2 * Copyright 2002-2004, Instant802 Networks, Inc.
3 * Copyright 2005, Devicescape Software, Inc.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/netdevice.h>
14 #include <net/mac80211.h>
20 /* TKIP key mixing functions */
23 #define PHASE1_LOOP_COUNT 8
26 /* 2-byte by 2-byte subset of the full AES S-box table; second part of this
27 * table is identical to first part but byte-swapped */
28 static const u16 tkip_sbox
[256] =
30 0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
31 0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
32 0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
33 0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
34 0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
35 0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
36 0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
37 0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
38 0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
39 0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
40 0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
41 0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
42 0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
43 0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
44 0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
45 0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
46 0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
47 0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
48 0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
49 0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
50 0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
51 0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
52 0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
53 0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
54 0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
55 0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
56 0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
57 0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
58 0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
59 0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
60 0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
61 0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
65 static inline u16
Mk16(u8 x
, u8 y
)
67 return ((u16
) x
<< 8) | (u16
) y
;
71 static inline u8
Hi8(u16 v
)
77 static inline u8
Lo8(u16 v
)
83 static inline u16
Hi16(u32 v
)
89 static inline u16
Lo16(u32 v
)
95 static inline u16
RotR1(u16 v
)
97 return (v
>> 1) | ((v
& 0x0001) << 15);
101 static inline u16
tkip_S(u16 val
)
103 u16 a
= tkip_sbox
[Hi8(val
)];
105 return tkip_sbox
[Lo8(val
)] ^ Hi8(a
) ^ (Lo8(a
) << 8);
110 /* P1K := Phase1(TA, TK, TSC)
111 * TA = transmitter address (48 bits)
112 * TK = dot11DefaultKeyValue or dot11KeyMappingValue (128 bits)
113 * TSC = TKIP sequence counter (48 bits, only 32 msb bits used)
