) {
5886 return 0;
5888 return -ENODEV;
5891 static int
5892 bnx2_test_intr(struct bnx2 *bp)
5894 int i;
5895 u16 status_idx;
5897 if (!netif_running(bp->dev))
5898 return -ENODEV;
5900 status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
5902 /* This register is not touched during run-time. */
5903 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
5904 REG_RD(bp, BNX2_HC_COMMAND);
5906 for (i = 0; i < 10; i++) {
5907 if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
5908 status_idx) {
5910 break;
5913 msleep_interruptible(10);
5915 if (i < 10)
5916 return 0;
5918 return -ENODEV;
5921 /* Determining link for parallel detection. */
5922 static int
5923 bnx2_5706_serdes_has_link(struct bnx2 *bp)
5925 u32 mode_ctl, an_dbg, exp;
5927 if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
5928 return 0;
5930 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
5931 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
5933 if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
5934 return 0;
5936 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
5937 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
5938 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
5940 if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
5941 return 0;
5943 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
5944 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
5945 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
5947 if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
5948 return 0;
5950 return 1;
5953 static void
5954 bnx2_5706_serdes_timer(struct bnx2 *bp)
5956 int check_link = 1;
5958 spin_lock(&bp->phy_lock);
5959 if (bp->serdes_an_pending) {
5960 bp->serdes_an_pending--;
5961 check_link = 0;
5962 } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
5963 u32 bmcr;
5965 bp->current_interval = BNX2_TIMER_INTERVAL;
5967 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
5969 if (bmcr & BMCR_ANENABLE) {
5970 if (bnx2_5706_serdes_has_link(bp)) {
5971 bmcr &= ~BMCR_ANENABLE;
5972 bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
5973 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
5974 bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
5978 else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
5979 (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
5980 u32 phy2;
5982 bnx2_write_phy(bp, 0x17, 0x0f01);
5983 bnx2_read_phy(bp, 0x15, &phy2);
5984 if (phy2 & 0x20) {
5985 u32 bmcr;
5987 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
5988 bmcr |= BMCR_ANENABLE;
5989 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
5991 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
5993 } else
5994 bp->current_interval = BNX2_TIMER_INTERVAL;
5996 if (check_link) {
5997 u32 val;
5999 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
6000 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
6001 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
6003 if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
6004 if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
6005 bnx2_5706s_force_link_dn(bp, 1);
6006 bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
6007 } else
6008 bnx2_set_link(bp);
6009 } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
6010 bnx2_set_link(bp);
6012 spin_unlock(&bp->phy_lock);
6015 static void
6016 bnx2_5708_serdes_timer(struct bnx2 *bp)
6018 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
6019 return;
6021 if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
6022 bp->serdes_an_pending = 0;
6023 return;
6026 spin_lock(&bp->phy_lock);
6027 if (bp->serdes_an_pending)
6028 bp->serdes_an_pending--;
6029 else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
6030 u32 bmcr;
6032 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
6033 if (bmcr & BMCR_ANENABLE) {
6034 bnx2_enable_forced_2g5(bp);
6035 bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
6036 } else {
6037 bnx2_disable_forced_2g5(bp);
6038 bp->serdes_an_pending = 2;
6039 bp->current_interval = BNX2_TIMER_INTERVAL;
6042 } else
6043 bp->current_interval = BNX2_TIMER_INTERVAL;
6045 spin_unlock(&bp->phy_lock);
6048 static void
6049 bnx2_timer(unsigned long data)
6051 struct bnx2 *bp = (struct bnx2 *) data;
6053 if (!netif_running(bp->dev))
6054 return;
6056 if (atomic_read(&bp->intr_sem) != 0)
6057 goto bnx2_restart_timer;
6059 if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
6060 BNX2_FLAG_USING_MSI)
6061 bnx2_chk_missed_msi(bp);
6063 bnx2_send_heart_beat(bp);
6065 bp->stats_blk->stat_FwRxDrop =
6066 bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
6068 /* workaround occasional corrupted counters */
6069 if ((bp->flags & BNX2_FLAG_BROKEN_STATS) && bp->stats_ticks)
6070 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
6071 BNX2_HC_COMMAND_STATS_NOW);
6073 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
6074 if (CHIP_NUM(bp) == CHIP_NUM_5706)
6075 bnx2_5706_serdes_timer(bp);
6076 else
6077 bnx2_5708_serdes_timer(bp);
6080 bnx2_restart_timer:
6081 mod_timer(&bp->timer, jiffies + bp->current_interval);
6084 static int
6085 bnx2_request_irq(struct bnx2 *bp)
6087 unsigned long flags;
6088 struct bnx2_irq *irq;
6089 int rc = 0, i;
6091 if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
6092 flags = 0;
6093 else
6094 flags = IRQF_SHARED;
6096 for (i = 0; i < bp->irq_nvecs; i++) {
6097 irq = &bp->irq_tbl[i];
6098 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
6099 &bp->bnx2_napi[i]);
6100 if (rc)
6101 break;
6102 irq->requested = 1;
6104 return rc;
6107 static void
6108 bnx2_free_irq(struct bnx2 *bp)
6110 struct bnx2_irq *irq;
6111 int i;
6113 for (i = 0; i < bp->irq_nvecs; i++) {
6114 irq = &bp->irq_tbl[i];
6115 if (irq->requested)
6116 free_irq(irq->vector, &bp->bnx2_napi[i]);
6117 irq->requested = 0;
6119 if (bp->flags & BNX2_FLAG_USING_MSI)
6120 pci_disable_msi(bp->pdev);
6121 else if (bp->flags & BNX2_FLAG_USING_MSIX)
6122 pci_disable_msix(bp->pdev);
6124 bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
6127 static void
6128 bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
6130 int i, rc;
6131 struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
6132 struct net_device *dev = bp->dev;
6133 const int len = sizeof(bp->irq_tbl[0].name);
6135 bnx2_setup_msix_tbl(bp);
6136 REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
6137 REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
6138 REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
6140 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
6141 msix_ent[i].entry = i;
6142 msix_ent[i].vector = 0;
6145 rc = pci_enable_msix(bp->pdev, msix_ent, BNX2_MAX_MSIX_VEC);
6146 if (rc != 0)
6147 return;
6149 bp->irq_nvecs = msix_vecs;
6150 bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
6151 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
6152 bp->irq_tbl[i].vector = msix_ent[i].vector;
6153 snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
6154 bp->irq_tbl[i].handler = bnx2_msi_1shot;
6158 static void
6159 bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
6161 int cpus = num_online_cpus();
6162 int msix_vecs = min(cpus + 1, RX_MAX_RINGS);
6164 bp->irq_tbl[0].handler = bnx2_interrupt;
6165 strcpy(bp->irq_tbl[0].name, bp->dev->name);
6166 bp->irq_nvecs = 1;
6167 bp->irq_tbl[0].vector = bp->pdev->irq;
6169 if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi && cpus > 1)
6170 bnx2_enable_msix(bp, msix_vecs);
6172 if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
6173 !(bp->flags & BNX2_FLAG_USING_MSIX)) {
6174 if (pci_enable_msi(bp->pdev) == 0) {
6175 bp->flags |= BNX2_FLAG_USING_MSI;
6176 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
6177 bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
6178 bp->irq_tbl[0].handler = bnx2_msi_1shot;
6179 } else
6180 bp->irq_tbl[0].handler = bnx2_msi;
6182 bp->irq_tbl[0].vector = bp->pdev->irq;
6186 bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
6187 bp->dev->real_num_tx_queues = bp->num_tx_rings;
6189 bp->num_rx_rings = bp->irq_nvecs;
6192 /* Called with rtnl_lock */
6193 static int
6194 bnx2_open(struct net_device *dev)
6196 struct bnx2 *bp = netdev_priv(dev);
6197 int rc;
6199 netif_carrier_off(dev);
6201 bnx2_set_power_state(bp, PCI_D0);
6202 bnx2_disable_int(bp);
6204 bnx2_setup_int_mode(bp, disable_msi);
6205 bnx2_napi_enable(bp);
6206 rc = bnx2_alloc_mem(bp);
6207 if (rc)
6208 goto open_err;
6210 rc = bnx2_request_irq(bp);
6211 if (rc)
6212 goto open_err;
6214 rc = bnx2_init_nic(bp, 1);
6215 if (rc)
6216 goto open_err;
6218 mod_timer(&bp->timer, jiffies + bp->current_interval);
6220 atomic_set(&bp->intr_sem, 0);
6222 bnx2_enable_int(bp);
6224 if (bp->flags & BNX2_FLAG_USING_MSI) {
6225 /* Test MSI to make sure it is working
6226 * If MSI test fails, go back to INTx mode
6228 if (bnx2_test_intr(bp) != 0) {
6229 printk(KERN_WARNING PFX "%s: No interrupt was generated"
6230 " using MSI, switching to INTx mode. Please"
6231 " report this failure to the PCI maintainer"
6232 " and include system chipset information.\n",
6233 bp->dev->name);
6235 bnx2_disable_int(bp);
6236 bnx2_free_irq(bp);
6238 bnx2_setup_int_mode(bp, 1);
6240 rc = bnx2_init_nic(bp, 0);
6242 if (!rc)
6243 rc = bnx2_request_irq(bp);
6245 if (rc) {
6246 del_timer_sync(&bp->timer);
6247 goto open_err;
6249 bnx2_enable_int(bp);
6252 if (bp->flags & BNX2_FLAG_USING_MSI)
6253 printk(KERN_INFO PFX "%s: using MSI\n", dev->name);
6254 else if (bp->flags & BNX2_FLAG_USING_MSIX)
6255 printk(KERN_INFO PFX "%s: using MSIX\n", dev->name);
6257 netif_tx_start_all_queues(dev);
6259 return 0;
6261 open_err:
6262 bnx2_napi_disable(bp);
6263 bnx2_free_skbs(bp);
6264 bnx2_free_irq(bp);
6265 bnx2_free_mem(bp);
6266 return rc;
6269 static void
6270 bnx2_reset_task(struct work_struct *work)
6272 struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
6274 rtnl_lock();
6275 if (!netif_running(bp->dev)) {
6276 rtnl_unlock();
6277 return;
6280 bnx2_netif_stop(bp);
6282 bnx2_init_nic(bp, 1);
6284 atomic_set(&bp->intr_sem, 1);
6285 bnx2_netif_start(bp);
6286 rtnl_unlock();
6289 static void
6290 bnx2_dump_state(struct bnx2 *bp)
6292 struct net_device *dev = bp->dev;
6294 printk(KERN_ERR PFX "%s DEBUG: intr_sem[%x]\n", dev->name,
6295 atomic_read(&bp->intr_sem));
6296 printk(KERN_ERR PFX "%s DEBUG: EMAC_TX_STATUS[%08x] "
6297 "RPM_MGMT_PKT_CTRL[%08x]\n", dev->name,
6298 REG_RD(bp, BNX2_EMAC_TX_STATUS),
6299 REG_RD(bp, BNX2_RPM_MGMT_PKT_CTRL));
6300 printk(KERN_ERR PFX "%s DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
6301 dev->name, bnx2_reg_rd_ind(bp, BNX2_MCP_STATE_P0),
6302 bnx2_reg_rd_ind(bp, BNX2_MCP_STATE_P1));
6303 printk(KERN_ERR PFX "%s DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
6304 dev->name, REG_RD(bp, BNX2_HC_STATS_INTERRUPT_STATUS));
6305 if (bp->flags & BNX2_FLAG_USING_MSIX)
6306 printk(KERN_ERR PFX "%s DEBUG: PBA[%08x]\n", dev->name,
6307 REG_RD(bp, BNX2_PCI_GRC_WINDOW3_BASE));
6310 static void
6311 bnx2_tx_timeout(struct net_device *dev)
6313 struct bnx2 *bp = netdev_priv(dev);
6315 bnx2_dump_state(bp);
6317 /* This allows the netif to be shutdown gracefully before resetting */
6318 schedule_work(&bp->reset_task);
6321 #ifdef BCM_VLAN
6322 /* Called with rtnl_lock */
6323 static void
6324 bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
6326 struct bnx2 *bp = netdev_priv(dev);
6328 if (netif_running(dev))
6329 bnx2_netif_stop(bp);
6331 bp->vlgrp = vlgrp;
6333 if (!netif_running(dev))
6334 return;
6336 bnx2_set_rx_mode(dev);
6337 if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
6338 bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
6340 bnx2_netif_start(bp);
6342 #endif
6344 /* Called with netif_tx_lock.
