1 /* drivers/net/ks8851.c
3 * Copyright 2009 Simtec Electronics
4 * http://www.simtec.co.uk/
5 * Ben Dooks <ben@simtec.co.uk>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ethtool.h>
21 #include <linux/cache.h>
22 #include <linux/crc32.h>
23 #include <linux/mii.h>
25 #include <linux/spi/spi.h>
30 * struct ks8851_rxctrl - KS8851 driver rx control
31 * @mchash: Multicast hash-table data.
32 * @rxcr1: KS_RXCR1 register setting
33 * @rxcr2: KS_RXCR2 register setting
35 * Representation of the settings needs to control the receive filtering
36 * such as the multicast hash-filter and the receive register settings. This
37 * is used to make the job of working out if the receive settings change and
38 * then issuing the new settings to the worker that will send the necessary
41 struct ks8851_rxctrl
{
48 * union ks8851_tx_hdr - tx header data
49 * @txb: The header as bytes
50 * @txw: The header as 16bit, little-endian words
52 * A dual representation of the tx header data to allow
53 * access to individual bytes, and to allow 16bit accesses
54 * with 16bit alignment.
62 * struct ks8851_net - KS8851 driver private data
63 * @netdev: The network device we're bound to
64 * @spidev: The spi device we're bound to.
65 * @lock: Lock to ensure that the device is not accessed when busy.
66 * @statelock: Lock on this structure for tx list.
67 * @mii: The MII state information for the mii calls.
68 * @rxctrl: RX settings for @rxctrl_work.
69 * @tx_work: Work queue for tx packets
70 * @irq_work: Work queue for servicing interrupts
71 * @rxctrl_work: Work queue for updating RX mode and multicast lists
72 * @txq: Queue of packets for transmission.
73 * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
74 * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
75 * @txh: Space for generating packet TX header in DMA-able data
76 * @rxd: Space for receiving SPI data, in DMA-able space.
77 * @txd: Space for transmitting SPI data, in DMA-able space.
78 * @msg_enable: The message flags controlling driver output (see ethtool).
79 * @fid: Incrementing frame id tag.
80 * @rc_ier: Cached copy of KS_IER.
81 * @rc_ccr: Cached copy of KS_CCR.
82 * @rc_rxqcr: Cached copy of KS_RXQCR.
83 * @eeprom_size: Companion eeprom size in Bytes, 0 if no eeprom
85 * The @lock ensures that the chip is protected when certain operations are
86 * in progress. When the read or write packet transfer is in progress, most
87 * of the chip registers are not ccessible until the transfer is finished and
88 * the DMA has been de-asserted.
90 * The @statelock is used to protect information in the structure which may
91 * need to be accessed via several sources, such as the network driver layer
92 * or one of the work queues.
94 * We align the buffers we may use for rx/tx to ensure that if the SPI driver
95 * wants to DMA map them, it will not have any problems with data the driver
99 struct net_device
*netdev
;
100 struct spi_device
*spidev
;
102 spinlock_t statelock
;
104 union ks8851_tx_hdr txh ____cacheline_aligned
;
108 u32 msg_enable ____cacheline_aligned
;
117 struct mii_if_info mii
;
118 struct ks8851_rxctrl rxctrl
;
120 struct work_struct tx_work
;
121 struct work_struct irq_work
;
122 struct work_struct rxctrl_work
;
124 struct sk_buff_head txq
;
126 struct spi_message spi_msg1
;
127 struct spi_message spi_msg2
;
128 struct spi_transfer spi_xfer1
;
129 struct spi_transfer spi_xfer2
[2];
132 static int msg_enable
;
134 /* shift for byte-enable data */
135 #define BYTE_EN(_x) ((_x) << 2)
137 /* turn register number and byte-enable mask into data for start of packet */
138 #define MK_OP(_byteen, _reg) (BYTE_EN(_byteen) | (_reg) << (8+2) | (_reg) >> 6)
140 /* SPI register read/write calls.
142 * All these calls issue SPI transactions to access the chip's registers. They
143 * all require that the necessary lock is held to prevent accesses when the
144 * chip is busy transferring packet data (RX/TX FIFO accesses).
148 * ks8851_wrreg16 - write 16bit register value to chip
149 * @ks: The chip state
150 * @reg: The register address
151 * @val: The value to write
153 * Issue a write to put the value @val into the register specified in @reg.
155 static void ks8851_wrreg16(struct ks8851_net
*ks
, unsigned reg
, unsigned val
)
157 struct spi_transfer
*xfer
= &ks
->spi_xfer1
;
158 struct spi_message
*msg
= &ks
->spi_msg1
;
162 txb
[0] = cpu_to_le16(MK_OP(reg
& 2 ? 0xC : 0x03, reg
) | KS_SPIOP_WR
);
163 txb
[1] = cpu_to_le16(val
);
169 ret
= spi_sync(ks
->spidev
, msg
);
171 netdev_err(ks
->netdev
, "spi_sync() failed\n");
175 * ks8851_wrreg8 - write 8bit register value to chip
176 * @ks: The chip state
177 * @reg: The register address
178 * @val: The value to write
180 * Issue a write to put the value @val into the register specified in @reg.
182 static void ks8851_wrreg8(struct ks8851_net
*ks
, unsigned reg
, unsigned val
)
184 struct spi_transfer
*xfer
= &ks
->spi_xfer1
;
185 struct spi_message
*msg
= &ks
->spi_msg1
;
190 bit
= 1 << (reg
& 3);
192 txb
[0] = cpu_to_le16(MK_OP(bit
, reg
) | KS_SPIOP_WR
);
199 ret
= spi_sync(ks
->spidev
, msg
);
201 netdev_err(ks
->netdev
, "spi_sync() failed\n");
205 * ks8851_rx_1msg - select whether to use one or two messages for spi read
206 * @ks: The device structure
208 * Return whether to generate a single message with a tx and rx buffer
209 * supplied to spi_sync(), or alternatively send the tx and rx buffers
210 * as separate messages.
212 * Depending on the hardware in use, a single message may be more efficient
213 * on interrupts or work done by the driver.
215 * This currently always returns true until we add some per-device data passed
216 * from the platform code to specify which mode is better.
218 static inline bool ks8851_rx_1msg(struct ks8851_net
*ks
)
224 * ks8851_rdreg - issue read register command and return the data
225 * @ks: The device state
226 * @op: The register address and byte enables in message format.
227 * @rxb: The RX buffer to return the result into
228 * @rxl: The length of data expected.
230 * This is the low level read call that issues the necessary spi message(s)
231 * to read data from the register specified in @op.