116 static void tkip_mixing_phase1(const u8
*ta
, const u8
*tk
, u32 tsc_IV32
,
121 p1k
[0] = Lo16(tsc_IV32
);
122 p1k
[1] = Hi16(tsc_IV32
);
123 p1k
[2] = Mk16(ta
[1], ta
[0]);
124 p1k
[3] = Mk16(ta
[3], ta
[2]);
125 p1k
[4] = Mk16(ta
[5], ta
[4]);
127 for (i
= 0; i
< PHASE1_LOOP_COUNT
; i
++) {
129 p1k
[0] += tkip_S(p1k
[4] ^ Mk16(tk
[ 1 + j
], tk
[ 0 + j
]));
130 p1k
[1] += tkip_S(p1k
[0] ^ Mk16(tk
[ 5 + j
], tk
[ 4 + j
]));
131 p1k
[2] += tkip_S(p1k
[1] ^ Mk16(tk
[ 9 + j
], tk
[ 8 + j
]));
132 p1k
[3] += tkip_S(p1k
[2] ^ Mk16(tk
[13 + j
], tk
[12 + j
]));
133 p1k
[4] += tkip_S(p1k
[3] ^ Mk16(tk
[ 1 + j
], tk
[ 0 + j
])) + i
;
138 static void tkip_mixing_phase2(const u16
*p1k
, const u8
*tk
, u16 tsc_IV16
,
149 ppk
[5] = p1k
[4] + tsc_IV16
;
151 ppk
[0] += tkip_S(ppk
[5] ^ Mk16(tk
[ 1], tk
[ 0]));
152 ppk
[1] += tkip_S(ppk
[0] ^ Mk16(tk
[ 3], tk
[ 2]));
153 ppk
[2] += tkip_S(ppk
[1] ^ Mk16(tk
[ 5], tk
[ 4]));
154 ppk
[3] += tkip_S(ppk
[2] ^ Mk16(tk
[ 7], tk
[ 6]));
155 ppk
[4] += tkip_S(ppk
[3] ^ Mk16(tk
[ 9], tk
[ 8]));
156 ppk
[5] += tkip_S(ppk
[4] ^ Mk16(tk
[11], tk
[10]));
157 ppk
[0] += RotR1(ppk
[5] ^ Mk16(tk
[13], tk
[12]));
158 ppk
[1] += RotR1(ppk
[0] ^ Mk16(tk
[15], tk
[14]));
159 ppk
[2] += RotR1(ppk
[1]);
160 ppk
[3] += RotR1(ppk
[2]);
161 ppk
[4] += RotR1(ppk
[3]);
162 ppk
[5] += RotR1(ppk
[4]);
164 rc4key
[0] = Hi8(tsc_IV16
);
165 rc4key
[1] = (Hi8(tsc_IV16
) | 0x20) & 0x7f;
166 rc4key
[2] = Lo8(tsc_IV16
);
167 rc4key
[3] = Lo8((ppk
[5] ^ Mk16(tk
[1], tk
[0])) >> 1);
169 for (i
= 0; i
< 6; i
++) {
170 rc4key
[4 + 2 * i
] = Lo8(ppk
[i
]);
171 rc4key
[5 + 2 * i
] = Hi8(ppk
[i
]);
176 /* Add TKIP IV and Ext. IV at @pos. @iv0, @iv1, and @iv2 are the first octets
177 * of the IV. Returns pointer to the octet following IVs (i.e., beginning of
178 * the packet payload). */
179 u8
* ieee80211_tkip_add_iv(u8
*pos
, struct ieee80211_key
*key
,
180 u8 iv0
, u8 iv1
, u8 iv2
)
185 *pos
++ = (key
->conf
.keyidx
<< 6) | (1 << 5) /* Ext IV */;
186 *pos
++ = key
->u
.tkip
.iv32
& 0xff;
187 *pos
++ = (key
->u
.tkip
.iv32
>> 8) & 0xff;
188 *pos
++ = (key
->u
.tkip
.iv32
>> 16) & 0xff;
189 *pos
++ = (key
->u
.tkip
.iv32
>> 24) & 0xff;
194 void ieee80211_tkip_gen_phase1key(struct ieee80211_key
*key
, u8
*ta
,
197 tkip_mixing_phase1(ta
, &key
->conf
.key
[ALG_TKIP_TEMP_ENCR_KEY
],
198 key
->u
.tkip
.iv32
, phase1key
);
201 void ieee80211_tkip_gen_rc4key(struct ieee80211_key
*key
, u8
*ta
,
204 /* Calculate per-packet key */
205 if (key
->u
.tkip
.iv16
== 0 || !key
->u
.tkip
.tx_initialized
) {
206 /* IV16 wrapped around - perform TKIP phase 1 */
207 tkip_mixing_phase1(ta
, &key
->conf
.key
[ALG_TKIP_TEMP_ENCR_KEY
],
208 key
->u
.tkip
.iv32
, key
->u
.tkip
.p1k
);
209 key
->u
.tkip
.tx_initialized
= 1;
212 tkip_mixing_phase2(key
->u
.tkip
.p1k
,
213 &key
->conf
.key
[ALG_TKIP_TEMP_ENCR_KEY
],
214 key
->u
.tkip
.iv16
, rc4key
);
