2 * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter
4 * Copyright (C) 2003, 2007 IC Plus Corp
9 * Sundance Technology, Inc.
11 * craig_rich@sundanceti.com
16 * http://www.icplus.com.tw
17 * sorbica@icplus.com.tw
20 * http://www.icplus.com.tw
23 #include <linux/crc32.h>
24 #include <linux/ethtool.h>
25 #include <linux/gfp.h>
26 #include <linux/mii.h>
27 #include <linux/mutex.h>
29 #include <asm/div64.h>
31 #define IPG_RX_RING_BYTES (sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH)
32 #define IPG_TX_RING_BYTES (sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH)
33 #define IPG_RESET_MASK \
34 (IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \
35 IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \
38 #define ipg_w32(val32, reg) iowrite32((val32), ioaddr + (reg))
39 #define ipg_w16(val16, reg) iowrite16((val16), ioaddr + (reg))
40 #define ipg_w8(val8, reg) iowrite8((val8), ioaddr + (reg))
42 #define ipg_r32(reg) ioread32(ioaddr + (reg))
43 #define ipg_r16(reg) ioread16(ioaddr + (reg))
44 #define ipg_r8(reg) ioread8(ioaddr + (reg))
51 #define DRV_NAME "ipg"
53 MODULE_AUTHOR("IC Plus Corp. 2003");
54 MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver");
55 MODULE_LICENSE("GPL");
60 #define IPG_MAX_RXFRAME_SIZE 0x0600
61 #define IPG_RXFRAG_SIZE 0x0600
62 #define IPG_RXSUPPORT_SIZE 0x0600
63 #define IPG_IS_JUMBO false
66 * Variable record -- index by leading revision/length
67 * Revision/Length(=N*4), Address1, Data1, Address2, Data2,...,AddressN,DataN
69 static unsigned short DefaultPhyParam
[] = {
70 /* 11/12/03 IP1000A v1-3 rev=0x40 */
71 /*--------------------------------------------------------------------------
72 (0x4000|(15*4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 22, 0x85bd, 24, 0xfff2,
73 27, 0x0c10, 28, 0x0c10, 29, 0x2c10, 31, 0x0003, 23, 0x92f6,
74 31, 0x0000, 23, 0x003d, 30, 0x00de, 20, 0x20e7, 9, 0x0700,
75 --------------------------------------------------------------------------*/
76 /* 12/17/03 IP1000A v1-4 rev=0x40 */
77 (0x4000 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
79 30, 0x005e, 9, 0x0700,
80 /* 01/09/04 IP1000A v1-5 rev=0x41 */
81 (0x4100 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
83 30, 0x005e, 9, 0x0700,
87 static const char *ipg_brand_name
[] = {
88 "IC PLUS IP1000 1000/100/10 based NIC",
89 "Sundance Technology ST2021 based NIC",
90 "Tamarack Microelectronics TC9020/9021 based NIC",
94 static DEFINE_PCI_DEVICE_TABLE(ipg_pci_tbl
) = {
95 { PCI_VDEVICE(SUNDANCE
, 0x1023), 0 },
96 { PCI_VDEVICE(SUNDANCE
, 0x2021), 1 },
97 { PCI_VDEVICE(DLINK
, 0x9021), 2 },
98 { PCI_VDEVICE(DLINK
, 0x4020), 3 },
102 MODULE_DEVICE_TABLE(pci
, ipg_pci_tbl
);
104 static inline void __iomem
*ipg_ioaddr(struct net_device
*dev
)
106 struct ipg_nic_private
*sp
= netdev_priv(dev
);
111 static void ipg_dump_rfdlist(struct net_device
*dev
)
113 struct ipg_nic_private
*sp
= netdev_priv(dev
);
114 void __iomem
*ioaddr
= sp
->ioaddr
;
118 IPG_DEBUG_MSG("_dump_rfdlist\n");
120 printk(KERN_INFO
"rx_current = %2.2x\n", sp
->rx_current
);
121 printk(KERN_INFO
"rx_dirty = %2.2x\n", sp
->rx_dirty
);
122 printk(KERN_INFO
"RFDList start address = %16.16lx\n",
123 (unsigned long) sp
->rxd_map
);
124 printk(KERN_INFO
"RFDListPtr register = %8.8x%8.8x\n",
125 ipg_r32(IPG_RFDLISTPTR1
), ipg_r32(IPG_RFDLISTPTR0
));
127 for (i
= 0; i
< IPG_RFDLIST_LENGTH
; i
++) {
128 offset
= (u32
) &sp
->rxd
[i
].next_desc
- (u32
) sp
->rxd
;
129 printk(KERN_INFO
"%2.2x %4.4x RFDNextPtr = %16.16lx\n", i
,
130 offset
, (unsigned long) sp
->rxd
[i
].next_desc
);
131 offset
= (u32
) &sp
->rxd
[i
].rfs
- (u32
) sp
->rxd
;
132 printk(KERN_INFO
"%2.2x %4.4x RFS = %16.16lx\n", i
,
133 offset
, (unsigned long) sp
->rxd
[i
].rfs
);
134 offset
= (u32
) &sp
->rxd
[i
].frag_info
- (u32
) sp
->rxd
;
135 printk(KERN_INFO
"%2.2x %4.4x frag_info = %16.16lx\n", i
,
136 offset
, (unsigned long) sp
->rxd
[i
].frag_info
);
140 static void ipg_dump_tfdlist(struct net_device
*dev
)
142 struct ipg_nic_private
*sp
= netdev_priv(dev
);
143 void __iomem
*ioaddr
= sp
->ioaddr
;
147 IPG_DEBUG_MSG("_dump_tfdlist\n");
149 printk(KERN_INFO
"tx_current = %2.2x\n", sp
->tx_current
);
150 printk(KERN_INFO
"tx_dirty = %2.2x\n", sp
->tx_dirty
);
151 printk(KERN_INFO
"TFDList start address = %16.16lx\n",
152 (unsigned long) sp
->txd_map
);