233 static void ks8851_rdreg(struct ks8851_net
*ks
, unsigned op
,
234 u8
*rxb
, unsigned rxl
)
236 struct spi_transfer
*xfer
;
237 struct spi_message
*msg
;
238 __le16
*txb
= (__le16
*)ks
->txd
;
242 txb
[0] = cpu_to_le16(op
| KS_SPIOP_RD
);
244 if (ks8851_rx_1msg(ks
)) {
246 xfer
= &ks
->spi_xfer1
;
253 xfer
= ks
->spi_xfer2
;
265 ret
= spi_sync(ks
->spidev
, msg
);
267 netdev_err(ks
->netdev
, "read: spi_sync() failed\n");
268 else if (ks8851_rx_1msg(ks
))
269 memcpy(rxb
, trx
+ 2, rxl
);
271 memcpy(rxb
, trx
, rxl
);
275 * ks8851_rdreg8 - read 8 bit register from device
276 * @ks: The chip information
277 * @reg: The register address
279 * Read a 8bit register from the chip, returning the result
281 static unsigned ks8851_rdreg8(struct ks8851_net
*ks
, unsigned reg
)
285 ks8851_rdreg(ks
, MK_OP(1 << (reg
& 3), reg
), rxb
, 1);
290 * ks8851_rdreg16 - read 16 bit register from device
291 * @ks: The chip information
292 * @reg: The register address
294 * Read a 16bit register from the chip, returning the result
296 static unsigned ks8851_rdreg16(struct ks8851_net
*ks
, unsigned reg
)
300 ks8851_rdreg(ks
, MK_OP(reg
& 2 ? 0xC : 0x3, reg
), (u8
*)&rx
, 2);
301 return le16_to_cpu(rx
);
305 * ks8851_rdreg32 - read 32 bit register from device
306 * @ks: The chip information
307 * @reg: The register address
309 * Read a 32bit register from the chip.
311 * Note, this read requires the address be aligned to 4 bytes.
313 static unsigned ks8851_rdreg32(struct ks8851_net
*ks
, unsigned reg
)
319 ks8851_rdreg(ks
, MK_OP(0xf, reg
), (u8
*)&rx
, 4);
320 return le32_to_cpu(rx
);
324 * ks8851_soft_reset - issue one of the soft reset to the device
325 * @ks: The device state.
326 * @op: The bit(s) to set in the GRR
328 * Issue the relevant soft-reset command to the device's GRR register
331 * Note, the delays are in there as a caution to ensure that the reset
332 * has time to take effect and then complete. Since the datasheet does
333 * not currently specify the exact sequence, we have chosen something
334 * that seems to work with our device.
336 static void ks8851_soft_reset(struct ks8851_net
*ks
, unsigned op
)
338 ks8851_wrreg16(ks
, KS_GRR
, op
);
339 mdelay(1); /* wait a short time to effect reset */
340 ks8851_wrreg16(ks
, KS_GRR
, 0);
341 mdelay(1); /* wait for condition to clear */
345 * ks8851_write_mac_addr - write mac address to device registers
346 * @dev: The network device
348 * Update the KS8851 MAC address registers from the address in @dev.
350 * This call assumes that the chip is not running, so there is no need to
351 * shutdown the RXQ process whilst setting this.
353 static int ks8851_write_mac_addr(struct net_device
*dev
)
355 struct ks8851_net
*ks
= netdev_priv(dev
);
358 mutex_lock(&ks
->lock
);
360 for (i
= 0; i
< ETH_ALEN
; i
++)
361 ks8851_wrreg8(ks
, KS_MAR(i
), dev
->dev_addr
[i
]);
363 mutex_unlock(&ks
->lock
);
369 * ks8851_init_mac - initialise the mac address
370 * @ks: The device structure
372 * Get or create the initial mac address for the device and then set that
373 * into the station address register. Currently we assume that the device
374 * does not have a valid mac address in it, and so we use random_ether_addr()
375 * to create a new one.
377 * In future, the driver should check to see if the device has an EEPROM
378 * attached and whether that has a valid ethernet address in it.
380 static void ks8851_init_mac(struct ks8851_net
*ks
)
382 struct net_device
*dev
= ks
->netdev
;
384 random_ether_addr(dev
->dev_addr
);
385 ks8851_write_mac_addr(dev
);
389 * ks8851_irq - device interrupt handler
390 * @irq: Interrupt number passed from the IRQ hnalder.
391 * @pw: The private word passed to register_irq(), our struct ks8851_net.
393 * Disable the interrupt from happening again until we've processed the
394 * current status by scheduling ks8851_irq_work().
396 static irqreturn_t
ks8851_irq(int irq
, void *pw
)
398 struct ks8851_net
*ks
= pw
;
400 disable_irq_nosync(irq
);
401 schedule_work(&ks
->irq_work
);
406 * ks8851_rdfifo - read data from the receive fifo
407 * @ks: The device state.
408 * @buff: The buffer address
409 * @len: The length of the data to read
411 * Issue an RXQ FIFO read command and read the @len amount of data from
412 * the FIFO into the buffer specified by @buff.
414 static void ks8851_rdfifo(struct ks8851_net
*ks
, u8
*buff
, unsigned len
)
416 struct spi_transfer
*xfer
= ks
->spi_xfer2
;
417 struct spi_message
*msg
= &ks
->spi_msg2
;
421 netif_dbg(ks
, rx_status
, ks
->netdev
,
422 "%s: %d@%p\n", __func__
, len
, buff
);
424 /* set the operation we're issuing */
425 txb
[0] = KS_SPIOP_RXFIFO
;
436 ret
= spi_sync(ks
->spidev
, msg
);
438 netdev_err(ks
->netdev
, "%s: spi_sync() failed\n", __func__
);
442 * ks8851_dbg_dumpkkt - dump initial packet contents to debug
443 * @ks: The device state
444 * @rxpkt: The data for the received packet
446 * Dump the initial data from the packet to dev_dbg().
448 static void ks8851_dbg_dumpkkt(struct ks8851_net
*ks
, u8
*rxpkt
)
450 netdev_dbg(ks
->netdev
,
451 "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
452 rxpkt
[4], rxpkt
[5], rxpkt
[6], rxpkt
[7],
453 rxpkt
[8], rxpkt
[9], rxpkt
[10], rxpkt
[11],
454 rxpkt
[12], rxpkt
[13], rxpkt
[14], rxpkt
[15]);
458 * ks8851_rx_pkts - receive packets from the host
459 * @ks: The device information.
461 * This is called from the IRQ work queue when the system detects that there
462 * are packets in the receive queue. Find out how many packets there are and
463 * read them from the FIFO.
465 static void ks8851_rx_pkts(struct ks8851_net
*ks
)
474 rxfc
= ks8851_rdreg8(ks
, KS_RXFC
);
476 netif_dbg(ks
, rx_status
, ks
->netdev
,
477 "%s: %d packets\n", __func__
, rxfc
);
479 /* Currently we're issuing a read per packet, but we could possibly
480 * improve the code by issuing a single read, getting the receive
481 * header, allocating the packet and then reading the packet data
484 * This form of operation would require us to hold the SPI bus'
485 * chipselect low during the entie transaction to avoid any
486 * reset to the data stream coming from the chip.