6345 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
6346 * netif_wake_queue().
6348 static netdev_tx_t
6349 bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
6351 struct bnx2 *bp = netdev_priv(dev);
6352 dma_addr_t mapping;
6353 struct tx_bd *txbd;
6354 struct sw_tx_bd *tx_buf;
6355 u32 len, vlan_tag_flags, last_frag, mss;
6356 u16 prod, ring_prod;
6357 int i;
6358 struct bnx2_napi *bnapi;
6359 struct bnx2_tx_ring_info *txr;
6360 struct netdev_queue *txq;
6362 /* Determine which tx ring we will be placed on */
6363 i = skb_get_queue_mapping(skb);
6364 bnapi = &bp->bnx2_napi[i];
6365 txr = &bnapi->tx_ring;
6366 txq = netdev_get_tx_queue(dev, i);
6368 if (unlikely(bnx2_tx_avail(bp, txr) <
6369 (skb_shinfo(skb)->nr_frags + 1))) {
6370 netif_tx_stop_queue(txq);
6371 printk(KERN_ERR PFX "%s: BUG! Tx ring full when queue awake!\n",
6372 dev->name);
6374 return NETDEV_TX_BUSY;
6376 len = skb_headlen(skb);
6377 prod = txr->tx_prod;
6378 ring_prod = TX_RING_IDX(prod);
6380 vlan_tag_flags = 0;
6381 if (skb->ip_summed == CHECKSUM_PARTIAL) {
6382 vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
6385 #ifdef BCM_VLAN
6386 if (bp->vlgrp && vlan_tx_tag_present(skb)) {
6387 vlan_tag_flags |=
6388 (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
6390 #endif
6391 if ((mss = skb_shinfo(skb)->gso_size)) {
6392 u32 tcp_opt_len;
6393 struct iphdr *iph;
6395 vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
6397 tcp_opt_len = tcp_optlen(skb);
6399 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
6400 u32 tcp_off = skb_transport_offset(skb) -
6401 sizeof(struct ipv6hdr) - ETH_HLEN;
6403 vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
6404 TX_BD_FLAGS_SW_FLAGS;
6405 if (likely(tcp_off == 0))
6406 vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
6407 else {
6408 tcp_off >>= 3;
6409 vlan_tag_flags |= ((tcp_off & 0x3) <<
6410 TX_BD_FLAGS_TCP6_OFF0_SHL) |
6411 ((tcp_off & 0x10) <<
6412 TX_BD_FLAGS_TCP6_OFF4_SHL);
6413 mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
6415 } else {
6416 iph = ip_hdr(skb);
6417 if (tcp_opt_len || (iph->ihl > 5)) {
6418 vlan_tag_flags |= ((iph->ihl - 5) +
6419 (tcp_opt_len >> 2)) << 8;
6422 } else
6423 mss = 0;
6425 mapping = pci_map_single(bp->pdev, skb->data, len, PCI_DMA_TODEVICE);
6426 if (pci_dma_mapping_error(bp->pdev, mapping)) {
6427 dev_kfree_skb(skb);
6428 return NETDEV_TX_OK;
6431 tx_buf = &txr->tx_buf_ring[ring_prod];
6432 tx_buf->skb = skb;
6433 pci_unmap_addr_set(tx_buf, mapping, mapping);
6435 txbd = &txr->tx_desc_ring[ring_prod];
6437 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
6438 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
6439 txbd->tx_bd_mss_nbytes = len | (mss << 16);
6440 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
6442 last_frag = skb_shinfo(skb)->nr_frags;
6443 tx_buf->nr_frags = last_frag;
6444 tx_buf->is_gso = skb_is_gso(skb);
6446 for (i = 0; i < last_frag; i++) {
6447 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
6449 prod = NEXT_TX_BD(prod);
6450 ring_prod = TX_RING_IDX(prod);
6451 txbd = &txr->tx_desc_ring[ring_prod];
6453 len = frag->size;
6454 mapping = pci_map_page(bp->pdev, frag->page, frag->page_offset,
6455 len, PCI_DMA_TODEVICE);
6456 if (pci_dma_mapping_error(bp->pdev, mapping))
6457 goto dma_error;
6458 pci_unmap_addr_set(&txr->tx_buf_ring[ring_prod], mapping,
6459 mapping);
6461 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
6462 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
6463 txbd->tx_bd_mss_nbytes = len | (mss << 16);
6464 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
6467 txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
6469 prod = NEXT_TX_BD(prod);
6470 txr->tx_prod_bseq += skb->len;
6472 REG_WR16(bp, txr->tx_bidx_addr, prod);
6473 REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
6475 mmiowb();
6477 txr->tx_prod = prod;
6479 if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
6480 netif_tx_stop_queue(txq);
6481 if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
6482 netif_tx_wake_queue(txq);
6485 return NETDEV_TX_OK;
6486 dma_error:
6487 /* save value of frag that failed */
6488 last_frag = i;
6490 /* start back at beginning and unmap skb */
6491 prod = txr->tx_prod;
6492 ring_prod = TX_RING_IDX(prod);
6493 tx_buf = &txr->tx_buf_ring[ring_prod];
6494 tx_buf->skb = NULL;
6495 pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
6496 skb_headlen(skb), PCI_DMA_TODEVICE);
6498 /* unmap remaining mapped pages */
6499 for (i = 0; i < last_frag; i++) {
6500 prod = NEXT_TX_BD(prod);
6501 ring_prod = TX_RING_IDX(prod);
6502 tx_buf = &txr->tx_buf_ring[ring_prod];
6503 pci_unmap_page(bp->pdev, pci_unmap_addr(tx_buf, mapping),
6504 skb_shinfo(skb)->frags[i].size,
6505 PCI_DMA_TODEVICE);
6508 dev_kfree_skb(skb);
6509 return NETDEV_TX_OK;
6512 /* Called with rtnl_lock */
6513 static int
6514 bnx2_close(struct net_device *dev)
6516 struct bnx2 *bp = netdev_priv(dev);
6518 cancel_work_sync(&bp->reset_task);
6520 bnx2_disable_int_sync(bp);
6521 bnx2_napi_disable(bp);
6522 del_timer_sync(&bp->timer);
6523 bnx2_shutdown_chip(bp);
6524 bnx2_free_irq(bp);
6525 bnx2_free_skbs(bp);
6526 bnx2_free_mem(bp);
6527 bp->link_up = 0;
6528 netif_carrier_off(bp->dev);
6529 bnx2_set_power_state(bp, PCI_D3hot);
6530 return 0;
6533 #define GET_NET_STATS64(ctr) \
6534 (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
6535 (unsigned long) (ctr##_lo)
6537 #define GET_NET_STATS32(ctr) \
6538 (ctr##_lo)
6540 #if (BITS_PER_LONG == 64)
6541 #define GET_NET_STATS GET_NET_STATS64
6542 #else
6543 #define GET_NET_STATS GET_NET_STATS32
6544 #endif
6546 static struct net_device_stats *
6547 bnx2_get_stats(struct net_device *dev)
6549 struct bnx2 *bp = netdev_priv(dev);
6550 struct statistics_block *stats_blk = bp->stats_blk;
6551 struct net_device_stats *net_stats = &dev->stats;
6553 if (bp->stats_blk == NULL) {
6554 return net_stats;
6556 net_stats->rx_packets =
6557 GET_NET_STATS(stats_blk->stat_IfHCInUcastPkts) +
