usb: fix number of mapped SG DMA entries
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / usb / host / xhci-ring.c
blobd28c5865f3ef3510d55ffd6e52497fdfa504ab07
1 /*
2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * Ring initialization rules:
25 * 1. Each segment is initialized to zero, except for link TRBs.
26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
27 * Consumer Cycle State (CCS), depending on ring function.
28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
30 * Ring behavior rules:
31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
32 * least one free TRB in the ring. This is useful if you want to turn that
33 * into a link TRB and expand the ring.
34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35 * link TRB, then load the pointer with the address in the link TRB. If the
36 * link TRB had its toggle bit set, you may need to update the ring cycle
37 * state (see cycle bit rules). You may have to do this multiple times
38 * until you reach a non-link TRB.
39 * 3. A ring is full if enqueue++ (for the definition of increment above)
40 * equals the dequeue pointer.
42 * Cycle bit rules:
43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44 * in a link TRB, it must toggle the ring cycle state.
45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46 * in a link TRB, it must toggle the ring cycle state.
48 * Producer rules:
49 * 1. Check if ring is full before you enqueue.
50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51 * Update enqueue pointer between each write (which may update the ring
52 * cycle state).
53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
54 * and endpoint rings. If HC is the producer for the event ring,
55 * and it generates an interrupt according to interrupt modulation rules.
57 * Consumer rules:
58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
59 * the TRB is owned by the consumer.
60 * 2. Update dequeue pointer (which may update the ring cycle state) and
61 * continue processing TRBs until you reach a TRB which is not owned by you.
62 * 3. Notify the producer. SW is the consumer for the event ring, and it
63 * updates event ring dequeue pointer. HC is the consumer for the command and
64 * endpoint rings; it generates events on the event ring for these.
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include "xhci.h"
71 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
72 struct xhci_virt_device *virt_dev,
73 struct xhci_event_cmd *event);
76 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
77 * address of the TRB.
79 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
80 union xhci_trb *trb)
82 unsigned long segment_offset;
84 if (!seg || !trb || trb < seg->trbs)
85 return 0;
86 /* offset in TRBs */
87 segment_offset = trb - seg->trbs;
88 if (segment_offset > TRBS_PER_SEGMENT)
89 return 0;
90 return seg->dma + (segment_offset * sizeof(*trb));
93 /* Does this link TRB point to the first segment in a ring,
94 * or was the previous TRB the last TRB on the last segment in the ERST?
96 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
97 struct xhci_segment *seg, union xhci_trb *trb)
99 if (ring == xhci->event_ring)
100 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
101 (seg->next == xhci->event_ring->first_seg);
102 else
103 return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
106 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
107 * segment? I.e. would the updated event TRB pointer step off the end of the
108 * event seg?
110 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
111 struct xhci_segment *seg, union xhci_trb *trb)
113 if (ring == xhci->event_ring)
114 return trb == &seg->trbs[TRBS_PER_SEGMENT];
115 else
116 return TRB_TYPE_LINK_LE32(trb->link.control);
119 static int enqueue_is_link_trb(struct xhci_ring *ring)
121 struct xhci_link_trb *link = &ring->enqueue->link;
122 return TRB_TYPE_LINK_LE32(link->control);
125 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
126 * TRB is in a new segment. This does not skip over link TRBs, and it does not
127 * effect the ring dequeue or enqueue pointers.
129 static void next_trb(struct xhci_hcd *xhci,
130 struct xhci_ring *ring,
131 struct xhci_segment **seg,
132 union xhci_trb **trb)
134 if (last_trb(xhci, ring, *seg, *trb)) {
135 *seg = (*seg)->next;
136 *trb = ((*seg)->trbs);
137 } else {
138 (*trb)++;
143 * See Cycle bit rules. SW is the consumer for the event ring only.
144 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
146 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring, bool consumer)
148 union xhci_trb *next = ++(ring->dequeue);
149 unsigned long long addr;
151 ring->deq_updates++;
152 /* Update the dequeue pointer further if that was a link TRB or we're at
153 * the end of an event ring segment (which doesn't have link TRBS)
155 while (last_trb(xhci, ring, ring->deq_seg, next)) {
156 if (consumer && last_trb_on_last_seg(xhci, ring, ring->deq_seg, next)) {
157 ring->cycle_state = (ring->cycle_state ? 0 : 1);
158 if (!in_interrupt())
159 xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n",
160 ring,
161 (unsigned int) ring->cycle_state);
163 ring->deq_seg = ring->deq_seg->next;
164 ring->dequeue = ring->deq_seg->trbs;
165 next = ring->dequeue;
167 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue);
171 * See Cycle bit rules. SW is the consumer for the event ring only.
172 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
174 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
175 * chain bit is set), then set the chain bit in all the following link TRBs.
176 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
177 * have their chain bit cleared (so that each Link TRB is a separate TD).
179 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
180 * set, but other sections talk about dealing with the chain bit set. This was
181 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
182 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
184 * @more_trbs_coming: Will you enqueue more TRBs before calling
185 * prepare_transfer()?
187 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
188 bool consumer, bool more_trbs_coming, bool isoc)
190 u32 chain;
191 union xhci_trb *next;
192 unsigned long long addr;
194 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
195 next = ++(ring->enqueue);
197 ring->enq_updates++;
198 /* Update the dequeue pointer further if that was a link TRB or we're at
199 * the end of an event ring segment (which doesn't have link TRBS)
201 while (last_trb(xhci, ring, ring->enq_seg, next)) {
202 if (!consumer) {
203 if (ring != xhci->event_ring) {
205 * If the caller doesn't plan on enqueueing more
206 * TDs before ringing the doorbell, then we
207 * don't want to give the link TRB to the
208 * hardware just yet. We'll give the link TRB
209 * back in prepare_ring() just before we enqueue
210 * the TD at the top of the ring.
212 if (!chain && !more_trbs_coming)
213 break;
215 /* If we're not dealing with 0.95 hardware or
216 * isoc rings on AMD 0.96 host,
217 * carry over the chain bit of the previous TRB
218 * (which may mean the chain bit is cleared).
220 if (!(isoc && (xhci->quirks & XHCI_AMD_0x96_HOST))
221 && !xhci_link_trb_quirk(xhci)) {
222 next->link.control &=
223 cpu_to_le32(~TRB_CHAIN);
224 next->link.control |=
225 cpu_to_le32(chain);
227 /* Give this link TRB to the hardware */
228 wmb();
229 next->link.control ^= cpu_to_le32(TRB_CYCLE);
231 /* Toggle the cycle bit after the last ring segment. */
232 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
233 ring->cycle_state = (ring->cycle_state ? 0 : 1);
234 if (!in_interrupt())
235 xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n",
236 ring,
237 (unsigned int) ring->cycle_state);
240 ring->enq_seg = ring->enq_seg->next;
241 ring->enqueue = ring->enq_seg->trbs;
242 next = ring->enqueue;
244 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue);
248 * Check to see if there's room to enqueue num_trbs on the ring. See rules
249 * above.
250 * FIXME: this would be simpler and faster if we just kept track of the number
251 * of free TRBs in a ring.
253 static int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
254 unsigned int num_trbs)
256 int i;
257 union xhci_trb *enq = ring->enqueue;
258 struct xhci_segment *enq_seg = ring->enq_seg;
259 struct xhci_segment *cur_seg;
260 unsigned int left_on_ring;
262 /* If we are currently pointing to a link TRB, advance the
263 * enqueue pointer before checking for space */
264 while (last_trb(xhci, ring, enq_seg, enq)) {
265 enq_seg = enq_seg->next;
266 enq = enq_seg->trbs;
269 /* Check if ring is empty */
270 if (enq == ring->dequeue) {
271 /* Can't use link trbs */
272 left_on_ring = TRBS_PER_SEGMENT - 1;
273 for (cur_seg = enq_seg->next; cur_seg != enq_seg;
274 cur_seg = cur_seg->next)
275 left_on_ring += TRBS_PER_SEGMENT - 1;
277 /* Always need one TRB free in the ring. */
278 left_on_ring -= 1;
279 if (num_trbs > left_on_ring) {
280 xhci_warn(xhci, "Not enough room on ring; "
281 "need %u TRBs, %u TRBs left\n",
282 num_trbs, left_on_ring);
283 return 0;
285 return 1;
287 /* Make sure there's an extra empty TRB available */
288 for (i = 0; i <= num_trbs; ++i) {
289 if (enq == ring->dequeue)
290 return 0;
291 enq++;
292 while (last_trb(xhci, ring, enq_seg, enq)) {
293 enq_seg = enq_seg->next;
294 enq = enq_seg->trbs;
297 return 1;
300 /* Ring the host controller doorbell after placing a command on the ring */
301 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
303 xhci_dbg(xhci, "// Ding dong!\n");
304 xhci_writel(xhci, DB_VALUE_HOST, &xhci->dba->doorbell[0]);
305 /* Flush PCI posted writes */
306 xhci_readl(xhci, &xhci->dba->doorbell[0]);
309 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
310 unsigned int slot_id,
311 unsigned int ep_index,
312 unsigned int stream_id)
314 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
315 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
316 unsigned int ep_state = ep->ep_state;
318 /* Don't ring the doorbell for this endpoint if there are pending
319 * cancellations because we don't want to interrupt processing.
320 * We don't want to restart any stream rings if there's a set dequeue
321 * pointer command pending because the device can choose to start any
322 * stream once the endpoint is on the HW schedule.
323 * FIXME - check all the stream rings for pending cancellations.
325 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
326 (ep_state & EP_HALTED))
327 return;
328 xhci_writel(xhci, DB_VALUE(ep_index, stream_id), db_addr);
329 /* The CPU has better things to do at this point than wait for a
330 * write-posting flush. It'll get there soon enough.
334 /* Ring the doorbell for any rings with pending URBs */
335 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
336 unsigned int slot_id,
337 unsigned int ep_index)
339 unsigned int stream_id;
340 struct xhci_virt_ep *ep;
342 ep = &xhci->devs[slot_id]->eps[ep_index];
344 /* A ring has pending URBs if its TD list is not empty */
345 if (!(ep->ep_state & EP_HAS_STREAMS)) {
346 if (!(list_empty(&ep->ring->td_list)))
347 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
348 return;
351 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
352 stream_id++) {
353 struct xhci_stream_info *stream_info = ep->stream_info;
354 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
355 xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
356 stream_id);
361 * Find the segment that trb is in. Start searching in start_seg.
362 * If we must move past a segment that has a link TRB with a toggle cycle state
363 * bit set, then we will toggle the value pointed at by cycle_state.
365 static struct xhci_segment *find_trb_seg(
366 struct xhci_segment *start_seg,
367 union xhci_trb *trb, int *cycle_state)
369 struct xhci_segment *cur_seg = start_seg;
370 struct xhci_generic_trb *generic_trb;
372 while (cur_seg->trbs > trb ||
373 &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) {
374 generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic;
375 if (generic_trb->field[3] & cpu_to_le32(LINK_TOGGLE))
376 *cycle_state ^= 0x1;
377 cur_seg = cur_seg->next;
378 if (cur_seg == start_seg)
379 /* Looped over the entire list. Oops! */
380 return NULL;
382 return cur_seg;
386 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
387 unsigned int slot_id, unsigned int ep_index,
388 unsigned int stream_id)
390 struct xhci_virt_ep *ep;
392 ep = &xhci->devs[slot_id]->eps[ep_index];
393 /* Common case: no streams */
394 if (!(ep->ep_state & EP_HAS_STREAMS))
395 return ep->ring;
397 if (stream_id == 0) {
398 xhci_warn(xhci,
399 "WARN: Slot ID %u, ep index %u has streams, "
400 "but URB has no stream ID.\n",
401 slot_id, ep_index);
402 return NULL;
405 if (stream_id < ep->stream_info->num_streams)
406 return ep->stream_info->stream_rings[stream_id];
408 xhci_warn(xhci,
409 "WARN: Slot ID %u, ep index %u has "
410 "stream IDs 1 to %u allocated, "
411 "but stream ID %u is requested.\n",
412 slot_id, ep_index,
413 ep->stream_info->num_streams - 1,
414 stream_id);
415 return NULL;
418 /* Get the right ring for the given URB.
419 * If the endpoint supports streams, boundary check the URB's stream ID.
420 * If the endpoint doesn't support streams, return the singular endpoint ring.
422 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
423 struct urb *urb)
425 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id,
426 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id);
430 * Move the xHC's endpoint ring dequeue pointer past cur_td.
431 * Record the new state of the xHC's endpoint ring dequeue segment,
432 * dequeue pointer, and new consumer cycle state in state.
433 * Update our internal representation of the ring's dequeue pointer.
435 * We do this in three jumps:
436 * - First we update our new ring state to be the same as when the xHC stopped.
437 * - Then we traverse the ring to find the segment that contains
438 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
439 * any link TRBs with the toggle cycle bit set.
440 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
441 * if we've moved it past a link TRB with the toggle cycle bit set.
443 * Some of the uses of xhci_generic_trb are grotty, but if they're done
444 * with correct __le32 accesses they should work fine. Only users of this are
445 * in here.
447 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
448 unsigned int slot_id, unsigned int ep_index,
449 unsigned int stream_id, struct xhci_td *cur_td,
450 struct xhci_dequeue_state *state)
452 struct xhci_virt_device *dev = xhci->devs[slot_id];
453 struct xhci_ring *ep_ring;
454 struct xhci_generic_trb *trb;
455 struct xhci_ep_ctx *ep_ctx;
456 dma_addr_t addr;
458 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
459 ep_index, stream_id);
460 if (!ep_ring) {
461 xhci_warn(xhci, "WARN can't find new dequeue state "
462 "for invalid stream ID %u.\n",
463 stream_id);
464 return;
466 state->new_cycle_state = 0;
467 xhci_dbg(xhci, "Finding segment containing stopped TRB.\n");
468 state->new_deq_seg = find_trb_seg(cur_td->start_seg,
469 dev->eps[ep_index].stopped_trb,
470 &state->new_cycle_state);
471 if (!state->new_deq_seg) {
472 WARN_ON(1);
473 return;
476 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
477 xhci_dbg(xhci, "Finding endpoint context\n");
478 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
479 state->new_cycle_state = 0x1 & le64_to_cpu(ep_ctx->deq);
481 state->new_deq_ptr = cur_td->last_trb;
482 xhci_dbg(xhci, "Finding segment containing last TRB in TD.\n");
483 state->new_deq_seg = find_trb_seg(state->new_deq_seg,
484 state->new_deq_ptr,
485 &state->new_cycle_state);
486 if (!state->new_deq_seg) {
487 WARN_ON(1);
488 return;
491 trb = &state->new_deq_ptr->generic;
492 if (TRB_TYPE_LINK_LE32(trb->field[3]) &&
493 (trb->field[3] & cpu_to_le32(LINK_TOGGLE)))
494 state->new_cycle_state ^= 0x1;
495 next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr);
498 * If there is only one segment in a ring, find_trb_seg()'s while loop
499 * will not run, and it will return before it has a chance to see if it
500 * needs to toggle the cycle bit. It can't tell if the stalled transfer
501 * ended just before the link TRB on a one-segment ring, or if the TD
502 * wrapped around the top of the ring, because it doesn't have the TD in
503 * question. Look for the one-segment case where stalled TRB's address
504 * is greater than the new dequeue pointer address.