489 for (; rxfc
!= 0; rxfc
--) {
490 rxh
= ks8851_rdreg32(ks
, KS_RXFHSR
);
491 rxstat
= rxh
& 0xffff;
494 netif_dbg(ks
, rx_status
, ks
->netdev
,
495 "rx: stat 0x%04x, len 0x%04x\n", rxstat
, rxlen
);
497 /* the length of the packet includes the 32bit CRC */
499 /* set dma read address */
500 ks8851_wrreg16(ks
, KS_RXFDPR
, RXFDPR_RXFPAI
| 0x00);
502 /* start the packet dma process, and set auto-dequeue rx */
503 ks8851_wrreg16(ks
, KS_RXQCR
,
504 ks
->rc_rxqcr
| RXQCR_SDA
| RXQCR_ADRFE
);
507 unsigned int rxalign
;
510 rxalign
= ALIGN(rxlen
, 4);
511 skb
= netdev_alloc_skb_ip_align(ks
->netdev
, rxalign
);
514 /* 4 bytes of status header + 4 bytes of
515 * garbage: we put them before ethernet
516 * header, so that they are copied,
520 rxpkt
= skb_put(skb
, rxlen
) - 8;
522 ks8851_rdfifo(ks
, rxpkt
, rxalign
+ 8);
524 if (netif_msg_pktdata(ks
))
525 ks8851_dbg_dumpkkt(ks
, rxpkt
);
527 skb
->protocol
= eth_type_trans(skb
, ks
->netdev
);
530 ks
->netdev
->stats
.rx_packets
++;
531 ks
->netdev
->stats
.rx_bytes
+= rxlen
;
535 ks8851_wrreg16(ks
, KS_RXQCR
, ks
->rc_rxqcr
);
540 * ks8851_irq_work - work queue handler for dealing with interrupt requests
541 * @work: The work structure that was scheduled by schedule_work()
543 * This is the handler invoked when the ks8851_irq() is called to find out
544 * what happened, as we cannot allow ourselves to sleep whilst waiting for
545 * anything other process has the chip's lock.
547 * Read the interrupt status, work out what needs to be done and then clear
548 * any of the interrupts that are not needed.
550 static void ks8851_irq_work(struct work_struct
*work
)
552 struct ks8851_net
*ks
= container_of(work
, struct ks8851_net
, irq_work
);
554 unsigned handled
= 0;
556 mutex_lock(&ks
->lock
);
558 status
= ks8851_rdreg16(ks
, KS_ISR
);
560 netif_dbg(ks
, intr
, ks
->netdev
,
561 "%s: status 0x%04x\n", __func__
, status
);
563 if (status
& IRQ_LCI
) {
564 /* should do something about checking link status */
568 if (status
& IRQ_LDI
) {
569 u16 pmecr
= ks8851_rdreg16(ks
, KS_PMECR
);
570 pmecr
&= ~PMECR_WKEVT_MASK
;
571 ks8851_wrreg16(ks
, KS_PMECR
, pmecr
| PMECR_WKEVT_LINK
);
576 if (status
& IRQ_RXPSI
)
577 handled
|= IRQ_RXPSI
;
579 if (status
& IRQ_TXI
) {
582 /* no lock here, tx queue should have been stopped */
584 /* update our idea of how much tx space is available to the
586 ks
->tx_space
= ks8851_rdreg16(ks
, KS_TXMIR
);
588 netif_dbg(ks
, intr
, ks
->netdev
,
589 "%s: txspace %d\n", __func__
, ks
->tx_space
);
592 if (status
& IRQ_RXI
)
595 if (status
& IRQ_SPIBEI
) {
596 dev_err(&ks
->spidev
->dev
, "%s: spi bus error\n", __func__
);
597 handled
|= IRQ_SPIBEI
;
600 ks8851_wrreg16(ks
, KS_ISR
, handled
);
602 if (status
& IRQ_RXI
) {
603 /* the datasheet says to disable the rx interrupt during
604 * packet read-out, however we're masking the interrupt
605 * from the device so do not bother masking just the RX
606 * from the device. */
611 /* if something stopped the rx process, probably due to wanting
612 * to change the rx settings, then do something about restarting
614 if (status
& IRQ_RXPSI
) {
615 struct ks8851_rxctrl
*rxc
= &ks
->rxctrl
;
617 /* update the multicast hash table */
618 ks8851_wrreg16(ks
, KS_MAHTR0
, rxc
->mchash
[0]);
619 ks8851_wrreg16(ks
, KS_MAHTR1
, rxc
->mchash
[1]);
620 ks8851_wrreg16(ks
, KS_MAHTR2
, rxc
->mchash
[2]);
621 ks8851_wrreg16(ks
, KS_MAHTR3
, rxc
->mchash
[3]);
623 ks8851_wrreg16(ks
, KS_RXCR2
, rxc
->rxcr2
);
624 ks8851_wrreg16(ks
, KS_RXCR1
, rxc
->rxcr1
);
627 mutex_unlock(&ks
->lock
);
629 if (status
& IRQ_TXI
)
630 netif_wake_queue(ks
->netdev
);
632 enable_irq(ks
->netdev
->irq
);
636 * calc_txlen - calculate size of message to send packet
637 * @len: Length of data
639 * Returns the size of the TXFIFO message needed to send
642 static inline unsigned calc_txlen(unsigned len
)
644 return ALIGN(len
+ 4, 4);
648 * ks8851_wrpkt - write packet to TX FIFO
649 * @ks: The device state.
650 * @txp: The sk_buff to transmit.
651 * @irq: IRQ on completion of the packet.
653 * Send the @txp to the chip. This means creating the relevant packet header
654 * specifying the length of the packet and the other information the chip
655 * needs, such as IRQ on completion. Send the header and the packet data to
658 static void ks8851_wrpkt(struct ks8851_net
*ks
, struct sk_buff
*txp
, bool irq
)
660 struct spi_transfer
*xfer
= ks
->spi_xfer2
;
661 struct spi_message
*msg
= &ks
->spi_msg2
;
665 netif_dbg(ks
, tx_queued
, ks
->netdev
, "%s: skb %p, %d@%p, irq %d\n",
666 __func__
, txp
, txp
->len
, txp
->data
, irq
);
669 fid
&= TXFR_TXFID_MASK
;
672 fid
|= TXFR_TXIC
; /* irq on completion */
674 /* start header at txb[1] to align txw entries */
675 ks
->txh
.txb
[1] = KS_SPIOP_TXFIFO
;
676 ks
->txh
.txw
[1] = cpu_to_le16(fid
);
677 ks
->txh
.txw
[2] = cpu_to_le16(txp
->len
);
679 xfer
->tx_buf
= &ks
->txh
.txb
[1];
684 xfer
->tx_buf
= txp
->data
;
686 xfer
->len
= ALIGN(txp
->len
, 4);
688 ret
= spi_sync(ks
->spidev
, msg
);
690 netdev_err(ks
->netdev
, "%s: spi_sync() failed\n", __func__
);
694 * ks8851_done_tx - update and then free skbuff after transmitting
695 * @ks: The device state
696 * @txb: The buffer transmitted
698 static void ks8851_done_tx(struct ks8851_net
*ks
, struct sk_buff
*txb
)
700 struct net_device
*dev
= ks
->netdev
;
702 dev
->stats
.tx_bytes
+= txb
->len
;
703 dev
->stats
.tx_packets
++;
709 * ks8851_tx_work - process tx packet(s)
710 * @work: The work strucutre what was scheduled.