6558 GET_NET_STATS(stats_blk->stat_IfHCInMulticastPkts) +
6559 GET_NET_STATS(stats_blk->stat_IfHCInBroadcastPkts);
6561 net_stats->tx_packets =
6562 GET_NET_STATS(stats_blk->stat_IfHCOutUcastPkts) +
6563 GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts) +
6564 GET_NET_STATS(stats_blk->stat_IfHCOutBroadcastPkts);
6566 net_stats->rx_bytes =
6567 GET_NET_STATS(stats_blk->stat_IfHCInOctets);
6569 net_stats->tx_bytes =
6570 GET_NET_STATS(stats_blk->stat_IfHCOutOctets);
6572 net_stats->multicast =
6573 GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts);
6575 net_stats->collisions =
6576 (unsigned long) stats_blk->stat_EtherStatsCollisions;
6578 net_stats->rx_length_errors =
6579 (unsigned long) (stats_blk->stat_EtherStatsUndersizePkts +
6580 stats_blk->stat_EtherStatsOverrsizePkts);
6582 net_stats->rx_over_errors =
6583 (unsigned long) (stats_blk->stat_IfInFTQDiscards +
6584 stats_blk->stat_IfInMBUFDiscards);
6586 net_stats->rx_frame_errors =
6587 (unsigned long) stats_blk->stat_Dot3StatsAlignmentErrors;
6589 net_stats->rx_crc_errors =
6590 (unsigned long) stats_blk->stat_Dot3StatsFCSErrors;
6592 net_stats->rx_errors = net_stats->rx_length_errors +
6593 net_stats->rx_over_errors + net_stats->rx_frame_errors +
6594 net_stats->rx_crc_errors;
6596 net_stats->tx_aborted_errors =
6597 (unsigned long) (stats_blk->stat_Dot3StatsExcessiveCollisions +
6598 stats_blk->stat_Dot3StatsLateCollisions);
6600 if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
6601 (CHIP_ID(bp) == CHIP_ID_5708_A0))
6602 net_stats->tx_carrier_errors = 0;
6603 else {
6604 net_stats->tx_carrier_errors =
6605 (unsigned long)
6606 stats_blk->stat_Dot3StatsCarrierSenseErrors;
6609 net_stats->tx_errors =
6610 (unsigned long)
6611 stats_blk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
6613 net_stats->tx_aborted_errors +
6614 net_stats->tx_carrier_errors;
6616 net_stats->rx_missed_errors =
6617 (unsigned long) (stats_blk->stat_IfInFTQDiscards +
6618 stats_blk->stat_IfInMBUFDiscards + stats_blk->stat_FwRxDrop);
6620 return net_stats;
6623 /* All ethtool functions called with rtnl_lock */
6625 static int
6626 bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6628 struct bnx2 *bp = netdev_priv(dev);
6629 int support_serdes = 0, support_copper = 0;
6631 cmd->supported = SUPPORTED_Autoneg;
6632 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
6633 support_serdes = 1;
6634 support_copper = 1;
6635 } else if (bp->phy_port == PORT_FIBRE)
6636 support_serdes = 1;
6637 else
6638 support_copper = 1;
6640 if (support_serdes) {
6641 cmd->supported |= SUPPORTED_1000baseT_Full |
6642 SUPPORTED_FIBRE;
6643 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
6644 cmd->supported |= SUPPORTED_2500baseX_Full;
6647 if (support_copper) {
6648 cmd->supported |= SUPPORTED_10baseT_Half |
6649 SUPPORTED_10baseT_Full |
6650 SUPPORTED_100baseT_Half |
6651 SUPPORTED_100baseT_Full |
6652 SUPPORTED_1000baseT_Full |
6653 SUPPORTED_TP;
6657 spin_lock_bh(&bp->phy_lock);
6658 cmd->port = bp->phy_port;
6659 cmd->advertising = bp->advertising;
6661 if (bp->autoneg & AUTONEG_SPEED) {
6662 cmd->autoneg = AUTONEG_ENABLE;
6664 else {
6665 cmd->autoneg = AUTONEG_DISABLE;
6668 if (netif_carrier_ok(dev)) {
6669 cmd->speed = bp->line_speed;
6670 cmd->duplex = bp->duplex;
6672 else {
6673 cmd->speed = -1;
6674 cmd->duplex = -1;
6676 spin_unlock_bh(&bp->phy_lock);
6678 cmd->transceiver = XCVR_INTERNAL;
6679 cmd->phy_address = bp->phy_addr;
6681 return 0;
6684 static int
6685 bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6687 struct bnx2 *bp = netdev_priv(dev);
6688 u8 autoneg = bp->autoneg;
6689 u8 req_duplex = bp->req_duplex;
6690 u16 req_line_speed = bp->req_line_speed;
6691 u32 advertising = bp->advertising;
6692 int err = -EINVAL;
6694 spin_lock_bh(&bp->phy_lock);
6696 if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
6697 goto err_out_unlock;
6699 if (cmd->port != bp->phy_port &&
6700 !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
6701 goto err_out_unlock;
6703 /* If device is down, we can store the settings only if the user
6704 * is setting the currently active port.
6706 if (!netif_running(dev) && cmd->port != bp->phy_port)
6707 goto err_out_unlock;
6709 if (cmd->autoneg == AUTONEG_ENABLE) {
6710 autoneg |= AUTONEG_SPEED;
6712 cmd->advertising &= ETHTOOL_ALL_COPPER_SPEED;
6714 /* allow advertising 1 speed */
6715 if ((cmd->advertising == ADVERTISED_10baseT_Half) ||
6716 (cmd->advertising == ADVERTISED_10baseT_Full) ||
6717 (cmd->advertising == ADVERTISED_100baseT_Half) ||
6718 (cmd->advertising == ADVERTISED_100baseT_Full)) {
6720 if (cmd->port == PORT_FIBRE)
6721 goto err_out_unlock;
6723 advertising = cmd->advertising;
6725 } else if (cmd->advertising == ADVERTISED_2500baseX_Full) {
6726 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ||
6727 (cmd->port == PORT_TP))
6728 goto err_out_unlock;
6729 } else if (cmd->advertising == ADVERTISED_1000baseT_Full)
6730 advertising = cmd->advertising;
6731 else if (cmd->advertising == ADVERTISED_1000baseT_Half)
6732 goto err_out_unlock;
6733 else {
6734 if (cmd->port == PORT_FIBRE)
6735 advertising = ETHTOOL_ALL_FIBRE_SPEED;
6736 else
6737 advertising = ETHTOOL_ALL_COPPER_SPEED;
6739 advertising |= ADVERTISED_Autoneg;
6741 else {
6742 if (cmd->port == PORT_FIBRE) {
6743 if ((cmd->speed != SPEED_1000 &&
6744 cmd->speed != SPEED_2500) ||
6745 (cmd->duplex != DUPLEX_FULL))
6746 goto err_out_unlock;
6748 if (cmd->speed == SPEED_2500 &&
6749 !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
6750 goto err_out_unlock;
6752 else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
6753 goto err_out_unlock;
6755 autoneg &= ~AUTONEG_SPEED;
6756 req_line_speed = cmd->speed;
6757 req_duplex = cmd->duplex;
6758 advertising = 0;
6761 bp->autoneg = autoneg;
6762 bp->advertising = advertising;
6763 bp->req_line_speed = req_line_speed;
6764 bp->req_duplex = req_duplex;
6766 err = 0;
6767 /* If device is down, the new settings will be picked up when it is
6768 * brought up.