506 if (ep_ring->first_seg == ep_ring->first_seg->next &&
507 state->new_deq_ptr < dev->eps[ep_index].stopped_trb)
508 state->new_cycle_state ^= 0x1;
509 xhci_dbg(xhci, "Cycle state = 0x%x\n", state->new_cycle_state);
511 /* Don't update the ring cycle state for the producer (us). */
512 xhci_dbg(xhci, "New dequeue segment = %p (virtual)\n",
513 state->new_deq_seg);
514 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
515 xhci_dbg(xhci, "New dequeue pointer = 0x%llx (DMA)\n",
516 (unsigned long long) addr);
519 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
520 * (The last TRB actually points to the ring enqueue pointer, which is not part
521 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
523 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
524 struct xhci_td *cur_td, bool flip_cycle)
526 struct xhci_segment *cur_seg;
527 union xhci_trb *cur_trb;
529 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
530 true;
531 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
532 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) {
533 /* Unchain any chained Link TRBs, but
534 * leave the pointers intact.
536 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN);
537 /* Flip the cycle bit (link TRBs can't be the first
538 * or last TRB).
540 if (flip_cycle)
541 cur_trb->generic.field[3] ^=
542 cpu_to_le32(TRB_CYCLE);
543 xhci_dbg(xhci, "Cancel (unchain) link TRB\n");
544 xhci_dbg(xhci, "Address = %p (0x%llx dma); "
545 "in seg %p (0x%llx dma)\n",
546 cur_trb,
547 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
548 cur_seg,
549 (unsigned long long)cur_seg->dma);
550 } else {
551 cur_trb->generic.field[0] = 0;
552 cur_trb->generic.field[1] = 0;
553 cur_trb->generic.field[2] = 0;
554 /* Preserve only the cycle bit of this TRB */
555 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
556 /* Flip the cycle bit except on the first or last TRB */
557 if (flip_cycle && cur_trb != cur_td->first_trb &&
558 cur_trb != cur_td->last_trb)
559 cur_trb->generic.field[3] ^=
560 cpu_to_le32(TRB_CYCLE);
561 cur_trb->generic.field[3] |= cpu_to_le32(
562 TRB_TYPE(TRB_TR_NOOP));
563 xhci_dbg(xhci, "Cancel TRB %p (0x%llx dma) "
564 "in seg %p (0x%llx dma)\n",
565 cur_trb,
566 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
567 cur_seg,
568 (unsigned long long)cur_seg->dma);
570 if (cur_trb == cur_td->last_trb)
571 break;
575 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
576 unsigned int ep_index, unsigned int stream_id,
577 struct xhci_segment *deq_seg,
578 union xhci_trb *deq_ptr, u32 cycle_state);
580 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
581 unsigned int slot_id, unsigned int ep_index,
582 unsigned int stream_id,
583 struct xhci_dequeue_state *deq_state)
585 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
587 xhci_dbg(xhci, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), "
588 "new deq ptr = %p (0x%llx dma), new cycle = %u\n",
589 deq_state->new_deq_seg,
590 (unsigned long long)deq_state->new_deq_seg->dma,
591 deq_state->new_deq_ptr,
592 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr),
593 deq_state->new_cycle_state);
594 queue_set_tr_deq(xhci, slot_id, ep_index, stream_id,
595 deq_state->new_deq_seg,
596 deq_state->new_deq_ptr,
597 (u32) deq_state->new_cycle_state);
598 /* Stop the TD queueing code from ringing the doorbell until
599 * this command completes. The HC won't set the dequeue pointer
600 * if the ring is running, and ringing the doorbell starts the
601 * ring running.
603 ep->ep_state |= SET_DEQ_PENDING;
606 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
607 struct xhci_virt_ep *ep)
609 ep->ep_state &= ~EP_HALT_PENDING;
610 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the
611 * timer is running on another CPU, we don't decrement stop_cmds_pending
612 * (since we didn't successfully stop the watchdog timer).
614 if (del_timer(&ep->stop_cmd_timer))
615 ep->stop_cmds_pending--;
618 /* Must be called with xhci->lock held in interrupt context */
619 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
620 struct xhci_td *cur_td, int status, char *adjective)
622 struct usb_hcd *hcd;
623 struct urb *urb;
624 struct urb_priv *urb_priv;
626 urb = cur_td->urb;
627 urb_priv = urb->hcpriv;
628 urb_priv->td_cnt++;
629 hcd = bus_to_hcd(urb->dev->bus);
631 /* Only giveback urb when this is the last td in urb */
632 if (urb_priv->td_cnt == urb_priv->length) {
633 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
634 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
635 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
636 if (xhci->quirks & XHCI_AMD_PLL_FIX)
637 usb_amd_quirk_pll_enable();
640 usb_hcd_unlink_urb_from_ep(hcd, urb);
642 spin_unlock(&xhci->lock);
643 usb_hcd_giveback_urb(hcd, urb, status);
644 xhci_urb_free_priv(xhci, urb_priv);
645 spin_lock(&xhci->lock);
650 * When we get a command completion for a Stop Endpoint Command, we need to
651 * unlink any cancelled TDs from the ring. There are two ways to do that:
653 * 1. If the HW was in the middle of processing the TD that needs to be
654 * cancelled, then we must move the ring's dequeue pointer past the last TRB
655 * in the TD with a Set Dequeue Pointer Command.
656 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
657 * bit cleared) so that the HW will skip over them.
659 static void handle_stopped_endpoint(struct xhci_hcd *xhci,
660 union xhci_trb *trb, struct xhci_event_cmd *event)
662 unsigned int slot_id;
663 unsigned int ep_index;
664 struct xhci_virt_device *virt_dev;
665 struct xhci_ring *ep_ring;
666 struct xhci_virt_ep *ep;
667 struct list_head *entry;
668 struct xhci_td *cur_td = NULL;
669 struct xhci_td *last_unlinked_td;
671 struct xhci_dequeue_state deq_state;
673 if (unlikely(TRB_TO_SUSPEND_PORT(
674 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])))) {
675 slot_id = TRB_TO_SLOT_ID(
676 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
677 virt_dev = xhci->devs[slot_id];
678 if (virt_dev)
679 handle_cmd_in_cmd_wait_list(xhci, virt_dev,
680 event);
681 else
682 xhci_warn(xhci, "Stop endpoint command "
683 "completion for disabled slot %u\n",
684 slot_id);
685 return;
688 memset(&deq_state, 0, sizeof(deq_state));
689 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
690 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
691 ep = &xhci->devs[slot_id]->eps[ep_index];
693 if (list_empty(&ep->cancelled_td_list)) {
694 xhci_stop_watchdog_timer_in_irq(xhci, ep);
695 ep->stopped_td = NULL;
696 ep->stopped_trb = NULL;
697 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
698 return;
701 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
702 * We have the xHCI lock, so nothing can modify this list until we drop
703 * it. We're also in the event handler, so we can't get re-interrupted
704 * if another Stop Endpoint command completes
706 list_for_each(entry, &ep->cancelled_td_list) {
707 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
708 xhci_dbg(xhci, "Cancelling TD starting at %p, 0x%llx (dma).\n",
709 cur_td->first_trb,
710 (unsigned long long)xhci_trb_virt_to_dma(cur_td->start_seg, cur_td->first_trb));
711 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
712 if (!ep_ring) {
713 /* This shouldn't happen unless a driver is mucking
714 * with the stream ID after submission. This will
715 * leave the TD on the hardware ring, and the hardware
716 * will try to execute it, and may access a buffer
717 * that has already been freed. In the best case, the
718 * hardware will execute it, and the event handler will
719 * ignore the completion event for that TD, since it was
720 * removed from the td_list for that endpoint. In
721 * short, don't muck with the stream ID after
722 * submission.
724 xhci_warn(xhci, "WARN Cancelled URB %p "
725 "has invalid stream ID %u.\n",
726 cur_td->urb,
727 cur_td->urb->stream_id);
728 goto remove_finished_td;
731 * If we stopped on the TD we need to cancel, then we have to
732 * move the xHC endpoint ring dequeue pointer past this TD.
734 if (cur_td == ep->stopped_td)
735 xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
736 cur_td->urb->stream_id,
737 cur_td, &deq_state);
738 else
739 td_to_noop(xhci, ep_ring, cur_td, false);
740 remove_finished_td:
742 * The event handler won't see a completion for this TD anymore,
743 * so remove it from the endpoint ring's TD list. Keep it in
744 * the cancelled TD list for URB completion later.
746 list_del_init(&cur_td->td_list);
748 last_unlinked_td = cur_td;
749 xhci_stop_watchdog_timer_in_irq(xhci, ep);
751 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
752 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
753 xhci_queue_new_dequeue_state(xhci,
754 slot_id, ep_index,
755 ep->stopped_td->urb->stream_id,
756 &deq_state);
757 xhci_ring_cmd_db(xhci);
758 } else {
759 /* Otherwise ring the doorbell(s) to restart queued transfers */
760 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
762 ep->stopped_td = NULL;
763 ep->stopped_trb = NULL;
766 * Drop the lock and complete the URBs in the cancelled TD list.
767 * New TDs to be cancelled might be added to the end of the list before
768 * we can complete all the URBs for the TDs we already unlinked.
769 * So stop when we've completed the URB for the last TD we unlinked.
771 do {
772 cur_td = list_entry(ep->cancelled_td_list.next,
773 struct xhci_td, cancelled_td_list);
774 list_del_init(&cur_td->cancelled_td_list);
776 /* Clean up the cancelled URB */
777 /* Doesn't matter what we pass for status, since the core will
778 * just overwrite it (because the URB has been unlinked).
780 xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled");
782 /* Stop processing the cancelled list if the watchdog timer is
783 * running.
785 if (xhci->xhc_state & XHCI_STATE_DYING)
786 return;
787 } while (cur_td != last_unlinked_td);
789 /* Return to the event handler with xhci->lock re-acquired */
792 /* Watchdog timer function for when a stop endpoint command fails to complete.
793 * In this case, we assume the host controller is broken or dying or dead. The
794 * host may still be completing some other events, so we have to be careful to
795 * let the event ring handler and the URB dequeueing/enqueueing functions know
796 * through xhci->state.
798 * The timer may also fire if the host takes a very long time to respond to the
799 * command, and the stop endpoint command completion handler cannot delete the
800 * timer before the timer function is called. Another endpoint cancellation may
801 * sneak in before the timer function can grab the lock, and that may queue
802 * another stop endpoint command and add the timer back. So we cannot use a
803 * simple flag to say whether there is a pending stop endpoint command for a
804 * particular endpoint.
806 * Instead we use a combination of that flag and a counter for the number of
807 * pending stop endpoint commands. If the timer is the tail end of the last
808 * stop endpoint command, and the endpoint's command is still pending, we assume
809 * the host is dying.
811 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
813 struct xhci_hcd *xhci;
814 struct xhci_virt_ep *ep;
815 struct xhci_virt_ep *temp_ep;
816 struct xhci_ring *ring;
817 struct xhci_td *cur_td;
818 int ret, i, j;
819 unsigned long flags;
821 ep = (struct xhci_virt_ep *) arg;
822 xhci = ep->xhci;
824 spin_lock_irqsave(&xhci->lock, flags);
826 ep->stop_cmds_pending--;
827 if (xhci->xhc_state & XHCI_STATE_DYING) {
828 xhci_dbg(xhci, "Stop EP timer ran, but another timer marked "
829 "xHCI as DYING, exiting.\n");
830 spin_unlock_irqrestore(&xhci->lock, flags);
831 return;
833 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
834 xhci_dbg(xhci, "Stop EP timer ran, but no command pending, "
835 "exiting.\n");
836 spin_unlock_irqrestore(&xhci->lock, flags);
837 return;
840 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
841 xhci_warn(xhci, "Assuming host is dying, halting host.\n");
842 /* Oops, HC is dead or dying or at least not responding to the stop
843 * endpoint command.
845 xhci->xhc_state |= XHCI_STATE_DYING;
846 /* Disable interrupts from the host controller and start halting it */
847 xhci_quiesce(xhci);
848 spin_unlock_irqrestore(&xhci->lock, flags);
850 ret = xhci_halt(xhci);
852 spin_lock_irqsave(&xhci->lock, flags);
853 if (ret < 0) {
854 /* This is bad; the host is not responding to commands and it's
855 * not allowing itself to be halted. At least interrupts are
856 * disabled. If we call usb_hc_died(), it will attempt to
857 * disconnect all device drivers under this host. Those
858 * disconnect() methods will wait for all URBs to be unlinked,
859 * so we must complete them.
861 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
862 xhci_warn(xhci, "Completing active URBs anyway.\n");
863 /* We could turn all TDs on the rings to no-ops. This won't
864 * help if the host has cached part of the ring, and is slow if
865 * we want to preserve the cycle bit. Skip it and hope the host
866 * doesn't touch the memory.
869 for (i = 0; i < MAX_HC_SLOTS; i++) {
870 if (!xhci->devs[i])
871 continue;
872 for (j = 0; j < 31; j++) {
873 temp_ep = &xhci->devs[i]->eps[j];
874 ring = temp_ep->ring;
875 if (!ring)
876 continue;
877 xhci_dbg(xhci, "Killing URBs for slot ID %u, "
878 "ep index %u\n", i, j);
879 while (!list_empty(&ring->td_list)) {
880 cur_td = list_first_entry(&ring->td_list,
881 struct xhci_td,
882 td_list);
883 list_del_init(&cur_td->td_list);
884 if (!list_empty(&cur_td->cancelled_td_list))
885 list_del_init(&cur_td->cancelled_td_list);
886 xhci_giveback_urb_in_irq(xhci, cur_td,
887 -ESHUTDOWN, "killed");
889 while (!list_empty(&temp_ep->cancelled_td_list)) {
890 cur_td = list_first_entry(
891 &temp_ep->cancelled_td_list,
892 struct xhci_td,
893 cancelled_td_list);
894 list_del_init(&cur_td->cancelled_td_list);
895 xhci_giveback_urb_in_irq(xhci, cur_td,
896 -ESHUTDOWN, "killed");
900 spin_unlock_irqrestore(&xhci->lock, flags);
901 xhci_dbg(xhci, "Calling usb_hc_died()\n");
902 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
903 xhci_dbg(xhci, "xHCI host controller is dead.\n");
907 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
908 * we need to clear the set deq pending flag in the endpoint ring state, so that
909 * the TD queueing code can ring the doorbell again. We also need to ring the
910 * endpoint doorbell to restart the ring, but only if there aren't more
911 * cancellations pending.