153 printk(KERN_INFO
"TFDListPtr register = %8.8x%8.8x\n",
154 ipg_r32(IPG_TFDLISTPTR1
), ipg_r32(IPG_TFDLISTPTR0
));
156 for (i
= 0; i
< IPG_TFDLIST_LENGTH
; i
++) {
157 offset
= (u32
) &sp
->txd
[i
].next_desc
- (u32
) sp
->txd
;
158 printk(KERN_INFO
"%2.2x %4.4x TFDNextPtr = %16.16lx\n", i
,
159 offset
, (unsigned long) sp
->txd
[i
].next_desc
);
161 offset
= (u32
) &sp
->txd
[i
].tfc
- (u32
) sp
->txd
;
162 printk(KERN_INFO
"%2.2x %4.4x TFC = %16.16lx\n", i
,
163 offset
, (unsigned long) sp
->txd
[i
].tfc
);
164 offset
= (u32
) &sp
->txd
[i
].frag_info
- (u32
) sp
->txd
;
165 printk(KERN_INFO
"%2.2x %4.4x frag_info = %16.16lx\n", i
,
166 offset
, (unsigned long) sp
->txd
[i
].frag_info
);
171 static void ipg_write_phy_ctl(void __iomem
*ioaddr
, u8 data
)
173 ipg_w8(IPG_PC_RSVD_MASK
& data
, PHY_CTRL
);
174 ndelay(IPG_PC_PHYCTRLWAIT_NS
);
177 static void ipg_drive_phy_ctl_low_high(void __iomem
*ioaddr
, u8 data
)
179 ipg_write_phy_ctl(ioaddr
, IPG_PC_MGMTCLK_LO
| data
);
180 ipg_write_phy_ctl(ioaddr
, IPG_PC_MGMTCLK_HI
| data
);
183 static void send_three_state(void __iomem
*ioaddr
, u8 phyctrlpolarity
)
185 phyctrlpolarity
|= (IPG_PC_MGMTDATA
& 0) | IPG_PC_MGMTDIR
;
187 ipg_drive_phy_ctl_low_high(ioaddr
, phyctrlpolarity
);
190 static void send_end(void __iomem
*ioaddr
, u8 phyctrlpolarity
)
192 ipg_w8((IPG_PC_MGMTCLK_LO
| (IPG_PC_MGMTDATA
& 0) | IPG_PC_MGMTDIR
|
193 phyctrlpolarity
) & IPG_PC_RSVD_MASK
, PHY_CTRL
);
196 static u16
read_phy_bit(void __iomem
*ioaddr
, u8 phyctrlpolarity
)
200 ipg_write_phy_ctl(ioaddr
, IPG_PC_MGMTCLK_LO
| phyctrlpolarity
);
202 bit_data
= ((ipg_r8(PHY_CTRL
) & IPG_PC_MGMTDATA
) >> 1) & 1;
204 ipg_write_phy_ctl(ioaddr
, IPG_PC_MGMTCLK_HI
| phyctrlpolarity
);
210 * Read a register from the Physical Layer device located
211 * on the IPG NIC, using the IPG PHYCTRL register.
213 static int mdio_read(struct net_device
*dev
, int phy_id
, int phy_reg
)
215 void __iomem
*ioaddr
= ipg_ioaddr(dev
);
217 * The GMII mangement frame structure for a read is as follows:
219 * |Preamble|st|op|phyad|regad|ta| data |idle|
220 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z |
222 * <32 1s> = 32 consecutive logic 1 values
223 * A = bit of Physical Layer device address (MSB first)
224 * R = bit of register address (MSB first)
225 * z = High impedance state
226 * D = bit of read data (MSB first)
228 * Transmission order is 'Preamble' field first, bits transmitted
229 * left to right (first to last).
235 { GMII_PREAMBLE
, 32 }, /* Preamble */
236 { GMII_ST
, 2 }, /* ST */
237 { GMII_READ
, 2 }, /* OP */
238 { phy_id
, 5 }, /* PHYAD */
239 { phy_reg
, 5 }, /* REGAD */
240 { 0x0000, 2 }, /* TA */
241 { 0x0000, 16 }, /* DATA */
242 { 0x0000, 1 } /* IDLE */
247 polarity
= ipg_r8(PHY_CTRL
);
248 polarity
&= (IPG_PC_DUPLEX_POLARITY
| IPG_PC_LINK_POLARITY
);
250 /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
251 for (j
= 0; j
< 5; j
++) {
252 for (i
= 0; i
< p
[j
].len
; i
++) {
253 /* For each variable length field, the MSB must be
254 * transmitted first. Rotate through the field bits,
255 * starting with the MSB, and move each bit into the
256 * the 1st (2^1) bit position (this is the bit position
257 * corresponding to the MgmtData bit of the PhyCtrl
258 * register for the IPG).
262 * First write a '0' to bit 1 of the PhyCtrl
263 * register, then write a '1' to bit 1 of the
266 * To do this, right shift the MSB of ST by the value:
267 * [field length - 1 - #ST bits already written]
268 * then left shift this result by 1.
270 data
= (p
[j
].field
>> (p
[j
].len
- 1 - i
)) << 1;
271 data
&= IPG_PC_MGMTDATA
;
272 data
|= polarity
| IPG_PC_MGMTDIR
;
274 ipg_drive_phy_ctl_low_high(ioaddr
, data
);
278 send_three_state(ioaddr
, polarity
);
280 read_phy_bit(ioaddr
, polarity
);
283 * For a read cycle, the bits for the next two fields (TA and
284 * DATA) are driven by the PHY (the IPG reads these bits).
286 for (i
= 0; i
< p
[6].len
; i
++) {
288 (read_phy_bit(ioaddr
, polarity
) << (p
[6].len
- 1 - i
));
291 send_three_state(ioaddr
, polarity
);
292 send_three_state(ioaddr
, polarity
);
293 send_three_state(ioaddr
, polarity
);
294 send_end(ioaddr
, polarity
);
296 /* Return the value of the DATA field. */
301 * Write to a register from the Physical Layer device located
302 * on the IPG NIC, using the IPG PHYCTRL register.
