tracing/syscalls: use a dedicated file header
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / rtc / rtc-bfin.c
blobaafd3e6ebb0dfa92725f63798de226d5bf20ac72
1 /*
2 * Blackfin On-Chip Real Time Clock Driver
3 * Supports BF52[257]/BF53[123]/BF53[467]/BF54[24789]
5 * Copyright 2004-2008 Analog Devices Inc.
7 * Enter bugs at http://blackfin.uclinux.org/
9 * Licensed under the GPL-2 or later.
12 /* The biggest issue we deal with in this driver is that register writes are
13 * synced to the RTC frequency of 1Hz. So if you write to a register and
14 * attempt to write again before the first write has completed, the new write
15 * is simply discarded. This can easily be troublesome if userspace disables
16 * one event (say periodic) and then right after enables an event (say alarm).
17 * Since all events are maintained in the same interrupt mask register, if
18 * we wrote to it to disable the first event and then wrote to it again to
19 * enable the second event, that second event would not be enabled as the
20 * write would be discarded and things quickly fall apart.
22 * To keep this delay from significantly degrading performance (we, in theory,
23 * would have to sleep for up to 1 second everytime we wanted to write a
24 * register), we only check the write pending status before we start to issue
25 * a new write. We bank on the idea that it doesnt matter when the sync
26 * happens so long as we don't attempt another write before it does. The only
27 * time userspace would take this penalty is when they try and do multiple
28 * operations right after another ... but in this case, they need to take the
29 * sync penalty, so we should be OK.
31 * Also note that the RTC_ISTAT register does not suffer this penalty; its
32 * writes to clear status registers complete immediately.
35 /* It may seem odd that there is no SWCNT code in here (which would be exposed
36 * via the periodic interrupt event, or PIE). Since the Blackfin RTC peripheral
37 * runs in units of seconds (N/HZ) but the Linux framework runs in units of HZ
38 * (2^N HZ), there is no point in keeping code that only provides 1 HZ PIEs.
39 * The same exact behavior can be accomplished by using the update interrupt
40 * event (UIE). Maybe down the line the RTC peripheral will suck less in which
41 * case we can re-introduce PIE support.
44 #include <linux/bcd.h>
45 #include <linux/completion.h>
46 #include <linux/delay.h>
47 #include <linux/init.h>
48 #include <linux/interrupt.h>
49 #include <linux/kernel.h>
50 #include <linux/module.h>
51 #include <linux/platform_device.h>
52 #include <linux/rtc.h>
53 #include <linux/seq_file.h>
55 #include <asm/blackfin.h>
57 #define dev_dbg_stamp(dev) dev_dbg(dev, "%s:%i: here i am\n", __func__, __LINE__)
59 struct bfin_rtc {
60 struct rtc_device *rtc_dev;
61 struct rtc_time rtc_alarm;
62 u16 rtc_wrote_regs;
65 /* Bit values for the ISTAT / ICTL registers */
66 #define RTC_ISTAT_WRITE_COMPLETE 0x8000
67 #define RTC_ISTAT_WRITE_PENDING 0x4000
68 #define RTC_ISTAT_ALARM_DAY 0x0040
69 #define RTC_ISTAT_24HR 0x0020
70 #define RTC_ISTAT_HOUR 0x0010
71 #define RTC_ISTAT_MIN 0x0008
72 #define RTC_ISTAT_SEC 0x0004
73 #define RTC_ISTAT_ALARM 0x0002
74 #define RTC_ISTAT_STOPWATCH 0x0001
76 /* Shift values for RTC_STAT register */
77 #define DAY_BITS_OFF 17
78 #define HOUR_BITS_OFF 12
79 #define MIN_BITS_OFF 6
80 #define SEC_BITS_OFF 0
82 /* Some helper functions to convert between the common RTC notion of time
83 * and the internal Blackfin notion that is encoded in 32bits.