913 static void handle_set_deq_completion(struct xhci_hcd *xhci,
914 struct xhci_event_cmd *event,
915 union xhci_trb *trb)
917 unsigned int slot_id;
918 unsigned int ep_index;
919 unsigned int stream_id;
920 struct xhci_ring *ep_ring;
921 struct xhci_virt_device *dev;
922 struct xhci_ep_ctx *ep_ctx;
923 struct xhci_slot_ctx *slot_ctx;
925 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
926 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
927 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
928 dev = xhci->devs[slot_id];
930 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
931 if (!ep_ring) {
932 xhci_warn(xhci, "WARN Set TR deq ptr command for "
933 "freed stream ID %u\n",
934 stream_id);
935 /* XXX: Harmless??? */
936 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
937 return;
940 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
941 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
943 if (GET_COMP_CODE(le32_to_cpu(event->status)) != COMP_SUCCESS) {
944 unsigned int ep_state;
945 unsigned int slot_state;
947 switch (GET_COMP_CODE(le32_to_cpu(event->status))) {
948 case COMP_TRB_ERR:
949 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because "
950 "of stream ID configuration\n");
951 break;
952 case COMP_CTX_STATE:
953 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due "
954 "to incorrect slot or ep state.\n");
955 ep_state = le32_to_cpu(ep_ctx->ep_info);
956 ep_state &= EP_STATE_MASK;
957 slot_state = le32_to_cpu(slot_ctx->dev_state);
958 slot_state = GET_SLOT_STATE(slot_state);
959 xhci_dbg(xhci, "Slot state = %u, EP state = %u\n",
960 slot_state, ep_state);
961 break;
962 case COMP_EBADSLT:
963 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because "
964 "slot %u was not enabled.\n", slot_id);
965 break;
966 default:
967 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown "
968 "completion code of %u.\n",
969 GET_COMP_CODE(le32_to_cpu(event->status)));
970 break;
972 /* OK what do we do now? The endpoint state is hosed, and we
973 * should never get to this point if the synchronization between
974 * queueing, and endpoint state are correct. This might happen
975 * if the device gets disconnected after we've finished
976 * cancelling URBs, which might not be an error...
978 } else {
979 xhci_dbg(xhci, "Successful Set TR Deq Ptr cmd, deq = @%08llx\n",
980 le64_to_cpu(ep_ctx->deq));
981 if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg,
982 dev->eps[ep_index].queued_deq_ptr) ==
983 (le64_to_cpu(ep_ctx->deq) & ~(EP_CTX_CYCLE_MASK))) {
984 /* Update the ring's dequeue segment and dequeue pointer
985 * to reflect the new position.
987 ep_ring->deq_seg = dev->eps[ep_index].queued_deq_seg;
988 ep_ring->dequeue = dev->eps[ep_index].queued_deq_ptr;
989 } else {
990 xhci_warn(xhci, "Mismatch between completed Set TR Deq "
991 "Ptr command & xHCI internal state.\n");
992 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
993 dev->eps[ep_index].queued_deq_seg,
994 dev->eps[ep_index].queued_deq_ptr);
998 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
999 dev->eps[ep_index].queued_deq_seg = NULL;
1000 dev->eps[ep_index].queued_deq_ptr = NULL;
1001 /* Restart any rings with pending URBs */
1002 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1005 static void handle_reset_ep_completion(struct xhci_hcd *xhci,
1006 struct xhci_event_cmd *event,
1007 union xhci_trb *trb)
1009 int slot_id;
1010 unsigned int ep_index;
1012 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
1013 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1014 /* This command will only fail if the endpoint wasn't halted,
1015 * but we don't care.
1017 xhci_dbg(xhci, "Ignoring reset ep completion code of %u\n",
1018 GET_COMP_CODE(le32_to_cpu(event->status)));
1020 /* HW with the reset endpoint quirk needs to have a configure endpoint
1021 * command complete before the endpoint can be used. Queue that here
1022 * because the HW can't handle two commands being queued in a row.
1024 if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1025 xhci_dbg(xhci, "Queueing configure endpoint command\n");
1026 xhci_queue_configure_endpoint(xhci,
1027 xhci->devs[slot_id]->in_ctx->dma, slot_id,
1028 false);
1029 xhci_ring_cmd_db(xhci);
1030 } else {
1031 /* Clear our internal halted state and restart the ring(s) */
1032 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1033 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1037 /* Check to see if a command in the device's command queue matches this one.
1038 * Signal the completion or free the command, and return 1. Return 0 if the
1039 * completed command isn't at the head of the command list.
1041 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
1042 struct xhci_virt_device *virt_dev,
1043 struct xhci_event_cmd *event)
1045 struct xhci_command *command;
1047 if (list_empty(&virt_dev->cmd_list))
1048 return 0;
1050 command = list_entry(virt_dev->cmd_list.next,
1051 struct xhci_command, cmd_list);
1052 if (xhci->cmd_ring->dequeue != command->command_trb)
1053 return 0;
1055 command->status = GET_COMP_CODE(le32_to_cpu(event->status));
1056 list_del(&command->cmd_list);
1057 if (command->completion)
1058 complete(command->completion);
1059 else
1060 xhci_free_command(xhci, command);
1061 return 1;
1064 static void handle_cmd_completion(struct xhci_hcd *xhci,
1065 struct xhci_event_cmd *event)
1067 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1068 u64 cmd_dma;
1069 dma_addr_t cmd_dequeue_dma;
1070 struct xhci_input_control_ctx *ctrl_ctx;
1071 struct xhci_virt_device *virt_dev;
1072 unsigned int ep_index;
1073 struct xhci_ring *ep_ring;
1074 unsigned int ep_state;
1076 cmd_dma = le64_to_cpu(event->cmd_trb);
1077 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1078 xhci->cmd_ring->dequeue);
1079 /* Is the command ring deq ptr out of sync with the deq seg ptr? */
1080 if (cmd_dequeue_dma == 0) {
1081 xhci->error_bitmask |= 1 << 4;
1082 return;
1084 /* Does the DMA address match our internal dequeue pointer address? */
1085 if (cmd_dma != (u64) cmd_dequeue_dma) {
1086 xhci->error_bitmask |= 1 << 5;
1087 return;
1089 switch (le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])
1090 & TRB_TYPE_BITMASK) {
1091 case TRB_TYPE(TRB_ENABLE_SLOT):
1092 if (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_SUCCESS)
1093 xhci->slot_id = slot_id;
1094 else
1095 xhci->slot_id = 0;
1096 complete(&xhci->addr_dev);
1097 break;
1098 case TRB_TYPE(TRB_DISABLE_SLOT):
1099 if (xhci->devs[slot_id]) {
1100 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1101 /* Delete default control endpoint resources */
1102 xhci_free_device_endpoint_resources(xhci,
1103 xhci->devs[slot_id], true);
1104 xhci_free_virt_device(xhci, slot_id);
1106 break;
1107 case TRB_TYPE(TRB_CONFIG_EP):
1108 virt_dev = xhci->devs[slot_id];
1109 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1110 break;
1112 * Configure endpoint commands can come from the USB core
1113 * configuration or alt setting changes, or because the HW
1114 * needed an extra configure endpoint command after a reset
1115 * endpoint command or streams were being configured.
1116 * If the command was for a halted endpoint, the xHCI driver
1117 * is not waiting on the configure endpoint command.
1119 ctrl_ctx = xhci_get_input_control_ctx(xhci,
1120 virt_dev->in_ctx);
1121 /* Input ctx add_flags are the endpoint index plus one */
1122 ep_index = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)) - 1;
1123 /* A usb_set_interface() call directly after clearing a halted
1124 * condition may race on this quirky hardware. Not worth
1125 * worrying about, since this is prototype hardware. Not sure
1126 * if this will work for streams, but streams support was
1127 * untested on this prototype.
1129 if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1130 ep_index != (unsigned int) -1 &&
1131 le32_to_cpu(ctrl_ctx->add_flags) - SLOT_FLAG ==
1132 le32_to_cpu(ctrl_ctx->drop_flags)) {
1133 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
1134 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1135 if (!(ep_state & EP_HALTED))
1136 goto bandwidth_change;
1137 xhci_dbg(xhci, "Completed config ep cmd - "
1138 "last ep index = %d, state = %d\n",
1139 ep_index, ep_state);
1140 /* Clear internal halted state and restart ring(s) */
1141 xhci->devs[slot_id]->eps[ep_index].ep_state &=
1142 ~EP_HALTED;
1143 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1144 break;
1146 bandwidth_change:
1147 xhci_dbg(xhci, "Completed config ep cmd\n");
1148 xhci->devs[slot_id]->cmd_status =
1149 GET_COMP_CODE(le32_to_cpu(event->status));
1150 complete(&xhci->devs[slot_id]->cmd_completion);
1151 break;
1152 case TRB_TYPE(TRB_EVAL_CONTEXT):
1153 virt_dev = xhci->devs[slot_id];
1154 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1155 break;
1156 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1157 complete(&xhci->devs[slot_id]->cmd_completion);
1158 break;
1159 case TRB_TYPE(TRB_ADDR_DEV):
1160 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1161 complete(&xhci->addr_dev);
1162 break;
1163 case TRB_TYPE(TRB_STOP_RING):
1164 handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue, event);
1165 break;
1166 case TRB_TYPE(TRB_SET_DEQ):
1167 handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue);
1168 break;
1169 case TRB_TYPE(TRB_CMD_NOOP):
1170 break;
1171 case TRB_TYPE(TRB_RESET_EP):
1172 handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue);
1173 break;
1174 case TRB_TYPE(TRB_RESET_DEV):
1175 xhci_dbg(xhci, "Completed reset device command.\n");
1176 slot_id = TRB_TO_SLOT_ID(
1177 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
1178 virt_dev = xhci->devs[slot_id];
1179 if (virt_dev)
1180 handle_cmd_in_cmd_wait_list(xhci, virt_dev, event);
1181 else
1182 xhci_warn(xhci, "Reset device command completion "
1183 "for disabled slot %u\n", slot_id);
1184 break;
1185 case TRB_TYPE(TRB_NEC_GET_FW):
1186 if (!(xhci->quirks & XHCI_NEC_HOST)) {
1187 xhci->error_bitmask |= 1 << 6;
1188 break;
1190 xhci_dbg(xhci, "NEC firmware version %2x.%02x\n",
1191 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1192 NEC_FW_MINOR(le32_to_cpu(event->status)));
1193 break;
1194 default:
1195 /* Skip over unknown commands on the event ring */
1196 xhci->error_bitmask |= 1 << 6;
1197 break;
1199 inc_deq(xhci, xhci->cmd_ring, false);
1202 static void handle_vendor_event(struct xhci_hcd *xhci,
1203 union xhci_trb *event)
1205 u32 trb_type;
1207 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1208 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1209 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1210 handle_cmd_completion(xhci, &event->event_cmd);
1213 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1214 * port registers -- USB 3.0 and USB 2.0).
1216 * Returns a zero-based port number, which is suitable for indexing into each of
1217 * the split roothubs' port arrays and bus state arrays.
1219 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1220 struct xhci_hcd *xhci, u32 port_id)
1222 unsigned int i;
1223 unsigned int num_similar_speed_ports = 0;
1225 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1226 * and usb2_ports are 0-based indexes. Count the number of similar
1227 * speed ports, up to 1 port before this port.
1229 for (i = 0; i < (port_id - 1); i++) {
1230 u8 port_speed = xhci->port_array[i];
1233 * Skip ports that don't have known speeds, or have duplicate
1234 * Extended Capabilities port speed entries.
1236 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1237 continue;
1240 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
1241 * 1.1 ports are under the USB 2.0 hub. If the port speed
1242 * matches the device speed, it's a similar speed port.
1244 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3))
1245 num_similar_speed_ports++;
1247 return num_similar_speed_ports;
1250 static void handle_port_status(struct xhci_hcd *xhci,
1251 union xhci_trb *event)
1253 struct usb_hcd *hcd;
1254 u32 port_id;
1255 u32 temp, temp1;
1256 int max_ports;
1257 int slot_id;
1258 unsigned int faked_port_index;
1259 u8 major_revision;
1260 struct xhci_bus_state *bus_state;
1261 __le32 __iomem **port_array;
1262 bool bogus_port_status = false;
1264 /* Port status change events always have a successful completion code */
1265 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) {
1266 xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
1267 xhci->error_bitmask |= 1 << 8;
1269 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1270 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1272 max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1273 if ((port_id <= 0) || (port_id > max_ports)) {
1274 xhci_warn(xhci, "Invalid port id %d\n", port_id);
1275 bogus_port_status = true;
1276 goto cleanup;
1279 /* Figure out which usb_hcd this port is attached to:
1280 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1282 major_revision = xhci->port_array[port_id - 1];
1283 if (major_revision == 0) {
1284 xhci_warn(xhci, "Event for port %u not in "
1285 "Extended Capabilities, ignoring.\n",
1286 port_id);
1287 bogus_port_status = true;
1288 goto cleanup;
1290 if (major_revision == DUPLICATE_ENTRY) {
1291 xhci_warn(xhci, "Event for port %u duplicated in"
1292 "Extended Capabilities, ignoring.\n",
1293 port_id);
1294 bogus_port_status = true;
1295 goto cleanup;
1299 * Hardware port IDs reported by a Port Status Change Event include USB
1300 * 3.0 and USB 2.0 ports. We want to check if the port has reported a
1301 * resume event, but we first need to translate the hardware port ID
1302 * into the index into the ports on the correct split roothub, and the
1303 * correct bus_state structure.