6770 if (netif_running(dev))
6771 err = bnx2_setup_phy(bp, cmd->port);
6773 err_out_unlock:
6774 spin_unlock_bh(&bp->phy_lock);
6776 return err;
6779 static void
6780 bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
6782 struct bnx2 *bp = netdev_priv(dev);
6784 strcpy(info->driver, DRV_MODULE_NAME);
6785 strcpy(info->version, DRV_MODULE_VERSION);
6786 strcpy(info->bus_info, pci_name(bp->pdev));
6787 strcpy(info->fw_version, bp->fw_version);
6790 #define BNX2_REGDUMP_LEN (32 * 1024)
6792 static int
6793 bnx2_get_regs_len(struct net_device *dev)
6795 return BNX2_REGDUMP_LEN;
6798 static void
6799 bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
6801 u32 *p = _p, i, offset;
6802 u8 *orig_p = _p;
6803 struct bnx2 *bp = netdev_priv(dev);
6804 u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
6805 0x0800, 0x0880, 0x0c00, 0x0c10,
6806 0x0c30, 0x0d08, 0x1000, 0x101c,
6807 0x1040, 0x1048, 0x1080, 0x10a4,
6808 0x1400, 0x1490, 0x1498, 0x14f0,
6809 0x1500, 0x155c, 0x1580, 0x15dc,
6810 0x1600, 0x1658, 0x1680, 0x16d8,
6811 0x1800, 0x1820, 0x1840, 0x1854,
6812 0x1880, 0x1894, 0x1900, 0x1984,
6813 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
6814 0x1c80, 0x1c94, 0x1d00, 0x1d84,
6815 0x2000, 0x2030, 0x23c0, 0x2400,
6816 0x2800, 0x2820, 0x2830, 0x2850,
6817 0x2b40, 0x2c10, 0x2fc0, 0x3058,
6818 0x3c00, 0x3c94, 0x4000, 0x4010,
6819 0x4080, 0x4090, 0x43c0, 0x4458,
6820 0x4c00, 0x4c18, 0x4c40, 0x4c54,
6821 0x4fc0, 0x5010, 0x53c0, 0x5444,
6822 0x5c00, 0x5c18, 0x5c80, 0x5c90,
6823 0x5fc0, 0x6000, 0x6400, 0x6428,
6824 0x6800, 0x6848, 0x684c, 0x6860,
6825 0x6888, 0x6910, 0x8000 };
6827 regs->version = 0;
6829 memset(p, 0, BNX2_REGDUMP_LEN);
6831 if (!netif_running(bp->dev))
6832 return;
6834 i = 0;
6835 offset = reg_boundaries[0];
6836 p += offset;
6837 while (offset < BNX2_REGDUMP_LEN) {
6838 *p++ = REG_RD(bp, offset);
6839 offset += 4;
6840 if (offset == reg_boundaries[i + 1]) {
6841 offset = reg_boundaries[i + 2];
6842 p = (u32 *) (orig_p + offset);
6843 i += 2;
6848 static void
6849 bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
6851 struct bnx2 *bp = netdev_priv(dev);
6853 if (bp->flags & BNX2_FLAG_NO_WOL) {
6854 wol->supported = 0;
6855 wol->wolopts = 0;
6857 else {
6858 wol->supported = WAKE_MAGIC;
6859 if (bp->wol)
6860 wol->wolopts = WAKE_MAGIC;
6861 else
6862 wol->wolopts = 0;
6864 memset(&wol->sopass, 0, sizeof(wol->sopass));
6867 static int
6868 bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
6870 struct bnx2 *bp = netdev_priv(dev);
6872 if (wol->wolopts & ~WAKE_MAGIC)
6873 return -EINVAL;
6875 if (wol->wolopts & WAKE_MAGIC) {
6876 if (bp->flags & BNX2_FLAG_NO_WOL)
6877 return -EINVAL;
6879 bp->wol = 1;
6881 else {
6882 bp->wol = 0;
6884 return 0;
6887 static int
6888 bnx2_nway_reset(struct net_device *dev)
6890 struct bnx2 *bp = netdev_priv(dev);
6891 u32 bmcr;
6893 if (!netif_running(dev))
6894 return -EAGAIN;
6896 if (!(bp->autoneg & AUTONEG_SPEED)) {
6897 return -EINVAL;
6900 spin_lock_bh(&bp->phy_lock);
6902 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
6903 int rc;
6905 rc = bnx2_setup_remote_phy(bp, bp->phy_port);
6906 spin_unlock_bh(&bp->phy_lock);
6907 return rc;
6910 /* Force a link down visible on the other side */
6911 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
6912 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
6913 spin_unlock_bh(&bp->phy_lock);
6915 msleep(20);
6917 spin_lock_bh(&bp->phy_lock);
6919 bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
6920 bp->serdes_an_pending = 1;
6921 mod_timer(&bp->timer, jiffies + bp->current_interval);
6924 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
6925 bmcr &= ~BMCR_LOOPBACK;
6926 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
6928 spin_unlock_bh(&bp->phy_lock);
6930 return 0;
6933 static u32
6934 bnx2_get_link(struct net_device *dev)
6936 struct bnx2 *bp = netdev_priv(dev);
6938 return bp->link_up;
6941 static int
6942 bnx2_get_eeprom_len(struct net_device *dev)
6944 struct bnx2 *bp = netdev_priv(dev);
6946 if (bp->flash_info == NULL)
6947 return 0;
6949 return (int) bp->flash_size;
6952 static int
6953 bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
6954 u8 *eebuf)
6956 struct bnx2 *bp = netdev_priv(dev);
6957 int rc;
6959 if (!netif_running(dev))
6960 return -EAGAIN;
6962 /* parameters already validated in ethtool_get_eeprom */
6964 rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
6966 return rc;
6969 static int
6970 bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
6971 u8 *eebuf)
6973 struct bnx2 *bp = netdev_priv(dev);
6974 int rc;
6976 if (!netif_running(dev))
6977 return -EAGAIN;
6979 /* parameters already validated in ethtool_set_eeprom */
6981 rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
6983 return rc;
6986 static int
6987 bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
6989 struct bnx2 *bp = netdev_priv(dev);
6991 memset(coal, 0, sizeof(struct ethtool_coalesce));
6993 coal->rx_coalesce_usecs = bp->rx_ticks;
6994 coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
6995 coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
6996 coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
6998 coal->tx_coalesce_usecs = bp->tx_ticks;
6999 coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
7000 coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
7001 coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
7003 coal->stats_block_coalesce_usecs = bp->stats_ticks;
7005 return 0;
7008 static int
7009 bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
7011 struct bnx2 *bp = netdev_priv(dev);
7013 bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
7014 if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
7016 bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
7017 if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
7019 bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
7020 if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
7022 bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
7023 if (bp->rx_quick_cons_trip_int > 0xff)
7024 bp->rx_quick_cons_trip_int = 0xff;
7026 bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
7027 if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
7029 bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
7030 if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
7032 bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
7033 if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
7035 bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
7036 if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
7037 0xff;
7039 bp->stats_ticks = coal->stats_block_coalesce_usecs;
7040 if (bp->flags & BNX2_FLAG_BROKEN_STATS) {
7041 if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
7042 bp->stats_ticks = USEC_PER_SEC;
7044 if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
7045 bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
7046 bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
7048 if (netif_running(bp->dev)) {
7049 bnx2_netif_stop(bp);
7050 bnx2_init_nic(bp, 0);
7051 bnx2_netif_start(bp);
7054 return 0;
7057 static void
7058 bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
7060 struct bnx2 *bp = netdev_priv(dev);
7062 ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
7063 ering->rx_mini_max_pending = 0;
7064 ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
7066 ering->rx_pending = bp->rx_ring_size;
7067 ering->rx_mini_pending = 0;
7068 ering->rx_jumbo_pending = bp->rx_pg_ring_size;
7070 ering->tx_max_pending = MAX_TX_DESC_CNT;
7071 ering->tx_pending = bp->tx_ring_size;
7074 static int
7075 bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx)
7077 if (netif_running(bp->dev)) {
7078 bnx2_netif_stop(bp);
7079 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
7080 bnx2_free_skbs(bp);
7081 bnx2_free_mem(bp);
7084 bnx2_set_rx_ring_size(bp, rx);
7085 bp->tx_ring_size = tx;
7087 if (netif_running(bp->dev)) {
7088 int rc;
7090 rc = bnx2_alloc_mem(bp);
7091 if (!rc)
7092 rc = bnx2_init_nic(bp, 0);
7094 if (rc) {
7095 bnx2_napi_enable(bp);
7096 dev_close(bp->dev);
7097 return rc;
7099 bnx2_netif_start(bp);
7101 return 0;
7104 static int
7105 bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
7107 struct bnx2 *bp = netdev_priv(dev);
7108 int rc;
7110 if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
7111 (ering->tx_pending > MAX_TX_DESC_CNT) ||
7112 (ering->tx_pending <= MAX_SKB_FRAGS)) {
7114 return -EINVAL;
7116 rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending);
7117 return rc;
7120 static void
7121 bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
7123 struct bnx2 *bp = netdev_priv(dev);
7125 epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
7126 epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
7127 epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
7130 static int
7131 bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
7133 struct bnx2 *bp = netdev_priv(dev);
7135 bp->req_flow_ctrl = 0;
7136 if (epause->rx_pause)
7137 bp->req_flow_ctrl |= FLOW_CTRL_RX;
7138 if (epause->tx_pause)
7139 bp->req_flow_ctrl |= FLOW_CTRL_TX;
7141 if (epause->autoneg) {
7142 bp->autoneg |= AUTONEG_FLOW_CTRL;
7144 else {
7145 bp->autoneg &= ~AUTONEG_FLOW_CTRL;
7148 if (netif_running(dev)) {
7149 spin_lock_bh(&bp->phy_lock);
7150 bnx2_setup_phy(bp, bp->phy_port);
7151 spin_unlock_bh(&bp->phy_lock);
7154 return 0;
7157 static u32
7158 bnx2_get_rx_csum(struct net_device *dev)
7160 struct bnx2 *bp = netdev_priv(dev);
7162 return bp->rx_csum;
7165 static int