304 static void mdio_write(struct net_device
*dev
, int phy_id
, int phy_reg
, int val
)
306 void __iomem
*ioaddr
= ipg_ioaddr(dev
);
308 * The GMII mangement frame structure for a read is as follows:
310 * |Preamble|st|op|phyad|regad|ta| data |idle|
311 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z |
313 * <32 1s> = 32 consecutive logic 1 values
314 * A = bit of Physical Layer device address (MSB first)
315 * R = bit of register address (MSB first)
316 * z = High impedance state
317 * D = bit of write data (MSB first)
319 * Transmission order is 'Preamble' field first, bits transmitted
320 * left to right (first to last).
326 { GMII_PREAMBLE
, 32 }, /* Preamble */
327 { GMII_ST
, 2 }, /* ST */
328 { GMII_WRITE
, 2 }, /* OP */
329 { phy_id
, 5 }, /* PHYAD */
330 { phy_reg
, 5 }, /* REGAD */
331 { 0x0002, 2 }, /* TA */
332 { val
& 0xffff, 16 }, /* DATA */
333 { 0x0000, 1 } /* IDLE */
338 polarity
= ipg_r8(PHY_CTRL
);
339 polarity
&= (IPG_PC_DUPLEX_POLARITY
| IPG_PC_LINK_POLARITY
);
341 /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
342 for (j
= 0; j
< 7; j
++) {
343 for (i
= 0; i
< p
[j
].len
; i
++) {
344 /* For each variable length field, the MSB must be
345 * transmitted first. Rotate through the field bits,
346 * starting with the MSB, and move each bit into the
347 * the 1st (2^1) bit position (this is the bit position
348 * corresponding to the MgmtData bit of the PhyCtrl
349 * register for the IPG).
353 * First write a '0' to bit 1 of the PhyCtrl
354 * register, then write a '1' to bit 1 of the
357 * To do this, right shift the MSB of ST by the value:
358 * [field length - 1 - #ST bits already written]
359 * then left shift this result by 1.
361 data
= (p
[j
].field
>> (p
[j
].len
- 1 - i
)) << 1;
362 data
&= IPG_PC_MGMTDATA
;
363 data
|= polarity
| IPG_PC_MGMTDIR
;
365 ipg_drive_phy_ctl_low_high(ioaddr
, data
);
369 /* The last cycle is a tri-state, so read from the PHY. */
370 for (j
= 7; j
< 8; j
++) {
371 for (i
= 0; i
< p
[j
].len
; i
++) {
372 ipg_write_phy_ctl(ioaddr
, IPG_PC_MGMTCLK_LO
| polarity
);
374 p
[j
].field
|= ((ipg_r8(PHY_CTRL
) &
375 IPG_PC_MGMTDATA
) >> 1) << (p
[j
].len
- 1 - i
);
377 ipg_write_phy_ctl(ioaddr
, IPG_PC_MGMTCLK_HI
| polarity
);
382 static void ipg_set_led_mode(struct net_device
*dev
)
384 struct ipg_nic_private
*sp
= netdev_priv(dev
);
385 void __iomem
*ioaddr
= sp
->ioaddr
;
388 mode
= ipg_r32(ASIC_CTRL
);
389 mode
&= ~(IPG_AC_LED_MODE_BIT_1
| IPG_AC_LED_MODE
| IPG_AC_LED_SPEED
);
391 if ((sp
->led_mode
& 0x03) > 1)
392 mode
|= IPG_AC_LED_MODE_BIT_1
; /* Write Asic Control Bit 29 */
394 if ((sp
->led_mode
& 0x01) == 1)
395 mode
|= IPG_AC_LED_MODE
; /* Write Asic Control Bit 14 */
397 if ((sp
->led_mode
& 0x08) == 8)
398 mode
|= IPG_AC_LED_SPEED
; /* Write Asic Control Bit 27 */
400 ipg_w32(mode
, ASIC_CTRL
);
403 static void ipg_set_phy_set(struct net_device
*dev
)
405 struct ipg_nic_private
*sp
= netdev_priv(dev
);
406 void __iomem
*ioaddr
= sp
->ioaddr
;
409 physet
= ipg_r8(PHY_SET
);
410 physet
&= ~(IPG_PS_MEM_LENB9B
| IPG_PS_MEM_LEN9
| IPG_PS_NON_COMPDET
);
411 physet
|= ((sp
->led_mode
& 0x70) >> 4);
412 ipg_w8(physet
, PHY_SET
);
415 static int ipg_reset(struct net_device
*dev
, u32 resetflags
)
417 /* Assert functional resets via the IPG AsicCtrl
418 * register as specified by the 'resetflags' input
421 void __iomem
*ioaddr
= ipg_ioaddr(dev
);
422 unsigned int timeout_count
= 0;
424 IPG_DEBUG_MSG("_reset\n");
426 ipg_w32(ipg_r32(ASIC_CTRL
) | resetflags
, ASIC_CTRL
);
428 /* Delay added to account for problem with 10Mbps reset. */
429 mdelay(IPG_AC_RESETWAIT
);
431 while (IPG_AC_RESET_BUSY
& ipg_r32(ASIC_CTRL
)) {
432 mdelay(IPG_AC_RESETWAIT
);
433 if (++timeout_count
> IPG_AC_RESET_TIMEOUT
)
436 /* Set LED Mode in Asic Control */
437 ipg_set_led_mode(dev
);
439 /* Set PHYSet Register Value */
440 ipg_set_phy_set(dev
);
444 /* Find the GMII PHY address. */
445 static int ipg_find_phyaddr(struct net_device
*dev
)
447 unsigned int phyaddr
, i
;
449 for (i
= 0; i
< 32; i
++) {
452 /* Search for the correct PHY address among 32 possible. */
453 phyaddr
= (IPG_NIC_PHY_ADDRESS
+ i
) % 32;
455 /* 10/22/03 Grace change verify from GMII_PHY_STATUS to
459 status
= mdio_read(dev
, phyaddr
, MII_BMSR
);
461 if ((status
!= 0xFFFF) && (status
!= 0))
469 * Configure IPG based on result of IEEE 802.3 PHY
472 static int ipg_config_autoneg(struct net_device
*dev
)
474 struct ipg_nic_private
*sp
= netdev_priv(dev
);
475 void __iomem
*ioaddr
= sp
->ioaddr
;
476 unsigned int txflowcontrol
;
477 unsigned int rxflowcontrol
;
478 unsigned int fullduplex
;
483 IPG_DEBUG_MSG("_config_autoneg\n");
485 asicctrl
= ipg_r32(ASIC_CTRL
);
486 phyctrl
= ipg_r8(PHY_CTRL
);
487 mac_ctrl_val
= ipg_r32(MAC_CTRL
);
489 /* Set flags for use in resolving auto-negotiation, assuming
490 * non-1000Mbps, half duplex, no flow control.