712 * This is called when a number of packets have been scheduled for
713 * transmission and need to be sent to the device.
715 static void ks8851_tx_work(struct work_struct
*work
)
717 struct ks8851_net
*ks
= container_of(work
, struct ks8851_net
, tx_work
);
719 bool last
= skb_queue_empty(&ks
->txq
);
721 mutex_lock(&ks
->lock
);
724 txb
= skb_dequeue(&ks
->txq
);
725 last
= skb_queue_empty(&ks
->txq
);
728 ks8851_wrreg16(ks
, KS_RXQCR
, ks
->rc_rxqcr
| RXQCR_SDA
);
729 ks8851_wrpkt(ks
, txb
, last
);
730 ks8851_wrreg16(ks
, KS_RXQCR
, ks
->rc_rxqcr
);
731 ks8851_wrreg16(ks
, KS_TXQCR
, TXQCR_METFE
);
733 ks8851_done_tx(ks
, txb
);
737 mutex_unlock(&ks
->lock
);
741 * ks8851_set_powermode - set power mode of the device
742 * @ks: The device state
743 * @pwrmode: The power mode value to write to KS_PMECR.
745 * Change the power mode of the chip.
747 static void ks8851_set_powermode(struct ks8851_net
*ks
, unsigned pwrmode
)
751 netif_dbg(ks
, hw
, ks
->netdev
, "setting power mode %d\n", pwrmode
);
753 pmecr
= ks8851_rdreg16(ks
, KS_PMECR
);
754 pmecr
&= ~PMECR_PM_MASK
;
757 ks8851_wrreg16(ks
, KS_PMECR
, pmecr
);
761 * ks8851_net_open - open network device
762 * @dev: The network device being opened.
764 * Called when the network device is marked active, such as a user executing
765 * 'ifconfig up' on the device.
767 static int ks8851_net_open(struct net_device
*dev
)
769 struct ks8851_net
*ks
= netdev_priv(dev
);
771 /* lock the card, even if we may not actually be doing anything
772 * else at the moment */
773 mutex_lock(&ks
->lock
);
775 netif_dbg(ks
, ifup
, ks
->netdev
, "opening\n");
777 /* bring chip out of any power saving mode it was in */
778 ks8851_set_powermode(ks
, PMECR_PM_NORMAL
);
780 /* issue a soft reset to the RX/TX QMU to put it into a known
782 ks8851_soft_reset(ks
, GRR_QMU
);
784 /* setup transmission parameters */
786 ks8851_wrreg16(ks
, KS_TXCR
, (TXCR_TXE
| /* enable transmit process */
787 TXCR_TXPE
| /* pad to min length */
788 TXCR_TXCRC
| /* add CRC */
789 TXCR_TXFCE
)); /* enable flow control */
791 /* auto-increment tx data, reset tx pointer */
792 ks8851_wrreg16(ks
, KS_TXFDPR
, TXFDPR_TXFPAI
);
794 /* setup receiver control */
796 ks8851_wrreg16(ks
, KS_RXCR1
, (RXCR1_RXPAFMA
| /* from mac filter */
797 RXCR1_RXFCE
| /* enable flow control */
798 RXCR1_RXBE
| /* broadcast enable */
799 RXCR1_RXUE
| /* unicast enable */
800 RXCR1_RXE
)); /* enable rx block */
802 /* transfer entire frames out in one go */
803 ks8851_wrreg16(ks
, KS_RXCR2
, RXCR2_SRDBL_FRAME
);
805 /* set receive counter timeouts */
806 ks8851_wrreg16(ks
, KS_RXDTTR
, 1000); /* 1ms after first frame to IRQ */
807 ks8851_wrreg16(ks
, KS_RXDBCTR
, 4096); /* >4Kbytes in buffer to IRQ */
808 ks8851_wrreg16(ks
, KS_RXFCTR
, 10); /* 10 frames to IRQ */
810 ks
->rc_rxqcr
= (RXQCR_RXFCTE
| /* IRQ on frame count exceeded */
811 RXQCR_RXDBCTE
| /* IRQ on byte count exceeded */
812 RXQCR_RXDTTE
); /* IRQ on time exceeded */
814 ks8851_wrreg16(ks
, KS_RXQCR
, ks
->rc_rxqcr
);
816 /* clear then enable interrupts */
818 #define STD_IRQ (IRQ_LCI | /* Link Change */ \
819 IRQ_TXI | /* TX done */ \
820 IRQ_RXI | /* RX done */ \
821 IRQ_SPIBEI | /* SPI bus error */ \
822 IRQ_TXPSI | /* TX process stop */ \
823 IRQ_RXPSI) /* RX process stop */
825 ks
->rc_ier
= STD_IRQ
;
826 ks8851_wrreg16(ks
, KS_ISR
, STD_IRQ
);
827 ks8851_wrreg16(ks
, KS_IER
, STD_IRQ
);
829 netif_start_queue(ks
->netdev
);
831 netif_dbg(ks
, ifup
, ks
->netdev
, "network device up\n");
833 mutex_unlock(&ks
->lock
);
838 * ks8851_net_stop - close network device
839 * @dev: The device being closed.
841 * Called to close down a network device which has been active. Cancell any
842 * work, shutdown the RX and TX process and then place the chip into a low
843 * power state whilst it is not being used.
845 static int ks8851_net_stop(struct net_device
*dev
)
847 struct ks8851_net
*ks
= netdev_priv(dev
);
849 netif_info(ks
, ifdown
, dev
, "shutting down\n");
851 netif_stop_queue(dev
);
853 mutex_lock(&ks
->lock
);
855 /* stop any outstanding work */
856 flush_work(&ks
->irq_work
);
857 flush_work(&ks
->tx_work
);
858 flush_work(&ks
->rxctrl_work
);
860 /* turn off the IRQs and ack any outstanding */
861 ks8851_wrreg16(ks
, KS_IER
, 0x0000);
862 ks8851_wrreg16(ks
, KS_ISR
, 0xffff);
864 /* shutdown RX process */
865 ks8851_wrreg16(ks
, KS_RXCR1
, 0x0000);
867 /* shutdown TX process */
868 ks8851_wrreg16(ks
, KS_TXCR
, 0x0000);
870 /* set powermode to soft power down to save power */
871 ks8851_set_powermode(ks
, PMECR_PM_SOFTDOWN
);
873 /* ensure any queued tx buffers are dumped */
874 while (!skb_queue_empty(&ks
->txq
)) {
875 struct sk_buff
*txb
= skb_dequeue(&ks
->txq
);
877 netif_dbg(ks
, ifdown
, ks
->netdev
,
878 "%s: freeing txb %p\n", __func__
, txb
);
883 mutex_unlock(&ks
->lock
);
888 * ks8851_start_xmit - transmit packet
889 * @skb: The buffer to transmit
890 * @dev: The device used to transmit the packet.
