2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
19 /* max queue in one round of service */
20 static const int cfq_quantum
= 4;
21 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max
= 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty
= 2;
26 static const int cfq_slice_sync
= HZ
/ 10;
27 static int cfq_slice_async
= HZ
/ 25;
28 static const int cfq_slice_async_rq
= 2;
29 static int cfq_slice_idle
= HZ
/ 125;
32 * offset from end of service tree
34 #define CFQ_IDLE_DELAY (HZ / 5)
37 * below this threshold, we consider thinktime immediate
39 #define CFQ_MIN_TT (2)
41 #define CFQ_SLICE_SCALE (5)
42 #define CFQ_HW_QUEUE_MIN (5)
45 ((struct cfq_io_context *) (rq)->elevator_private)
46 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
48 static struct kmem_cache
*cfq_pool
;
49 static struct kmem_cache
*cfq_ioc_pool
;
51 static DEFINE_PER_CPU(unsigned long, ioc_count
);
52 static struct completion
*ioc_gone
;
53 static DEFINE_SPINLOCK(ioc_gone_lock
);
55 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
56 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
57 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
62 #define sample_valid(samples) ((samples) > 80)
65 * Most of our rbtree usage is for sorting with min extraction, so
66 * if we cache the leftmost node we don't have to walk down the tree
67 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
68 * move this into the elevator for the rq sorting as well.
74 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
77 * Per block device queue structure
80 struct request_queue
*queue
;
83 * rr list of queues with requests and the count of them
85 struct cfq_rb_root service_tree
;
86 unsigned int busy_queues
;
88 * Used to track any pending rt requests so we can pre-empt current
89 * non-RT cfqq in service when this value is non-zero.
91 unsigned int busy_rt_queues
;
97 * queue-depth detection
102 int rq_in_driver_peak
;
105 * idle window management
107 struct timer_list idle_slice_timer
;
108 struct work_struct unplug_work
;
110 struct cfq_queue
*active_queue
;
111 struct cfq_io_context
*active_cic
;
114 * async queue for each priority case
116 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
117 struct cfq_queue
*async_idle_cfqq
;
119 sector_t last_position
;
120 unsigned long last_end_request
;
123 * tunables, see top of file
125 unsigned int cfq_quantum
;
126 unsigned int cfq_fifo_expire
[2];
127 unsigned int cfq_back_penalty
;
128 unsigned int cfq_back_max
;
129 unsigned int cfq_slice
[2];
130 unsigned int cfq_slice_async_rq
;
131 unsigned int cfq_slice_idle
;
133 struct list_head cic_list
;
137 * Per process-grouping structure
140 /* reference count */
142 /* various state flags, see below */
144 /* parent cfq_data */
145 struct cfq_data
*cfqd
;
146 /* service_tree member */
147 struct rb_node rb_node
;
148 /* service_tree key */
149 unsigned long rb_key
;
150 /* sorted list of pending requests */
151 struct rb_root sort_list
;
152 /* if fifo isn't expired, next request to serve */
153 struct request
*next_rq
;
154 /* requests queued in sort_list */
156 /* currently allocated requests */
158 /* fifo list of requests in sort_list */
159 struct list_head fifo
;
161 unsigned long slice_end
;
163 unsigned int slice_dispatch
;
165 /* pending metadata requests */
167 /* number of requests that are on the dispatch list or inside driver */
170 /* io prio of this group */
171 unsigned short ioprio
, org_ioprio
;
172 unsigned short ioprio_class
, org_ioprio_class
;
177 enum cfqq_state_flags
{
178 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
179 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
180 CFQ_CFQQ_FLAG_must_dispatch
, /* must be allowed a dispatch */
181 CFQ_CFQQ_FLAG_must_alloc
, /* must be allowed rq alloc */
182 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
183 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
184 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
185 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
186 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
187 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
190 #define CFQ_CFQQ_FNS(name) \
191 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
193 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
195 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
197 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
199 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
201 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
205 CFQ_CFQQ_FNS(wait_request
);
206 CFQ_CFQQ_FNS(must_dispatch
);
207 CFQ_CFQQ_FNS(must_alloc
);
208 CFQ_CFQQ_FNS(must_alloc_slice
);
209 CFQ_CFQQ_FNS(fifo_expire
);
210 CFQ_CFQQ_FNS(idle_window
);
211 CFQ_CFQQ_FNS(prio_changed
);
212 CFQ_CFQQ_FNS(slice_new
);
216 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
217 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
218 #define cfq_log(cfqd, fmt, args...) \
219 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
221 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
222 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*, int,
223 struct io_context
*, gfp_t
);
224 static struct cfq_io_context
*cfq_cic_lookup(struct cfq_data
*,
225 struct io_context
*);
227 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_context
*cic
,
230 return cic
->cfqq
[!!is_sync
];
233 static inline void cic_set_cfqq(struct cfq_io_context
*cic
,
234 struct cfq_queue
*cfqq
, int is_sync
)
236 cic
->cfqq
[!!is_sync
] = cfqq
;
240 * We regard a request as SYNC, if it's either a read or has the SYNC bit
241 * set (in which case it could also be direct WRITE).
243 static inline int cfq_bio_sync(struct bio
*bio
)
245 if (bio_data_dir(bio
) == READ
|| bio_sync(bio
))
252 * scheduler run of queue, if there are requests pending and no one in the
253 * driver that will restart queueing
255 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
257 if (cfqd
->busy_queues
) {
258 cfq_log(cfqd
, "schedule dispatch");
259 kblockd_schedule_work(cfqd
->queue
, &cfqd
->unplug_work
);
263 static int cfq_queue_empty(struct request_queue
*q
)
265 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
267 return !cfqd
->busy_queues
;
271 * Scale schedule slice based on io priority. Use the sync time slice only
272 * if a queue is marked sync and has sync io queued. A sync queue with async
273 * io only, should not get full sync slice length.
275 static inline int cfq_prio_slice(struct cfq_data
*cfqd
, int sync
,
278 const int base_slice
= cfqd
->cfq_slice
[sync
];
280 WARN_ON(prio
>= IOPRIO_BE_NR
);
282 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - prio
));
286 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
288 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
292 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
294 cfqq
->slice_end
= cfq_prio_to_slice(cfqd
, cfqq
) + jiffies
;
295 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%lu", cfqq
->slice_end
- jiffies
);
299 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
300 * isn't valid until the first request from the dispatch is activated
301 * and the slice time set.
303 static inline int cfq_slice_used(struct cfq_queue
*cfqq
)
305 if (cfq_cfqq_slice_new(cfqq
))
307 if (time_before(jiffies
, cfqq
->slice_end
))
314 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
315 * We choose the request that is closest to the head right now. Distance
316 * behind the head is penalized and only allowed to a certain extent.
318 static struct request
*
319 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
)
321 sector_t last
, s1
, s2
, d1
= 0, d2
= 0;
322 unsigned long back_max
;
323 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
324 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
325 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
327 if (rq1
== NULL
|| rq1
== rq2
)
332 if (rq_is_sync(rq1
) && !rq_is_sync(rq2
))
334 else if (rq_is_sync(rq2
) && !rq_is_sync(rq1
))
336 if (rq_is_meta(rq1
) && !rq_is_meta(rq2
))
338 else if (rq_is_meta(rq2
) && !rq_is_meta(rq1
))
344 last
= cfqd
->last_position
;
347 * by definition, 1KiB is 2 sectors
349 back_max
= cfqd
->cfq_back_max
* 2;
352 * Strict one way elevator _except_ in the case where we allow
353 * short backward seeks which are biased as twice the cost of a
354 * similar forward seek.