1305 /* Find the right roothub. */
1306 hcd = xhci_to_hcd(xhci);
1307 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3))
1308 hcd = xhci->shared_hcd;
1309 bus_state = &xhci->bus_state[hcd_index(hcd)];
1310 if (hcd->speed == HCD_USB3)
1311 port_array = xhci->usb3_ports;
1312 else
1313 port_array = xhci->usb2_ports;
1314 /* Find the faked port hub number */
1315 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1316 port_id);
1318 temp = xhci_readl(xhci, port_array[faked_port_index]);
1319 if (hcd->state == HC_STATE_SUSPENDED) {
1320 xhci_dbg(xhci, "resume root hub\n");
1321 usb_hcd_resume_root_hub(hcd);
1324 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1325 xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1327 temp1 = xhci_readl(xhci, &xhci->op_regs->command);
1328 if (!(temp1 & CMD_RUN)) {
1329 xhci_warn(xhci, "xHC is not running.\n");
1330 goto cleanup;
1333 if (DEV_SUPERSPEED(temp)) {
1334 xhci_dbg(xhci, "resume SS port %d\n", port_id);
1335 xhci_set_link_state(xhci, port_array, faked_port_index,
1336 XDEV_U0);
1337 slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1338 faked_port_index);
1339 if (!slot_id) {
1340 xhci_dbg(xhci, "slot_id is zero\n");
1341 goto cleanup;
1343 xhci_ring_device(xhci, slot_id);
1344 xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1345 /* Clear PORT_PLC */
1346 xhci_test_and_clear_bit(xhci, port_array,
1347 faked_port_index, PORT_PLC);
1348 } else {
1349 xhci_dbg(xhci, "resume HS port %d\n", port_id);
1350 bus_state->resume_done[faked_port_index] = jiffies +
1351 msecs_to_jiffies(20);
1352 mod_timer(&hcd->rh_timer,
1353 bus_state->resume_done[faked_port_index]);
1354 /* Do the rest in GetPortStatus */
1358 if (hcd->speed != HCD_USB3)
1359 xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
1360 PORT_PLC);
1362 cleanup:
1363 /* Update event ring dequeue pointer before dropping the lock */
1364 inc_deq(xhci, xhci->event_ring, true);
1366 /* Don't make the USB core poll the roothub if we got a bad port status
1367 * change event. Besides, at that point we can't tell which roothub
1368 * (USB 2.0 or USB 3.0) to kick.
1370 if (bogus_port_status)
1371 return;
1373 spin_unlock(&xhci->lock);
1374 /* Pass this up to the core */
1375 usb_hcd_poll_rh_status(hcd);
1376 spin_lock(&xhci->lock);
1380 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1381 * at end_trb, which may be in another segment. If the suspect DMA address is a
1382 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1383 * returns 0.
1385 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg,
1386 union xhci_trb *start_trb,
1387 union xhci_trb *end_trb,
1388 dma_addr_t suspect_dma)
1390 dma_addr_t start_dma;
1391 dma_addr_t end_seg_dma;
1392 dma_addr_t end_trb_dma;
1393 struct xhci_segment *cur_seg;
1395 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1396 cur_seg = start_seg;
1398 do {
1399 if (start_dma == 0)
1400 return NULL;
1401 /* We may get an event for a Link TRB in the middle of a TD */
1402 end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1403 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1404 /* If the end TRB isn't in this segment, this is set to 0 */
1405 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1407 if (end_trb_dma > 0) {
1408 /* The end TRB is in this segment, so suspect should be here */
1409 if (start_dma <= end_trb_dma) {
1410 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1411 return cur_seg;
1412 } else {
1413 /* Case for one segment with
1414 * a TD wrapped around to the top
1416 if ((suspect_dma >= start_dma &&
1417 suspect_dma <= end_seg_dma) ||
1418 (suspect_dma >= cur_seg->dma &&
1419 suspect_dma <= end_trb_dma))
1420 return cur_seg;
1422 return NULL;
1423 } else {
1424 /* Might still be somewhere in this segment */
1425 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1426 return cur_seg;
1428 cur_seg = cur_seg->next;
1429 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1430 } while (cur_seg != start_seg);
1432 return NULL;
1435 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1436 unsigned int slot_id, unsigned int ep_index,
1437 unsigned int stream_id,
1438 struct xhci_td *td, union xhci_trb *event_trb)
1440 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1441 ep->ep_state |= EP_HALTED;
1442 ep->stopped_td = td;
1443 ep->stopped_trb = event_trb;
1444 ep->stopped_stream = stream_id;
1446 xhci_queue_reset_ep(xhci, slot_id, ep_index);
1447 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index);
1449 ep->stopped_td = NULL;
1450 ep->stopped_trb = NULL;
1451 ep->stopped_stream = 0;
1453 xhci_ring_cmd_db(xhci);
1456 /* Check if an error has halted the endpoint ring. The class driver will
1457 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1458 * However, a babble and other errors also halt the endpoint ring, and the class
1459 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1460 * Ring Dequeue Pointer command manually.
1462 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1463 struct xhci_ep_ctx *ep_ctx,
1464 unsigned int trb_comp_code)
1466 /* TRB completion codes that may require a manual halt cleanup */
1467 if (trb_comp_code == COMP_TX_ERR ||
1468 trb_comp_code == COMP_BABBLE ||
1469 trb_comp_code == COMP_SPLIT_ERR)
1470 /* The 0.96 spec says a babbling control endpoint
1471 * is not halted. The 0.96 spec says it is. Some HW
1472 * claims to be 0.95 compliant, but it halts the control
1473 * endpoint anyway. Check if a babble halted the
1474 * endpoint.
1476 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1477 cpu_to_le32(EP_STATE_HALTED))
1478 return 1;
1480 return 0;
1483 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1485 if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1486 /* Vendor defined "informational" completion code,
1487 * treat as not-an-error.
1489 xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1490 trb_comp_code);
1491 xhci_dbg(xhci, "Treating code as success.\n");
1492 return 1;
1494 return 0;
1498 * Finish the td processing, remove the td from td list;
1499 * Return 1 if the urb can be given back.
1501 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1502 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1503 struct xhci_virt_ep *ep, int *status, bool skip)
1505 struct xhci_virt_device *xdev;
1506 struct xhci_ring *ep_ring;
1507 unsigned int slot_id;
1508 int ep_index;
1509 struct urb *urb = NULL;
1510 struct xhci_ep_ctx *ep_ctx;
1511 int ret = 0;
1512 struct urb_priv *urb_priv;
1513 u32 trb_comp_code;
1515 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1516 xdev = xhci->devs[slot_id];
1517 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1518 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1519 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1520 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1522 if (skip)
1523 goto td_cleanup;
1525 if (trb_comp_code == COMP_STOP_INVAL ||
1526 trb_comp_code == COMP_STOP) {
1527 /* The Endpoint Stop Command completion will take care of any
1528 * stopped TDs. A stopped TD may be restarted, so don't update
1529 * the ring dequeue pointer or take this TD off any lists yet.
1531 ep->stopped_td = td;
1532 ep->stopped_trb = event_trb;
1533 return 0;
1534 } else {
1535 if (trb_comp_code == COMP_STALL) {
1536 /* The transfer is completed from the driver's
1537 * perspective, but we need to issue a set dequeue
1538 * command for this stalled endpoint to move the dequeue
1539 * pointer past the TD. We can't do that here because
1540 * the halt condition must be cleared first. Let the
1541 * USB class driver clear the stall later.
1543 ep->stopped_td = td;
1544 ep->stopped_trb = event_trb;
1545 ep->stopped_stream = ep_ring->stream_id;
1546 } else if (xhci_requires_manual_halt_cleanup(xhci,
1547 ep_ctx, trb_comp_code)) {
1548 /* Other types of errors halt the endpoint, but the
1549 * class driver doesn't call usb_reset_endpoint() unless
1550 * the error is -EPIPE. Clear the halted status in the
1551 * xHCI hardware manually.
1553 xhci_cleanup_halted_endpoint(xhci,
1554 slot_id, ep_index, ep_ring->stream_id,
1555 td, event_trb);
1556 } else {
1557 /* Update ring dequeue pointer */
1558 while (ep_ring->dequeue != td->last_trb)
1559 inc_deq(xhci, ep_ring, false);
1560 inc_deq(xhci, ep_ring, false);
1563 td_cleanup:
1564 /* Clean up the endpoint's TD list */
1565 urb = td->urb;
1566 urb_priv = urb->hcpriv;
1568 /* Do one last check of the actual transfer length.
1569 * If the host controller said we transferred more data than
1570 * the buffer length, urb->actual_length will be a very big
1571 * number (since it's unsigned). Play it safe and say we didn't
1572 * transfer anything.
1574 if (urb->actual_length > urb->transfer_buffer_length) {
1575 xhci_warn(xhci, "URB transfer length is wrong, "
1576 "xHC issue? req. len = %u, "
1577 "act. len = %u\n",
1578 urb->transfer_buffer_length,
1579 urb->actual_length);
1580 urb->actual_length = 0;
1581 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1582 *status = -EREMOTEIO;
1583 else
1584 *status = 0;
1586 list_del_init(&td->td_list);
1587 /* Was this TD slated to be cancelled but completed anyway? */
1588 if (!list_empty(&td->cancelled_td_list))
1589 list_del_init(&td->cancelled_td_list);
1591 urb_priv->td_cnt++;
1592 /* Giveback the urb when all the tds are completed */
1593 if (urb_priv->td_cnt == urb_priv->length) {
1594 ret = 1;
1595 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
1596 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
1597 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs
1598 == 0) {
1599 if (xhci->quirks & XHCI_AMD_PLL_FIX)
1600 usb_amd_quirk_pll_enable();
1606 return ret;
1610 * Process control tds, update urb status and actual_length.
1612 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
1613 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1614 struct xhci_virt_ep *ep, int *status)
1616 struct xhci_virt_device *xdev;
1617 struct xhci_ring *ep_ring;
1618 unsigned int slot_id;
1619 int ep_index;
1620 struct xhci_ep_ctx *ep_ctx;
1621 u32 trb_comp_code;
1623 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1624 xdev = xhci->devs[slot_id];
1625 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1626 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1627 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1628 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1630 xhci_debug_trb(xhci, xhci->event_ring->dequeue);
1631 switch (trb_comp_code) {
1632 case COMP_SUCCESS:
1633 if (event_trb == ep_ring->dequeue) {
1634 xhci_warn(xhci, "WARN: Success on ctrl setup TRB "
1635 "without IOC set??\n");
1636 *status = -ESHUTDOWN;
1637 } else if (event_trb != td->last_trb) {
1638 xhci_warn(xhci, "WARN: Success on ctrl data TRB "
1639 "without IOC set??\n");
1640 *status = -ESHUTDOWN;
1641 } else {
1642 *status = 0;
1644 break;
1645 case COMP_SHORT_TX:
1646 xhci_warn(xhci, "WARN: short transfer on control ep\n");
1647 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1648 *status = -EREMOTEIO;
1649 else
1650 *status = 0;
1651 break;
1652 case COMP_STOP_INVAL:
1653 case COMP_STOP:
1654 return finish_td(xhci, td, event_trb, event, ep, status, false);
1655 default:
1656 if (!xhci_requires_manual_halt_cleanup(xhci,
1657 ep_ctx, trb_comp_code))
1658 break;
1659 xhci_dbg(xhci, "TRB error code %u, "
1660 "halted endpoint index = %u\n",
1661 trb_comp_code, ep_index);
1662 /* else fall through */
1663 case COMP_STALL:
1664 /* Did we transfer part of the data (middle) phase? */
1665 if (event_trb != ep_ring->dequeue &&
1666 event_trb != td->last_trb)
1667 td->urb->actual_length =
1668 td->urb->transfer_buffer_length
1669 - TRB_LEN(le32_to_cpu(event->transfer_len));
1670 else
1671 td->urb->actual_length = 0;
1673 xhci_cleanup_halted_endpoint(xhci,
1674 slot_id, ep_index, 0, td, event_trb);
1675 return finish_td(xhci, td, event_trb, event, ep, status, true);
1678 * Did we transfer any data, despite the errors that might have
1679 * happened? I.e. did we get past the setup stage?
1681 if (event_trb != ep_ring->dequeue) {
1682 /* The event was for the status stage */
1683 if (event_trb == td->last_trb) {
1684 if (td->urb->actual_length != 0) {
1685 /* Don't overwrite a previously set error code
1687 if ((*status == -EINPROGRESS || *status == 0) &&
1688 (td->urb->transfer_flags
1689 & URB_SHORT_NOT_OK))
1690 /* Did we already see a short data
1691 * stage? */
1692 *status = -EREMOTEIO;
1693 } else {
1694 td->urb->actual_length =
1695 td->urb->transfer_buffer_length;
1697 } else {
1698 /* Maybe the event was for the data stage? */
1699 td->urb->actual_length =
1700 td->urb->transfer_buffer_length -
1701 TRB_LEN(le32_to_cpu(event->transfer_len));
1702 xhci_dbg(xhci, "Waiting for status "
1703 "stage event\n");
1704 return 0;
1708 return finish_td(xhci, td, event_trb, event, ep, status, false);
1712 * Process isochronous tds, update urb packet status and actual_length.
1714 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
1715 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1716 struct xhci_virt_ep *ep, int *status)
1718 struct xhci_ring *ep_ring;
1719 struct urb_priv *urb_priv;
1720 int idx;
1721 int len = 0;
1722 union xhci_trb *cur_trb;
1723 struct xhci_segment *cur_seg;
1724 struct usb_iso_packet_descriptor *frame;
1725 u32 trb_comp_code;
1726 bool skip_td = false;
1728 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1729 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1730 urb_priv = td->urb->hcpriv;
1731 idx = urb_priv->td_cnt;
1732 frame = &td->urb->iso_frame_desc[idx];
1734 /* handle completion code */
1735 switch (trb_comp_code) {
1736 case COMP_SUCCESS:
1737 frame->status = 0;
1738 break;
1739 case COMP_SHORT_TX:
1740 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
1741 -EREMOTEIO : 0;
1742 break;
1743 case COMP_BW_OVER:
1744 frame->status = -ECOMM;
1745 skip_td = true;
1746 break;
1747 case COMP_BUFF_OVER:
1748 case COMP_BABBLE:
1749 frame->status = -EOVERFLOW;
1750 skip_td = true;
1751 break;
1752 case COMP_DEV_ERR:
1753 case COMP_STALL:
1754 frame->status = -EPROTO;
1755 skip_td = true;
1756 break;
1757 case COMP_STOP:
1758 case COMP_STOP_INVAL:
1759 break;
1760 default:
1761 frame->status = -1;
1762 break;
1765 if (trb_comp_code == COMP_SUCCESS || skip_td) {
1766 frame->actual_length = frame->length;
1767 td->urb->actual_length += frame->length;
1768 } else {
1769 for (cur_trb = ep_ring->dequeue,
1770 cur_seg = ep_ring->deq_seg; cur_trb != event_trb;
1771 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
1772 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
1773 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
1774 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
1776 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
1777 TRB_LEN(le32_to_cpu(event->transfer_len));
1779 if (trb_comp_code != COMP_STOP_INVAL) {
1780 frame->actual_length = len;
1781 td->urb->actual_length += len;
1785 return finish_td(xhci, td, event_trb, event, ep, status, false);
1788 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
1789 struct xhci_transfer_event *event,
1790 struct xhci_virt_ep *ep, int *status)
1792 struct xhci_ring *ep_ring;
1793 struct urb_priv *urb_priv;
1794 struct usb_iso_packet_descriptor *frame;
1795 int idx;
1797 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1798 urb_priv = td->urb->hcpriv;
1799 idx = urb_priv->td_cnt;
1800 frame = &td->urb->iso_frame_desc[idx];
1802 /* The transfer is partly done. */
1803 frame->status = -EXDEV;
1805 /* calc actual length */
1806 frame->actual_length = 0;
1808 /* Update ring dequeue pointer */
1809 while (ep_ring->dequeue != td->last_trb)
1810 inc_deq(xhci, ep_ring, false);
1811 inc_deq(xhci, ep_ring, false);
1813 return finish_td(xhci, td, NULL, event, ep, status, true);
1817 * Process bulk and interrupt tds, update urb status and actual_length.