892 * Called by the network layer to transmit the @skb. Queue the packet for
893 * the device and schedule the necessary work to transmit the packet when
896 * We do this to firstly avoid sleeping with the network device locked,
897 * and secondly so we can round up more than one packet to transmit which
898 * means we can try and avoid generating too many transmit done interrupts.
900 static netdev_tx_t
ks8851_start_xmit(struct sk_buff
*skb
,
901 struct net_device
*dev
)
903 struct ks8851_net
*ks
= netdev_priv(dev
);
904 unsigned needed
= calc_txlen(skb
->len
);
905 netdev_tx_t ret
= NETDEV_TX_OK
;
907 netif_dbg(ks
, tx_queued
, ks
->netdev
,
908 "%s: skb %p, %d@%p\n", __func__
, skb
, skb
->len
, skb
->data
);
910 spin_lock(&ks
->statelock
);
912 if (needed
> ks
->tx_space
) {
913 netif_stop_queue(dev
);
914 ret
= NETDEV_TX_BUSY
;
916 ks
->tx_space
-= needed
;
917 skb_queue_tail(&ks
->txq
, skb
);
920 spin_unlock(&ks
->statelock
);
921 schedule_work(&ks
->tx_work
);
927 * ks8851_rxctrl_work - work handler to change rx mode
928 * @work: The work structure this belongs to.
930 * Lock the device and issue the necessary changes to the receive mode from
931 * the network device layer. This is done so that we can do this without
932 * having to sleep whilst holding the network device lock.
934 * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
935 * receive parameters are programmed, we issue a write to disable the RXQ and
936 * then wait for the interrupt handler to be triggered once the RXQ shutdown is
937 * complete. The interrupt handler then writes the new values into the chip.
939 static void ks8851_rxctrl_work(struct work_struct
*work
)
941 struct ks8851_net
*ks
= container_of(work
, struct ks8851_net
, rxctrl_work
);
943 mutex_lock(&ks
->lock
);
945 /* need to shutdown RXQ before modifying filter parameters */
946 ks8851_wrreg16(ks
, KS_RXCR1
, 0x00);
948 mutex_unlock(&ks
->lock
);
951 static void ks8851_set_rx_mode(struct net_device
*dev
)
953 struct ks8851_net
*ks
= netdev_priv(dev
);
954 struct ks8851_rxctrl rxctrl
;
956 memset(&rxctrl
, 0, sizeof(rxctrl
));
958 if (dev
->flags
& IFF_PROMISC
) {
959 /* interface to receive everything */
961 rxctrl
.rxcr1
= RXCR1_RXAE
| RXCR1_RXINVF
;
962 } else if (dev
->flags
& IFF_ALLMULTI
) {
963 /* accept all multicast packets */
965 rxctrl
.rxcr1
= (RXCR1_RXME
| RXCR1_RXAE
|
966 RXCR1_RXPAFMA
| RXCR1_RXMAFMA
);
967 } else if (dev
->flags
& IFF_MULTICAST
&& !netdev_mc_empty(dev
)) {
968 struct netdev_hw_addr
*ha
;
971 /* accept some multicast */
973 netdev_for_each_mc_addr(ha
, dev
) {
974 crc
= ether_crc(ETH_ALEN
, ha
->addr
);
975 crc
>>= (32 - 6); /* get top six bits */
977 rxctrl
.mchash
[crc
>> 4] |= (1 << (crc
& 0xf));
980 rxctrl
.rxcr1
= RXCR1_RXME
| RXCR1_RXPAFMA
;
982 /* just accept broadcast / unicast */
983 rxctrl
.rxcr1
= RXCR1_RXPAFMA
;
986 rxctrl
.rxcr1
|= (RXCR1_RXUE
| /* unicast enable */
987 RXCR1_RXBE
| /* broadcast enable */
988 RXCR1_RXE
| /* RX process enable */
989 RXCR1_RXFCE
); /* enable flow control */
991 rxctrl
.rxcr2
|= RXCR2_SRDBL_FRAME
;
993 /* schedule work to do the actual set of the data if needed */
995 spin_lock(&ks
->statelock
);
997 if (memcmp(&rxctrl
, &ks
->rxctrl
, sizeof(rxctrl
)) != 0) {
998 memcpy(&ks
->rxctrl
, &rxctrl
, sizeof(ks
->rxctrl
));
999 schedule_work(&ks
->rxctrl_work
);
1002 spin_unlock(&ks
->statelock
);
1005 static int ks8851_set_mac_address(struct net_device
*dev
, void *addr
)
1007 struct sockaddr
*sa
= addr
;
1009 if (netif_running(dev
))
1012 if (!is_valid_ether_addr(sa
->sa_data
))
1013 return -EADDRNOTAVAIL
;
1015 memcpy(dev
->dev_addr
, sa
->sa_data
, ETH_ALEN
);
1016 return ks8851_write_mac_addr(dev
);
1019 static int ks8851_net_ioctl(struct net_device
*dev
, struct ifreq
*req
, int cmd
)
1021 struct ks8851_net
*ks
= netdev_priv(dev
);
1023 if (!netif_running(dev
))
1026 return generic_mii_ioctl(&ks
->mii
, if_mii(req
), cmd
, NULL
);
1029 static const struct net_device_ops ks8851_netdev_ops
= {
1030 .ndo_open
= ks8851_net_open
,
1031 .ndo_stop
= ks8851_net_stop
,
1032 .ndo_do_ioctl
= ks8851_net_ioctl
,
1033 .ndo_start_xmit
= ks8851_start_xmit
,
1034 .ndo_set_mac_address
= ks8851_set_mac_address
,
1035 .ndo_set_rx_mode
= ks8851_set_rx_mode
,
1036 .ndo_change_mtu
= eth_change_mtu
,
1037 .ndo_validate_addr
= eth_validate_addr
,
1040 /* Companion eeprom access */
1042 enum { /* EEPROM programming states */
1050 * ks8851_eeprom_read - read a 16bits word in ks8851 companion EEPROM
1051 * @dev: The network device the PHY is on.
1052 * @addr: EEPROM address to read
1054 * eeprom_size: used to define the data coding length. Can be changed
1057 * Programs a read on the EEPROM using ks8851 EEPROM SW access feature.
1058 * Warning: The READ feature is not supported on ks8851 revision 0.