358 else if (s1
+ back_max
>= last
)
359 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
361 wrap
|= CFQ_RQ1_WRAP
;
365 else if (s2
+ back_max
>= last
)
366 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
368 wrap
|= CFQ_RQ2_WRAP
;
370 /* Found required data */
373 * By doing switch() on the bit mask "wrap" we avoid having to
374 * check two variables for all permutations: --> faster!
377 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
393 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
396 * Since both rqs are wrapped,
397 * start with the one that's further behind head
398 * (--> only *one* back seek required),
399 * since back seek takes more time than forward.
409 * The below is leftmost cache rbtree addon
411 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
414 root
->left
= rb_first(&root
->rb
);
417 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
422 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
427 rb_erase(n
, &root
->rb
);
432 * would be nice to take fifo expire time into account as well
434 static struct request
*
435 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
436 struct request
*last
)
438 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
439 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
440 struct request
*next
= NULL
, *prev
= NULL
;
442 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
445 prev
= rb_entry_rq(rbprev
);
448 next
= rb_entry_rq(rbnext
);
450 rbnext
= rb_first(&cfqq
->sort_list
);
451 if (rbnext
&& rbnext
!= &last
->rb_node
)
452 next
= rb_entry_rq(rbnext
);
455 return cfq_choose_req(cfqd
, next
, prev
);
458 static unsigned long cfq_slice_offset(struct cfq_data
*cfqd
,
459 struct cfq_queue
*cfqq
)
462 * just an approximation, should be ok.
464 return (cfqd
->busy_queues
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
465 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
469 * The cfqd->service_tree holds all pending cfq_queue's that have
470 * requests waiting to be processed. It is sorted in the order that
471 * we will service the queues.
473 static void cfq_service_tree_add(struct cfq_data
*cfqd
,
474 struct cfq_queue
*cfqq
, int add_front
)
476 struct rb_node
**p
, *parent
;
477 struct cfq_queue
*__cfqq
;
478 unsigned long rb_key
;
481 if (cfq_class_idle(cfqq
)) {
482 rb_key
= CFQ_IDLE_DELAY
;
483 parent
= rb_last(&cfqd
->service_tree
.rb
);
484 if (parent
&& parent
!= &cfqq
->rb_node
) {
485 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
486 rb_key
+= __cfqq
->rb_key
;
489 } else if (!add_front
) {
490 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + jiffies
;
491 rb_key
+= cfqq
->slice_resid
;
492 cfqq
->slice_resid
= 0;
496 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
498 * same position, nothing more to do
500 if (rb_key
== cfqq
->rb_key
)
503 cfq_rb_erase(&cfqq
->rb_node
, &cfqd
->service_tree
);
508 p
= &cfqd
->service_tree
.rb
.rb_node
;
513 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
516 * sort RT queues first, we always want to give
517 * preference to them. IDLE queues goes to the back.
518 * after that, sort on the next service time.
520 if (cfq_class_rt(cfqq
) > cfq_class_rt(__cfqq
))
522 else if (cfq_class_rt(cfqq
) < cfq_class_rt(__cfqq
))
524 else if (cfq_class_idle(cfqq
) < cfq_class_idle(__cfqq
))
526 else if (cfq_class_idle(cfqq
) > cfq_class_idle(__cfqq
))
528 else if (rb_key
< __cfqq
->rb_key
)
533 if (n
== &(*p
)->rb_right
)
540 cfqd
->service_tree
.left
= &cfqq
->rb_node
;
542 cfqq
->rb_key
= rb_key
;
543 rb_link_node(&cfqq
->rb_node
, parent
, p
);
544 rb_insert_color(&cfqq
->rb_node
, &cfqd
->service_tree
.rb
);
548 * Update cfqq's position in the service tree.
550 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
553 * Resorting requires the cfqq to be on the RR list already.
555 if (cfq_cfqq_on_rr(cfqq
))
556 cfq_service_tree_add(cfqd
, cfqq
, 0);
560 * add to busy list of queues for service, trying to be fair in ordering
561 * the pending list according to last request service
563 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
565 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
566 BUG_ON(cfq_cfqq_on_rr(cfqq
));
567 cfq_mark_cfqq_on_rr(cfqq
);
569 if (cfq_class_rt(cfqq
))
570 cfqd
->busy_rt_queues
++;
572 cfq_resort_rr_list(cfqd
, cfqq
);
576 * Called when the cfqq no longer has requests pending, remove it from
579 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
581 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
582 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
583 cfq_clear_cfqq_on_rr(cfqq
);
585 if (!RB_EMPTY_NODE(&cfqq
->rb_node
))
586 cfq_rb_erase(&cfqq
->rb_node
, &cfqd
->service_tree
);
588 BUG_ON(!cfqd
->busy_queues
);
590 if (cfq_class_rt(cfqq
))
591 cfqd
->busy_rt_queues
--;
595 * rb tree support functions
597 static void cfq_del_rq_rb(struct request
*rq
)
599 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
600 struct cfq_data
*cfqd
= cfqq
->cfqd
;
601 const int sync
= rq_is_sync(rq
);
603 BUG_ON(!cfqq
->queued
[sync
]);
604 cfqq
->queued
[sync
]--;
606 elv_rb_del(&cfqq
->sort_list
, rq
);
608 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
609 cfq_del_cfqq_rr(cfqd
, cfqq
);
612 static void cfq_add_rq_rb(struct request
*rq
)
614 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
615 struct cfq_data
*cfqd
= cfqq
->cfqd
;
616 struct request
*__alias
;
618 cfqq
->queued
[rq_is_sync(rq
)]++;
621 * looks a little odd, but the first insert might return an alias.
622 * if that happens, put the alias on the dispatch list
624 while ((__alias
= elv_rb_add(&cfqq
->sort_list
, rq
)) != NULL
)
625 cfq_dispatch_insert(cfqd
->queue
, __alias
);
627 if (!cfq_cfqq_on_rr(cfqq
))
628 cfq_add_cfqq_rr(cfqd
, cfqq
);
631 * check if this request is a better next-serve candidate
633 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
);
634 BUG_ON(!cfqq
->next_rq
);
637 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
639 elv_rb_del(&cfqq
->sort_list
, rq
);
640 cfqq
->queued
[rq_is_sync(rq
)]--;
644 static struct request
*
645 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
647 struct task_struct
*tsk
= current
;
648 struct cfq_io_context
*cic
;
649 struct cfq_queue
*cfqq
;
651 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
655 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
657 sector_t sector
= bio
->bi_sector
+ bio_sectors(bio
);
659 return elv_rb_find(&cfqq
->sort_list
, sector
);
665 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
667 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
669 cfqd
->rq_in_driver
++;
670 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
673 cfqd
->last_position
= rq
->hard_sector
+ rq
->hard_nr_sectors
;
676 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
678 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
680 WARN_ON(!cfqd
->rq_in_driver
);
681 cfqd
->rq_in_driver
--;
682 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
686 static void cfq_remove_request(struct request
*rq
)
688 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
690 if (cfqq
->next_rq
== rq
)
691 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
693 list_del_init(&rq
->queuelist
);
696 cfqq
->cfqd
->rq_queued
--;
697 if (rq_is_meta(rq
)) {
698 WARN_ON(!cfqq
->meta_pending
);
699 cfqq
->meta_pending
--;
703 static int cfq_merge(struct request_queue
*q
, struct request
**req
,
706 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
707 struct request
*__rq
;
709 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
710 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
712 return ELEVATOR_FRONT_MERGE
;
715 return ELEVATOR_NO_MERGE
;
718 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
721 if (type
== ELEVATOR_FRONT_MERGE
) {
722 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
724 cfq_reposition_rq_rb(cfqq
, req
);
729 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
730 struct request
*next
)
733 * reposition in fifo if next is older than rq
735 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
736 time_before(next
->start_time
, rq
->start_time
))
737 list_move(&rq
->queuelist
, &next
->queuelist
);
739 cfq_remove_request(next
);
742 static int cfq_allow_merge(struct request_queue
*q
, struct request
*rq
,
745 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
746 struct cfq_io_context
*cic
;
747 struct cfq_queue
*cfqq
;
750 * Disallow merge of a sync bio into an async request.