496 /* To accommodate a problem in 10Mbps operation,
497 * set a global flag if PHY running in 10Mbps mode.
501 printk(KERN_INFO
"%s: Link speed = ", dev
->name
);
503 /* Determine actual speed of operation. */
504 switch (phyctrl
& IPG_PC_LINK_SPEED
) {
505 case IPG_PC_LINK_SPEED_10MBPS
:
507 printk(KERN_INFO
"%s: 10Mbps operational mode enabled.\n",
511 case IPG_PC_LINK_SPEED_100MBPS
:
512 printk("100Mbps.\n");
514 case IPG_PC_LINK_SPEED_1000MBPS
:
515 printk("1000Mbps.\n");
518 printk("undefined!\n");
522 if (phyctrl
& IPG_PC_DUPLEX_STATUS
) {
528 /* Configure full duplex, and flow control. */
529 if (fullduplex
== 1) {
530 /* Configure IPG for full duplex operation. */
531 printk(KERN_INFO
"%s: setting full duplex, ", dev
->name
);
533 mac_ctrl_val
|= IPG_MC_DUPLEX_SELECT_FD
;
535 if (txflowcontrol
== 1) {
536 printk("TX flow control");
537 mac_ctrl_val
|= IPG_MC_TX_FLOW_CONTROL_ENABLE
;
539 printk("no TX flow control");
540 mac_ctrl_val
&= ~IPG_MC_TX_FLOW_CONTROL_ENABLE
;
543 if (rxflowcontrol
== 1) {
544 printk(", RX flow control.");
545 mac_ctrl_val
|= IPG_MC_RX_FLOW_CONTROL_ENABLE
;
547 printk(", no RX flow control.");
548 mac_ctrl_val
&= ~IPG_MC_RX_FLOW_CONTROL_ENABLE
;
553 /* Configure IPG for half duplex operation. */
554 printk(KERN_INFO
"%s: setting half duplex, "
555 "no TX flow control, no RX flow control.\n", dev
->name
);
557 mac_ctrl_val
&= ~IPG_MC_DUPLEX_SELECT_FD
&
558 ~IPG_MC_TX_FLOW_CONTROL_ENABLE
&
559 ~IPG_MC_RX_FLOW_CONTROL_ENABLE
;
561 ipg_w32(mac_ctrl_val
, MAC_CTRL
);
565 /* Determine and configure multicast operation and set
566 * receive mode for IPG.
568 static void ipg_nic_set_multicast_list(struct net_device
*dev
)
570 void __iomem
*ioaddr
= ipg_ioaddr(dev
);
571 struct netdev_hw_addr
*ha
;
572 unsigned int hashindex
;
576 IPG_DEBUG_MSG("_nic_set_multicast_list\n");
578 receivemode
= IPG_RM_RECEIVEUNICAST
| IPG_RM_RECEIVEBROADCAST
;
580 if (dev
->flags
& IFF_PROMISC
) {
581 /* NIC to be configured in promiscuous mode. */
582 receivemode
= IPG_RM_RECEIVEALLFRAMES
;
583 } else if ((dev
->flags
& IFF_ALLMULTI
) ||
584 ((dev
->flags
& IFF_MULTICAST
) &&
585 (netdev_mc_count(dev
) > IPG_MULTICAST_HASHTABLE_SIZE
))) {
586 /* NIC to be configured to receive all multicast
588 receivemode
|= IPG_RM_RECEIVEMULTICAST
;
589 } else if ((dev
->flags
& IFF_MULTICAST
) && !netdev_mc_empty(dev
)) {
590 /* NIC to be configured to receive selected
591 * multicast addresses. */
592 receivemode
|= IPG_RM_RECEIVEMULTICASTHASH
;
595 /* Calculate the bits to set for the 64 bit, IPG HASHTABLE.
596 * The IPG applies a cyclic-redundancy-check (the same CRC
597 * used to calculate the frame data FCS) to the destination
598 * address all incoming multicast frames whose destination
599 * address has the multicast bit set. The least significant
600 * 6 bits of the CRC result are used as an addressing index
601 * into the hash table. If the value of the bit addressed by
602 * this index is a 1, the frame is passed to the host system.
605 /* Clear hashtable. */
606 hashtable
[0] = 0x00000000;
607 hashtable
[1] = 0x00000000;
609 /* Cycle through all multicast addresses to filter. */
610 netdev_for_each_mc_addr(ha
, dev
) {
611 /* Calculate CRC result for each multicast address. */
612 hashindex
= crc32_le(0xffffffff, ha
->addr
,
615 /* Use only the least significant 6 bits. */
616 hashindex
= hashindex
& 0x3F;
618 /* Within "hashtable", set bit number "hashindex"
621 set_bit(hashindex
, (void *)hashtable
);
624 /* Write the value of the hashtable, to the 4, 16 bit
625 * HASHTABLE IPG registers.
627 ipg_w32(hashtable
[0], HASHTABLE_0
);
628 ipg_w32(hashtable
[1], HASHTABLE_1
);
630 ipg_w8(IPG_RM_RSVD_MASK
& receivemode
, RECEIVE_MODE
);
632 IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE
));
635 static int ipg_io_config(struct net_device
*dev
)
637 struct ipg_nic_private
*sp
= netdev_priv(dev
);
638 void __iomem
*ioaddr
= ipg_ioaddr(dev
);
642 IPG_DEBUG_MSG("_io_config\n");
644 origmacctrl
= ipg_r32(MAC_CTRL
);
646 restoremacctrl
= origmacctrl
| IPG_MC_STATISTICS_ENABLE
;
648 /* Based on compilation option, determine if FCS is to be
649 * stripped on receive frames by IPG.