1060 * Rough programming model:
1061 * - on period start: set clock high and read value on bus
1062 * - on period / 2: set clock low and program value on bus
1063 * - start on period / 2
1065 unsigned int ks8851_eeprom_read(struct net_device
*dev
, unsigned int addr
)
1067 struct ks8851_net
*ks
= netdev_priv(dev
);
1069 int ctrl
= EEPROM_OP_READ
;
1070 int state
= EEPROM_CONTROL
;
1071 int bit_count
= EEPROM_OP_LEN
- 1;
1072 unsigned int data
= 0;
1074 unsigned int addr_len
;
1076 addr_len
= (ks
->eeprom_size
== 128) ? 6 : 8;
1078 /* start transaction: chip select high, authorize write */
1079 mutex_lock(&ks
->lock
);
1080 eepcr
= EEPCR_EESA
| EEPCR_EESRWA
;
1081 ks8851_wrreg16(ks
, KS_EEPCR
, eepcr
);
1082 eepcr
|= EEPCR_EECS
;
1083 ks8851_wrreg16(ks
, KS_EEPCR
, eepcr
);
1084 mutex_unlock(&ks
->lock
);
1086 while (state
!= EEPROM_COMPLETE
) {
1087 /* falling clock period starts... */
1088 /* set EED_IO pin for control and address */
1089 eepcr
&= ~EEPCR_EEDO
;
1091 case EEPROM_CONTROL
:
1092 eepcr
|= ((ctrl
>> bit_count
) & 1) << 2;
1093 if (bit_count
-- <= 0) {
1094 bit_count
= addr_len
- 1;
1095 state
= EEPROM_ADDRESS
;
1098 case EEPROM_ADDRESS
:
1099 eepcr
|= ((addr
>> bit_count
) & 1) << 2;
1103 /* Change to receive mode */
1104 eepcr
&= ~EEPCR_EESRWA
;
1109 eepcr
&= ~EEPCR_EESCK
;
1111 mutex_lock(&ks
->lock
);
1112 ks8851_wrreg16(ks
, KS_EEPCR
, eepcr
);
1113 mutex_unlock(&ks
->lock
);
1115 /* waitread period / 2 */
1116 udelay(EEPROM_SK_PERIOD
/ 2);
1118 /* rising clock period starts... */
1121 mutex_lock(&ks
->lock
);
1122 eepcr
|= EEPCR_EESCK
;
1123 ks8851_wrreg16(ks
, KS_EEPCR
, eepcr
);
1124 mutex_unlock(&ks
->lock
);
1128 case EEPROM_ADDRESS
:
1129 if (bit_count
< 0) {
1130 bit_count
= EEPROM_DATA_LEN
- 1;
1131 state
= EEPROM_DATA
;
1135 mutex_lock(&ks
->lock
);
1136 dummy
= ks8851_rdreg16(ks
, KS_EEPCR
);
1137 mutex_unlock(&ks
->lock
);
1138 data
|= ((dummy
>> EEPCR_EESB_OFFSET
) & 1) << bit_count
;
1139 if (bit_count
-- <= 0)
1140 state
= EEPROM_COMPLETE
;
1144 /* wait period / 2 */
1145 udelay(EEPROM_SK_PERIOD
/ 2);
1148 /* close transaction */
1149 mutex_lock(&ks
->lock
);
1150 eepcr
&= ~EEPCR_EECS
;
1151 ks8851_wrreg16(ks
, KS_EEPCR
, eepcr
);
1153 ks8851_wrreg16(ks
, KS_EEPCR
, eepcr
);
1154 mutex_unlock(&ks
->lock
);
1160 * ks8851_eeprom_write - write a 16bits word in ks8851 companion EEPROM
1161 * @dev: The network device the PHY is on.
1162 * @op: operand (can be WRITE, EWEN, EWDS)
1163 * @addr: EEPROM address to write
1164 * @data: data to write
1166 * eeprom_size: used to define the data coding length. Can be changed
1169 * Programs a write on the EEPROM using ks8851 EEPROM SW access feature.
1171 * Note that a write enable is required before writing data.
1173 * Rough programming model:
1174 * - on period start: set clock high
1175 * - on period / 2: set clock low and program value on bus
1176 * - start on period / 2
1178 void ks8851_eeprom_write(struct net_device
*dev
, unsigned int op
,
1179 unsigned int addr
, unsigned int data
)
1181 struct ks8851_net
*ks
= netdev_priv(dev
);
1183 int state
= EEPROM_CONTROL
;
1184 int bit_count
= EEPROM_OP_LEN
- 1;
1185 unsigned int addr_len
;
1187 addr_len
= (ks
->eeprom_size
== 128) ? 6 : 8;
1190 case EEPROM_OP_EWEN
:
1193 case EEPROM_OP_EWDS
:
1198 /* start transaction: chip select high, authorize write */
1199 mutex_lock(&ks
->lock
);
1200 eepcr
= EEPCR_EESA
| EEPCR_EESRWA
;
1201 ks8851_wrreg16(ks
, KS_EEPCR
, eepcr
);
1202 eepcr
|= EEPCR_EECS
;
1203 ks8851_wrreg16(ks
, KS_EEPCR
, eepcr
);
1204 mutex_unlock(&ks
->lock
);
1206 while (state
!= EEPROM_COMPLETE
) {
1207 /* falling clock period starts... */
1208 /* set EED_IO pin for control and address */
1209 eepcr
&= ~EEPCR_EEDO
;
1211 case EEPROM_CONTROL
:
1212 eepcr
|= ((op
>> bit_count
) & 1) << 2;
1213 if (bit_count
-- <= 0) {
1214 bit_count
= addr_len
- 1;
1215 state
= EEPROM_ADDRESS
;
1218 case EEPROM_ADDRESS
:
1219 eepcr
|= ((addr
>> bit_count
) & 1) << 2;
1220 if (bit_count
-- <= 0) {
1221 if (op
== EEPROM_OP_WRITE
) {
1222 bit_count
= EEPROM_DATA_LEN
- 1;
1223 state
= EEPROM_DATA
;
1225 state
= EEPROM_COMPLETE
;
1230 eepcr
|= ((data
>> bit_count
) & 1) << 2;
1231 if (bit_count
-- <= 0)
1232 state
= EEPROM_COMPLETE
;
1237 eepcr
&= ~EEPCR_EESCK
;
1239 mutex_lock(&ks
->lock
);
1240 ks8851_wrreg16(ks
, KS_EEPCR
, eepcr
);
1241 mutex_unlock(&ks
->lock
);
1243 /* wait period / 2 */
1244 udelay(EEPROM_SK_PERIOD
/ 2);
1246 /* rising clock period starts... */
1249 eepcr
|= EEPCR_EESCK
;
1250 mutex_lock(&ks
->lock
);
1251 ks8851_wrreg16(ks
, KS_EEPCR
, eepcr
);
1252 mutex_unlock(&ks
->lock
);
1254 /* wait period / 2 */
1255 udelay(EEPROM_SK_PERIOD
/ 2);
1258 /* close transaction */
1259 mutex_lock(&ks
->lock
);
1260 eepcr
&= ~EEPCR_EECS
;
1261 ks8851_wrreg16(ks
, KS_EEPCR
, eepcr
);
1263 ks8851_wrreg16(ks
, KS_EEPCR
, eepcr
);
1264 mutex_unlock(&ks
->lock
);
1268 /* ethtool support */
1270 static void ks8851_get_drvinfo(struct net_device
*dev
,
1271 struct ethtool_drvinfo
*di
)
1273 strlcpy(di
->driver
, "KS8851", sizeof(di
->driver
));
1274 strlcpy(di
->version
, "1.00", sizeof(di
->version
));
1275 strlcpy(di
->bus_info
, dev_name(dev
->dev
.parent
), sizeof(di
->bus_info
));
1278 static u32
ks8851_get_msglevel(struct net_device
*dev
)
1280 struct ks8851_net
*ks
= netdev_priv(dev
);
1281 return ks
->msg_enable
;
1284 static void ks8851_set_msglevel(struct net_device
*dev
, u32 to
)
1286 struct ks8851_net
*ks
= netdev_priv(dev
);
1287 ks