752 if (cfq_bio_sync(bio
) && !rq_is_sync(rq
))
756 * Lookup the cfqq that this bio will be queued with. Allow
757 * merge only if rq is queued there.
759 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
763 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
764 if (cfqq
== RQ_CFQQ(rq
))
770 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
771 struct cfq_queue
*cfqq
)
774 cfq_log_cfqq(cfqd
, cfqq
, "set_active");
776 cfqq
->slice_dispatch
= 0;
778 cfq_clear_cfqq_wait_request(cfqq
);
779 cfq_clear_cfqq_must_dispatch(cfqq
);
780 cfq_clear_cfqq_must_alloc_slice(cfqq
);
781 cfq_clear_cfqq_fifo_expire(cfqq
);
782 cfq_mark_cfqq_slice_new(cfqq
);
784 del_timer(&cfqd
->idle_slice_timer
);
787 cfqd
->active_queue
= cfqq
;
791 * current cfqq expired its slice (or was too idle), select new one
794 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
797 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
799 if (cfq_cfqq_wait_request(cfqq
))
800 del_timer(&cfqd
->idle_slice_timer
);
802 cfq_clear_cfqq_wait_request(cfqq
);
805 * store what was left of this slice, if the queue idled/timed out
807 if (timed_out
&& !cfq_cfqq_slice_new(cfqq
)) {
808 cfqq
->slice_resid
= cfqq
->slice_end
- jiffies
;
809 cfq_log_cfqq(cfqd
, cfqq
, "resid=%ld", cfqq
->slice_resid
);
812 cfq_resort_rr_list(cfqd
, cfqq
);
814 if (cfqq
== cfqd
->active_queue
)
815 cfqd
->active_queue
= NULL
;
817 if (cfqd
->active_cic
) {
818 put_io_context(cfqd
->active_cic
->ioc
);
819 cfqd
->active_cic
= NULL
;
823 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, int timed_out
)
825 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
828 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
832 * Get next queue for service. Unless we have a queue preemption,
833 * we'll simply select the first cfqq in the service tree.
835 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
837 if (RB_EMPTY_ROOT(&cfqd
->service_tree
.rb
))
840 return cfq_rb_first(&cfqd
->service_tree
);
844 * Get and set a new active queue for service.
846 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
)
848 struct cfq_queue
*cfqq
;
850 cfqq
= cfq_get_next_queue(cfqd
);
851 __cfq_set_active_queue(cfqd
, cfqq
);
855 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
858 if (rq
->sector
>= cfqd
->last_position
)
859 return rq
->sector
- cfqd
->last_position
;
861 return cfqd
->last_position
- rq
->sector
;
864 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct request
*rq
)
866 struct cfq_io_context
*cic
= cfqd
->active_cic
;
868 if (!sample_valid(cic
->seek_samples
))
871 return cfq_dist_from_last(cfqd
, rq
) <= cic
->seek_mean
;
874 static int cfq_close_cooperator(struct cfq_data
*cfq_data
,
875 struct cfq_queue
*cfqq
)
878 * We should notice if some of the queues are cooperating, eg
879 * working closely on the same area of the disk. In that case,
880 * we can group them together and don't waste time idling.
885 #define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
887 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
889 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
890 struct cfq_io_context
*cic
;
894 * SSD device without seek penalty, disable idling. But only do so
895 * for devices that support queuing, otherwise we still have a problem
896 * with sync vs async workloads.
898 if (blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
)
901 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
902 WARN_ON(cfq_cfqq_slice_new(cfqq
));
905 * idle is disabled, either manually or by past process history
907 if (!cfqd
->cfq_slice_idle
|| !cfq_cfqq_idle_window(cfqq
))
911 * still requests with the driver, don't idle
913 if (cfqd
->rq_in_driver
)
917 * task has exited, don't wait
919 cic
= cfqd
->active_cic
;
920 if (!cic
|| !atomic_read(&cic
->ioc
->nr_tasks
))
924 * See if this prio level has a good candidate
926 if (cfq_close_cooperator(cfqd
, cfqq
) &&
927 (sample_valid(cic
->ttime_samples
) && cic
->ttime_mean
> 2))
930 cfq_mark_cfqq_wait_request(cfqq
);
933 * we don't want to idle for seeks, but we do want to allow
934 * fair distribution of slice time for a process doing back-to-back
935 * seeks. so allow a little bit of time for him to submit a new rq
937 sl
= cfqd
->cfq_slice_idle
;
938 if (sample_valid(cic
->seek_samples
) && CIC_SEEKY(cic
))
939 sl
= min(sl
, msecs_to_jiffies(CFQ_MIN_TT
));
941 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
942 cfq_log(cfqd
, "arm_idle: %lu", sl
);
946 * Move request from internal lists to the request queue dispatch list.
948 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
950 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
951 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
953 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
955 cfq_remove_request(rq
);
957 elv_dispatch_sort(q
, rq
);
959 if (cfq_cfqq_sync(cfqq
))
964 * return expired entry, or NULL to just start from scratch in rbtree
966 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
968 struct cfq_data
*cfqd
= cfqq
->cfqd
;
972 if (cfq_cfqq_fifo_expire(cfqq
))
975 cfq_mark_cfqq_fifo_expire(cfqq
);
977 if (list_empty(&cfqq
->fifo
))
980 fifo
= cfq_cfqq_sync(cfqq
);
981 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
983 if (time_before(jiffies
, rq
->start_time
+ cfqd
->cfq_fifo_expire
[fifo
]))
986 cfq_log_cfqq(cfqd
, cfqq
, "fifo=%p", rq
);
991 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
993 const int base_rq
= cfqd
->cfq_slice_async_rq
;
995 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
997 return 2 * (base_rq
+ base_rq
* (CFQ_PRIO_LISTS
- 1 - cfqq
->ioprio
));
1001 * Select a queue for service. If we have a current active queue,
1002 * check whether to continue servicing it, or retrieve and set a new one.
1004 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
1006 struct cfq_queue
*cfqq
;
1008 cfqq
= cfqd
->active_queue
;
1013 * The active queue has run out of time, expire it and select new.
1015 if (cfq_slice_used(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
))
1019 * If we have a RT cfqq waiting, then we pre-empt the current non-rt
1022 if (!cfq_class_rt(cfqq
) && cfqd
->busy_rt_queues
) {
1024 * We simulate this as cfqq timed out so that it gets to bank
1025 * the remaining of its time slice.
1027 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
1028 cfq_slice_expired(cfqd
, 1);
1033 * The active queue has requests and isn't expired, allow it to
1036 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
1040 * No requests pending. If the active queue still has requests in
1041 * flight or is idling for a new request, allow either of these
1042 * conditions to happen (or time out) before selecting a new queue.