85 static inline u32 rtc_time_to_bfin(unsigned long now)
87 u32 sec = (now % 60);
88 u32 min = (now % (60 * 60)) / 60;
89 u32 hour = (now % (60 * 60 * 24)) / (60 * 60);
90 u32 days = (now / (60 * 60 * 24));
91 return (sec << SEC_BITS_OFF) +
92 (min << MIN_BITS_OFF) +
93 (hour << HOUR_BITS_OFF) +
94 (days << DAY_BITS_OFF);
96 static inline unsigned long rtc_bfin_to_time(u32 rtc_bfin)
98 return (((rtc_bfin >> SEC_BITS_OFF) & 0x003F)) +
99 (((rtc_bfin >> MIN_BITS_OFF) & 0x003F) * 60) +
100 (((rtc_bfin >> HOUR_BITS_OFF) & 0x001F) * 60 * 60) +
101 (((rtc_bfin >> DAY_BITS_OFF) & 0x7FFF) * 60 * 60 * 24);
103 static inline void rtc_bfin_to_tm(u32 rtc_bfin, struct rtc_time *tm)
105 rtc_time_to_tm(rtc_bfin_to_time(rtc_bfin), tm);
109 * bfin_rtc_sync_pending - make sure pending writes have complete
111 * Wait for the previous write to a RTC register to complete.
112 * Unfortunately, we can't sleep here as that introduces a race condition when
113 * turning on interrupt events. Consider this:
114 * - process sets alarm
115 * - process enables alarm
116 * - process sleeps while waiting for rtc write to sync
117 * - interrupt fires while process is sleeping
118 * - interrupt acks the event by writing to ISTAT
119 * - interrupt sets the WRITE PENDING bit
120 * - interrupt handler finishes
121 * - process wakes up, sees WRITE PENDING bit set, goes to sleep
122 * - interrupt fires while process is sleeping
123 * If anyone can point out the obvious solution here, i'm listening :). This
124 * shouldn't be an issue on an SMP or preempt system as this function should
125 * only be called with the rtc lock held.
127 * Other options:
128 * - disable PREN so the sync happens at 32.768kHZ ... but this changes the
129 * inc rate for all RTC registers from 1HZ to 32.768kHZ ...
130 * - use the write complete IRQ
133 static void bfin_rtc_sync_pending_polled(void)
135 while (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_COMPLETE))
136 if (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING))
137 break;
138 bfin_write_RTC_ISTAT(RTC_ISTAT_WRITE_COMPLETE);
141 static DECLARE_COMPLETION(bfin_write_complete);
142 static void bfin_rtc_sync_pending(struct device *dev)
144 dev_dbg_stamp(dev);
145 while (bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING)
146 wait_for_completion_timeout(&bfin_write_complete, HZ * 5);
147 dev_dbg_stamp(dev);
151 * bfin_rtc_reset - set RTC to sane/known state
153 * Initialize the RTC. Enable pre-scaler to scale RTC clock
154 * to 1Hz and clear interrupt/status registers.
156 static void bfin_rtc_reset(struct device *dev, u16 rtc_ictl)
158 struct bfin_rtc *rtc = dev_get_drvdata(dev);
159 dev_dbg_stamp(dev);
160 bfin_rtc_sync_pending(dev);
161 bfin_write_RTC_PREN(0x1);
162 bfin_write_RTC_ICTL(rtc_ictl);
163 bfin_write_RTC_ALARM(0);
164 bfin_write_RTC_ISTAT(0xFFFF);
165 rtc->rtc_wrote_regs = 0;
169 * bfin_rtc_interrupt - handle interrupt from RTC
171 * Since we handle all RTC events here, we have to make sure the requested
172 * interrupt is enabled (in RTC_ICTL) as the event status register (RTC_ISTAT)
173 * always gets updated regardless of the interrupt being enabled. So when one
174 * even we care about (e.g. stopwatch) goes off, we don't want to turn around
175 * and say that other events have happened as well (e.g. second). We do not
176 * have to worry about pending writes to the RTC_ICTL register as interrupts
177 * only fire if they are enabled in the RTC_ICTL register.
179 static irqreturn_t bfin_rtc_interrupt(int irq, void *dev_id)
181 struct device *dev = dev_id;
182 struct bfin_rtc *rtc = dev_get_drvdata(dev);
183 unsigned long events = 0;
184 bool write_complete = false;
185 u16 rtc_istat, rtc_ictl;
187 dev_dbg_stamp(dev);
189 rtc_istat = bfin_read_RTC_ISTAT();
190 rtc_ictl = bfin_read_RTC_ICTL();
192 if (rtc_istat & RTC_ISTAT_WRITE_COMPLETE) {
193 bfin_write_RTC_ISTAT(RTC_ISTAT_WRITE_COMPLETE);
194 write_complete = true;
195 complete(&bfin_write_complete);
198 if (rtc_ictl & (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY)) {
199 if (rtc_istat & (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY)) {
200 bfin_write_RTC_ISTAT(RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY);
201 events |= RTC_AF | RTC_IRQF;
205 if (rtc_ictl & RTC_ISTAT_SEC) {
206 if (rtc_istat & RTC_ISTAT_SEC) {
207 bfin_write_RTC_ISTAT(RTC_ISTAT_SEC);
208 events |= RTC_UF | RTC_IRQF;
212 if (events)
213 rtc_update_irq(rtc->rtc_dev, 1, events);
215 if (write_complete || events)
216 return IRQ_HANDLED;
217 else
218 return IRQ_NONE;
221 static void bfin_rtc_int_set(u16 rtc_int)
223 bfin_write_RTC_ISTAT(rtc_int);
224 bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() | rtc_int);
226 static void bfin_rtc_int_clear(u16 rtc_int)
228 bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() & rtc_int);
230 static void bfin_rtc_int_set_alarm(struct bfin_rtc *rtc)
232 /* Blackfin has different bits for whether the alarm is
233 * more than 24 hours away.