7166 bnx2_set_rx_csum(struct net_device *dev, u32 data)
7168 struct bnx2 *bp = netdev_priv(dev);
7170 bp->rx_csum = data;
7171 return 0;
7174 static int
7175 bnx2_set_tso(struct net_device *dev, u32 data)
7177 struct bnx2 *bp = netdev_priv(dev);
7179 if (data) {
7180 dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
7181 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7182 dev->features |= NETIF_F_TSO6;
7183 } else
7184 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
7185 NETIF_F_TSO_ECN);
7186 return 0;
7189 static struct {
7190 char string[ETH_GSTRING_LEN];
7191 } bnx2_stats_str_arr[] = {
7192 { "rx_bytes" },
7193 { "rx_error_bytes" },
7194 { "tx_bytes" },
7195 { "tx_error_bytes" },
7196 { "rx_ucast_packets" },
7197 { "rx_mcast_packets" },
7198 { "rx_bcast_packets" },
7199 { "tx_ucast_packets" },
7200 { "tx_mcast_packets" },
7201 { "tx_bcast_packets" },
7202 { "tx_mac_errors" },
7203 { "tx_carrier_errors" },
7204 { "rx_crc_errors" },
7205 { "rx_align_errors" },
7206 { "tx_single_collisions" },
7207 { "tx_multi_collisions" },
7208 { "tx_deferred" },
7209 { "tx_excess_collisions" },
7210 { "tx_late_collisions" },
7211 { "tx_total_collisions" },
7212 { "rx_fragments" },
7213 { "rx_jabbers" },
7214 { "rx_undersize_packets" },
7215 { "rx_oversize_packets" },
7216 { "rx_64_byte_packets" },
7217 { "rx_65_to_127_byte_packets" },
7218 { "rx_128_to_255_byte_packets" },
7219 { "rx_256_to_511_byte_packets" },
7220 { "rx_512_to_1023_byte_packets" },
7221 { "rx_1024_to_1522_byte_packets" },
7222 { "rx_1523_to_9022_byte_packets" },
7223 { "tx_64_byte_packets" },
7224 { "tx_65_to_127_byte_packets" },
7225 { "tx_128_to_255_byte_packets" },
7226 { "tx_256_to_511_byte_packets" },
7227 { "tx_512_to_1023_byte_packets" },
7228 { "tx_1024_to_1522_byte_packets" },
7229 { "tx_1523_to_9022_byte_packets" },
7230 { "rx_xon_frames" },
7231 { "rx_xoff_frames" },
7232 { "tx_xon_frames" },
7233 { "tx_xoff_frames" },
7234 { "rx_mac_ctrl_frames" },
7235 { "rx_filtered_packets" },
7236 { "rx_ftq_discards" },
7237 { "rx_discards" },
7238 { "rx_fw_discards" },
7241 #define BNX2_NUM_STATS (sizeof(bnx2_stats_str_arr)/\
7242 sizeof(bnx2_stats_str_arr[0]))
7244 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
7246 static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
7247 STATS_OFFSET32(stat_IfHCInOctets_hi),
7248 STATS_OFFSET32(stat_IfHCInBadOctets_hi),
7249 STATS_OFFSET32(stat_IfHCOutOctets_hi),
7250 STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
7251 STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
7252 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
7253 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
7254 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
7255 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
7256 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
7257 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
7258 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
7259 STATS_OFFSET32(stat_Dot3StatsFCSErrors),
7260 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
7261 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
7262 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
7263 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
7264 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
7265 STATS_OFFSET32(stat_Dot3StatsLateCollisions),
7266 STATS_OFFSET32(stat_EtherStatsCollisions),
7267 STATS_OFFSET32(stat_EtherStatsFragments),
7268 STATS_OFFSET32(stat_EtherStatsJabbers),
7269 STATS_OFFSET32(stat_EtherStatsUndersizePkts),
7270 STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
7271 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
7272 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
7273 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
7274 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
7275 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
7276 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
7277 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
7278 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
7279 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
7280 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
7281 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
7282 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
7283 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
7284 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
7285 STATS_OFFSET32(stat_XonPauseFramesReceived),
7286 STATS_OFFSET32(stat_XoffPauseFramesReceived),
7287 STATS_OFFSET32(stat_OutXonSent),
7288 STATS_OFFSET32(stat_OutXoffSent),
7289 STATS_OFFSET32(stat_MacControlFramesReceived),
7290 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
7291 STATS_OFFSET32(stat_IfInFTQDiscards),
7292 STATS_OFFSET32(stat_IfInMBUFDiscards),
7293 STATS_OFFSET32(stat_FwRxDrop),
7296 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
7297 * skipped because of errata.
7299 static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
7300 8,0,8,8,8,8,8,8,8,8,
7301 4,0,4,4,4,4,4,4,4,4,
7302 4,4,4,4,4,4,4,4,4,4,
7303 4,4,4,4,4,4,4,4,4,4,
7304 4,4,4,4,4,4,4,
7307 static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
7308 8,0,8,8,8,8,8,8,8,8,
7309 4,4,4,4,4,4,4,4,4,4,
7310 4,4,4,4,4,4,4,4,4,4,
7311 4,4,4,4,4,4,4,4,4,4,
7312 4,4,4,4,4,4,4,
7315 #define BNX2_NUM_TESTS 6
7317 static struct {
7318 char string[ETH_GSTRING_LEN];
7319 } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
7320 { "register_test (offline)" },
7321 { "memory_test (offline)" },
7322 { "loopback_test (offline)" },
7323 { "nvram_test (online)" },
7324 { "interrupt_test (online)" },
7325 { "link_test (online)" },
7328 static int
7329 bnx2_get_sset_count(struct net_device *dev, int sset)
7331 switch (sset) {
7332 case ETH_SS_TEST:
7333 return BNX2_NUM_TESTS;
7334 case ETH_SS_STATS:
7335 return BNX2_NUM_STATS;
7336 default:
7337 return -EOPNOTSUPP;
7341 static void
7342 bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
7344 struct bnx2 *bp = netdev_priv(dev);
7346 bnx2_set_power_state(bp, PCI_D0);
7348 memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
7349 if (etest->flags & ETH_TEST_FL_OFFLINE) {
7350 int i;
7352 bnx2_netif_stop(bp);
7353 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
7354 bnx2_free_skbs(bp);
7356 if (bnx2_test_registers(bp) != 0) {
7357 buf[0] = 1;
7358 etest->flags |= ETH_TEST_FL_FAILED;
7360 if (bnx2_test_memory(bp) != 0) {
7361 buf[1] = 1;
7362 etest->flags |= ETH_TEST_FL_FAILED;
7364 if ((buf[2] = bnx2_test_loopback(bp)) != 0)
7365 etest->flags |= ETH_TEST_FL_FAILED;
7367 if (!netif_running(bp->dev))
7368 bnx2_shutdown_chip(bp);
7369 else {
7370 bnx2_init_nic(bp, 1);
7371 bnx2_netif_start(bp);
7374 /* wait for link up */
7375 for (i = 0; i < 7; i++) {
7376 if (bp->link_up)
7377 break;
7378 msleep_interruptible(1000);
7382 if (bnx2_test_nvram(bp) != 0) {
7383 buf[3] = 1;
7384 etest->flags |= ETH_TEST_FL_FAILED;
7386 if (bnx2_test_intr(bp) != 0) {
7387 buf[4] = 1;
7388 etest->flags |= ETH_TEST_FL_FAILED;
7391 if (bnx2_test_link(bp) != 0) {
7392 buf[5] = 1;
7393 etest->flags |= ETH_TEST_FL_FAILED;
7396 if (!netif_running(bp->dev))
7397 bnx2_set_power_state(bp, PCI_D3hot);
7400 static void
7401 bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
7403 switch (stringset) {
7404 case ETH_SS_STATS:
7405 memcpy(buf, bnx2_stats_str_arr,
7406 sizeof(bnx2_stats_str_arr));
7407 break;
7408 case ETH_SS_TEST:
7409 memcpy(buf, bnx2_tests_str_arr,
7410 sizeof(bnx2_tests_str_arr));
7411 break;
7415 static void
7416 bnx2_get_ethtool_stats(struct net_device *dev,
7417 struct ethtool_stats *stats, u64 *buf)
7419 struct bnx2 *bp = netdev_priv(dev);
7420 int i;
7421 u32 *hw_stats = (u32 *) bp->stats_blk;
7422 u8 *stats_len_arr = NULL;
7424 if (hw_stats == NULL) {
7425 memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
7426 return;
7429 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
7430 (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
7431 (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
7432 (CHIP_ID(bp) == CHIP_ID_5708_A0))
7433 stats_len_arr = bnx2_5706_stats_len_arr;
7434 else
7435 stats_len_arr = bnx2_5708_stats_len_arr;
7437 for (i = 0; i < BNX2_NUM_STATS; i++) {
7438 if (stats_len_arr[i] == 0) {
7439 /* skip this counter */
7440 buf[i] = 0;
7441 continue;
7443 if (stats_len_arr[i] == 4) {
7444 /* 4-byte counter */
7445 buf[i] = (u64)
7446 *(hw_stats + bnx2_stats_offset_arr[i]);
7447 continue;
7449 /* 8-byte counter */
7450 buf[i] = (((u64) *(hw_stats +
7451 bnx2_stats_offset_arr[i])) << 32) +
7452 *(hw_stats + bnx2_stats_offset_arr[i] + 1);
7456 static int
7457 bnx2_phys_id(struct net_device *dev, u32 data)
7459 struct bnx2 *bp = netdev_priv(dev);
7460 int i;
7461 u32 save;
7463 bnx2_set_power_state(bp, PCI_D0);
7465 if (data == 0)
7466 data = 2;
7468 save = REG_RD(bp, BNX2_MISC_CFG);
7469 REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
7471 for (i = 0; i < (data * 2); i++) {
7472 if ((i % 2) == 0) {
7473 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
7475 else {
7476 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
7477 BNX2_EMAC_LED_1000MB_OVERRIDE |
7478 BNX2_EMAC_LED_100MB_OVERRIDE |
7479 BNX2_EMAC_LED_10MB_OVERRIDE |
7480 BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
7481 BNX2_EMAC_LED_TRAFFIC);
7483 msleep_interruptible(500);
7484 if (signal_pending(current))
7485 break;
7487 REG_WR(bp, BNX2_EMAC_LED, 0);
7488 REG_WR(bp, BNX2_MISC_CFG, save);
7490 if (!netif_running(dev))
7491 bnx2_set_power_state(bp, PCI_D3hot);