1044 if (timer_pending(&cfqd
->idle_slice_timer
) ||
1045 (cfqq
->dispatched
&& cfq_cfqq_idle_window(cfqq
))) {
1051 cfq_slice_expired(cfqd
, 0);
1053 cfqq
= cfq_set_active_queue(cfqd
);
1058 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
1062 while (cfqq
->next_rq
) {
1063 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
1067 BUG_ON(!list_empty(&cfqq
->fifo
));
1072 * Drain our current requests. Used for barriers and when switching
1073 * io schedulers on-the-fly.
1075 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
1077 struct cfq_queue
*cfqq
;
1080 while ((cfqq
= cfq_rb_first(&cfqd
->service_tree
)) != NULL
)
1081 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
1083 cfq_slice_expired(cfqd
, 0);
1085 BUG_ON(cfqd
->busy_queues
);
1087 cfq_log(cfqd
, "forced_dispatch=%d\n", dispatched
);
1092 * Dispatch a request from cfqq, moving them to the request queue
1095 static void cfq_dispatch_request(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1099 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
1102 * follow expired path, else get first next available
1104 rq
= cfq_check_fifo(cfqq
);
1109 * insert request into driver dispatch list
1111 cfq_dispatch_insert(cfqd
->queue
, rq
);
1113 if (!cfqd
->active_cic
) {
1114 struct cfq_io_context
*cic
= RQ_CIC(rq
);
1116 atomic_inc(&cic
->ioc
->refcount
);
1117 cfqd
->active_cic
= cic
;
1122 * Find the cfqq that we need to service and move a request from that to the
1125 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
1127 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1128 struct cfq_queue
*cfqq
;
1129 unsigned int max_dispatch
;
1131 if (!cfqd
->busy_queues
)
1134 if (unlikely(force
))
1135 return cfq_forced_dispatch(cfqd
);
1137 cfqq
= cfq_select_queue(cfqd
);
1142 * If this is an async queue and we have sync IO in flight, let it wait
1144 if (cfqd
->sync_flight
&& !cfq_cfqq_sync(cfqq
))
1147 max_dispatch
= cfqd
->cfq_quantum
;
1148 if (cfq_class_idle(cfqq
))
1152 * Does this cfqq already have too much IO in flight?
1154 if (cfqq
->dispatched
>= max_dispatch
) {
1156 * idle queue must always only have a single IO in flight
1158 if (cfq_class_idle(cfqq
))
1162 * We have other queues, don't allow more IO from this one
1164 if (cfqd
->busy_queues
> 1)
1168 * we are the only queue, allow up to 4 times of 'quantum'
1170 if (cfqq
->dispatched
>= 4 * max_dispatch
)
1175 * Dispatch a request from this cfqq
1177 cfq_dispatch_request(cfqd
, cfqq
);
1178 cfqq
->slice_dispatch
++;
1179 cfq_clear_cfqq_must_dispatch(cfqq
);
1182 * expire an async queue immediately if it has used up its slice. idle
1183 * queue always expire after 1 dispatch round.
1185 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
1186 cfqq
->slice_dispatch
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
1187 cfq_class_idle(cfqq
))) {
1188 cfqq
->slice_end
= jiffies
+ 1;
1189 cfq_slice_expired(cfqd
, 0);
1192 cfq_log(cfqd
, "dispatched a request");
1197 * task holds one reference to the queue, dropped when task exits. each rq
1198 * in-flight on this queue also holds a reference, dropped when rq is freed.
1200 * queue lock must be held here.
1202 static void cfq_put_queue(struct cfq_queue
*cfqq
)
1204 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1206 BUG_ON(atomic_read(&cfqq
->ref
) <= 0);
1208 if (!atomic_dec_and_test(&cfqq
->ref
))
1211 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
1212 BUG_ON(rb_first(&cfqq
->sort_list
));
1213 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
1214 BUG_ON(cfq_cfqq_on_rr(cfqq
));
1216 if (unlikely(cfqd
->active_queue
== cfqq
)) {
1217 __cfq_slice_expired(cfqd
, cfqq
, 0);
1218 cfq_schedule_dispatch(cfqd
);
1221 kmem_cache_free(cfq_pool
, cfqq
);
1225 * Must always be called with the rcu_read_lock() held
1228 __call_for_each_cic(struct io_context
*ioc
,
1229 void (*func
)(struct io_context
*, struct cfq_io_context
*))
1231 struct cfq_io_context
*cic
;
1232 struct hlist_node
*n
;
1234 hlist_for_each_entry_rcu(cic
, n
, &ioc
->cic_list
, cic_list
)
1239 * Call func for each cic attached to this ioc.
1242 call_for_each_cic(struct io_context
*ioc
,
1243 void (*func
)(struct io_context
*, struct cfq_io_context
*))
1246 __call_for_each_cic(ioc
, func
);
1250 static void cfq_cic_free_rcu(struct rcu_head
*head
)
1252 struct cfq_io_context
*cic
;
1254 cic
= container_of(head
, struct cfq_io_context
, rcu_head
);
1256 kmem_cache_free(cfq_ioc_pool
, cic
);
1257 elv_ioc_count_dec(ioc_count
);
1261 * CFQ scheduler is exiting, grab exit lock and check
1262 * the pending io context count. If it hits zero,
1263 * complete ioc_gone and set it back to NULL
1265 spin_lock(&ioc_gone_lock
);
1266 if (ioc_gone
&& !elv_ioc_count_read(ioc_count
)) {
1270 spin_unlock(&ioc_gone_lock
);
1274 static void cfq_cic_free(struct cfq_io_context
*cic
)
1276 call_rcu(&cic
->rcu_head
, cfq_cic_free_rcu
);
1279 static void cic_free_func(struct io_context
*ioc
, struct cfq_io_context
*cic
)
1281 unsigned long flags
;
1283 BUG_ON(!cic
->dead_key
);
1285 spin_lock_irqsave(&ioc
->lock
, flags
);
1286 radix_tree_delete(&ioc
->radix_root
, cic
->dead_key
);
1287 hlist_del_rcu(&cic
->cic_list
);
1288 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1294 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1295 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1296 * and ->trim() which is called with the task lock held
1298 static void cfq_free_io_context(struct io_context
*ioc
)
1301 * ioc->refcount is zero here, or we are called from elv_unregister(),
1302 * so no more cic's are allowed to be linked into this ioc. So it
1303 * should be ok to iterate over the known list, we will see all cic's
1304 * since no new ones are added.