651 if (!IPG_STRIP_FCS_ON_RX
)
652 restoremacctrl
|= IPG_MC_RCV_FCS
;
654 /* Determine if transmitter and/or receiver are
655 * enabled so we may restore MACCTRL correctly.
657 if (origmacctrl
& IPG_MC_TX_ENABLED
)
658 restoremacctrl
|= IPG_MC_TX_ENABLE
;
660 if (origmacctrl
& IPG_MC_RX_ENABLED
)
661 restoremacctrl
|= IPG_MC_RX_ENABLE
;
663 /* Transmitter and receiver must be disabled before setting
666 ipg_w32((origmacctrl
& (IPG_MC_RX_DISABLE
| IPG_MC_TX_DISABLE
)) &
667 IPG_MC_RSVD_MASK
, MAC_CTRL
);
669 /* Now that transmitter and receiver are disabled, write
672 ipg_w32((origmacctrl
& IPG_MC_IFS_96BIT
) & IPG_MC_RSVD_MASK
, MAC_CTRL
);
674 /* Set RECEIVEMODE register. */
675 ipg_nic_set_multicast_list(dev
);
677 ipg_w16(sp
->max_rxframe_size
, MAX_FRAME_SIZE
);
679 ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE
, RX_DMA_POLL_PERIOD
);
680 ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE
, RX_DMA_URGENT_THRESH
);
681 ipg_w8(IPG_RXDMABURSTTHRESH_VALUE
, RX_DMA_BURST_THRESH
);
682 ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE
, TX_DMA_POLL_PERIOD
);
683 ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE
, TX_DMA_URGENT_THRESH
);
684 ipg_w8(IPG_TXDMABURSTTHRESH_VALUE
, TX_DMA_BURST_THRESH
);
685 ipg_w16((IPG_IE_HOST_ERROR
| IPG_IE_TX_DMA_COMPLETE
|
686 IPG_IE_TX_COMPLETE
| IPG_IE_INT_REQUESTED
|
687 IPG_IE_UPDATE_STATS
| IPG_IE_LINK_EVENT
|
688 IPG_IE_RX_DMA_COMPLETE
| IPG_IE_RX_DMA_PRIORITY
), INT_ENABLE
);
689 ipg_w16(IPG_FLOWONTHRESH_VALUE
, FLOW_ON_THRESH
);
690 ipg_w16(IPG_FLOWOFFTHRESH_VALUE
, FLOW_OFF_THRESH
);
692 /* IPG multi-frag frame bug workaround.
693 * Per silicon revision B3 eratta.
695 ipg_w16(ipg_r16(DEBUG_CTRL
) | 0x0200, DEBUG_CTRL
);
697 /* IPG TX poll now bug workaround.
698 * Per silicon revision B3 eratta.
700 ipg_w16(ipg_r16(DEBUG_CTRL
) | 0x0010, DEBUG_CTRL
);
702 /* IPG RX poll now bug workaround.
703 * Per silicon revision B3 eratta.
705 ipg_w16(ipg_r16(DEBUG_CTRL
) | 0x0020, DEBUG_CTRL
);
707 /* Now restore MACCTRL to original setting. */
708 ipg_w32(IPG_MC_RSVD_MASK
& restoremacctrl
, MAC_CTRL
);
710 /* Disable unused RMON statistics. */
711 ipg_w32(IPG_RZ_ALL
, RMON_STATISTICS_MASK
);
713 /* Disable unused MIB statistics. */
714 ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD
| IPG_SM_MACCONTROLFRAMESRCVD
|
715 IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK
| IPG_SM_TXJUMBOFRAMES
|
716 IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK
| IPG_SM_RXJUMBOFRAMES
|
717 IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK
|
718 IPG_SM_UDPCHECKSUMERRORS
| IPG_SM_TCPCHECKSUMERRORS
|
719 IPG_SM_IPCHECKSUMERRORS
, STATISTICS_MASK
);
725 * Create a receive buffer within system memory and update
726 * NIC private structure appropriately.
728 static int ipg_get_rxbuff(struct net_device
*dev
, int entry
)
730 struct ipg_nic_private
*sp
= netdev_priv(dev
);
731 struct ipg_rx
*rxfd
= sp
->rxd
+ entry
;
735 IPG_DEBUG_MSG("_get_rxbuff\n");
737 skb
= netdev_alloc_skb_ip_align(dev
, sp
->rxsupport_size
);
739 sp
->rx_buff
[entry
] = NULL
;
743 /* Associate the receive buffer with the IPG NIC. */
746 /* Save the address of the sk_buff structure. */
747 sp
->rx_buff
[entry
] = skb
;
749 rxfd
->frag_info
= cpu_to_le64(pci_map_single(sp
->pdev
, skb
->data
,
750 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
));
752 /* Set the RFD fragment length. */
753 rxfragsize
= sp
->rxfrag_size
;
754 rxfd
->frag_info
|= cpu_to_le64((rxfragsize
<< 48) & IPG_RFI_FRAGLEN
);
759 static int init_rfdlist(struct net_device
*dev
)
761 struct ipg_nic_private
*sp
= netdev_priv(dev
);
762 void __iomem
*ioaddr
= sp
->ioaddr
;
765 IPG_DEBUG_MSG("_init_rfdlist\n");
767 for (i
= 0; i
< IPG_RFDLIST_LENGTH
; i
++) {
768 struct ipg_rx
*rxfd
= sp
->rxd
+ i
;
770 if (sp
->rx_buff
[i
]) {
771 pci_unmap_single(sp
->pdev
,
772 le64_to_cpu(rxfd
->frag_info
) & ~IPG_RFI_FRAGLEN
,
773 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
774 dev_kfree_skb_irq(sp
->rx_buff
[i
]);
775 sp
->rx_buff
[i
] = NULL
;
778 /* Clear out the RFS field. */
779 rxfd
->rfs
= 0x0000000000000000;
781 if (ipg_get_rxbuff(dev
, i
) < 0) {
783 * A receive buffer was not ready, break the
786 IPG_DEBUG_MSG("Cannot allocate Rx buffer.\n");
788 /* Just in case we cannot allocate a single RFD.