7493 return 0;
7496 static int
7497 bnx2_set_tx_csum(struct net_device *dev, u32 data)
7499 struct bnx2 *bp = netdev_priv(dev);
7501 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7502 return (ethtool_op_set_tx_ipv6_csum(dev, data));
7503 else
7504 return (ethtool_op_set_tx_csum(dev, data));
7507 static const struct ethtool_ops bnx2_ethtool_ops = {
7508 .get_settings = bnx2_get_settings,
7509 .set_settings = bnx2_set_settings,
7510 .get_drvinfo = bnx2_get_drvinfo,
7511 .get_regs_len = bnx2_get_regs_len,
7512 .get_regs = bnx2_get_regs,
7513 .get_wol = bnx2_get_wol,
7514 .set_wol = bnx2_set_wol,
7515 .nway_reset = bnx2_nway_reset,
7516 .get_link = bnx2_get_link,
7517 .get_eeprom_len = bnx2_get_eeprom_len,
7518 .get_eeprom = bnx2_get_eeprom,
7519 .set_eeprom = bnx2_set_eeprom,
7520 .get_coalesce = bnx2_get_coalesce,
7521 .set_coalesce = bnx2_set_coalesce,
7522 .get_ringparam = bnx2_get_ringparam,
7523 .set_ringparam = bnx2_set_ringparam,
7524 .get_pauseparam = bnx2_get_pauseparam,
7525 .set_pauseparam = bnx2_set_pauseparam,
7526 .get_rx_csum = bnx2_get_rx_csum,
7527 .set_rx_csum = bnx2_set_rx_csum,
7528 .set_tx_csum = bnx2_set_tx_csum,
7529 .set_sg = ethtool_op_set_sg,
7530 .set_tso = bnx2_set_tso,
7531 .self_test = bnx2_self_test,
7532 .get_strings = bnx2_get_strings,
7533 .phys_id = bnx2_phys_id,
7534 .get_ethtool_stats = bnx2_get_ethtool_stats,
7535 .get_sset_count = bnx2_get_sset_count,
7538 /* Called with rtnl_lock */
7539 static int
7540 bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
7542 struct mii_ioctl_data *data = if_mii(ifr);
7543 struct bnx2 *bp = netdev_priv(dev);
7544 int err;
7546 switch(cmd) {
7547 case SIOCGMIIPHY:
7548 data->phy_id = bp->phy_addr;
7550 /* fallthru */
7551 case SIOCGMIIREG: {
7552 u32 mii_regval;
7554 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
7555 return -EOPNOTSUPP;
7557 if (!netif_running(dev))
7558 return -EAGAIN;
7560 spin_lock_bh(&bp->phy_lock);
7561 err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
7562 spin_unlock_bh(&bp->phy_lock);
7564 data->val_out = mii_regval;
7566 return err;
7569 case SIOCSMIIREG:
7570 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
7571 return -EOPNOTSUPP;
7573 if (!netif_running(dev))
7574 return -EAGAIN;
7576 spin_lock_bh(&bp->phy_lock);
7577 err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
7578 spin_unlock_bh(&bp->phy_lock);
7580 return err;
7582 default:
7583 /* do nothing */
7584 break;
7586 return -EOPNOTSUPP;
7589 /* Called with rtnl_lock */
7590 static int
7591 bnx2_change_mac_addr(struct net_device *dev, void *p)
7593 struct sockaddr *addr = p;
7594 struct bnx2 *bp = netdev_priv(dev);
7596 if (!is_valid_ether_addr(addr->sa_data))
7597 return -EINVAL;
7599 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
7600 if (netif_running(dev))
7601 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
7603 return 0;
7606 /* Called with rtnl_lock */
7607 static int
7608 bnx2_change_mtu(struct net_device *dev, int new_mtu)
7610 struct bnx2 *bp = netdev_priv(dev);
7612 if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
7613 ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
7614 return -EINVAL;
7616 dev->mtu = new_mtu;
7617 return (bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size));
7620 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
7621 static void
7622 poll_bnx2(struct net_device *dev)
7624 struct bnx2 *bp = netdev_priv(dev);
7625 int i;
7627 for (i = 0; i < bp->irq_nvecs; i++) {
7628 disable_irq(bp->irq_tbl[i].vector);
7629 bnx2_interrupt(bp->irq_tbl[i].vector, &bp->bnx2_napi[i]);
7630 enable_irq(bp->irq_tbl[i].vector);
7633 #endif
7635 static void __devinit
7636 bnx2_get_5709_media(struct bnx2 *bp)
7638 u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
7639 u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
7640 u32 strap;
7642 if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
7643 return;
7644 else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
7645 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7646 return;
7649 if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
7650 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
7651 else
7652 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
7654 if (PCI_FUNC(bp->pdev->devfn) == 0) {
7655 switch (strap) {
7656 case 0x4:
7657 case 0x5:
7658 case 0x6:
7659 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7660 return;
7662 } else {
7663 switch (strap) {
7664 case 0x1:
7665 case 0x2:
7666 case 0x4:
7667 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7668 return;
7673 static void __devinit
7674 bnx2_get_pci_speed(struct bnx2 *bp)
7676 u32 reg;
7678 reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
7679 if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
7680 u32 clkreg;
7682 bp->flags |= BNX2_FLAG_PCIX;
7684 clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
7686 clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
7687 switch (clkreg) {
7688 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
7689 bp->bus_speed_mhz = 133;
7690 break;
7692 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
7693 bp->bus_speed_mhz = 100;
7694 break;
7696 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
7697 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
7698 bp->bus_speed_mhz = 66;
7699 break;
7701 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
7702 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
7703 bp->bus_speed_mhz = 50;
7704 break;
7706 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
7707 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
7708 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
7709 bp->bus_speed_mhz = 33;
7710 break;
7713 else {
7714 if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
7715 bp->bus_speed_mhz = 66;
7716 else
7717 bp->bus_speed_mhz = 33;
7720 if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
7721 bp->flags |= BNX2_FLAG_PCI_32BIT;
7725 static void __devinit
7726 bnx2_read_vpd_fw_ver(struct bnx2 *bp)
7728 int rc, i, v0_len = 0;
7729 u8 *data;
7730 u8 *v0_str = NULL;
7731 bool mn_match = false;
7733 #define BNX2_VPD_NVRAM_OFFSET 0x300
7734 #define BNX2_VPD_LEN 128
7735 #define BNX2_MAX_VER_SLEN 30
7737 data = kmalloc(256, GFP_KERNEL);
7738 if (!data)
7739 return;
7741 rc = bnx2_nvram_read(bp, BNX2_VPD_NVRAM_OFFSET, data + BNX2_VPD_LEN,
7742 BNX2_VPD_LEN);
7743 if (rc)
7744 goto vpd_done;
7746 for (i = 0; i < BNX2_VPD_LEN; i += 4) {
7747 data[i] = data[i + BNX2_VPD_LEN + 3];
7748 data[i + 1] = data[i + BNX2_VPD_LEN + 2];
7749 data[i + 2] = data[i + BNX2_VPD_LEN + 1];
7750 data[i + 3] = data[i + BNX2_VPD_LEN];
7753 for (i = 0; i <= BNX2_VPD_LEN - 3; ) {
7754 unsigned char val = data[i];
7755 unsigned int block_end;
7757 if (val == 0x82 || val == 0x91) {
7758 i = (i + 3 + (data[i + 1] + (data[i + 2] << 8)));
7759 continue;
7762 if (val != 0x90)
7763 goto vpd_done;
7765 block_end = (i + 3 + (data[i + 1] + (data[i + 2] << 8)));
7766 i += 3;
7768 if (block_end > BNX2_VPD_LEN)
7769 goto vpd_done;
7771 while (i < (block_end - 2)) {
7772 int len = data[i + 2];
7774 if (i + 3 + len > block_end)
7775 goto vpd_done;
7777 if (data[i] == 'M' && data[i + 1] == 'N') {
7778 if (len != 4 ||
7779 memcmp(&data[i + 3], "1028", 4))
7780 goto vpd_done;
7781 mn_match = true;
7783 } else if (data[i] == 'V' && data[i + 1] == '0') {
7784 if (len > BNX2_MAX_VER_SLEN)
7785 goto vpd_done;
7787 v0_len = len;
7788 v0_str = &data[i + 3];
7790 i += 3 + len;
7792 if (mn_match && v0_str) {
7793 memcpy(bp->fw_version, v0_str, v0_len);
7794 bp->fw_version[v0_len] = ' ';
7795 goto vpd_done;
7798 goto vpd_done;
7801 vpd_done:
7802 kfree(data);
7805 static int __devinit
7806 bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
7808 struct bnx2 *bp;
7809 unsigned long mem_len;
7810 int rc, i, j;
7811 u32 reg;
7812 u64 dma_mask, persist_dma_mask;
7814 SET_NETDEV_DEV(dev, &pdev->dev);
7815 bp = netdev_priv(dev);
7817 bp->flags = 0;
7818 bp->phy_flags = 0;
7820 /* enable device (incl. PCI PM wakeup), and bus-mastering */
7821 rc = pci_enable_device(pdev);
7822 if (rc) {
7823 dev_err(&pdev->dev, "Cannot enable PCI device, aborting.\n");
7824 goto err_out;
7827 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
7828 dev_err(&pdev->dev,
7829 "Cannot find PCI device base address, aborting.\n");
7830 rc = -ENODEV;
7831 goto err_out_disable;
7834 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
7835 if (rc) {
7836 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
7837 goto err_out_disable;
7840 pci_set_master(pdev);
7841 pci_save_state(pdev);
7843 bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
7844 if (bp->pm_cap == 0) {
7845 dev_err(&pdev->dev,
7846 "Cannot find power management capability, aborting.\n");
7847 rc = -EIO;
7848 goto err_out_release;
7851 bp->dev = dev;
7852 bp->pdev = pdev;
7854 spin_lock_init(&bp->phy_lock);
7855 spin_lock_init(&bp->indirect_lock);
7856 #ifdef BCM_CNIC
7857 mutex_init(&bp->cnic_lock);
7858 #endif
7859 INIT_WORK(&bp->reset_task, bnx2_reset_task);
7861 dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
7862 mem_len = MB_GET_CID_ADDR(TX_TSS_CID + TX_MAX_TSS_RINGS + 1);
7863 dev->mem_end = dev->mem_start + mem_len;
7864 dev->irq = pdev->irq;
7866 bp->regview = ioremap_nocache(dev->base_addr, mem_len);
7868 if (!bp->regview) {
7869 dev_err(&pdev->dev, "Cannot map register space, aborting.\n");
7870 rc = -ENOMEM;
7871 goto err_out_release;
7874 /* Configure byte swap and enable write to the reg_window registers.