1306 __call_for_each_cic(ioc
, cic_free_func
);
1309 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1311 if (unlikely(cfqq
== cfqd
->active_queue
)) {
1312 __cfq_slice_expired(cfqd
, cfqq
, 0);
1313 cfq_schedule_dispatch(cfqd
);
1316 cfq_put_queue(cfqq
);
1319 static void __cfq_exit_single_io_context(struct cfq_data
*cfqd
,
1320 struct cfq_io_context
*cic
)
1322 struct io_context
*ioc
= cic
->ioc
;
1324 list_del_init(&cic
->queue_list
);
1327 * Make sure key == NULL is seen for dead queues
1330 cic
->dead_key
= (unsigned long) cic
->key
;
1333 if (ioc
->ioc_data
== cic
)
1334 rcu_assign_pointer(ioc
->ioc_data
, NULL
);
1336 if (cic
->cfqq
[ASYNC
]) {
1337 cfq_exit_cfqq(cfqd
, cic
->cfqq
[ASYNC
]);
1338 cic
->cfqq
[ASYNC
] = NULL
;
1341 if (cic
->cfqq
[SYNC
]) {
1342 cfq_exit_cfqq(cfqd
, cic
->cfqq
[SYNC
]);
1343 cic
->cfqq
[SYNC
] = NULL
;
1347 static void cfq_exit_single_io_context(struct io_context
*ioc
,
1348 struct cfq_io_context
*cic
)
1350 struct cfq_data
*cfqd
= cic
->key
;
1353 struct request_queue
*q
= cfqd
->queue
;
1354 unsigned long flags
;
1356 spin_lock_irqsave(q
->queue_lock
, flags
);
1359 * Ensure we get a fresh copy of the ->key to prevent
1360 * race between exiting task and queue
1362 smp_read_barrier_depends();
1364 __cfq_exit_single_io_context(cfqd
, cic
);
1366 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1371 * The process that ioc belongs to has exited, we need to clean up
1372 * and put the internal structures we have that belongs to that process.
1374 static void cfq_exit_io_context(struct io_context
*ioc
)
1376 call_for_each_cic(ioc
, cfq_exit_single_io_context
);
1379 static struct cfq_io_context
*
1380 cfq_alloc_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
1382 struct cfq_io_context
*cic
;
1384 cic
= kmem_cache_alloc_node(cfq_ioc_pool
, gfp_mask
| __GFP_ZERO
,
1387 cic
->last_end_request
= jiffies
;
1388 INIT_LIST_HEAD(&cic
->queue_list
);
1389 INIT_HLIST_NODE(&cic
->cic_list
);
1390 cic
->dtor
= cfq_free_io_context
;
1391 cic
->exit
= cfq_exit_io_context
;
1392 elv_ioc_count_inc(ioc_count
);
1398 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct io_context
*ioc
)
1400 struct task_struct
*tsk
= current
;
1403 if (!cfq_cfqq_prio_changed(cfqq
))
1406 ioprio_class
= IOPRIO_PRIO_CLASS(ioc
->ioprio
);
1407 switch (ioprio_class
) {
1409 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
1410 case IOPRIO_CLASS_NONE
:
1412 * no prio set, inherit CPU scheduling settings
1414 cfqq
->ioprio
= task_nice_ioprio(tsk
);
1415 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
1417 case IOPRIO_CLASS_RT
:
1418 cfqq
->ioprio
= task_ioprio(ioc
);
1419 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
1421 case IOPRIO_CLASS_BE
:
1422 cfqq
->ioprio
= task_ioprio(ioc
);
1423 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
1425 case IOPRIO_CLASS_IDLE
:
1426 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
1428 cfq_clear_cfqq_idle_window(cfqq
);
1433 * keep track of original prio settings in case we have to temporarily
1434 * elevate the priority of this queue
1436 cfqq
->org_ioprio
= cfqq
->ioprio
;
1437 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
1438 cfq_clear_cfqq_prio_changed(cfqq
);
1441 static void changed_ioprio(struct io_context
*ioc
, struct cfq_io_context
*cic
)
1443 struct cfq_data
*cfqd
= cic
->key
;
1444 struct cfq_queue
*cfqq
;
1445 unsigned long flags
;
1447 if (unlikely(!cfqd
))
1450 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1452 cfqq
= cic
->cfqq
[ASYNC
];
1454 struct cfq_queue
*new_cfqq
;
1455 new_cfqq
= cfq_get_queue(cfqd
, ASYNC
, cic
->ioc
, GFP_ATOMIC
);
1457 cic
->cfqq
[ASYNC
] = new_cfqq
;
1458 cfq_put_queue(cfqq
);
1462 cfqq
= cic
->cfqq
[SYNC
];
1464 cfq_mark_cfqq_prio_changed(cfqq
);
1466 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1469 static void cfq_ioc_set_ioprio(struct io_context
*ioc
)
1471 call_for_each_cic(ioc
, changed_ioprio
);
1472 ioc
->ioprio_changed
= 0;
1475 static struct cfq_queue
*
1476 cfq_find_alloc_queue(struct cfq_data
*cfqd
, int is_sync
,
1477 struct io_context
*ioc
, gfp_t gfp_mask
)
1479 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
1480 struct cfq_io_context
*cic
;
1483 cic
= cfq_cic_lookup(cfqd
, ioc
);
1484 /* cic always exists here */
1485 cfqq
= cic_to_cfqq(cic
, is_sync
);
1491 } else if (gfp_mask
& __GFP_WAIT
) {
1493 * Inform the allocator of the fact that we will
1494 * just repeat this allocation if it fails, to allow
1495 * the allocator to do whatever it needs to attempt to
1498 spin_unlock_irq(cfqd
->queue
->queue_lock
);
1499 new_cfqq
= kmem_cache_alloc_node(cfq_pool
,
1500 gfp_mask
| __GFP_NOFAIL
| __GFP_ZERO
,
1502 spin_lock_irq(cfqd
->queue
->queue_lock
);
1505 cfqq
= kmem_cache_alloc_node(cfq_pool
,
1506 gfp_mask
| __GFP_ZERO
,
1512 RB_CLEAR_NODE(&cfqq
->rb_node
);
1513 INIT_LIST_HEAD(&cfqq
->fifo
);
1515 atomic_set(&cfqq
->ref
, 0);
1518 cfq_mark_cfqq_prio_changed(cfqq
);
1520 cfq_init_prio_data(cfqq
, ioc
);
1523 if (!cfq_class_idle(cfqq
))
1524 cfq_mark_cfqq_idle_window(cfqq
);
1525 cfq_mark_cfqq_sync(cfqq
);
1527 cfqq
->pid
= current
->pid
;
1528 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
1532 kmem_cache_free(cfq_pool
, new_cfqq
);
1535 WARN_ON((gfp_mask
& __GFP_WAIT
) && !cfqq
);
1539 static struct cfq_queue
**
1540 cfq_async_queue_prio(struct cfq_data
*cfqd
, int ioprio_class
, int ioprio
)
1542 switch (ioprio_class
) {
1543 case IOPRIO_CLASS_RT
:
1544 return &cfqd
->async_cfqq
[0][ioprio
];
1545 case IOPRIO_CLASS_BE
:
1546 return &cfqd
->async_cfqq
[1][ioprio
];
1547 case IOPRIO_CLASS_IDLE
:
1548 return &cfqd
->async_idle_cfqq
;
1554 static struct cfq_queue
*
1555 cfq_get_queue(struct cfq_data
*cfqd
, int is_sync
, struct io_context
*ioc
,
1558 const int ioprio
= task_ioprio(ioc
);
1559 const int ioprio_class
= task_ioprio_class(ioc
);
1560 struct cfq_queue
**async_cfqq
= NULL
;
1561 struct cfq_queue
*cfqq
= NULL
;
1564 async_cfqq
= cfq_async_queue_prio(cfqd
, ioprio_class
, ioprio
);
1569 cfqq
= cfq_find_alloc_queue(cfqd
, is_sync
, ioc
, gfp_mask
);
1575 * pin the queue now that it's allocated, scheduler exit will prune it
1577 if (!is_sync
&& !(*async_cfqq
)) {
1578 atomic_inc(&cfqq
->ref
);
1582 atomic_inc(&cfqq
->ref
);
1587 * We drop cfq io contexts lazily, so we may find a dead one.