1819 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
1820 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1821 struct xhci_virt_ep *ep, int *status)
1823 struct xhci_ring *ep_ring;
1824 union xhci_trb *cur_trb;
1825 struct xhci_segment *cur_seg;
1826 u32 trb_comp_code;
1828 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1829 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1831 switch (trb_comp_code) {
1832 case COMP_SUCCESS:
1833 /* Double check that the HW transferred everything. */
1834 if (event_trb != td->last_trb) {
1835 xhci_warn(xhci, "WARN Successful completion "
1836 "on short TX\n");
1837 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1838 *status = -EREMOTEIO;
1839 else
1840 *status = 0;
1841 } else {
1842 *status = 0;
1844 break;
1845 case COMP_SHORT_TX:
1846 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1847 *status = -EREMOTEIO;
1848 else
1849 *status = 0;
1850 break;
1851 default:
1852 /* Others already handled above */
1853 break;
1855 if (trb_comp_code == COMP_SHORT_TX)
1856 xhci_dbg(xhci, "ep %#x - asked for %d bytes, "
1857 "%d bytes untransferred\n",
1858 td->urb->ep->desc.bEndpointAddress,
1859 td->urb->transfer_buffer_length,
1860 TRB_LEN(le32_to_cpu(event->transfer_len)));
1861 /* Fast path - was this the last TRB in the TD for this URB? */
1862 if (event_trb == td->last_trb) {
1863 if (TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
1864 td->urb->actual_length =
1865 td->urb->transfer_buffer_length -
1866 TRB_LEN(le32_to_cpu(event->transfer_len));
1867 if (td->urb->transfer_buffer_length <
1868 td->urb->actual_length) {
1869 xhci_warn(xhci, "HC gave bad length "
1870 "of %d bytes left\n",
1871 TRB_LEN(le32_to_cpu(event->transfer_len)));
1872 td->urb->actual_length = 0;
1873 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1874 *status = -EREMOTEIO;
1875 else
1876 *status = 0;
1878 /* Don't overwrite a previously set error code */
1879 if (*status == -EINPROGRESS) {
1880 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1881 *status = -EREMOTEIO;
1882 else
1883 *status = 0;
1885 } else {
1886 td->urb->actual_length =
1887 td->urb->transfer_buffer_length;
1888 /* Ignore a short packet completion if the
1889 * untransferred length was zero.
1891 if (*status == -EREMOTEIO)
1892 *status = 0;
1894 } else {
1895 /* Slow path - walk the list, starting from the dequeue
1896 * pointer, to get the actual length transferred.
1898 td->urb->actual_length = 0;
1899 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
1900 cur_trb != event_trb;
1901 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
1902 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
1903 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
1904 td->urb->actual_length +=
1905 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
1907 /* If the ring didn't stop on a Link or No-op TRB, add
1908 * in the actual bytes transferred from the Normal TRB
1910 if (trb_comp_code != COMP_STOP_INVAL)
1911 td->urb->actual_length +=
1912 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
1913 TRB_LEN(le32_to_cpu(event->transfer_len));
1916 return finish_td(xhci, td, event_trb, event, ep, status, false);
1920 * If this function returns an error condition, it means it got a Transfer
1921 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
1922 * At this point, the host controller is probably hosed and should be reset.
1924 static int handle_tx_event(struct xhci_hcd *xhci,
1925 struct xhci_transfer_event *event)
1927 struct xhci_virt_device *xdev;
1928 struct xhci_virt_ep *ep;
1929 struct xhci_ring *ep_ring;
1930 unsigned int slot_id;
1931 int ep_index;
1932 struct xhci_td *td = NULL;
1933 dma_addr_t event_dma;
1934 struct xhci_segment *event_seg;
1935 union xhci_trb *event_trb;
1936 struct urb *urb = NULL;
1937 int status = -EINPROGRESS;
1938 struct urb_priv *urb_priv;
1939 struct xhci_ep_ctx *ep_ctx;
1940 struct list_head *tmp;
1941 u32 trb_comp_code;
1942 int ret = 0;
1943 int td_num = 0;
1945 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1946 xdev = xhci->devs[slot_id];
1947 if (!xdev) {
1948 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
1949 return -ENODEV;
1952 /* Endpoint ID is 1 based, our index is zero based */
1953 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1954 ep = &xdev->eps[ep_index];
1955 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1956 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1957 if (!ep_ring ||
1958 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
1959 EP_STATE_DISABLED) {
1960 xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
1961 "or incorrect stream ring\n");
1962 return -ENODEV;
1965 /* Count current td numbers if ep->skip is set */
1966 if (ep->skip) {
1967 list_for_each(tmp, &ep_ring->td_list)
1968 td_num++;
1971 event_dma = le64_to_cpu(event->buffer);
1972 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1973 /* Look for common error cases */
1974 switch (trb_comp_code) {
1975 /* Skip codes that require special handling depending on
1976 * transfer type
1978 case COMP_SUCCESS:
1979 case COMP_SHORT_TX:
1980 break;
1981 case COMP_STOP:
1982 xhci_dbg(xhci, "Stopped on Transfer TRB\n");
1983 break;
1984 case COMP_STOP_INVAL:
1985 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
1986 break;
1987 case COMP_STALL:
1988 xhci_warn(xhci, "WARN: Stalled endpoint\n");
1989 ep->ep_state |= EP_HALTED;
1990 status = -EPIPE;
1991 break;
1992 case COMP_TRB_ERR:
1993 xhci_warn(xhci, "WARN: TRB error on endpoint\n");
1994 status = -EILSEQ;
1995 break;
1996 case COMP_SPLIT_ERR:
1997 case COMP_TX_ERR:
1998 xhci_warn(xhci, "WARN: transfer error on endpoint\n");
1999 status = -EPROTO;
2000 break;
2001 case COMP_BABBLE:
2002 xhci_warn(xhci, "WARN: babble error on endpoint\n");
2003 status = -EOVERFLOW;
2004 break;
2005 case COMP_DB_ERR:
2006 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
2007 status = -ENOSR;
2008 break;
2009 case COMP_BW_OVER:
2010 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
2011 break;
2012 case COMP_BUFF_OVER:
2013 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
2014 break;
2015 case COMP_UNDERRUN:
2017 * When the Isoch ring is empty, the xHC will generate
2018 * a Ring Overrun Event for IN Isoch endpoint or Ring
2019 * Underrun Event for OUT Isoch endpoint.
2021 xhci_dbg(xhci, "underrun event on endpoint\n");
2022 if (!list_empty(&ep_ring->td_list))
2023 xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2024 "still with TDs queued?\n",
2025 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2026 ep_index);
2027 goto cleanup;
2028 case COMP_OVERRUN:
2029 xhci_dbg(xhci, "overrun event on endpoint\n");
2030 if (!list_empty(&ep_ring->td_list))
2031 xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2032 "still with TDs queued?\n",
2033 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2034 ep_index);
2035 goto cleanup;
2036 case COMP_DEV_ERR:
2037 xhci_warn(xhci, "WARN: detect an incompatible device");
2038 status = -EPROTO;
2039 break;
2040 case COMP_MISSED_INT:
2042 * When encounter missed service error, one or more isoc tds
2043 * may be missed by xHC.
2044 * Set skip flag of the ep_ring; Complete the missed tds as
2045 * short transfer when process the ep_ring next time.
2047 ep->skip = true;
2048 xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
2049 goto cleanup;
2050 default:
2051 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2052 status = 0;
2053 break;
2055 xhci_warn(xhci, "ERROR Unknown event condition, HC probably "
2056 "busted\n");
2057 goto cleanup;
2060 do {
2061 /* This TRB should be in the TD at the head of this ring's
2062 * TD list.
2064 if (list_empty(&ep_ring->td_list)) {
2065 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d "
2066 "with no TDs queued?\n",
2067 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2068 ep_index);
2069 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
2070 (le32_to_cpu(event->flags) &
2071 TRB_TYPE_BITMASK)>>10);
2072 xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
2073 if (ep->skip) {
2074 ep->skip = false;
2075 xhci_dbg(xhci, "td_list is empty while skip "
2076 "flag set. Clear skip flag.\n");
2078 ret = 0;
2079 goto cleanup;
2082 /* We've skipped all the TDs on the ep ring when ep->skip set */
2083 if (ep->skip && td_num == 0) {
2084 ep->skip = false;
2085 xhci_dbg(xhci, "All tds on the ep_ring skipped. "
2086 "Clear skip flag.\n");
2087 ret = 0;
2088 goto cleanup;
2091 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
2092 if (ep->skip)
2093 td_num--;
2095 /* Is this a TRB in the currently executing TD? */
2096 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue,
2097 td->last_trb, event_dma);
2100 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2101 * is not in the current TD pointed by ep_ring->dequeue because
2102 * that the hardware dequeue pointer still at the previous TRB
2103 * of the current TD. The previous TRB maybe a Link TD or the
2104 * last TRB of the previous TD. The command completion handle
2105 * will take care the rest.
2107 if (!event_seg && trb_comp_code == COMP_STOP_INVAL) {
2108 ret = 0;
2109 goto cleanup;
2112 if (!event_seg) {
2113 if (!ep->skip ||
2114 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2115 /* Some host controllers give a spurious
2116 * successful event after a short transfer.
2117 * Ignore it.
2119 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2120 ep_ring->last_td_was_short) {
2121 ep_ring->last_td_was_short = false;
2122 ret = 0;
2123 goto cleanup;
2125 /* HC is busted, give up! */
2126 xhci_err(xhci,
2127 "ERROR Transfer event TRB DMA ptr not "
2128 "part of current TD\n");
2129 return -ESHUTDOWN;
2132 ret = skip_isoc_td(xhci, td, event, ep, &status);
2133 goto cleanup;
2135 if (trb_comp_code == COMP_SHORT_TX)
2136 ep_ring->last_td_was_short = true;
2137 else
2138 ep_ring->last_td_was_short = false;
2140 if (ep->skip) {
2141 xhci_dbg(xhci, "Found td. Clear skip flag.\n");
2142 ep->skip = false;
2145 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) /
2146 sizeof(*event_trb)];
2148 * No-op TRB should not trigger interrupts.
2149 * If event_trb is a no-op TRB, it means the
2150 * corresponding TD has been cancelled. Just ignore
2151 * the TD.
2153 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) {
2154 xhci_dbg(xhci,
2155 "event_trb is a no-op TRB. Skip it\n");
2156 goto cleanup;
2159 /* Now update the urb's actual_length and give back to
2160 * the core
2162 if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2163 ret = process_ctrl_td(xhci, td, event_trb, event, ep,
2164 &status);
2165 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2166 ret = process_isoc_td(xhci, td, event_trb, event, ep,
2167 &status);
2168 else
2169 ret = process_bulk_intr_td(xhci, td, event_trb, event,
2170 ep, &status);
2172 cleanup:
2174 * Do not update event ring dequeue pointer if ep->skip is set.
2175 * Will roll back to continue process missed tds.
2177 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) {
2178 inc_deq(xhci, xhci->event_ring, true);
2181 if (ret) {
2182 urb = td->urb;
2183 urb_priv = urb->hcpriv;
2184 /* Leave the TD around for the reset endpoint function
2185 * to use(but only if it's not a control endpoint,
2186 * since we already queued the Set TR dequeue pointer
2187 * command for stalled control endpoints).
2189 if (usb_endpoint_xfer_control(&urb->ep->desc) ||
2190 (trb_comp_code != COMP_STALL &&
2191 trb_comp_code != COMP_BABBLE))
2192 xhci_urb_free_priv(xhci, urb_priv);
2194 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
2195 if ((urb->actual_length != urb->transfer_buffer_length &&
2196 (urb->transfer_flags &
2197 URB_SHORT_NOT_OK)) ||
2198 (status != 0 &&
2199 !usb_endpoint_xfer_isoc(&urb->ep->desc)))
2200 xhci_dbg(xhci, "Giveback URB %p, len = %d, "
2201 "expected = %x, status = %d\n",
2202 urb, urb->actual_length,
2203 urb->transfer_buffer_length,
2204 status);
2205 spin_unlock(&xhci->lock);
2206 /* EHCI, UHCI, and OHCI always unconditionally set the
2207 * urb->status of an isochronous endpoint to 0.
2209 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2210 status = 0;
2211 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status);
2212 spin_lock(&xhci->lock);
2216 * If ep->skip is set, it means there are missed tds on the
2217 * endpoint ring need to take care of.
2218 * Process them as short transfer until reach the td pointed by
2219 * the event.
2221 } while (ep->skip && trb_comp_code != COMP_MISSED_INT);
2223 return 0;
2227 * This function handles all OS-owned events on the event ring. It may drop
2228 * xhci->lock between event processing (e.g. to pass up port status changes).
2229 * Returns >0 for "possibly more events to process" (caller should call again),
2230 * otherwise 0 if done. In future, <0 returns should indicate error code.
2232 static int xhci_handle_event(struct xhci_hcd *xhci)
2234 union xhci_trb *event;
2235 int update_ptrs = 1;
2236 int ret;
2238 if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2239 xhci->error_bitmask |= 1 << 1;
2240 return 0;
2243 event = xhci->event_ring->dequeue;
2244 /* Does the HC or OS own the TRB? */
2245 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2246 xhci->event_ring->cycle_state) {
2247 xhci->error_bitmask |= 1 << 2;
2248 return 0;
2252 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2253 * speculative reads of the event's flags/data below.
2255 rmb();
2256 /* FIXME: Handle more event types. */
2257 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) {
2258 case TRB_TYPE(TRB_COMPLETION):
2259 handle_cmd_completion(xhci, &event->event_cmd);
2260 break;
2261 case TRB_TYPE(TRB_PORT_STATUS):
2262 handle_port_status(xhci, event);
2263 update_ptrs = 0;
2264 break;
2265 case TRB_TYPE(TRB_TRANSFER):
2266 ret = handle_tx_event(xhci, &event->trans_event);
2267 if (ret < 0)
2268 xhci->error_bitmask |= 1 << 9;
2269 else
2270 update_ptrs = 0;
2271 break;
2272 default:
2273 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2274 TRB_TYPE(48))
2275 handle_vendor_event(xhci, event);
2276 else
2277 xhci->error_bitmask |= 1 << 3;
2279 /* Any of the above functions may drop and re-acquire the lock, so check
2280 * to make sure a watchdog timer didn't mark the host as non-responsive.