792 printk(KERN_ERR
"%s: No memory available"
793 " for RFD list.\n", dev
->name
);
798 rxfd
->next_desc
= cpu_to_le64(sp
->rxd_map
+
799 sizeof(struct ipg_rx
)*(i
+ 1));
801 sp
->rxd
[i
- 1].next_desc
= cpu_to_le64(sp
->rxd_map
);
806 /* Write the location of the RFDList to the IPG. */
807 ipg_w32((u32
) sp
->rxd_map
, RFD_LIST_PTR_0
);
808 ipg_w32(0x00000000, RFD_LIST_PTR_1
);
813 static void init_tfdlist(struct net_device
*dev
)
815 struct ipg_nic_private
*sp
= netdev_priv(dev
);
816 void __iomem
*ioaddr
= sp
->ioaddr
;
819 IPG_DEBUG_MSG("_init_tfdlist\n");
821 for (i
= 0; i
< IPG_TFDLIST_LENGTH
; i
++) {
822 struct ipg_tx
*txfd
= sp
->txd
+ i
;
824 txfd
->tfc
= cpu_to_le64(IPG_TFC_TFDDONE
);
826 if (sp
->tx_buff
[i
]) {
827 dev_kfree_skb_irq(sp
->tx_buff
[i
]);
828 sp
->tx_buff
[i
] = NULL
;
831 txfd
->next_desc
= cpu_to_le64(sp
->txd_map
+
832 sizeof(struct ipg_tx
)*(i
+ 1));
834 sp
->txd
[i
- 1].next_desc
= cpu_to_le64(sp
->txd_map
);
839 /* Write the location of the TFDList to the IPG. */
840 IPG_DDEBUG_MSG("Starting TFDListPtr = %8.8x\n",
842 ipg_w32((u32
) sp
->txd_map
, TFD_LIST_PTR_0
);
843 ipg_w32(0x00000000, TFD_LIST_PTR_1
);
845 sp
->reset_current_tfd
= 1;
849 * Free all transmit buffers which have already been transferred
850 * via DMA to the IPG.
852 static void ipg_nic_txfree(struct net_device
*dev
)
854 struct ipg_nic_private
*sp
= netdev_priv(dev
);
855 unsigned int released
, pending
, dirty
;
857 IPG_DEBUG_MSG("_nic_txfree\n");
859 pending
= sp
->tx_current
- sp
->tx_dirty
;
860 dirty
= sp
->tx_dirty
% IPG_TFDLIST_LENGTH
;
862 for (released
= 0; released
< pending
; released
++) {
863 struct sk_buff
*skb
= sp
->tx_buff
[dirty
];
864 struct ipg_tx
*txfd
= sp
->txd
+ dirty
;
866 IPG_DEBUG_MSG("TFC = %16.16lx\n", (unsigned long) txfd
->tfc
);
868 /* Look at each TFD's TFC field beginning
869 * at the last freed TFD up to the current TFD.
870 * If the TFDDone bit is set, free the associated
873 if (!(txfd
->tfc
& cpu_to_le64(IPG_TFC_TFDDONE
)))
876 /* Free the transmit buffer. */
878 pci_unmap_single(sp
->pdev
,
879 le64_to_cpu(txfd
->frag_info
) & ~IPG_TFI_FRAGLEN
,
880 skb
->len
, PCI_DMA_TODEVICE
);
882 dev_kfree_skb_irq(skb
);
884 sp
->tx_buff
[dirty
] = NULL
;
886 dirty
= (dirty
+ 1) % IPG_TFDLIST_LENGTH
;
889 sp
->tx_dirty
+= released
;
891 if (netif_queue_stopped(dev
) &&
892 (sp
->tx_current
!= (sp
->tx_dirty
+ IPG_TFDLIST_LENGTH
))) {
893 netif_wake_queue(dev
);
897 static void ipg_tx_timeout(struct net_device
*dev
)
899 struct ipg_nic_private
*sp
= netdev_priv(dev
);
900 void __iomem
*ioaddr
= sp
->ioaddr
;
902 ipg_reset(dev
, IPG_AC_TX_RESET
| IPG_AC_DMA
| IPG_AC_NETWORK
|
905 spin_lock_irq(&sp
->lock
);
907 /* Re-configure after DMA reset. */
908 if (ipg_io_config(dev
) < 0) {
909 printk(KERN_INFO
"%s: Error during re-configuration.\n",
915 spin_unlock_irq(&sp
->lock
);
917 ipg_w32((ipg_r32(MAC_CTRL
) | IPG_MC_TX_ENABLE
) & IPG_MC_RSVD_MASK
,
922 * For TxComplete interrupts, free all transmit
923 * buffers which have already been transferred via DMA
926 static void ipg_nic_txcleanup(struct net_device
*dev
)
928 struct ipg_nic_private
*sp
= netdev_priv(dev
);
929 void __iomem
*ioaddr
= sp
->ioaddr
;
932 IPG_DEBUG_MSG("_nic_txcleanup\n");
934 for (i
= 0; i
< IPG_TFDLIST_LENGTH
; i
++) {
935 /* Reading the TXSTATUS register clears the
936 * TX_COMPLETE interrupt.
938 u32 txstatusdword
= ipg_r32(TX_STATUS
);
940 IPG_DEBUG_MSG("TxStatus = %8.8x\n", txstatusdword
);
942 /* Check for Transmit errors. Error bits only valid if
943 * TX_COMPLETE bit in the TXSTATUS register is a 1.