1590 cfq_drop_dead_cic(struct cfq_data
*cfqd
, struct io_context
*ioc
,
1591 struct cfq_io_context
*cic
)
1593 unsigned long flags
;
1595 WARN_ON(!list_empty(&cic
->queue_list
));
1597 spin_lock_irqsave(&ioc
->lock
, flags
);
1599 BUG_ON(ioc
->ioc_data
== cic
);
1601 radix_tree_delete(&ioc
->radix_root
, (unsigned long) cfqd
);
1602 hlist_del_rcu(&cic
->cic_list
);
1603 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1608 static struct cfq_io_context
*
1609 cfq_cic_lookup(struct cfq_data
*cfqd
, struct io_context
*ioc
)
1611 struct cfq_io_context
*cic
;
1612 unsigned long flags
;
1621 * we maintain a last-hit cache, to avoid browsing over the tree
1623 cic
= rcu_dereference(ioc
->ioc_data
);
1624 if (cic
&& cic
->key
== cfqd
) {
1630 cic
= radix_tree_lookup(&ioc
->radix_root
, (unsigned long) cfqd
);
1634 /* ->key must be copied to avoid race with cfq_exit_queue() */
1637 cfq_drop_dead_cic(cfqd
, ioc
, cic
);
1642 spin_lock_irqsave(&ioc
->lock
, flags
);
1643 rcu_assign_pointer(ioc
->ioc_data
, cic
);
1644 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1652 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1653 * the process specific cfq io context when entered from the block layer.
1654 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1656 static int cfq_cic_link(struct cfq_data
*cfqd
, struct io_context
*ioc
,
1657 struct cfq_io_context
*cic
, gfp_t gfp_mask
)
1659 unsigned long flags
;
1662 ret
= radix_tree_preload(gfp_mask
);
1667 spin_lock_irqsave(&ioc
->lock
, flags
);
1668 ret
= radix_tree_insert(&ioc
->radix_root
,
1669 (unsigned long) cfqd
, cic
);
1671 hlist_add_head_rcu(&cic
->cic_list
, &ioc
->cic_list
);
1672 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1674 radix_tree_preload_end();
1677 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1678 list_add(&cic
->queue_list
, &cfqd
->cic_list
);
1679 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1684 printk(KERN_ERR
"cfq: cic link failed!\n");
1690 * Setup general io context and cfq io context. There can be several cfq
1691 * io contexts per general io context, if this process is doing io to more
1692 * than one device managed by cfq.
1694 static struct cfq_io_context
*
1695 cfq_get_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
1697 struct io_context
*ioc
= NULL
;
1698 struct cfq_io_context
*cic
;
1700 might_sleep_if(gfp_mask
& __GFP_WAIT
);
1702 ioc
= get_io_context(gfp_mask
, cfqd
->queue
->node
);
1706 cic
= cfq_cic_lookup(cfqd
, ioc
);
1710 cic
= cfq_alloc_io_context(cfqd
, gfp_mask
);
1714 if (cfq_cic_link(cfqd
, ioc
, cic
, gfp_mask
))
1718 smp_read_barrier_depends();
1719 if (unlikely(ioc
->ioprio_changed
))
1720 cfq_ioc_set_ioprio(ioc
);
1726 put_io_context(ioc
);
1731 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
)
1733 unsigned long elapsed
= jiffies
- cic
->last_end_request
;
1734 unsigned long ttime
= min(elapsed
, 2UL * cfqd
->cfq_slice_idle
);
1736 cic
->ttime_samples
= (7*cic
->ttime_samples
+ 256) / 8;
1737 cic
->ttime_total
= (7*cic
->ttime_total
+ 256*ttime
) / 8;
1738 cic
->ttime_mean
= (cic
->ttime_total
+ 128) / cic
->ttime_samples
;
1742 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
,
1748 if (cic
->last_request_pos
< rq
->sector
)
1749 sdist
= rq
->sector
- cic
->last_request_pos
;
1751 sdist
= cic
->last_request_pos
- rq
->sector
;
1754 * Don't allow the seek distance to get too large from the
1755 * odd fragment, pagein, etc
1757 if (cic
->seek_samples
<= 60) /* second&third seek */
1758 sdist
= min(sdist
, (cic
->seek_mean
* 4) + 2*1024*1024);
1760 sdist
= min(sdist
, (cic
->seek_mean
* 4) + 2*1024*64);
1762 cic
->seek_samples
= (7*cic
->seek_samples
+ 256) / 8;
1763 cic
->seek_total
= (7*cic
->seek_total
+ (u64
)256*sdist
) / 8;
1764 total
= cic
->seek_total
+ (cic
->seek_samples
/2);
1765 do_div(total
, cic
->seek_samples
);
1766 cic
->seek_mean
= (sector_t
)total
;
1770 * Disable idle window if the process thinks too long or seeks so much that
1774 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1775 struct cfq_io_context
*cic
)
1777 int old_idle
, enable_idle
;
1780 * Don't idle for async or idle io prio class
1782 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
1785 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
1787 if (!atomic_read(&cic
->ioc
->nr_tasks
) || !cfqd
->cfq_slice_idle
||
1788 (cfqd
->hw_tag
&& CIC_SEEKY(cic
)))
1790 else if (sample_valid(cic
->ttime_samples
)) {
1791 if (cic
->ttime_mean
> cfqd
->cfq_slice_idle
)
1797 if (old_idle
!= enable_idle
) {
1798 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
1800 cfq_mark_cfqq_idle_window(cfqq
);
1802 cfq_clear_cfqq_idle_window(cfqq
);
1807 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1808 * no or if we aren't sure, a 1 will cause a preempt.
1811 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
1814 struct cfq_queue
*cfqq
;
1816 cfqq
= cfqd
->active_queue
;
1820 if (cfq_slice_used(cfqq
))
1823 if (cfq_class_idle(new_cfqq
))
1826 if (cfq_class_idle(cfqq
))
1830 * if the new request is sync, but the currently running queue is
1831 * not, let the sync request have priority.
1833 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
))
1837 * So both queues are sync. Let the new request get disk time if
1838 * it's a metadata request and the current queue is doing regular IO.
1840 if (rq_is_meta(rq
) && !cfqq
->meta_pending
)
1844 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
1846 if (cfq_class_rt(new_cfqq
) && !cfq_class_rt(cfqq
))
1849 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
1853 * if this request is as-good as one we would expect from the
1854 * current cfqq, let it preempt
1856 if (cfq_rq_close(cfqd
, rq
))
1863 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1864 * let it have half of its nominal slice.
1866 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1868 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
1869 cfq_slice_expired(cfqd
, 1);
1872 * Put the new queue at the front of the of the current list,
1873 * so we know that it will be selected next.