7875 * Rely on CPU to do target byte swapping on big endian systems
7876 * The chip's target access swapping will not swap all accesses
7878 pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
7879 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
7880 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
7882 bnx2_set_power_state(bp, PCI_D0);
7884 bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
7886 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
7887 if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
7888 dev_err(&pdev->dev,
7889 "Cannot find PCIE capability, aborting.\n");
7890 rc = -EIO;
7891 goto err_out_unmap;
7893 bp->flags |= BNX2_FLAG_PCIE;
7894 if (CHIP_REV(bp) == CHIP_REV_Ax)
7895 bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
7896 } else {
7897 bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
7898 if (bp->pcix_cap == 0) {
7899 dev_err(&pdev->dev,
7900 "Cannot find PCIX capability, aborting.\n");
7901 rc = -EIO;
7902 goto err_out_unmap;
7904 bp->flags |= BNX2_FLAG_BROKEN_STATS;
7907 if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
7908 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
7909 bp->flags |= BNX2_FLAG_MSIX_CAP;
7912 if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
7913 if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
7914 bp->flags |= BNX2_FLAG_MSI_CAP;
7917 /* 5708 cannot support DMA addresses > 40-bit. */
7918 if (CHIP_NUM(bp) == CHIP_NUM_5708)
7919 persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
7920 else
7921 persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
7923 /* Configure DMA attributes. */
7924 if (pci_set_dma_mask(pdev, dma_mask) == 0) {
7925 dev->features |= NETIF_F_HIGHDMA;
7926 rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
7927 if (rc) {
7928 dev_err(&pdev->dev,
7929 "pci_set_consistent_dma_mask failed, aborting.\n");
7930 goto err_out_unmap;
7932 } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
7933 dev_err(&pdev->dev, "System does not support DMA, aborting.\n");
7934 goto err_out_unmap;
7937 if (!(bp->flags & BNX2_FLAG_PCIE))
7938 bnx2_get_pci_speed(bp);
7940 /* 5706A0 may falsely detect SERR and PERR. */
7941 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
7942 reg = REG_RD(bp, PCI_COMMAND);
7943 reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
7944 REG_WR(bp, PCI_COMMAND, reg);
7946 else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
7947 !(bp->flags & BNX2_FLAG_PCIX)) {
7949 dev_err(&pdev->dev,
7950 "5706 A1 can only be used in a PCIX bus, aborting.\n");
7951 goto err_out_unmap;
7954 bnx2_init_nvram(bp);
7956 reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
7958 if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
7959 BNX2_SHM_HDR_SIGNATURE_SIG) {
7960 u32 off = PCI_FUNC(pdev->devfn) << 2;
7962 bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
7963 } else
7964 bp->shmem_base = HOST_VIEW_SHMEM_BASE;
7966 /* Get the permanent MAC address. First we need to make sure the
7967 * firmware is actually running.
7969 reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
7971 if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
7972 BNX2_DEV_INFO_SIGNATURE_MAGIC) {
7973 dev_err(&pdev->dev, "Firmware not running, aborting.\n");
7974 rc = -ENODEV;
7975 goto err_out_unmap;
7978 bnx2_read_vpd_fw_ver(bp);
7980 j = strlen(bp->fw_version);
7981 reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
7982 for (i = 0; i < 3 && j < 24; i++) {
7983 u8 num, k, skip0;
7985 if (i == 0) {
7986 bp->fw_version[j++] = 'b';
7987 bp->fw_version[j++] = 'c';
7988 bp->fw_version[j++] = ' ';
7990 num = (u8) (reg >> (24 - (i * 8)));
7991 for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
7992 if (num >= k || !skip0 || k == 1) {
7993 bp->fw_version[j++] = (num / k) + '0';
7994 skip0 = 0;
7997 if (i != 2)
7998 bp->fw_version[j++] = '.';
8000 reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
8001 if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
8002 bp->wol = 1;
8004 if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
8005 bp->flags |= BNX2_FLAG_ASF_ENABLE;
8007 for (i = 0; i < 30; i++) {
8008 reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
8009 if (reg & BNX2_CONDITION_MFW_RUN_MASK)
8010 break;
8011 msleep(10);
8014 reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
8015 reg &= BNX2_CONDITION_MFW_RUN_MASK;
8016 if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
8017 reg != BNX2_CONDITION_MFW_RUN_NONE) {
8018 u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
8020 if (j < 32)
8021 bp->fw_version[j++] = ' ';
8022 for (i = 0; i < 3 && j < 28; i++) {
8023 reg = bnx2_reg_rd_ind(bp, addr + i * 4);
8024 reg = swab32(reg);
8025 memcpy(&bp->fw_version[j], &reg, 4);
8026 j += 4;
8030 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
8031 bp->mac_addr[0] = (u8) (reg >> 8);
8032 bp->mac_addr[1] = (u8) reg;
8034 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
8035 bp->mac_addr[2] = (u8) (reg >> 24);
8036 bp->mac_addr[3] = (u8) (reg >> 16);
8037 bp->mac_addr[4] = (u8) (reg >> 8);
8038 bp->mac_addr[5] = (u8) reg;
8040 bp->tx_ring_size = MAX_TX_DESC_CNT;
8041 bnx2_set_rx_ring_size(bp, 255);
8043 bp->rx_csum = 1;
8045 bp->tx_quick_cons_trip_int = 2;
8046 bp->tx_quick_cons_trip = 20;
8047 bp->tx_ticks_int = 18;
8048 bp->tx_ticks = 80;
8050 bp->rx_quick_cons_trip_int = 2;
8051 bp->rx_quick_cons_trip = 12;
8052 bp->rx_ticks_int = 18;
8053 bp->rx_ticks = 18;
8055 bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
8057 bp->current_interval = BNX2_TIMER_INTERVAL;
8059 bp->phy_addr = 1;
8061 /* Disable WOL support if we are running on a SERDES chip. */
8062 if (CHIP_NUM(bp) == CHIP_NUM_5709)
8063 bnx2_get_5709_media(bp);
8064 else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
8065 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
8067 bp->phy_port = PORT_TP;
8068 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
8069 bp->phy_port = PORT_FIBRE;
8070 reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
8071 if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
8072 bp->flags |= BNX2_FLAG_NO_WOL;
8073 bp->wol = 0;
8075 if (CHIP_NUM(bp) == CHIP_NUM_5706) {
8076 /* Don't do parallel detect on this board because of
8077 * some board problems. The link will not go down
8078 * if we do parallel detect.
8080 if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
8081 pdev->subsystem_device == 0x310c)
8082 bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
8083 } else {
8084 bp->phy_addr = 2;
8085 if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
8086 bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
8088 } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
8089 CHIP_NUM(bp) == CHIP_NUM_5708)
8090 bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
8091 else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
8092 (CHIP_REV(bp) == CHIP_REV_Ax ||
8093 CHIP_REV(bp) == CHIP_REV_Bx))
8094 bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
8096 bnx2_init_fw_cap(bp);
8098 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
8099 (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
8100 (CHIP_ID(bp) == CHIP_ID_5708_B1) ||
8101 !(REG_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
8102 bp->flags |= BNX2_FLAG_NO_WOL;
8103 bp->wol = 0;
8106 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
8107 bp->tx_quick_cons_trip_int =
8108 bp->tx_quick_cons_trip;
8109 bp->tx_ticks_int = bp->tx_ticks;
8110 bp->rx_quick_cons_trip_int =
8111 bp->rx_quick_cons_trip;
8112 bp->rx_ticks_int = bp->rx_ticks;
8113 bp->comp_prod_trip_int = bp->comp_prod_trip;
8114 bp->com_ticks_int = bp->com_ticks;
8115 bp->cmd_ticks_int = bp->cmd_ticks;
8118 /* Disable MSI on 5706 if AMD 8132 bridge is found.
8120 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
8121 * with byte enables disabled on the unused 32-bit word. This is legal
8122 * but causes problems on the AMD 8132 which will eventually stop
8123 * responding after a while.
8125 * AMD believes this incompatibility is unique to the 5706, and
8126 * prefers to locally disable MSI rather than globally disabling it.