->msg_enable
= to
;
1290 static int ks8851_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
1292 struct ks8851_net
*ks
= netdev_priv(dev
);
1293 return mii_ethtool_gset(&ks
->mii
, cmd
);
1296 static int ks8851_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
1298 struct ks8851_net
*ks
= netdev_priv(dev
);
1299 return mii_ethtool_sset(&ks
->mii
, cmd
);
1302 static u32
ks8851_get_link(struct net_device
*dev
)
1304 struct ks8851_net
*ks
= netdev_priv(dev
);
1305 return mii_link_ok(&ks
->mii
);
1308 static int ks8851_nway_reset(struct net_device
*dev
)
1310 struct ks8851_net
*ks
= netdev_priv(dev
);
1311 return mii_nway_restart(&ks
->mii
);
1314 static int ks8851_get_eeprom_len(struct net_device
*dev
)
1316 struct ks8851_net
*ks
= netdev_priv(dev
);
1317 return ks
->eeprom_size
;
1320 static int ks8851_get_eeprom(struct net_device
*dev
,
1321 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
1323 struct ks8851_net
*ks
= netdev_priv(dev
);
1330 if (eeprom
->len
== 0)
1333 if (eeprom
->len
> ks
->eeprom_size
)
1336 eeprom
->magic
= ks8851_rdreg16(ks
, KS_CIDER
);
1338 first_word
= eeprom
->offset
>> 1;
1339 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
1341 eeprom_buff
= kmalloc(sizeof(u16
) *
1342 (last_word
- first_word
+ 1), GFP_KERNEL
);
1346 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
1347 eeprom_buff
[i
] = ks8851_eeprom_read(dev
, first_word
+ 1);
1349 /* Device's eeprom is little-endian, word addressable */
1350 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
1351 le16_to_cpus(&eeprom_buff
[i
]);
1353 memcpy(bytes
, (u8
*)eeprom_buff
+ (eeprom
->offset
& 1), eeprom
->len
);
1359 static int ks8851_set_eeprom(struct net_device
*dev
,
1360 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
1362 struct ks8851_net
*ks
= netdev_priv(dev
);
1371 if (eeprom
->len
== 0)
1374 if (eeprom
->len
> ks
->eeprom_size
)
1377 if (eeprom
->magic
!= ks8851_rdreg16(ks
, KS_CIDER
))
1380 first_word
= eeprom
->offset
>> 1;
1381 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
1382 max_len
= (last_word
- first_word
+ 1) * 2;
1383 eeprom_buff
= kmalloc(max_len
, GFP_KERNEL
);
1387 ptr
= (void *)eeprom_buff
;
1389 if (eeprom
->offset
& 1) {
1390 /* need read/modify/write of first changed EEPROM word */
1391 /* only the second byte of the word is being modified */
1392 eeprom_buff
[0] = ks8851_eeprom_read(dev
, first_word
);
1395 if ((eeprom
->offset
+ eeprom
->len
) & 1)
1396 /* need read/modify/write of last changed EEPROM word */
1397 /* only the first byte of the word is being modified */
1398 eeprom_buff
[last_word
- first_word
] =
1399 ks8851_eeprom_read(dev
, last_word
);
1402 /* Device's eeprom is little-endian, word addressable */
1403 le16_to_cpus(&eeprom_buff
[0]);
1404 le16_to_cpus(&eeprom_buff
[last_word
- first_word
]);
1406 memcpy(ptr
, bytes
, eeprom
->len
);
1408 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
1409 eeprom_buff
[i
] = cpu_to_le16(eeprom_buff
[i
]);
1411 ks8851_eeprom_write(dev
, EEPROM_OP_EWEN
, 0, 0);
1413 for (i
= 0; i
< last_word
- first_word
+ 1; i
++) {
1414 ks8851_eeprom_write(dev
, EEPROM_OP_WRITE
, first_word
+ i
,
1416 mdelay(EEPROM_WRITE_TIME
);
1419 ks8851_eeprom_write(dev
, EEPROM_OP_EWDS
, 0, 0);
1425 static const struct ethtool_ops ks8851_ethtool_ops
= {
1426 .get_drvinfo
= ks8851_get_drvinfo
,
1427 .get_msglevel
= ks8851_get_msglevel
,
1428 .set_msglevel
= ks8851_set_msglevel
,
1429 .get_settings
= ks8851_get_settings
,
1430 .set_settings
= ks8851_set_settings
,
1431 .get_link
= ks8851_get_link
,
1432 .nway_reset
= ks8851_nway_reset
,
1433 .get_eeprom_len
= ks8851_get_eeprom_len
,
1434 .get_eeprom
= ks8851_get_eeprom
,
1435 .set_eeprom
= ks8851_set_eeprom
,
1438 /* MII interface controls */
1441 * ks8851_phy_reg - convert MII register into a KS8851 register
1442 * @reg: MII register number.
1444 * Return the KS8851 register number for the corresponding MII PHY register
1445 * if possible. Return zero if the MII register has no direct mapping to the
1446 * KS8851 register set.
1448 static int ks8851_phy_reg(int reg
)
1469 * ks8851_phy_read - MII interface PHY register read.
1470 * @dev: The network device the PHY is on.
1471 * @phy_addr: Address of PHY (ignored as we only have one)
1472 * @reg: The register to read.
1474 * This call reads data from the PHY register specified in @reg. Since the
1475 * device does not support all the MII registers, the non-existent values
1476 * are always returned as zero.
1478 * We return zero for unsupported registers as the MII code does not check
1479 * the value returned for any error status, and simply returns it to the
1480 * caller. The mii-tool that the driver was tested with takes any -ve error
1481 * as real PHY capabilities, thus displaying incorrect data to the user.
1483 static int ks8851_phy_read(struct net_device
*dev
, int phy_addr
, int reg
)
1485 struct ks8851_net
*ks
= netdev_priv(dev
);
1489 ksreg
= ks8851_phy_reg(reg
);
1491 return 0x0; /* no error return allowed, so use zero */
1493 mutex_lock(&ks
->lock
);
1494 result
= ks8851_rdreg16(ks
, ksreg
);
1495 mutex_unlock(&ks
->lock
);
1500 static void ks8851_phy_write(struct net_device
*dev
,
1501 int phy
, int reg
, int value
)
1503 struct ks8851_net
*ks
= netdev_priv(dev
);
1506 ksreg
= ks8851_phy_reg(reg
);
1508 mutex_lock(&ks
->lock
);
1509 ks8851_wrreg16(ks
, ksreg
, value
);
1510 mutex_unlock(&ks
->lock
);
1515 * ks8851_read_selftest - read the selftest memory info.