1875 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
1877 cfq_service_tree_add(cfqd
, cfqq
, 1);
1879 cfqq
->slice_end
= 0;
1880 cfq_mark_cfqq_slice_new(cfqq
);
1884 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1885 * something we should do about it
1888 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1891 struct cfq_io_context
*cic
= RQ_CIC(rq
);
1895 cfqq
->meta_pending
++;
1897 cfq_update_io_thinktime(cfqd
, cic
);
1898 cfq_update_io_seektime(cfqd
, cic
, rq
);
1899 cfq_update_idle_window(cfqd
, cfqq
, cic
);
1901 cic
->last_request_pos
= rq
->sector
+ rq
->nr_sectors
;
1903 if (cfqq
== cfqd
->active_queue
) {
1905 * Remember that we saw a request from this process, but
1906 * don't start queuing just yet. Otherwise we risk seeing lots
1907 * of tiny requests, because we disrupt the normal plugging
1910 if (cfq_cfqq_wait_request(cfqq
))
1911 cfq_mark_cfqq_must_dispatch(cfqq
);
1912 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
1914 * not the active queue - expire current slice if it is
1915 * idle and has expired it's mean thinktime or this new queue
1916 * has some old slice time left and is of higher priority or
1917 * this new queue is RT and the current one is BE
1919 cfq_preempt_queue(cfqd
, cfqq
);
1920 blk_start_queueing(cfqd
->queue
);
1924 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
1926 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1927 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1929 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
1930 cfq_init_prio_data(cfqq
, RQ_CIC(rq
)->ioc
);
1934 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
1936 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
1940 * Update hw_tag based on peak queue depth over 50 samples under
1943 static void cfq_update_hw_tag(struct cfq_data
*cfqd
)
1945 if (cfqd
->rq_in_driver
> cfqd
->rq_in_driver_peak
)
1946 cfqd
->rq_in_driver_peak
= cfqd
->rq_in_driver
;
1948 if (cfqd
->rq_queued
<= CFQ_HW_QUEUE_MIN
&&
1949 cfqd
->rq_in_driver
<= CFQ_HW_QUEUE_MIN
)
1952 if (cfqd
->hw_tag_samples
++ < 50)
1955 if (cfqd
->rq_in_driver_peak
>= CFQ_HW_QUEUE_MIN
)
1960 cfqd
->hw_tag_samples
= 0;
1961 cfqd
->rq_in_driver_peak
= 0;
1964 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
1966 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1967 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1968 const int sync
= rq_is_sync(rq
);
1972 cfq_log_cfqq(cfqd
, cfqq
, "complete");
1974 cfq_update_hw_tag(cfqd
);
1976 WARN_ON(!cfqd
->rq_in_driver
);
1977 WARN_ON(!cfqq
->dispatched
);
1978 cfqd
->rq_in_driver
--;
1981 if (cfq_cfqq_sync(cfqq
))
1982 cfqd
->sync_flight
--;
1984 if (!cfq_class_idle(cfqq
))
1985 cfqd
->last_end_request
= now
;
1988 RQ_CIC(rq
)->last_end_request
= now
;
1991 * If this is the active queue, check if it needs to be expired,
1992 * or if we want to idle in case it has no pending requests.
1994 if (cfqd
->active_queue
== cfqq
) {
1995 if (cfq_cfqq_slice_new(cfqq
)) {
1996 cfq_set_prio_slice(cfqd
, cfqq
);
1997 cfq_clear_cfqq_slice_new(cfqq
);
1999 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
2000 cfq_slice_expired(cfqd
, 1);
2001 else if (sync
&& !rq_noidle(rq
) &&
2002 RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
2003 cfq_arm_slice_timer(cfqd
);
2007 if (!cfqd
->rq_in_driver
)
2008 cfq_schedule_dispatch(cfqd
);
2012 * we temporarily boost lower priority queues if they are holding fs exclusive
2013 * resources. they are boosted to normal prio (CLASS_BE/4)
2015 static void cfq_prio_boost(struct cfq_queue
*cfqq
)
2017 if (has_fs_excl()) {
2019 * boost idle prio on transactions that would lock out other
2020 * users of the filesystem
2022 if (cfq_class_idle(cfqq
))
2023 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
2024 if (cfqq
->ioprio
> IOPRIO_NORM
)
2025 cfqq
->ioprio
= IOPRIO_NORM
;
2028 * check if we need to unboost the queue
2030 if (cfqq
->ioprio_class
!= cfqq
->org_ioprio_class
)
2031 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
2032 if (cfqq
->ioprio
!= cfqq
->org_ioprio
)
2033 cfqq
->ioprio
= cfqq
->org_ioprio
;
2037 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
2039 if ((cfq_cfqq_wait_request(cfqq
) || cfq_cfqq_must_alloc(cfqq
)) &&
2040 !cfq_cfqq_must_alloc_slice(cfqq
)) {
2041 cfq_mark_cfqq_must_alloc_slice(cfqq
);
2042 return ELV_MQUEUE_MUST
;
2045 return ELV_MQUEUE_MAY
;
2048 static int cfq_may_queue(struct request_queue
*q
, int rw
)
2050 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2051 struct task_struct
*tsk
= current
;
2052 struct cfq_io_context
*cic
;
2053 struct cfq_queue
*cfqq
;
2056 * don't force setup of a queue from here, as a call to may_queue
2057 * does not necessarily imply that a request actually will be queued.
2058 * so just lookup a possibly existing queue, or return 'may queue'
2061 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
2063 return ELV_MQUEUE_MAY
;
2065 cfqq
= cic_to_cfqq(cic
, rw
& REQ_RW_SYNC
);
2067 cfq_init_prio_data(cfqq
, cic
->ioc
);
2068 cfq_prio_boost(cfqq
);
2070 return __cfq_may_queue(cfqq
);
2073 return ELV_MQUEUE_MAY
;
2077 * queue lock held here
2079 static void cfq_put_request(struct request
*rq
)
2081 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2084 const int rw
= rq_data_dir(rq
);
2086 BUG_ON(!cfqq
->allocated
[rw
]);
2087 cfqq
->allocated
[rw
]--;
2089 put_io_context(RQ_CIC(rq
)->ioc
);
2091 rq
->elevator_private
= NULL
;
2092 rq
->elevator_private2
= NULL
;
2094 cfq_put_queue(cfqq
);
2099 * Allocate cfq data structures associated with this request.