8128 if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
8129 struct pci_dev *amd_8132 = NULL;
8131 while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
8132 PCI_DEVICE_ID_AMD_8132_BRIDGE,
8133 amd_8132))) {
8135 if (amd_8132->revision >= 0x10 &&
8136 amd_8132->revision <= 0x13) {
8137 disable_msi = 1;
8138 pci_dev_put(amd_8132);
8139 break;
8144 bnx2_set_default_link(bp);
8145 bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
8147 init_timer(&bp->timer);
8148 bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
8149 bp->timer.data = (unsigned long) bp;
8150 bp->timer.function = bnx2_timer;
8152 return 0;
8154 err_out_unmap:
8155 if (bp->regview) {
8156 iounmap(bp->regview);
8157 bp->regview = NULL;
8160 err_out_release:
8161 pci_release_regions(pdev);
8163 err_out_disable:
8164 pci_disable_device(pdev);
8165 pci_set_drvdata(pdev, NULL);
8167 err_out:
8168 return rc;
8171 static char * __devinit
8172 bnx2_bus_string(struct bnx2 *bp, char *str)
8174 char *s = str;
8176 if (bp->flags & BNX2_FLAG_PCIE) {
8177 s += sprintf(s, "PCI Express");
8178 } else {
8179 s += sprintf(s, "PCI");
8180 if (bp->flags & BNX2_FLAG_PCIX)
8181 s += sprintf(s, "-X");
8182 if (bp->flags & BNX2_FLAG_PCI_32BIT)
8183 s += sprintf(s, " 32-bit");
8184 else
8185 s += sprintf(s, " 64-bit");
8186 s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
8188 return str;
8191 static void __devinit
8192 bnx2_init_napi(struct bnx2 *bp)
8194 int i;
8196 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
8197 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
8198 int (*poll)(struct napi_struct *, int);
8200 if (i == 0)
8201 poll = bnx2_poll;
8202 else
8203 poll = bnx2_poll_msix;
8205 netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
8206 bnapi->bp = bp;
8210 static const struct net_device_ops bnx2_netdev_ops = {
8211 .ndo_open = bnx2_open,
8212 .ndo_start_xmit = bnx2_start_xmit,
8213 .ndo_stop = bnx2_close,
8214 .ndo_get_stats = bnx2_get_stats,
8215 .ndo_set_rx_mode = bnx2_set_rx_mode,
8216 .ndo_do_ioctl = bnx2_ioctl,
8217 .ndo_validate_addr = eth_validate_addr,
8218 .ndo_set_mac_address = bnx2_change_mac_addr,
8219 .ndo_change_mtu = bnx2_change_mtu,
8220 .ndo_tx_timeout = bnx2_tx_timeout,
8221 #ifdef BCM_VLAN
8222 .ndo_vlan_rx_register = bnx2_vlan_rx_register,
8223 #endif
8224 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
8225 .ndo_poll_controller = poll_bnx2,
8226 #endif
8229 static void inline vlan_features_add(struct net_device *dev, unsigned long flags)
8231 #ifdef BCM_VLAN
8232 dev->vlan_features |= flags;
8233 #endif
8236 static int __devinit
8237 bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8239 static int version_printed = 0;
8240 struct net_device *dev = NULL;
8241 struct bnx2 *bp;
8242 int rc;
8243 char str[40];
8245 if (version_printed++ == 0)
8246 printk(KERN_INFO "%s", version);
8248 /* dev zeroed in init_etherdev */
8249 dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
8251 if (!dev)
8252 return -ENOMEM;
8254 rc = bnx2_init_board(pdev, dev);
8255 if (rc < 0) {
8256 free_netdev(dev);
8257 return rc;
8260 dev->netdev_ops = &bnx2_netdev_ops;
8261 dev->watchdog_timeo = TX_TIMEOUT;
8262 dev->ethtool_ops = &bnx2_ethtool_ops;
8264 bp = netdev_priv(dev);
8265 bnx2_init_napi(bp);
8267 pci_set_drvdata(pdev, dev);
8269 rc = bnx2_request_firmware(bp);
8270 if (rc)
8271 goto error;
8273 memcpy(dev->dev_addr, bp->mac_addr, 6);
8274 memcpy(dev->perm_addr, bp->mac_addr, 6);
8276 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
8277 vlan_features_add(dev, NETIF_F_IP_CSUM | NETIF_F_SG);
8278 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
8279 dev->features |= NETIF_F_IPV6_CSUM;
8280 vlan_features_add(dev, NETIF_F_IPV6_CSUM);
8282 #ifdef BCM_VLAN
8283 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
8284 #endif
8285 dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
8286 vlan_features_add(dev, NETIF_F_TSO | NETIF_F_TSO_ECN);
8287 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
8288 dev->features |= NETIF_F_TSO6;
8289 vlan_features_add(dev, NETIF_F_TSO6);
8291 if ((rc = register_netdev(dev))) {
8292 dev_err(&pdev->dev, "Cannot register net device\n");
8293 goto error;
8296 printk(KERN_INFO "%s: %s (%c%d) %s found at mem %lx, "
8297 "IRQ %d, node addr %pM\n",
8298 dev->name,
8299 board_info[ent->driver_data].name,
8300 ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
8301 ((CHIP_ID(bp) & 0x0ff0) >> 4),
8302 bnx2_bus_string(bp, str),
8303 dev->base_addr,
8304 bp->pdev->irq, dev->dev_addr);
8306 return 0;
8308 error:
8309 if (bp->mips_firmware)
8310 release_firmware(bp->mips_firmware);
8311 if (bp->rv2p_firmware)
8312 release_firmware(bp->rv2p_firmware);
8314 if (bp->regview)
8315 iounmap(bp->regview);
8316 pci_release_regions(pdev);
8317 pci_disable_device(pdev);
8318 pci_set_drvdata(pdev, NULL);
8319 free_netdev(dev);
8320 return rc;
8323 static void __devexit
8324 bnx2_remove_one(struct pci_dev *pdev)
8326 struct net_device *dev = pci_get_drvdata(pdev);
8327 struct bnx2 *bp = netdev_priv(dev);
8329 flush_scheduled_work();
8331 unregister_netdev(dev);
8333 if (bp->mips_firmware)
8334 release_firmware(bp->mips_firmware);
8335 if (bp->rv2p_firmware)
8336 release_firmware(bp->rv2p_firmware);
8338 if (bp->regview)
8339 iounmap(bp->regview);
8341 free_netdev(dev);
8342 pci_release_regions(pdev);
8343 pci_disable_device(pdev);
8344 pci_set_drvdata(pdev, NULL);
8347 static int
8348 bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
8350 struct net_device *dev = pci_get_drvdata(pdev);
8351 struct bnx2 *bp = netdev_priv(dev);
8353 /* PCI register 4 needs to be saved whether netif_running() or not.
8354 * MSI address and data need to be saved if using MSI and
8355 * netif_running().
8357 pci_save_state(pdev);
8358 if (!netif_running(dev))
8359 return 0;
8361 flush_scheduled_work();
8362 bnx2_netif_stop(bp);
8363 netif_device_detach(dev);
8364 del_timer_sync(&bp->timer);
8365 bnx2_shutdown_chip(bp);
8366 bnx2_free_skbs(bp);
8367 bnx2_set_power_state(bp, pci_choose_state(pdev, state));
8368 return 0;
8371 static int
8372 bnx2_resume(struct pci_dev *pdev)
8374 struct net_device *dev = pci_get_drvdata(pdev);
8375 struct bnx2 *bp = netdev_priv(dev);
8377 pci_restore_state(pdev);
8378 if (!netif_running(dev))
8379 return 0;
8381 bnx2_set_power_state(bp, PCI_D0);
8382 netif_device_attach(dev);
8383 bnx2_init_nic(bp, 1);
8384 bnx2_netif_start(bp);
8385 return 0;
8389 * bnx2_io_error_detected - called when PCI error is detected
8390 * @pdev: Pointer to PCI device
8391 * @state: The current pci connection state
8393 * This function is called after a PCI bus error affecting
8394 * this device has been detected.
8396 static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
8397 pci_channel_state_t state)
8399 struct net_device *dev = pci_get_drvdata(pdev);
8400 struct bnx2 *bp = netdev_priv(dev);
8402 rtnl_lock();
8403 netif_device_detach(dev);
8405 if (state == pci_channel_io_perm_failure) {
8406 rtnl_unlock();
8407 return PCI_ERS_RESULT_DISCONNECT;
8410 if (netif_running(dev)) {
8411 bnx2_netif_stop(bp);
8412 del_timer_sync(&bp->timer);
8413 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
8416 pci_disable_device(pdev);
8417 rtnl_unlock();
8419 /* Request a slot slot reset. */
8420 return PCI_ERS_RESULT_NEED_RESET;
8424 * bnx2_io_slot_reset - called after the pci bus has been reset.
8425 * @pdev: Pointer to PCI device
8427 * Restart the card from scratch, as if from a cold-boot.
8429 static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
8431 struct net_device *dev = pci_get_drvdata(pdev);
8432 struct bnx2 *bp = netdev_priv(dev);
8434 rtnl_lock();
8435 if (pci_enable_device(pdev)) {
8436 dev_err(&pdev->dev,
8437 "Cannot re-enable PCI device after reset.\n");
8438 rtnl_unlock();
8439 return PCI_ERS_RESULT_DISCONNECT;
8441 pci_set_master(pdev);
8442 pci_restore_state(pdev);
8443 pci_save_state(pdev);
8445 if (netif_running(dev)) {
8446 bnx2_set_power_state(bp, PCI_D0);
8447 bnx2_init_nic(bp, 1);
8450 rtnl_unlock();
8451 return PCI_ERS_RESULT_RECOVERED;
8455 * bnx2_io_resume - called when traffic can start flowing again.
8456 * @pdev: Pointer to PCI device
8458 * This callback is called when the error recovery driver tells us that
8459 * its OK to resume normal operation.
8461 static void bnx2_io_resume(struct pci_dev *pdev)
8463 struct net_device *dev = pci_get_drvdata(pdev);
8464 struct bnx2 *bp = netdev_priv(dev);
8466 rtnl_lock();
8467 if (netif_running(dev))
8468 bnx2_netif_start(bp);
8470 netif_device_attach(dev);
8471 rtnl_unlock();
8474 static struct pci_error_handlers bnx2_err_handler = {
8475 .error_detected = bnx2_io_error_detected,
8476 .slot_reset = bnx2_io_slot_reset,
8477 .resume = bnx2_io_resume,
8480 static struct pci_driver bnx2_pci_driver = {
8481 .name = DRV_MODULE_NAME,
8482 .id_table = bnx2_pci_tbl,
8483 .probe = bnx2_init_one,
8484 .remove = __devexit_p(bnx2_remove_one),
8485 .suspend = bnx2_suspend,
8486 .resume = bnx2_resume,
8487 .err_handler = &bnx2_err_handler,
8490 static int __init bnx2_init(void)
8492 return pci_register_driver(&bnx2_pci_driver);
8495 static void __exit bnx2_cleanup(void)
8497 pci_unregister_driver(&bnx2_pci_driver);
8500 module_init(bnx2_init);
8501 module_exit(bnx2_cleanup);