2282 if (xhci->xhc_state & XHCI_STATE_DYING) {
2283 xhci_dbg(xhci, "xHCI host dying, returning from "
2284 "event handler.\n");
2285 return 0;
2288 if (update_ptrs)
2289 /* Update SW event ring dequeue pointer */
2290 inc_deq(xhci, xhci->event_ring, true);
2292 /* Are there more items on the event ring? Caller will call us again to
2293 * check.
2295 return 1;
2299 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2300 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
2301 * indicators of an event TRB error, but we check the status *first* to be safe.
2303 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2305 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2306 u32 status;
2307 union xhci_trb *trb;
2308 u64 temp_64;
2309 union xhci_trb *event_ring_deq;
2310 dma_addr_t deq;
2312 spin_lock(&xhci->lock);
2313 trb = xhci->event_ring->dequeue;
2314 /* Check if the xHC generated the interrupt, or the irq is shared */
2315 status = xhci_readl(xhci, &xhci->op_regs->status);
2316 if (status == 0xffffffff)
2317 goto hw_died;
2319 if (!(status & STS_EINT)) {
2320 spin_unlock(&xhci->lock);
2321 return IRQ_NONE;
2323 if (status & STS_FATAL) {
2324 xhci_warn(xhci, "WARNING: Host System Error\n");
2325 xhci_halt(xhci);
2326 hw_died:
2327 spin_unlock(&xhci->lock);
2328 return -ESHUTDOWN;
2332 * Clear the op reg interrupt status first,
2333 * so we can receive interrupts from other MSI-X interrupters.
2334 * Write 1 to clear the interrupt status.
2336 status |= STS_EINT;
2337 xhci_writel(xhci, status, &xhci->op_regs->status);
2338 /* FIXME when MSI-X is supported and there are multiple vectors */
2339 /* Clear the MSI-X event interrupt status */
2341 if (hcd->irq != -1) {
2342 u32 irq_pending;
2343 /* Acknowledge the PCI interrupt */
2344 irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
2345 irq_pending |= 0x3;
2346 xhci_writel(xhci, irq_pending, &xhci->ir_set->irq_pending);
2349 if (xhci->xhc_state & XHCI_STATE_DYING) {
2350 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2351 "Shouldn't IRQs be disabled?\n");
2352 /* Clear the event handler busy flag (RW1C);
2353 * the event ring should be empty.
2355 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2356 xhci_write_64(xhci, temp_64 | ERST_EHB,
2357 &xhci->ir_set->erst_dequeue);
2358 spin_unlock(&xhci->lock);
2360 return IRQ_HANDLED;
2363 event_ring_deq = xhci->event_ring->dequeue;
2364 /* FIXME this should be a delayed service routine
2365 * that clears the EHB.
2367 while (xhci_handle_event(xhci) > 0) {}
2369 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2370 /* If necessary, update the HW's version of the event ring deq ptr. */
2371 if (event_ring_deq != xhci->event_ring->dequeue) {
2372 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2373 xhci->event_ring->dequeue);
2374 if (deq == 0)
2375 xhci_warn(xhci, "WARN something wrong with SW event "
2376 "ring dequeue ptr.\n");
2377 /* Update HC event ring dequeue pointer */
2378 temp_64 &= ERST_PTR_MASK;
2379 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2382 /* Clear the event handler busy flag (RW1C); event ring is empty. */
2383 temp_64 |= ERST_EHB;
2384 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2386 spin_unlock(&xhci->lock);
2388 return IRQ_HANDLED;
2391 irqreturn_t xhci_msi_irq(int irq, struct usb_hcd *hcd)
2393 irqreturn_t ret;
2394 struct xhci_hcd *xhci;
2396 xhci = hcd_to_xhci(hcd);
2397 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
2398 if (xhci->shared_hcd)
2399 set_bit(HCD_FLAG_SAW_IRQ, &xhci->shared_hcd->flags);
2401 ret = xhci_irq(hcd);
2403 return ret;
2406 /**** Endpoint Ring Operations ****/
2409 * Generic function for queueing a TRB on a ring.
2410 * The caller must have checked to make sure there's room on the ring.
2412 * @more_trbs_coming: Will you enqueue more TRBs before calling
2413 * prepare_transfer()?
2415 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2416 bool consumer, bool more_trbs_coming, bool isoc,
2417 u32 field1, u32 field2, u32 field3, u32 field4)
2419 struct xhci_generic_trb *trb;
2421 trb = &ring->enqueue->generic;
2422 trb->field[0] = cpu_to_le32(field1);
2423 trb->field[1] = cpu_to_le32(field2);
2424 trb->field[2] = cpu_to_le32(field3);
2425 trb->field[3] = cpu_to_le32(field4);
2426 inc_enq(xhci, ring, consumer, more_trbs_coming, isoc);
2430 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2431 * FIXME allocate segments if the ring is full.
2433 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2434 u32 ep_state, unsigned int num_trbs, bool isoc, gfp_t mem_flags)
2436 /* Make sure the endpoint has been added to xHC schedule */
2437 switch (ep_state) {
2438 case EP_STATE_DISABLED:
2440 * USB core changed config/interfaces without notifying us,
2441 * or hardware is reporting the wrong state.
2443 xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2444 return -ENOENT;
2445 case EP_STATE_ERROR:
2446 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2447 /* FIXME event handling code for error needs to clear it */
2448 /* XXX not sure if this should be -ENOENT or not */
2449 return -EINVAL;
2450 case EP_STATE_HALTED:
2451 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2452 case EP_STATE_STOPPED:
2453 case EP_STATE_RUNNING:
2454 break;
2455 default:
2456 xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2458 * FIXME issue Configure Endpoint command to try to get the HC
2459 * back into a known state.
2461 return -EINVAL;
2463 if (!room_on_ring(xhci, ep_ring, num_trbs)) {
2464 /* FIXME allocate more room */
2465 xhci_err(xhci, "ERROR no room on ep ring\n");
2466 return -ENOMEM;
2469 if (enqueue_is_link_trb(ep_ring)) {
2470 struct xhci_ring *ring = ep_ring;
2471 union xhci_trb *next;
2473 next = ring->enqueue;
2475 while (last_trb(xhci, ring, ring->enq_seg, next)) {
2476 /* If we're not dealing with 0.95 hardware or isoc rings
2477 * on AMD 0.96 host, clear the chain bit.
2479 if (!xhci_link_trb_quirk(xhci) && !(isoc &&
2480 (xhci->quirks & XHCI_AMD_0x96_HOST)))
2481 next->link.control &= cpu_to_le32(~TRB_CHAIN);
2482 else
2483 next->link.control |= cpu_to_le32(TRB_CHAIN);
2485 wmb();
2486 next->link.control ^= cpu_to_le32(TRB_CYCLE);
2488 /* Toggle the cycle bit after the last ring segment. */
2489 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
2490 ring->cycle_state = (ring->cycle_state ? 0 : 1);
2491 if (!in_interrupt()) {
2492 xhci_dbg(xhci, "queue_trb: Toggle cycle "
2493 "state for ring %p = %i\n",
2494 ring, (unsigned int)ring->cycle_state);
2497 ring->enq_seg = ring->enq_seg->next;
2498 ring->enqueue = ring->enq_seg->trbs;
2499 next = ring->enqueue;
2503 return 0;
2506 static int prepare_transfer(struct xhci_hcd *xhci,
2507 struct xhci_virt_device *xdev,
2508 unsigned int ep_index,
2509 unsigned int stream_id,
2510 unsigned int num_trbs,
2511 struct urb *urb,
2512 unsigned int td_index,
2513 bool isoc,
2514 gfp_t mem_flags)
2516 int ret;
2517 struct urb_priv *urb_priv;
2518 struct xhci_td *td;
2519 struct xhci_ring *ep_ring;
2520 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2522 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2523 if (!ep_ring) {
2524 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2525 stream_id);
2526 return -EINVAL;
2529 ret = prepare_ring(xhci, ep_ring,
2530 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
2531 num_trbs, isoc, mem_flags);
2532 if (ret)
2533 return ret;
2535 urb_priv = urb->hcpriv;
2536 td = urb_priv->td[td_index];
2538 INIT_LIST_HEAD(&td->td_list);
2539 INIT_LIST_HEAD(&td->cancelled_td_list);
2541 if (td_index == 0) {
2542 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2543 if (unlikely(ret))
2544 return ret;
2547 td->urb = urb;
2548 /* Add this TD to the tail of the endpoint ring's TD list */
2549 list_add_tail(&td->td_list, &ep_ring->td_list);
2550 td->start_seg = ep_ring->enq_seg;
2551 td->first_trb = ep_ring->enqueue;
2553 urb_priv->td[td_index] = td;
2555 return 0;
2558 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb)
2560 int num_sgs, num_trbs, running_total, temp, i;
2561 struct scatterlist *sg;
2563 sg = NULL;
2564 num_sgs = urb->num_mapped_sgs;
2565 temp = urb->transfer_buffer_length;
2567 xhci_dbg(xhci, "count sg list trbs: \n");
2568 num_trbs = 0;
2569 for_each_sg(urb->sg, sg, num_sgs, i) {
2570 unsigned int previous_total_trbs = num_trbs;
2571 unsigned int len = sg_dma_len(sg);
2573 /* Scatter gather list entries may cross 64KB boundaries */
2574 running_total = TRB_MAX_BUFF_SIZE -
2575 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1));
2576 running_total &= TRB_MAX_BUFF_SIZE - 1;
2577 if (running_total != 0)
2578 num_trbs++;
2580 /* How many more 64KB chunks to transfer, how many more TRBs? */
2581 while (running_total < sg_dma_len(sg) && running_total < temp) {
2582 num_trbs++;
2583 running_total += TRB_MAX_BUFF_SIZE;
2585 xhci_dbg(xhci, " sg #%d: dma = %#llx, len = %#x (%d), num_trbs = %d\n",
2586 i, (unsigned long long)sg_dma_address(sg),
2587 len, len, num_trbs - previous_total_trbs);
2589 len = min_t(int, len, temp);
2590 temp -= len;
2591 if (temp == 0)
2592 break;
2594 xhci_dbg(xhci, "\n");
2595 if (!in_interrupt())
2596 xhci_dbg(xhci, "ep %#x - urb len = %d, sglist used, "
2597 "num_trbs = %d\n",
2598 urb->ep->desc.bEndpointAddress,
2599 urb->transfer_buffer_length,
2600 num_trbs);
2601 return num_trbs;
2604 static void check_trb_math(struct urb *urb, int num_trbs, int running_total)
2606 if (num_trbs != 0)
2607 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of "
2608 "TRBs, %d left\n", __func__,
2609 urb->ep->desc.bEndpointAddress, num_trbs);
2610 if (running_total != urb->transfer_buffer_length)
2611 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
2612 "queued %#x (%d), asked for %#x (%d)\n",
2613 __func__,
2614 urb->ep->desc.bEndpointAddress,
2615 running_total, running_total,
2616 urb->transfer_buffer_length,
2617 urb->transfer_buffer_length);
2620 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
2621 unsigned int ep_index, unsigned int stream_id, int start_cycle,
2622 struct xhci_generic_trb *start_trb)
2625 * Pass all the TRBs to the hardware at once and make sure this write
2626 * isn't reordered.
2628 wmb();
2629 if (start_cycle)
2630 start_trb->field[3] |= cpu_to_le32(start_cycle);
2631 else
2632 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
2633 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
2637 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
2638 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
2639 * (comprised of sg list entries) can take several service intervals to
2640 * transmit.
2642 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2643 struct urb *urb, int slot_id, unsigned int ep_index)
2645 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci,
2646 xhci->devs[slot_id]->out_ctx, ep_index);
2647 int xhci_interval;
2648 int ep_interval;
2650 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
2651 ep_interval = urb->interval;
2652 /* Convert to microframes */
2653 if (urb->dev->speed == USB_SPEED_LOW ||
2654 urb->dev->speed == USB_SPEED_FULL)
2655 ep_interval *= 8;
2656 /* FIXME change this to a warning and a suggestion to use the new API
2657 * to set the polling interval (once the API is added).
2659 if (xhci_interval != ep_interval) {
2660 if (printk_ratelimit())
2661 dev_dbg(&urb->dev->dev, "Driver uses different interval"
2662 " (%d microframe%s) than xHCI "
2663 "(%d microframe%s)\n",
2664 ep_interval,
2665 ep_interval == 1 ? "" : "s",
2666 xhci_interval,
2667 xhci_interval == 1 ? "" : "s");
2668 urb->interval = xhci_interval;
2669 /* Convert back to frames for LS/FS devices */
2670 if (urb->dev->speed == USB_SPEED_LOW ||
2671 urb->dev->speed == USB_SPEED_FULL)
2672 urb->interval /= 8;
2674 return xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index);
2678 * The TD size is the number of bytes remaining in the TD (including this TRB),
2679 * right shifted by 10.
2680 * It must fit in bits 21:17, so it can't be bigger than 31.
2682 static u32 xhci_td_remainder(unsigned int remainder)
2684 u32 max = (1 << (21 - 17 + 1)) - 1;
2686 if ((remainder >> 10) >= max)
2687 return max << 17;
2688 else
2689 return (remainder >> 10) << 17;
2693 * For xHCI 1.0 host controllers, TD size is the number of packets remaining in
2694 * the TD (*not* including this TRB).
2696 * Total TD packet count = total_packet_count =
2697 * roundup(TD size in bytes / wMaxPacketSize)
2699 * Packets transferred up to and including this TRB = packets_transferred =
2700 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
2702 * TD size = total_packet_count - packets_transferred
2704 * It must fit in bits 21:17, so it can't be bigger than 31.
2707 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len,
2708 unsigned int total_packet_count, struct urb *urb)
2710 int packets_transferred;
2712 /* One TRB with a zero-length data packet. */
2713 if (running_total == 0 && trb_buff_len == 0)
2714 return 0;
2716 /* All the TRB queueing functions don't count the current TRB in
2717 * running_total.