235 bfin_rtc_int_set(rtc->rtc_alarm.tm_yday == -1 ? RTC_ISTAT_ALARM : RTC_ISTAT_ALARM_DAY);
237 static int bfin_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
239 struct bfin_rtc *rtc = dev_get_drvdata(dev);
240 int ret = 0;
242 dev_dbg_stamp(dev);
244 bfin_rtc_sync_pending(dev);
246 switch (cmd) {
247 case RTC_UIE_ON:
248 dev_dbg_stamp(dev);
249 bfin_rtc_int_set(RTC_ISTAT_SEC);
250 break;
251 case RTC_UIE_OFF:
252 dev_dbg_stamp(dev);
253 bfin_rtc_int_clear(~RTC_ISTAT_SEC);
254 break;
256 case RTC_AIE_ON:
257 dev_dbg_stamp(dev);
258 bfin_rtc_int_set_alarm(rtc);
259 break;
260 case RTC_AIE_OFF:
261 dev_dbg_stamp(dev);
262 bfin_rtc_int_clear(~(RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY));
263 break;
265 default:
266 dev_dbg_stamp(dev);
267 ret = -ENOIOCTLCMD;
270 return ret;
273 static int bfin_rtc_read_time(struct device *dev, struct rtc_time *tm)
275 struct bfin_rtc *rtc = dev_get_drvdata(dev);
277 dev_dbg_stamp(dev);
279 if (rtc->rtc_wrote_regs & 0x1)
280 bfin_rtc_sync_pending(dev);
282 rtc_bfin_to_tm(bfin_read_RTC_STAT(), tm);
284 return 0;
287 static int bfin_rtc_set_time(struct device *dev, struct rtc_time *tm)
289 struct bfin_rtc *rtc = dev_get_drvdata(dev);
290 int ret;
291 unsigned long now;
293 dev_dbg_stamp(dev);
295 ret = rtc_tm_to_time(tm, &now);
296 if (ret == 0) {
297 if (rtc->rtc_wrote_regs & 0x1)
298 bfin_rtc_sync_pending(dev);
299 bfin_write_RTC_STAT(rtc_time_to_bfin(now));
300 rtc->rtc_wrote_regs = 0x1;
303 return ret;
306 static int bfin_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
308 struct bfin_rtc *rtc = dev_get_drvdata(dev);
309 dev_dbg_stamp(dev);
310 alrm->time = rtc->rtc_alarm;
311 bfin_rtc_sync_pending(dev);
312 alrm->enabled = !!(bfin_read_RTC_ICTL() & (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY));
313 return 0;
316 static int bfin_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
318 struct bfin_rtc *rtc = dev_get_drvdata(dev);
319 unsigned long rtc_alarm;
321 dev_dbg_stamp(dev);
323 if (rtc_tm_to_time(&alrm->time, &rtc_alarm))
324 return -EINVAL;
326 rtc->rtc_alarm = alrm->time;
328 bfin_rtc_sync_pending(dev);
329 bfin_write_RTC_ALARM(rtc_time_to_bfin(rtc_alarm));
330 if (alrm->enabled)
331 bfin_rtc_int_set_alarm(rtc);
333 return 0;
336 static int bfin_rtc_proc(struct device *dev, struct seq_file *seq)
338 #define yesno(x) ((x) ? "yes" : "no")
339 u16 ictl = bfin_read_RTC_ICTL();
340 dev_dbg_stamp(dev);
341 seq_printf(seq,
342 "alarm_IRQ\t: %s\n"
343 "wkalarm_IRQ\t: %s\n"
344 "seconds_IRQ\t: %s\n",
345 yesno(ictl & RTC_ISTAT_ALARM),
346 yesno(ictl & RTC_ISTAT_ALARM_DAY),
347 yesno(ictl & RTC_ISTAT_SEC));
348 return 0;
349 #undef yesno
352 static struct rtc_class_ops bfin_rtc_ops = {
353 .ioctl = bfin_rtc_ioctl,
354 .read_time = bfin_rtc_read_time,
355 .set_time = bfin_rtc_set_time,
356 .read_alarm = bfin_rtc_read_alarm,
357 .set_alarm = bfin_rtc_set_alarm,