1516 * @ks: The device state
1518 * Read and check the TX/RX memory selftest information.
1520 static int ks8851_read_selftest(struct ks8851_net
*ks
)
1522 unsigned both_done
= MBIR_TXMBF
| MBIR_RXMBF
;
1526 rd
= ks8851_rdreg16(ks
, KS_MBIR
);
1528 if ((rd
& both_done
) != both_done
) {
1529 netdev_warn(ks
->netdev
, "Memory selftest not finished\n");
1533 if (rd
& MBIR_TXMBFA
) {
1534 netdev_err(ks
->netdev
, "TX memory selftest fail\n");
1538 if (rd
& MBIR_RXMBFA
) {
1539 netdev_err(ks
->netdev
, "RX memory selftest fail\n");
1546 /* driver bus management functions */
1549 static int ks8851_suspend(struct spi_device
*spi
, pm_message_t state
)
1551 struct ks8851_net
*ks
= dev_get_drvdata(&spi
->dev
);
1552 struct net_device
*dev
= ks
->netdev
;
1554 if (netif_running(dev
)) {
1555 netif_device_detach(dev
);
1556 ks8851_net_stop(dev
);
1562 static int ks8851_resume(struct spi_device
*spi
)
1564 struct ks8851_net
*ks
= dev_get_drvdata(&spi
->dev
);
1565 struct net_device
*dev
= ks
->netdev
;
1567 if (netif_running(dev
)) {
1568 ks8851_net_open(dev
);
1569 netif_device_attach(dev
);
1575 #define ks8851_suspend NULL
1576 #define ks8851_resume NULL
1579 static int __devinit
ks8851_probe(struct spi_device
*spi
)
1581 struct net_device
*ndev
;
1582 struct ks8851_net
*ks
;
1585 ndev
= alloc_etherdev(sizeof(struct ks8851_net
));
1587 dev_err(&spi
->dev
, "failed to alloc ethernet device\n");
1591 spi
->bits_per_word
= 8;
1593 ks
= netdev_priv(ndev
);
1597 ks
->tx_space
= 6144;
1599 mutex_init(&ks
->lock
);
1600 spin_lock_init(&ks
->statelock
);
1602 INIT_WORK(&ks
->tx_work
, ks8851_tx_work
);
1603 INIT_WORK(&ks
->irq_work
, ks8851_irq_work
);
1604 INIT_WORK(&ks
->rxctrl_work
, ks8851_rxctrl_work
);
1606 /* initialise pre-made spi transfer messages */
1608 spi_message_init(&ks
->spi_msg1
);
1609 spi_message_add_tail(&ks
->spi_xfer1
, &ks
->spi_msg1
);
1611 spi_message_init(&ks
->spi_msg2
);
1612 spi_message_add_tail(&ks
->spi_xfer2
[0], &ks
->spi_msg2
);
1613 spi_message_add_tail(&ks
->spi_xfer2
[1], &ks
->spi_msg2
);
1615 /* setup mii state */
1618 ks
->mii
.phy_id_mask
= 1;
1619 ks
->mii
.reg_num_mask
= 0xf;
1620 ks
->mii
.mdio_read
= ks8851_phy_read
;
1621 ks
->mii
.mdio_write
= ks8851_phy_write
;
1623 dev_info(&spi
->dev
, "message enable is %d\n", msg_enable
);
1625 /* set the default message enable */
1626 ks
->msg_enable
= netif_msg_init(msg_enable
, (NETIF_MSG_DRV
|
1630 skb_queue_head_init(&ks
->txq
);
1632 SET_ETHTOOL_OPS(ndev
, &ks8851_ethtool_ops
);
1633 SET_NETDEV_DEV(ndev
, &spi
->dev
);
1635 dev_set_drvdata(&spi
->dev
, ks
);
1637 ndev
->if_port
= IF_PORT_100BASET
;
1638 ndev
->netdev_ops
= &ks8851_netdev_ops
;
1639 ndev
->irq
= spi
->irq
;
1641 /* issue a global soft reset to reset the device. */
1642 ks8851_soft_reset(ks
, GRR_GSR
);
1644 /* simple check for a valid chip being connected to the bus */
1646 if ((ks8851_rdreg16(ks
, KS_CIDER
) & ~CIDER_REV_MASK
) != CIDER_ID
) {
1647 dev_err(&spi
->dev
, "failed to read device ID\n");
1652 /* cache the contents of the CCR register for EEPROM, etc. */
1653 ks
->rc_ccr
= ks8851_rdreg16(ks
, KS_CCR
);
1655 if (ks
->rc_ccr
& CCR_EEPROM
)
1656 ks
->eeprom_size
= 128;
1658 ks
->eeprom_size
= 0;
1660 ks8851_read_selftest(ks
);
1661 ks8851_init_mac(ks
);
1663 ret
= request_irq(spi
->irq
, ks8851_irq
, IRQF_TRIGGER_LOW
,
1666 dev_err(&spi
->dev
, "failed to get irq\n");
1670 ret
= register_netdev(ndev
);
1672 dev_err(&spi
->dev
, "failed to register network device\n");
1676 netdev_info(ndev
, "revision %d, MAC %pM, IRQ %d\n",
1677 CIDER_REV_GET(ks8851_rdreg16(ks
, KS_CIDER
)),
1678 ndev
->dev_addr
, ndev
->irq
);
1684 free_irq(ndev
->irq
, ndev
);
1692 static int __devexit
ks8851_remove(struct spi_device
*spi
)
1694 struct ks8851_net
*priv
= dev_get_drvdata(&spi
->dev
);
1696 if (netif_msg_drv(priv
))
1697 dev_info(&spi
->dev
, "remove\n");
1699 unregister_netdev(priv
->netdev
);
1700 free_irq(spi
->irq
, priv
);
1701 free_netdev(priv
->netdev
);
1706 static struct spi_driver ks8851_driver
= {
1709 .owner
= THIS_MODULE
,
1711 .probe
= ks8851_probe
,
1712 .remove
= __devexit_p(ks8851_remove
),
1713 .suspend
= ks8851_suspend
,
1714 .resume
= ks8851_resume
,
1717 static int __init
ks8851_init(void)
1719 return spi_register_driver(&ks8851_driver
);
1722 static void __exit
ks8851_exit(void)
1724 spi_unregister_driver(&ks8851_driver
);
1727 module_init(ks8851_init
);
1728 module_exit(ks8851_exit
);
1730 MODULE_DESCRIPTION("KS8851 Network driver");
1731 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1732 MODULE_LICENSE("GPL");
1734 module_param_named(message
, msg_enable
, int, 0);
1735 MODULE_PARM_DESC(message
, "Message verbosity level (0=none, 31=all)");
1736 MODULE_ALIAS("spi:ks8851");