2719 packets_transferred = (running_total + trb_buff_len) /
2720 usb_endpoint_maxp(&urb->ep->desc);
2722 return xhci_td_remainder(total_packet_count - packets_transferred);
2725 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2726 struct urb *urb, int slot_id, unsigned int ep_index)
2728 struct xhci_ring *ep_ring;
2729 unsigned int num_trbs;
2730 struct urb_priv *urb_priv;
2731 struct xhci_td *td;
2732 struct scatterlist *sg;
2733 int num_sgs;
2734 int trb_buff_len, this_sg_len, running_total;
2735 unsigned int total_packet_count;
2736 bool first_trb;
2737 u64 addr;
2738 bool more_trbs_coming;
2740 struct xhci_generic_trb *start_trb;
2741 int start_cycle;
2743 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
2744 if (!ep_ring)
2745 return -EINVAL;
2747 num_trbs = count_sg_trbs_needed(xhci, urb);
2748 num_sgs = urb->num_mapped_sgs;
2749 total_packet_count = roundup(urb->transfer_buffer_length,
2750 usb_endpoint_maxp(&urb->ep->desc));
2752 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id],
2753 ep_index, urb->stream_id,
2754 num_trbs, urb, 0, false, mem_flags);
2755 if (trb_buff_len < 0)
2756 return trb_buff_len;
2758 urb_priv = urb->hcpriv;
2759 td = urb_priv->td[0];
2762 * Don't give the first TRB to the hardware (by toggling the cycle bit)
2763 * until we've finished creating all the other TRBs. The ring's cycle
2764 * state may change as we enqueue the other TRBs, so save it too.
2766 start_trb = &ep_ring->enqueue->generic;
2767 start_cycle = ep_ring->cycle_state;
2769 running_total = 0;
2771 * How much data is in the first TRB?
2773 * There are three forces at work for TRB buffer pointers and lengths:
2774 * 1. We don't want to walk off the end of this sg-list entry buffer.
2775 * 2. The transfer length that the driver requested may be smaller than
2776 * the amount of memory allocated for this scatter-gather list.
2777 * 3. TRBs buffers can't cross 64KB boundaries.
2779 sg = urb->sg;
2780 addr = (u64) sg_dma_address(sg);
2781 this_sg_len = sg_dma_len(sg);
2782 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
2783 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
2784 if (trb_buff_len > urb->transfer_buffer_length)
2785 trb_buff_len = urb->transfer_buffer_length;
2786 xhci_dbg(xhci, "First length to xfer from 1st sglist entry = %u\n",
2787 trb_buff_len);
2789 first_trb = true;
2790 /* Queue the first TRB, even if it's zero-length */
2791 do {
2792 u32 field = 0;
2793 u32 length_field = 0;
2794 u32 remainder = 0;
2796 /* Don't change the cycle bit of the first TRB until later */
2797 if (first_trb) {
2798 first_trb = false;
2799 if (start_cycle == 0)
2800 field |= 0x1;
2801 } else
2802 field |= ep_ring->cycle_state;
2804 /* Chain all the TRBs together; clear the chain bit in the last
2805 * TRB to indicate it's the last TRB in the chain.
2807 if (num_trbs > 1) {
2808 field |= TRB_CHAIN;
2809 } else {
2810 /* FIXME - add check for ZERO_PACKET flag before this */
2811 td->last_trb = ep_ring->enqueue;
2812 field |= TRB_IOC;
2815 /* Only set interrupt on short packet for IN endpoints */
2816 if (usb_urb_dir_in(urb))
2817 field |= TRB_ISP;
2819 xhci_dbg(xhci, " sg entry: dma = %#x, len = %#x (%d), "
2820 "64KB boundary at %#x, end dma = %#x\n",
2821 (unsigned int) addr, trb_buff_len, trb_buff_len,
2822 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
2823 (unsigned int) addr + trb_buff_len);
2824 if (TRB_MAX_BUFF_SIZE -
2825 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) {
2826 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n");
2827 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n",
2828 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
2829 (unsigned int) addr + trb_buff_len);
2832 /* Set the TRB length, TD size, and interrupter fields. */
2833 if (xhci->hci_version < 0x100) {
2834 remainder = xhci_td_remainder(
2835 urb->transfer_buffer_length -
2836 running_total);
2837 } else {
2838 remainder = xhci_v1_0_td_remainder(running_total,
2839 trb_buff_len, total_packet_count, urb);
2841 length_field = TRB_LEN(trb_buff_len) |
2842 remainder |
2843 TRB_INTR_TARGET(0);
2845 if (num_trbs > 1)
2846 more_trbs_coming = true;
2847 else
2848 more_trbs_coming = false;
2849 queue_trb(xhci, ep_ring, false, more_trbs_coming, false,
2850 lower_32_bits(addr),
2851 upper_32_bits(addr),
2852 length_field,
2853 field | TRB_TYPE(TRB_NORMAL));
2854 --num_trbs;
2855 running_total += trb_buff_len;
2857 /* Calculate length for next transfer --
2858 * Are we done queueing all the TRBs for this sg entry?
2860 this_sg_len -= trb_buff_len;
2861 if (this_sg_len == 0) {
2862 --num_sgs;
2863 if (num_sgs == 0)
2864 break;
2865 sg = sg_next(sg);
2866 addr = (u64) sg_dma_address(sg);
2867 this_sg_len = sg_dma_len(sg);
2868 } else {
2869 addr += trb_buff_len;
2872 trb_buff_len = TRB_MAX_BUFF_SIZE -
2873 (addr & (TRB_MAX_BUFF_SIZE - 1));
2874 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
2875 if (running_total + trb_buff_len > urb->transfer_buffer_length)
2876 trb_buff_len =
2877 urb->transfer_buffer_length - running_total;
2878 } while (running_total < urb->transfer_buffer_length);
2880 check_trb_math(urb, num_trbs, running_total);
2881 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
2882 start_cycle, start_trb);
2883 return 0;
2886 /* This is very similar to what ehci-q.c qtd_fill() does */
2887 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2888 struct urb *urb, int slot_id, unsigned int ep_index)
2890 struct xhci_ring *ep_ring;
2891 struct urb_priv *urb_priv;
2892 struct xhci_td *td;
2893 int num_trbs;
2894 struct xhci_generic_trb *start_trb;
2895 bool first_trb;
2896 bool more_trbs_coming;
2897 int start_cycle;
2898 u32 field, length_field;
2900 int running_total, trb_buff_len, ret;
2901 unsigned int total_packet_count;
2902 u64 addr;
2904 if (urb->num_sgs)
2905 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index);
2907 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
2908 if (!ep_ring)
2909 return -EINVAL;
2911 num_trbs = 0;
2912 /* How much data is (potentially) left before the 64KB boundary? */
2913 running_total = TRB_MAX_BUFF_SIZE -
2914 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
2915 running_total &= TRB_MAX_BUFF_SIZE - 1;
2917 /* If there's some data on this 64KB chunk, or we have to send a
2918 * zero-length transfer, we need at least one TRB
2920 if (running_total != 0 || urb->transfer_buffer_length == 0)
2921 num_trbs++;
2922 /* How many more 64KB chunks to transfer, how many more TRBs? */
2923 while (running_total < urb->transfer_buffer_length) {
2924 num_trbs++;
2925 running_total += TRB_MAX_BUFF_SIZE;
2927 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */
2929 if (!in_interrupt())
2930 xhci_dbg(xhci, "ep %#x - urb len = %#x (%d), "
2931 "addr = %#llx, num_trbs = %d\n",
2932 urb->ep->desc.bEndpointAddress,
2933 urb->transfer_buffer_length,
2934 urb->transfer_buffer_length,
2935 (unsigned long long)urb->transfer_dma,
2936 num_trbs);
2938 ret = prepare_transfer(xhci, xhci->devs[slot_id],
2939 ep_index, urb->stream_id,
2940 num_trbs, urb, 0, false, mem_flags);
2941 if (ret < 0)
2942 return ret;
2944 urb_priv = urb->hcpriv;
2945 td = urb_priv->td[0];
2948 * Don't give the first TRB to the hardware (by toggling the cycle bit)
2949 * until we've finished creating all the other TRBs. The ring's cycle
2950 * state may change as we enqueue the other TRBs, so save it too.
2952 start_trb = &ep_ring->enqueue->generic;
2953 start_cycle = ep_ring->cycle_state;
2955 running_total = 0;
2956 total_packet_count = roundup(urb->transfer_buffer_length,
2957 usb_endpoint_maxp(&urb->ep->desc));
2958 /* How much data is in the first TRB? */
2959 addr = (u64) urb->transfer_dma;
2960 trb_buff_len = TRB_MAX_BUFF_SIZE -
2961 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
2962 if (trb_buff_len > urb->transfer_buffer_length)
2963 trb_buff_len = urb->transfer_buffer_length;
2965 first_trb = true;
2967 /* Queue the first TRB, even if it's zero-length */
2968 do {
2969 u32 remainder = 0;
2970 field = 0;
2972 /* Don't change the cycle bit of the first TRB until later */
2973 if (first_trb) {
2974 first_trb = false;
2975 if (start_cycle == 0)
2976 field |= 0x1;
2977 } else
2978 field |= ep_ring->cycle_state;
2980 /* Chain all the TRBs together; clear the chain bit in the last
2981 * TRB to indicate it's the last TRB in the chain.
2983 if (num_trbs > 1) {
2984 field |= TRB_CHAIN;
2985 } else {
2986 /* FIXME - add check for ZERO_PACKET flag before this */
2987 td->last_trb = ep_ring->enqueue;
2988 field |= TRB_IOC;
2991 /* Only set interrupt on short packet for IN endpoints */
2992 if (usb_urb_dir_in(urb))
2993 field |= TRB_ISP;
2995 /* Set the TRB length, TD size, and interrupter fields. */
2996 if (xhci->hci_version < 0x100) {
2997 remainder = xhci_td_remainder(
2998 urb->transfer_buffer_length -
2999 running_total);
3000 } else {
3001 remainder = xhci_v1_0_td_remainder(running_total,
3002 trb_buff_len, total_packet_count, urb);
3004 length_field = TRB_LEN(trb_buff_len) |
3005 remainder |
3006 TRB_INTR_TARGET(0);
3008 if (num_trbs > 1)
3009 more_trbs_coming = true;
3010 else
3011 more_trbs_coming = false;
3012 queue_trb(xhci, ep_ring, false, more_trbs_coming, false,
3013 lower_32_bits(addr),
3014 upper_32_bits(addr),
3015 length_field,
3016 field | TRB_TYPE(TRB_NORMAL));
3017 --num_trbs;
3018 running_total += trb_buff_len;
3020 /* Calculate length for next transfer */
3021 addr += trb_buff_len;
3022 trb_buff_len = urb->transfer_buffer_length - running_total;
3023 if (trb_buff_len > TRB_MAX_BUFF_SIZE)
3024 trb_buff_len = TRB_MAX_BUFF_SIZE;
3025 } while (running_total < urb->transfer_buffer_length);
3027 check_trb_math(urb, num_trbs, running_total);
3028 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3029 start_cycle, start_trb);
3030 return 0;
3033 /* Caller must have locked xhci->lock */
3034 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3035 struct urb *urb, int slot_id, unsigned int ep_index)
3037 struct xhci_ring *ep_ring;
3038 int num_trbs;
3039 int ret;
3040 struct usb_ctrlrequest *setup;
3041 struct xhci_generic_trb *start_trb;
3042 int start_cycle;
3043 u32 field, length_field;
3044 struct urb_priv *urb_priv;
3045 struct xhci_td *td;
3047 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3048 if (!ep_ring)
3049 return -EINVAL;
3052 * Need to copy setup packet into setup TRB, so we can't use the setup
3053 * DMA address.
3055 if (!urb->setup_packet)
3056 return -EINVAL;
3058 if (!in_interrupt())
3059 xhci_dbg(xhci, "Queueing ctrl tx for slot id %d, ep %d\n",
3060 slot_id, ep_index);
3061 /* 1 TRB for setup, 1 for status */
3062 num_trbs = 2;
3064 * Don't need to check if we need additional event data and normal TRBs,
3065 * since data in control transfers will never get bigger than 16MB
3066 * XXX: can we get a buffer that crosses 64KB boundaries?
3068 if (urb->transfer_buffer_length > 0)
3069 num_trbs++;
3070 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3071 ep_index, urb->stream_id,
3072 num_trbs, urb, 0, false, mem_flags);
3073 if (ret < 0)
3074 return ret;
3076 urb_priv = urb->hcpriv;
3077 td = urb_priv->td[0];
3080 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3081 * until we've finished creating all the other TRBs. The ring's cycle
3082 * state may change as we enqueue the other TRBs, so save it too.
3084 start_trb = &ep_ring->enqueue->generic;
3085 start_cycle = ep_ring->cycle_state;
3087 /* Queue setup TRB - see section 6.4.1.2.1 */
3088 /* FIXME better way to translate setup_packet into two u32 fields? */
3089 setup = (struct usb_ctrlrequest *) urb->setup_packet;
3090 field = 0;
3091 field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3092 if (start_cycle == 0)
3093 field |= 0x1;
3095 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */
3096 if (xhci->hci_version == 0x100) {
3097 if (urb->transfer_buffer_length > 0) {
3098 if (setup->bRequestType & USB_DIR_IN)
3099 field |= TRB_TX_TYPE(TRB_DATA_IN);
3100 else
3101 field |= TRB_TX_TYPE(TRB_DATA_OUT);
3105 queue_trb(xhci, ep_ring, false, true, false,
3106 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3107 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3108 TRB_LEN(8) | TRB_INTR_TARGET(0),
3109 /* Immediate data in pointer */
3110 field);
3112 /* If there's data, queue data TRBs */
3113 /* Only set interrupt on short packet for IN endpoints */
3114 if (usb_urb_dir_in(urb))
3115 field = TRB_ISP | TRB_TYPE(TRB_DATA);
3116 else
3117 field = TRB_TYPE(TRB_DATA);
3119 length_field = TRB_LEN(urb->transfer_buffer_length) |
3120 xhci_td_remainder(urb->transfer_buffer_length) |
3121 TRB_INTR_TARGET(0);
3122 if (urb->transfer_buffer_length > 0) {
3123 if (setup->bRequestType & USB_DIR_IN)
3124 field |= TRB_DIR_IN;
3125 queue_trb(xhci, ep_ring, false, true, false,
3126 lower_32_bits(urb->transfer_dma),
3127 upper_32_bits(urb->transfer_dma),
3128 length_field,
3129 field | ep_ring->cycle_state);
3132 /* Save the DMA address of the last TRB in the TD */
3133 td->last_trb = ep_ring->enqueue;
3135 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3136 /* If the device sent data, the status stage is an OUT transfer */
3137 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3138 field = 0;
3139 else
3140 field = TRB_DIR_IN;
3141 queue_trb(xhci, ep_ring, false, false, false,
3144 TRB_INTR_TARGET(0),
3145 /* Event on completion */
3146 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3148 giveback_first_trb(xhci, slot_id, ep_index, 0,
3149 start_cycle, start_trb);
3150 return 0;
3153 static int count_isoc_trbs_needed(struct xhci_hcd *xhci,
3154 struct urb *urb, int i)
3156 int num_trbs = 0;
3157 u64 addr, td_len;
3159 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3160 td_len = urb->iso_frame_desc[i].length;
3162 num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
3163 TRB_MAX_BUFF_SIZE);
3164 if (num_trbs == 0)
3165 num_trbs++;
3167 return num_trbs;
3171 * The transfer burst count field of the isochronous TRB defines the number of
3172 * bursts that are required to move all packets in this TD. Only SuperSpeed
3173 * devices can burst up to bMaxBurst number of packets per service interval.