217 void ieee80211_get_tkip_key(struct ieee80211_key_conf
*keyconf
,
218 struct sk_buff
*skb
, enum ieee80211_tkip_key_type type
,
221 struct ieee80211_key
*key
= (struct ieee80211_key
*)
222 container_of(keyconf
, struct ieee80211_key
, conf
);
223 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
224 u8
*data
= (u8
*) hdr
;
225 u16 fc
= le16_to_cpu(hdr
->frame_control
);
226 int hdr_len
= ieee80211_get_hdrlen(fc
);
231 iv16
= data
[hdr_len
] << 8;
232 iv16
+= data
[hdr_len
+ 2];
233 iv32
= data
[hdr_len
+ 4] | (data
[hdr_len
+ 5] << 8) |
234 (data
[hdr_len
+ 6] << 16) | (data
[hdr_len
+ 7] << 24);
236 #ifdef CONFIG_TKIP_DEBUG
237 printk(KERN_DEBUG
"TKIP encrypt: iv16 = 0x%04x, iv32 = 0x%08x\n",
240 if (iv32
!= key
->u
.tkip
.iv32
) {
241 printk(KERN_DEBUG
"skb: iv32 = 0x%08x key: iv32 = 0x%08x\n",
242 iv32
, key
->u
.tkip
.iv32
);
243 printk(KERN_DEBUG
"Wrap around of iv16 in the middle of a "
244 "fragmented packet\n");
246 #endif /* CONFIG_TKIP_DEBUG */
248 /* Update the p1k only when the iv16 in the packet wraps around, this
249 * might occur after the wrap around of iv16 in the key in case of
250 * fragmented packets. */
251 if (iv16
== 0 || !key
->u
.tkip
.tx_initialized
) {
252 /* IV16 wrapped around - perform TKIP phase 1 */
253 tkip_mixing_phase1(ta
, &key
->conf
.key
[ALG_TKIP_TEMP_ENCR_KEY
],
254 iv32
, key
->u
.tkip
.p1k
);
255 key
->u
.tkip
.tx_initialized
= 1;
258 if (type
== IEEE80211_TKIP_P1_KEY
) {
259 memcpy(outkey
, key
->u
.tkip
.p1k
, sizeof(u16
) * 5);
263 tkip_mixing_phase2(key
->u
.tkip
.p1k
,
264 &key
->conf
.key
[ALG_TKIP_TEMP_ENCR_KEY
], iv16
, outkey
);
266 EXPORT_SYMBOL(ieee80211_get_tkip_key
);
268 /* Encrypt packet payload with TKIP using @key. @pos is a pointer to the
269 * beginning of the buffer containing payload. This payload must include
270 * headroom of eight octets for IV and Ext. IV and taildroom of four octets
271 * for ICV. @payload_len is the length of payload (_not_ including extra
272 * headroom and tailroom). @ta is the transmitter addresses. */
273 void ieee80211_tkip_encrypt_data(struct crypto_blkcipher
*tfm
,
274 struct ieee80211_key
*key
,
275 u8
*pos
, size_t payload_len
, u8
*ta
)
279 ieee80211_tkip_gen_rc4key(key
, ta
, rc4key
);
280 pos
= ieee80211_tkip_add_iv(pos
, key
, rc4key
[0], rc4key
[1], rc4key
[2]);
281 ieee80211_wep_encrypt_data(tfm
, rc4key
, 16, pos
, payload_len
);
285 /* Decrypt packet payload with TKIP using @key. @pos is a pointer to the
286 * beginning of the buffer containing IEEE 802.11 header payload, i.e.,
287 * including IV, Ext. IV, real data, Michael MIC, ICV. @payload_len is the
288 * length of payload, including IV, Ext. IV, MIC, ICV. */
289 int ieee80211_tkip_decrypt_data(struct crypto_blkcipher
*tfm
,
290 struct ieee80211_key
*key
,
291 u8
*payload
, size_t payload_len
, u8
*ta
,
292 u8
*ra
, int only_iv
, int queue
,
293 u32
*out_iv32
, u16
*out_iv16
)
297 u8 rc4key