945 if (!(txstatusdword
& IPG_TS_TX_COMPLETE
))
948 /* If in 10Mbps mode, indicate transmit is ready. */
949 if (sp
->tenmbpsmode
) {
950 netif_wake_queue(dev
);
953 /* Transmit error, increment stat counters. */
954 if (txstatusdword
& IPG_TS_TX_ERROR
) {
955 IPG_DEBUG_MSG("Transmit error.\n");
956 sp
->stats
.tx_errors
++;
959 /* Late collision, re-enable transmitter. */
960 if (txstatusdword
& IPG_TS_LATE_COLLISION
) {
961 IPG_DEBUG_MSG("Late collision on transmit.\n");
962 ipg_w32((ipg_r32(MAC_CTRL
) | IPG_MC_TX_ENABLE
) &
963 IPG_MC_RSVD_MASK
, MAC_CTRL
);
966 /* Maximum collisions, re-enable transmitter. */
967 if (txstatusdword
& IPG_TS_TX_MAX_COLL
) {
968 IPG_DEBUG_MSG("Maximum collisions on transmit.\n");
969 ipg_w32((ipg_r32(MAC_CTRL
) | IPG_MC_TX_ENABLE
) &
970 IPG_MC_RSVD_MASK
, MAC_CTRL
);
973 /* Transmit underrun, reset and re-enable
976 if (txstatusdword
& IPG_TS_TX_UNDERRUN
) {
977 IPG_DEBUG_MSG("Transmitter underrun.\n");
978 sp
->stats
.tx_fifo_errors
++;
979 ipg_reset(dev
, IPG_AC_TX_RESET
| IPG_AC_DMA
|
980 IPG_AC_NETWORK
| IPG_AC_FIFO
);
982 /* Re-configure after DMA reset. */
983 if (ipg_io_config(dev
) < 0) {
985 "%s: Error during re-configuration.\n",
990 ipg_w32((ipg_r32(MAC_CTRL
) | IPG_MC_TX_ENABLE
) &
991 IPG_MC_RSVD_MASK
, MAC_CTRL
);
998 /* Provides statistical information about the IPG NIC. */
999 static struct net_device_stats
*ipg_nic_get_stats(struct net_device
*dev
)
1001 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1002 void __iomem
*ioaddr
= sp
->ioaddr
;
1006 IPG_DEBUG_MSG("_nic_get_stats\n");
1008 /* Check to see if the NIC has been initialized via nic_open,
1009 * before trying to read statistic registers.
1011 if (!test_bit(__LINK_STATE_START
, &dev
->state
))
1014 sp
->stats
.rx_packets
+= ipg_r32(IPG_FRAMESRCVDOK
);
1015 sp
->stats
.tx_packets
+= ipg_r32(IPG_FRAMESXMTDOK
);
1016 sp
->stats
.rx_bytes
+= ipg_r32(IPG_OCTETRCVOK
);
1017 sp
->stats
.tx_bytes
+= ipg_r32(IPG_OCTETXMTOK
);
1018 temp1
= ipg_r16(IPG_FRAMESLOSTRXERRORS
);
1019 sp
->stats
.rx_errors
+= temp1
;
1020 sp
->stats
.rx_missed_errors
+= temp1
;
1021 temp1
= ipg_r32(IPG_SINGLECOLFRAMES
) + ipg_r32(IPG_MULTICOLFRAMES
) +
1022 ipg_r32(IPG_LATECOLLISIONS
);
1023 temp2
= ipg_r16(IPG_CARRIERSENSEERRORS
);
1024 sp
->stats
.collisions
+= temp1
;
1025 sp
->stats
.tx_dropped
+= ipg_r16(IPG_FRAMESABORTXSCOLLS
);
1026 sp
->stats
.tx_errors
+= ipg_r16(IPG_FRAMESWEXDEFERRAL
) +
1027 ipg_r32(IPG_FRAMESWDEFERREDXMT
) + temp1
+ temp2
;
1028 sp
->stats
.multicast
+= ipg_r32(IPG_MCSTOCTETRCVDOK
);
1030 /* detailed tx_errors */
1031 sp
->stats
.tx_carrier_errors
+= temp2
;
1033 /* detailed rx_errors */
1034 sp
->stats
.rx_length_errors
+= ipg_r16(IPG_INRANGELENGTHERRORS
) +
1035 ipg_r16(IPG_FRAMETOOLONGERRRORS
);
1036 sp
->stats
.rx_crc_errors
+= ipg_r16(IPG_FRAMECHECKSEQERRORS
);
1038 /* Unutilized IPG statistic registers. */
1039 ipg_r32(IPG_MCSTFRAMESRCVDOK
);
1044 /* Restore used receive buffers. */
1045 static int ipg_nic_rxrestore(struct net_device
*dev
)
1047 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1048 const unsigned int curr
= sp
->rx_current
;
1049 unsigned int dirty
= sp
->rx_dirty
;
1051 IPG_DEBUG_MSG("_nic_rxrestore\n");
1053 for (dirty
= sp
->rx_dirty
; curr
- dirty
> 0; dirty
++) {
1054 unsigned int entry
= dirty
% IPG_RFDLIST_LENGTH
;
1056 /* rx_copybreak may poke hole here and there. */
1057 if (sp
->rx_buff
[entry
])
1060 /* Generate a new receive buffer to replace the
1061 * current buffer (which will be released by the
1064 if (ipg_get_rxbuff(dev
, entry
) < 0) {
1065 IPG_DEBUG_MSG("Cannot allocate new Rx buffer.\n");
1070 /* Reset the RFS field. */
1071 sp
->rxd
[entry
].rfs
= 0x0000000000000000;
1073 sp
->rx_dirty
= dirty
;
1078 /* use jumboindex and jumbosize to control jumbo frame status
1079 * initial status is jumboindex=-1 and jumbosize=0
1080 * 1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done.