3174 * This field is zero based, meaning a value of zero in the field means one
3175 * burst. Basically, for everything but SuperSpeed devices, this field will be
3176 * zero. Only xHCI 1.0 host controllers support this field.
3178 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3179 struct usb_device *udev,
3180 struct urb *urb, unsigned int total_packet_count)
3182 unsigned int max_burst;
3184 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER)
3185 return 0;
3187 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3188 return roundup(total_packet_count, max_burst + 1) - 1;
3192 * Returns the number of packets in the last "burst" of packets. This field is
3193 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
3194 * the last burst packet count is equal to the total number of packets in the
3195 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
3196 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3197 * contain 1 to (bMaxBurst + 1) packets.
3199 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3200 struct usb_device *udev,
3201 struct urb *urb, unsigned int total_packet_count)
3203 unsigned int max_burst;
3204 unsigned int residue;
3206 if (xhci->hci_version < 0x100)
3207 return 0;
3209 switch (udev->speed) {
3210 case USB_SPEED_SUPER:
3211 /* bMaxBurst is zero based: 0 means 1 packet per burst */
3212 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3213 residue = total_packet_count % (max_burst + 1);
3214 /* If residue is zero, the last burst contains (max_burst + 1)
3215 * number of packets, but the TLBPC field is zero-based.
3217 if (residue == 0)
3218 return max_burst;
3219 return residue - 1;
3220 default:
3221 if (total_packet_count == 0)
3222 return 0;
3223 return total_packet_count - 1;
3227 /* This is for isoc transfer */
3228 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3229 struct urb *urb, int slot_id, unsigned int ep_index)
3231 struct xhci_ring *ep_ring;
3232 struct urb_priv *urb_priv;
3233 struct xhci_td *td;
3234 int num_tds, trbs_per_td;
3235 struct xhci_generic_trb *start_trb;
3236 bool first_trb;
3237 int start_cycle;
3238 u32 field, length_field;
3239 int running_total, trb_buff_len, td_len, td_remain_len, ret;
3240 u64 start_addr, addr;
3241 int i, j;
3242 bool more_trbs_coming;
3244 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3246 num_tds = urb->number_of_packets;
3247 if (num_tds < 1) {
3248 xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3249 return -EINVAL;
3252 if (!in_interrupt())
3253 xhci_dbg(xhci, "ep %#x - urb len = %#x (%d),"
3254 " addr = %#llx, num_tds = %d\n",
3255 urb->ep->desc.bEndpointAddress,
3256 urb->transfer_buffer_length,
3257 urb->transfer_buffer_length,
3258 (unsigned long long)urb->transfer_dma,
3259 num_tds);
3261 start_addr = (u64) urb->transfer_dma;
3262 start_trb = &ep_ring->enqueue->generic;
3263 start_cycle = ep_ring->cycle_state;
3265 urb_priv = urb->hcpriv;
3266 /* Queue the first TRB, even if it's zero-length */
3267 for (i = 0; i < num_tds; i++) {
3268 unsigned int total_packet_count;
3269 unsigned int burst_count;
3270 unsigned int residue;
3272 first_trb = true;
3273 running_total = 0;
3274 addr = start_addr + urb->iso_frame_desc[i].offset;
3275 td_len = urb->iso_frame_desc[i].length;
3276 td_remain_len = td_len;
3277 total_packet_count = roundup(td_len,
3278 usb_endpoint_maxp(&urb->ep->desc));
3279 /* A zero-length transfer still involves at least one packet. */
3280 if (total_packet_count == 0)
3281 total_packet_count++;
3282 burst_count = xhci_get_burst_count(xhci, urb->dev, urb,
3283 total_packet_count);
3284 residue = xhci_get_last_burst_packet_count(xhci,
3285 urb->dev, urb, total_packet_count);
3287 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i);
3289 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3290 urb->stream_id, trbs_per_td, urb, i, true,
3291 mem_flags);
3292 if (ret < 0) {
3293 if (i == 0)
3294 return ret;
3295 goto cleanup;
3298 td = urb_priv->td[i];
3299 for (j = 0; j < trbs_per_td; j++) {
3300 u32 remainder = 0;
3301 field = TRB_TBC(burst_count) | TRB_TLBPC(residue);
3303 if (first_trb) {
3304 /* Queue the isoc TRB */
3305 field |= TRB_TYPE(TRB_ISOC);
3306 /* Assume URB_ISO_ASAP is set */
3307 field |= TRB_SIA;
3308 if (i == 0) {
3309 if (start_cycle == 0)
3310 field |= 0x1;
3311 } else
3312 field |= ep_ring->cycle_state;
3313 first_trb = false;
3314 } else {
3315 /* Queue other normal TRBs */
3316 field |= TRB_TYPE(TRB_NORMAL);
3317 field |= ep_ring->cycle_state;
3320 /* Only set interrupt on short packet for IN EPs */
3321 if (usb_urb_dir_in(urb))
3322 field |= TRB_ISP;
3324 /* Chain all the TRBs together; clear the chain bit in
3325 * the last TRB to indicate it's the last TRB in the
3326 * chain.
3328 if (j < trbs_per_td - 1) {
3329 field |= TRB_CHAIN;
3330 more_trbs_coming = true;
3331 } else {
3332 td->last_trb = ep_ring->enqueue;
3333 field |= TRB_IOC;
3334 if (xhci->hci_version == 0x100) {
3335 /* Set BEI bit except for the last td */
3336 if (i < num_tds - 1)
3337 field |= TRB_BEI;
3339 more_trbs_coming = false;
3342 /* Calculate TRB length */
3343 trb_buff_len = TRB_MAX_BUFF_SIZE -
3344 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
3345 if (trb_buff_len > td_remain_len)
3346 trb_buff_len = td_remain_len;
3348 /* Set the TRB length, TD size, & interrupter fields. */
3349 if (xhci->hci_version < 0x100) {
3350 remainder = xhci_td_remainder(
3351 td_len - running_total);
3352 } else {
3353 remainder = xhci_v1_0_td_remainder(
3354 running_total, trb_buff_len,
3355 total_packet_count, urb);
3357 length_field = TRB_LEN(trb_buff_len) |
3358 remainder |
3359 TRB_INTR_TARGET(0);
3361 queue_trb(xhci, ep_ring, false, more_trbs_coming, true,
3362 lower_32_bits(addr),
3363 upper_32_bits(addr),
3364 length_field,
3365 field);
3366 running_total += trb_buff_len;
3368 addr += trb_buff_len;
3369 td_remain_len -= trb_buff_len;
3372 /* Check TD length */
3373 if (running_total != td_len) {
3374 xhci_err(xhci, "ISOC TD length unmatch\n");
3375 return -EINVAL;
3379 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3380 if (xhci->quirks & XHCI_AMD_PLL_FIX)
3381 usb_amd_quirk_pll_disable();
3383 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3385 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3386 start_cycle, start_trb);
3387 return 0;
3388 cleanup:
3389 /* Clean up a partially enqueued isoc transfer. */
3391 for (i--; i >= 0; i--)
3392 list_del_init(&urb_priv->td[i]->td_list);
3394 /* Use the first TD as a temporary variable to turn the TDs we've queued
3395 * into No-ops with a software-owned cycle bit. That way the hardware
3396 * won't accidentally start executing bogus TDs when we partially
3397 * overwrite them. td->first_trb and td->start_seg are already set.
3399 urb_priv->td[0]->last_trb = ep_ring->enqueue;
3400 /* Every TRB except the first & last will have its cycle bit flipped. */
3401 td_to_noop(xhci, ep_ring, urb_priv->td[0], true);
3403 /* Reset the ring enqueue back to the first TRB and its cycle bit. */
3404 ep_ring->enqueue = urb_priv->td[0]->first_trb;
3405 ep_ring->enq_seg = urb_priv->td[0]->start_seg;
3406 ep_ring->cycle_state = start_cycle;
3407 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3408 return ret;
3412 * Check transfer ring to guarantee there is enough room for the urb.
3413 * Update ISO URB start_frame and interval.
3414 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to
3415 * update the urb->start_frame by now.
3416 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input.
3418 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3419 struct urb *urb, int slot_id, unsigned int ep_index)
3421 struct xhci_virt_device *xdev;
3422 struct xhci_ring *ep_ring;
3423 struct xhci_ep_ctx *ep_ctx;
3424 int start_frame;
3425 int xhci_interval;
3426 int ep_interval;
3427 int num_tds, num_trbs, i;
3428 int ret;
3430 xdev = xhci->devs[slot_id];
3431 ep_ring = xdev->eps[ep_index].ring;
3432 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3434 num_trbs = 0;
3435 num_tds = urb->number_of_packets;
3436 for (i = 0; i < num_tds; i++)
3437 num_trbs += count_isoc_trbs_needed(xhci, urb, i);
3439 /* Check the ring to guarantee there is enough room for the whole urb.
3440 * Do not insert any td of the urb to the ring if the check failed.
3442 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3443 num_trbs, true, mem_flags);
3444 if (ret)
3445 return ret;
3447 start_frame = xhci_readl(xhci, &xhci->run_regs->microframe_index);
3448 start_frame &= 0x3fff;
3450 urb->start_frame = start_frame;
3451 if (urb->dev->speed == USB_SPEED_LOW ||
3452 urb->dev->speed == USB_SPEED_FULL)
3453 urb->start_frame >>= 3;
3455 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3456 ep_interval = urb->interval;
3457 /* Convert to microframes */
3458 if (urb->dev->speed == USB_SPEED_LOW ||
3459 urb->dev->speed == USB_SPEED_FULL)
3460 ep_interval *= 8;
3461 /* FIXME change this to a warning and a suggestion to use the new API
3462 * to set the polling interval (once the API is added).
3464 if (xhci_interval != ep_interval) {
3465 if (printk_ratelimit())
3466 dev_dbg(&urb->dev->dev, "Driver uses different interval"
3467 " (%d microframe%s) than xHCI "
3468 "(%d microframe%s)\n",
3469 ep_interval,
3470 ep_interval == 1 ? "" : "s",
3471 xhci_interval,
3472 xhci_interval == 1 ? "" : "s");
3473 urb->interval = xhci_interval;
3474 /* Convert back to frames for LS/FS devices */
3475 if (urb->dev->speed == USB_SPEED_LOW ||
3476 urb->dev->speed == USB_SPEED_FULL)
3477 urb->interval /= 8;
3479 return xhci_queue_isoc_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index);
3482 /**** Command Ring Operations ****/
3484 /* Generic function for queueing a command TRB on the command ring.
3485 * Check to make sure there's room on the command ring for one command TRB.
3486 * Also check that there's room reserved for commands that must not fail.
3487 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3488 * then only check for the number of reserved spots.
3489 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3490 * because the command event handler may want to resubmit a failed command.
3492 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2,
3493 u32 field3, u32 field4, bool command_must_succeed)
3495 int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3496 int ret;
3498 if (!command_must_succeed)
3499 reserved_trbs++;
3501 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3502 reserved_trbs, false, GFP_ATOMIC);
3503 if (ret < 0) {
3504 xhci_err(xhci, "ERR: No room for command on command ring\n");
3505 if (command_must_succeed)
3506 xhci_err(xhci, "ERR: Reserved TRB counting for "
3507 "unfailable commands failed.\n");
3508 return ret;
3510 queue_trb(xhci, xhci->cmd_ring, false, false, false, field1, field2,
3511 field3, field4 | xhci->cmd_ring->cycle_state);
3512 return 0;
3515 /* Queue a slot enable or disable request on the command ring */
3516 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id)
3518 return queue_command(xhci, 0, 0, 0,
3519 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3522 /* Queue an address device command TRB */
3523 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3524 u32 slot_id)
3526 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3527 upper_32_bits(in_ctx_ptr), 0,
3528 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id),
3529 false);
3532 int xhci_queue_vendor_command(struct xhci_hcd *xhci,
3533 u32 field1, u32 field2, u32 field3, u32 field4)
3535 return queue_command(xhci, field1, field2, field3, field4, false);
3538 /* Queue a reset device command TRB */
3539 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id)
3541 return queue_command(xhci, 0, 0, 0,
3542 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3543 false);
3546 /* Queue a configure endpoint command TRB */
3547 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3548 u32 slot_id, bool command_must_succeed)
3550 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3551 upper_32_bits(in_ctx_ptr), 0,
3552 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3553 command_must_succeed);
3556 /* Queue an evaluate context command TRB */
3557 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3558 u32 slot_id)
3560 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3561 upper_32_bits(in_ctx_ptr), 0,
3562 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3563 false);
3567 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3568 * activity on an endpoint that is about to be suspended.
3570 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id,
3571 unsigned int ep_index, int suspend)
3573 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3574 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3575 u32 type = TRB_TYPE(TRB_STOP_RING);
3576 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
3578 return queue_command(xhci, 0, 0, 0,
3579 trb_slot_id | trb_ep_index | type | trb_suspend, false);
3582 /* Set Transfer Ring Dequeue Pointer command.
3583 * This should not be used for endpoints that have streams enabled.
3585 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
3586 unsigned int ep_index, unsigned int stream_id,
3587 struct xhci_segment *deq_seg,
3588 union xhci_trb *deq_ptr, u32 cycle_state)
3590 dma_addr_t addr;
3591 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3592 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3593 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
3594 u32 type = TRB_TYPE(TRB_SET_DEQ);
3595 struct xhci_virt_ep *ep;
3597 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr);
3598 if (addr == 0) {
3599 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3600 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
3601 deq_seg, deq_ptr);
3602 return 0;
3604 ep = &xhci->devs[slot_id]->eps[ep_index];
3605 if ((ep->ep_state & SET_DEQ_PENDING)) {
3606 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3607 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
3608 return 0;
3610 ep->queued_deq_seg = deq_seg;
3611 ep->queued_deq_ptr = deq_ptr;
3612 return queue_command(xhci, lower_32_bits(addr) | cycle_state,
3613 upper_32_bits(addr), trb_stream_id,
3614 trb_slot_id | trb_ep_index | type, false);
3617 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id,
3618 unsigned int ep_index)
3620 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3621 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3622 u32 type = TRB_TYPE(TRB_RESET_EP);
3624 return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type,
3625 false);