[16], keyid
, *pos
= payload
;
300 if (payload_len
< 12)
303 iv16
= (pos
[0] << 8) | pos
[2];
305 iv32
= pos
[4] | (pos
[5] << 8) | (pos
[6] << 16) | (pos
[7] << 24);
307 #ifdef CONFIG_TKIP_DEBUG
310 printk(KERN_DEBUG
"TKIP decrypt: data(len=%zd)", payload_len
);
311 for (i
= 0; i
< payload_len
; i
++)
312 printk(" %02x", payload
[i
]);
314 printk(KERN_DEBUG
"TKIP decrypt: iv16=%04x iv32=%08x\n",
317 #endif /* CONFIG_TKIP_DEBUG */
319 if (!(keyid
& (1 << 5)))
320 return TKIP_DECRYPT_NO_EXT_IV
;
322 if ((keyid
>> 6) != key
->conf
.keyidx
)
323 return TKIP_DECRYPT_INVALID_KEYIDX
;
325 if (key
->u
.tkip
.rx_initialized
[queue
] &&
326 (iv32
< key
->u
.tkip
.iv32_rx
[queue
] ||
327 (iv32
== key
->u
.tkip
.iv32_rx
[queue
] &&
328 iv16
<= key
->u
.tkip
.iv16_rx
[queue
]))) {
329 #ifdef CONFIG_TKIP_DEBUG
330 DECLARE_MAC_BUF(mac
);
331 printk(KERN_DEBUG
"TKIP replay detected for RX frame from "
332 "%s (RX IV (%04x,%02x) <= prev. IV (%04x,%02x)\n",
334 iv32
, iv16
, key
->u
.tkip
.iv32_rx
[queue
],
335 key
->u
.tkip
.iv16_rx
[queue
]);
336 #endif /* CONFIG_TKIP_DEBUG */
337 return TKIP_DECRYPT_REPLAY
;
341 res
= TKIP_DECRYPT_OK
;
342 key
->u
.tkip
.rx_initialized
[queue
] = 1;
346 if (!key
->u
.tkip
.rx_initialized
[queue
] ||
347 key
->u
.tkip
.iv32_rx
[queue
] != iv32
) {
348 key
->u
.tkip
.rx_initialized
[queue
] = 1;
349 /* IV16 wrapped around - perform TKIP phase 1 */
350 tkip_mixing_phase1(ta
, &key
->conf
.key
[ALG_TKIP_TEMP_ENCR_KEY
],
351 iv32
, key
->u
.tkip
.p1k_rx
[queue
]);
352 #ifdef CONFIG_TKIP_DEBUG
355 DECLARE_MAC_BUF(mac
);
356 printk(KERN_DEBUG
"TKIP decrypt: Phase1 TA=%s"
357 " TK=", print_mac(mac
, ta
));
358 for (i
= 0; i
< 16; i
++)
361 ALG_TKIP_TEMP_ENCR_KEY
+ i
]);
363 printk(KERN_DEBUG
"TKIP decrypt: P1K=");
364 for (i
= 0; i
< 5; i
++)
365 printk("%04x ", key
->u
.tkip
.p1k_rx
[queue
][i
]);
368 #endif /* CONFIG_TKIP_DEBUG */
369 if (key
->local
->ops
->update_tkip_key
&&
370 key
->flags
& KEY_FLAG_UPLOADED_TO_HARDWARE
) {
372 {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
373 u8
*sta_addr
= key
->sta
->addr
;
375 if (is_multicast_ether_addr(ra
))
378 key
->local
->ops
->update_tkip_key(
379 local_to_hw(key
->local
), &key
->conf
,
380 sta_addr
, iv32
, key
->u
.tkip
.p1k_rx
[queue
]);
384 tkip_mixing_phase2(key
->u
.tkip
.p1k_rx
[queue
],
385 &key
->conf
.key
[ALG_TKIP_TEMP_ENCR_KEY
],
387 #ifdef CONFIG_TKIP_DEBUG
390 printk(KERN_DEBUG
"TKIP decrypt: Phase2 rc4key=");
391 for (i
= 0; i
< 16; i
++)
392 printk("%02x ", rc4key
[i
]);
395 #endif /* CONFIG_TKIP_DEBUG */
397 res
= ieee80211_wep_decrypt_data(tfm
, rc4key
, 16, pos
, payload_len
- 12);
399 if (res
== TKIP_DECRYPT_OK
) {
401 * Record previously received IV, will be copied into the
402 * key information after MIC verification. It is possible
403 * that we don't catch replays of fragments but that's ok
404 * because the Michael MIC verication will then fail.