358 .proc = bfin_rtc_proc,
361 static int __devinit bfin_rtc_probe(struct platform_device *pdev)
363 struct bfin_rtc *rtc;
364 struct device *dev = &pdev->dev;
365 int ret = 0;
366 unsigned long timeout;
368 dev_dbg_stamp(dev);
370 /* Allocate memory for our RTC struct */
371 rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
372 if (unlikely(!rtc))
373 return -ENOMEM;
374 platform_set_drvdata(pdev, rtc);
375 device_init_wakeup(dev, 1);
377 /* Grab the IRQ and init the hardware */
378 ret = request_irq(IRQ_RTC, bfin_rtc_interrupt, IRQF_SHARED, pdev->name, dev);
379 if (unlikely(ret))
380 goto err;
381 /* sometimes the bootloader touched things, but the write complete was not
382 * enabled, so let's just do a quick timeout here since the IRQ will not fire ...
384 timeout = jiffies + HZ;
385 while (bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING)
386 if (time_after(jiffies, timeout))
387 break;
388 bfin_rtc_reset(dev, RTC_ISTAT_WRITE_COMPLETE);
389 bfin_write_RTC_SWCNT(0);
391 /* Register our RTC with the RTC framework */
392 rtc->rtc_dev = rtc_device_register(pdev->name, dev, &bfin_rtc_ops, THIS_MODULE);
393 if (unlikely(IS_ERR(rtc->rtc_dev))) {
394 ret = PTR_ERR(rtc->rtc_dev);
395 goto err_irq;
398 return 0;
400 err_irq:
401 free_irq(IRQ_RTC, dev);
402 err:
403 kfree(rtc);
404 return ret;
407 static int __devexit bfin_rtc_remove(struct platform_device *pdev)
409 struct bfin_rtc *rtc = platform_get_drvdata(pdev);
410 struct device *dev = &pdev->dev;
412 bfin_rtc_reset(dev, 0);
413 free_irq(IRQ_RTC, dev);
414 rtc_device_unregister(rtc->rtc_dev);
415 platform_set_drvdata(pdev, NULL);
416 kfree(rtc);
418 return 0;
421 #ifdef CONFIG_PM
422 static int bfin_rtc_suspend(struct platform_device *pdev, pm_message_t state)
424 if (device_may_wakeup(&pdev->dev)) {
425 enable_irq_wake(IRQ_RTC);
426 bfin_rtc_sync_pending(&pdev->dev);
427 } else
428 bfin_rtc_int_clear(-1);
430 return 0;
433 static int bfin_rtc_resume(struct platform_device *pdev)
435 if (device_may_wakeup(&pdev->dev))
436 disable_irq_wake(IRQ_RTC);
437 else
438 bfin_write_RTC_ISTAT(-1);
440 return 0;
442 #else
443 # define bfin_rtc_suspend NULL
444 # define bfin_rtc_resume NULL
445 #endif
447 static struct platform_driver bfin_rtc_driver = {
448 .driver = {
449 .name = "rtc-bfin",
450 .owner = THIS_MODULE,
452 .probe = bfin_rtc_probe,
453 .remove = __devexit_p(bfin_rtc_remove),
454 .suspend = bfin_rtc_suspend,
455 .resume = bfin_rtc_resume,
458 static int __init bfin_rtc_init(void)
460 return platform_driver_register(&bfin_rtc_driver);
463 static void __exit bfin_rtc_exit(void)
465 platform_driver_unregister(&bfin_rtc_driver);
468 module_init(bfin_rtc_init);
469 module_exit(bfin_rtc_exit);
471 MODULE_DESCRIPTION("Blackfin On-Chip Real Time Clock Driver");
472 MODULE_AUTHOR("Mike Frysinger <vapier@gentoo.org>");
473 MODULE_LICENSE("GPL");
474 MODULE_ALIAS("platform:rtc-bfin");