2102 cfq_set_request(struct request_queue
*q
, struct request
*rq
, gfp_t gfp_mask
)
2104 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2105 struct cfq_io_context
*cic
;
2106 const int rw
= rq_data_dir(rq
);
2107 const int is_sync
= rq_is_sync(rq
);
2108 struct cfq_queue
*cfqq
;
2109 unsigned long flags
;
2111 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2113 cic
= cfq_get_io_context(cfqd
, gfp_mask
);
2115 spin_lock_irqsave(q
->queue_lock
, flags
);
2120 cfqq
= cic_to_cfqq(cic
, is_sync
);
2122 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
->ioc
, gfp_mask
);
2127 cic_set_cfqq(cic
, cfqq
, is_sync
);
2130 cfqq
->allocated
[rw
]++;
2131 cfq_clear_cfqq_must_alloc(cfqq
);
2132 atomic_inc(&cfqq
->ref
);
2134 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2136 rq
->elevator_private
= cic
;
2137 rq
->elevator_private2
= cfqq
;
2142 put_io_context(cic
->ioc
);
2144 cfq_schedule_dispatch(cfqd
);
2145 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2146 cfq_log(cfqd
, "set_request fail");
2150 static void cfq_kick_queue(struct work_struct
*work
)
2152 struct cfq_data
*cfqd
=
2153 container_of(work
, struct cfq_data
, unplug_work
);
2154 struct request_queue
*q
= cfqd
->queue
;
2155 unsigned long flags
;
2157 spin_lock_irqsave(q
->queue_lock
, flags
);
2158 blk_start_queueing(q
);
2159 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2163 * Timer running if the active_queue is currently idling inside its time slice
2165 static void cfq_idle_slice_timer(unsigned long data
)
2167 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
2168 struct cfq_queue
*cfqq
;
2169 unsigned long flags
;
2172 cfq_log(cfqd
, "idle timer fired");
2174 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2176 cfqq
= cfqd
->active_queue
;
2181 * We saw a request before the queue expired, let it through
2183 if (cfq_cfqq_must_dispatch(cfqq
))
2189 if (cfq_slice_used(cfqq
))
2193 * only expire and reinvoke request handler, if there are
2194 * other queues with pending requests
2196 if (!cfqd
->busy_queues
)
2200 * not expired and it has a request pending, let it dispatch
2202 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
2206 cfq_slice_expired(cfqd
, timed_out
);
2208 cfq_schedule_dispatch(cfqd
);
2210 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2213 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
2215 del_timer_sync(&cfqd
->idle_slice_timer
);
2216 cancel_work_sync(&cfqd
->unplug_work
);
2219 static void cfq_put_async_queues(struct cfq_data
*cfqd
)
2223 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
2224 if (cfqd
->async_cfqq
[0][i
])
2225 cfq_put_queue(cfqd
->async_cfqq
[0][i
]);
2226 if (cfqd
->async_cfqq
[1][i
])
2227 cfq_put_queue(cfqd
->async_cfqq
[1][i
]);
2230 if (cfqd
->async_idle_cfqq
)
2231 cfq_put_queue(cfqd
->async_idle_cfqq
);
2234 static void cfq_exit_queue(struct elevator_queue
*e
)
2236 struct cfq_data
*cfqd
= e
->elevator_data
;
2237 struct request_queue
*q
= cfqd
->queue
;
2239 cfq_shutdown_timer_wq(cfqd
);
2241 spin_lock_irq(q
->queue_lock
);
2243 if (cfqd
->active_queue
)
2244 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
2246 while (!list_empty(&cfqd
->cic_list
)) {
2247 struct cfq_io_context
*cic
= list_entry(cfqd
->cic_list
.next
,
2248 struct cfq_io_context
,
2251 __cfq_exit_single_io_context(cfqd
, cic
);
2254 cfq_put_async_queues(cfqd
);
2256 spin_unlock_irq(q
->queue_lock
);
2258 cfq_shutdown_timer_wq(cfqd
);
2263 static void *cfq_init_queue(struct request_queue
*q
)
2265 struct cfq_data
*cfqd
;
2267 cfqd
= kmalloc_node(sizeof(*cfqd
), GFP_KERNEL
| __GFP_ZERO
, q
->node
);
2271 cfqd
->service_tree
= CFQ_RB_ROOT
;
2272 INIT_LIST_HEAD(&cfqd
->cic_list
);
2276 init_timer(&cfqd
->idle_slice_timer
);
2277 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
2278 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
2280 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
2282 cfqd
->last_end_request
= jiffies
;
2283 cfqd
->cfq_quantum
= cfq_quantum
;
2284 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
2285 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
2286 cfqd
->cfq_back_max
= cfq_back_max
;
2287 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
2288 cfqd
->cfq_slice
[0] = cfq_slice_async
;
2289 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
2290 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
2291 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
2297 static void cfq_slab_kill(void)
2300 * Caller already ensured that pending RCU callbacks are completed,
2301 * so we should have no busy allocations at this point.
2304 kmem_cache_destroy(cfq_pool
);
2306 kmem_cache_destroy(cfq_ioc_pool
);
2309 static int __init
cfq_slab_setup(void)
2311 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
2315 cfq_ioc_pool
= KMEM_CACHE(cfq_io_context
, 0);
2326 * sysfs parts below -->
2329 cfq_var_show(unsigned int var
, char *page
)
2331 return sprintf(page
, "%d\n", var
);
2335 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
2337 char *p
= (char *) page
;
2339 *var
= simple_strtoul(p
, &p
, 10);
2343 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2344 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
2346 struct cfq_data *cfqd = e->elevator_data; \
2347 unsigned int __data = __VAR; \
2349 __data = jiffies_to_msecs(__data); \
2350 return cfq_var_show(__data, (page)); \
2352 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
2353 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
2354 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
2355 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
2356 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
2357 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
2358 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
2359 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
2360 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
2361 #undef SHOW_FUNCTION
2363 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2364 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
2366 struct cfq_data *cfqd = e->elevator_data; \
2367 unsigned int __data; \
2368 int ret = cfq_var_store(&__data, (page), count); \
2369 if (__data < (MIN)) \
2371 else if (__data > (MAX)) \
2374 *(__PTR) = msecs_to_jiffies(__data); \
2376 *(__PTR) = __data; \
2379 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
2380 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
2382 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
2384 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
2385 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
2387 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
2388 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
2389 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
2390 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
2392 #undef STORE_FUNCTION
2394 #define CFQ_ATTR(name) \
2395 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2397 static struct elv_fs_entry cfq_attrs
[] = {
2399 CFQ_ATTR(fifo_expire_sync
),
2400 CFQ_ATTR(fifo_expire_async
),
2401 CFQ_ATTR(back_seek_max
),
2402 CFQ_ATTR(back_seek_penalty
),
2403 CFQ_ATTR(slice_sync
),
2404 CFQ_ATTR(slice_async
),
2405 CFQ_ATTR(slice_async_rq
),
2406 CFQ_ATTR(slice_idle
),
2410 static struct elevator_type iosched_cfq
= {
2412 .elevator_merge_fn
= cfq_merge
,
2413 .elevator_merged_fn
= cfq_merged_request
,
2414 .elevator_merge_req_fn
= cfq_merged_requests
,
2415 .elevator_allow_merge_fn
= cfq_allow_merge
,
2416 .elevator_dispatch_fn
= cfq_dispatch_requests
,
2417 .elevator_add_req_fn
= cfq_insert_request
,
2418 .elevator_activate_req_fn
= cfq_activate_request
,
2419 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
2420 .elevator_queue_empty_fn
= cfq_queue_empty
,
2421 .elevator_completed_req_fn
= cfq_completed_request
,
2422 .elevator_former_req_fn
= elv_rb_former_request
,
2423 .elevator_latter_req_fn
= elv_rb_latter_request
,
2424 .elevator_set_req_fn
= cfq_set_request
,
2425 .elevator_put_req_fn
= cfq_put_request
,
2426 .elevator_may_queue_fn
= cfq_may_queue
,
2427 .elevator_init_fn
= cfq_init_queue
,
2428 .elevator_exit_fn
= cfq_exit_queue
,
2429 .trim
= cfq_free_io_context
,
2431 .elevator_attrs
= cfq_attrs
,
2432 .elevator_name
= "cfq",
2433 .elevator_owner
= THIS_MODULE
,
2436 static int __init
cfq_init(void)
2439 * could be 0 on HZ < 1000 setups
2441 if (!cfq_slice_async
)
2442 cfq_slice_async
= 1;
2443 if (!cfq_slice_idle
)
2446 if (cfq_slab_setup())
2449 elv_register(&iosched_cfq
);
2454 static void __exit
cfq_exit(void)
2456 DECLARE_COMPLETION_ONSTACK(all_gone
);
2457 elv_unregister(&iosched_cfq
);
2458 ioc_gone
= &all_gone
;
2459 /* ioc_gone's update must be visible before reading ioc_count */
2463 * this also protects us from entering cfq_slab_kill() with
2464 * pending RCU callbacks
2466 if (elv_ioc_count_read(ioc_count
))
2467 wait_for_completion(&all_gone
);
2471 module_init(cfq_init
);
2472 module_exit(cfq_exit
);
2474 MODULE_AUTHOR("Jens Axboe");
2475 MODULE_LICENSE("GPL");
2476 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");