1081 * 2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving
1082 * 3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump
1083 * previous receiving and need to continue dumping the current one
1091 FRAME_NO_START_NO_END
= 0,
1092 FRAME_WITH_START
= 1,
1093 FRAME_WITH_END
= 10,
1094 FRAME_WITH_START_WITH_END
= 11
1097 static void ipg_nic_rx_free_skb(struct net_device
*dev
)
1099 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1100 unsigned int entry
= sp
->rx_current
% IPG_RFDLIST_LENGTH
;
1102 if (sp
->rx_buff
[entry
]) {
1103 struct ipg_rx
*rxfd
= sp
->rxd
+ entry
;
1105 pci_unmap_single(sp
->pdev
,
1106 le64_to_cpu(rxfd
->frag_info
) & ~IPG_RFI_FRAGLEN
,
1107 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1108 dev_kfree_skb_irq(sp
->rx_buff
[entry
]);
1109 sp
->rx_buff
[entry
] = NULL
;
1113 static int ipg_nic_rx_check_frame_type(struct net_device
*dev
)
1115 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1116 struct ipg_rx
*rxfd
= sp
->rxd
+ (sp
->rx_current
% IPG_RFDLIST_LENGTH
);
1117 int type
= FRAME_NO_START_NO_END
;
1119 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_FRAMESTART
)
1120 type
+= FRAME_WITH_START
;
1121 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_FRAMEEND
)
1122 type
+= FRAME_WITH_END
;
1126 static int ipg_nic_rx_check_error(struct net_device
*dev
)
1128 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1129 unsigned int entry
= sp
->rx_current
% IPG_RFDLIST_LENGTH
;
1130 struct ipg_rx
*rxfd
= sp
->rxd
+ entry
;
1132 if (IPG_DROP_ON_RX_ETH_ERRORS
&& (le64_to_cpu(rxfd
->rfs
) &
1133 (IPG_RFS_RXFIFOOVERRUN
| IPG_RFS_RXRUNTFRAME
|
1134 IPG_RFS_RXALIGNMENTERROR
| IPG_RFS_RXFCSERROR
|
1135 IPG_RFS_RXOVERSIZEDFRAME
| IPG_RFS_RXLENGTHERROR
))) {
1136 IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
1137 (unsigned long) rxfd
->rfs
);
1139 /* Increment general receive error statistic. */
1140 sp
->stats
.rx_errors
++;
1142 /* Increment detailed receive error statistics. */
1143 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXFIFOOVERRUN
) {
1144 IPG_DEBUG_MSG("RX FIFO overrun occurred.\n");
1146 sp
->stats
.rx_fifo_errors
++;
1149 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXRUNTFRAME
) {
1150 IPG_DEBUG_MSG("RX runt occurred.\n");
1151 sp
->stats
.rx_length_errors
++;
1154 /* Do nothing for IPG_RFS_RXOVERSIZEDFRAME,
1155 * error count handled by a IPG statistic register.
1158 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXALIGNMENTERROR
) {
1159 IPG_DEBUG_MSG("RX alignment error occurred.\n");
1160 sp
->stats
.rx_frame_errors
++;
1163 /* Do nothing for IPG_RFS_RXFCSERROR, error count
1164 * handled by a IPG statistic register.
1167 /* Free the memory associated with the RX
1168 * buffer since it is erroneous and we will
1169 * not pass it to higher layer processes.
1171 if (sp
->rx_buff
[entry
]) {
1172 pci_unmap_single(sp
->pdev
,
1173 le64_to_cpu(rxfd
->frag_info
) & ~IPG_RFI_FRAGLEN
,
1174 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1176 dev_kfree_skb_irq(sp
->rx_buff
[entry
]);
1177 sp
->rx_buff
[entry
] = NULL
;
1179 return ERROR_PACKET
;
1181 return NORMAL_PACKET
;
1184 static void ipg_nic_rx_with_start_and_end(struct net_device
*dev
,
1185 struct ipg_nic_private
*sp
,
1186 struct ipg_rx
*rxfd
, unsigned entry
)
1188 struct ipg_jumbo
*jumbo
= &sp
->jumbo
;
1189 struct sk_buff
*skb
;
1192 if (jumbo
->found_start
) {
1193 dev_kfree_skb_irq(jumbo
->skb
);
1194 jumbo
->found_start
= 0;
1195 jumbo
->current_size
= 0;
1199 /* 1: found error, 0 no error */
1200 if (ipg_nic_rx_check_error(dev
) != NORMAL_PACKET
)
1203 skb
= sp
->rx_buff
[entry
];
1207 /* accept this frame and send to upper layer */
1208 framelen
= le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXFRAMELEN
;
1209 if (framelen
> sp
->rxfrag_size
)
1210 framelen
= sp
->rxfrag_size
;
1212 skb_put(skb
, framelen
);
1213 skb
->protocol
= eth_type_trans(skb
, dev
);
1214 skb_checksum_none_assert(skb
);
1216 sp
->rx_buff
[entry
] = NULL
;
1219 static void ipg_nic_rx_with_start(struct net_device
*dev
,
1220 struct ipg_nic_private
*sp
,
1221 struct ipg_rx
*rxfd
, unsigned entry
)
1223 struct ipg_jumbo
*jumbo
= &sp
->jumbo
;
1224 struct pci_dev
*pdev
= sp
->pdev
;
1225 struct sk_buff
*skb
;
1227 /* 1: found error, 0 no error */
1228 if (ipg_nic_rx_check_error(dev
) != NORMAL_PACKET
)
1231 /* accept this frame and send to upper layer */
1232 skb
= sp
->rx_buff
[entry
];
1236 if (jumbo
->found_start
)
1237 dev_kfree_skb_irq(jumbo
->skb
);
1239 pci_unmap_single(pdev
, le64_to_cpu(rxfd
->frag_info
) & ~IPG_RFI_FRAGLEN
,
1240 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1242 skb_put(skb
, sp
->rxfrag_size
);
1244 jumbo
->found_start
= 1;
1245 jumbo
->current_size
= sp
->rxfrag_size
;
1248 sp
->rx_buff
[entry
] = NULL
;
1251 static void ipg_nic_rx_with_end(struct net_device
*dev
,
1252 struct ipg_nic_private
*sp
,
1253 struct ipg_rx
*rxfd
, unsigned entry
)
1255 struct ipg_jumbo
*jumbo
= &sp
->jumbo
;
1257 /* 1: found error, 0 no error */
1258 if (ipg_nic_rx_check_error(dev
) == NORMAL_PACKET
) {
1259 struct sk_buff
*skb
= sp
->rx_buff
[entry
];
1264 if (jumbo
->found_start
) {
1265 int framelen
, endframelen
;
1267 framelen
= le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXFRAMELEN
;
1269 endframelen
= framelen
- jumbo
->current_size
;
1270 if (framelen
> sp
->rxsupport_size
)
1271 dev_kfree_skb_irq(jumbo
->skb
);
1273 memcpy(skb_put(jumbo
->skb
, endframelen
),
1274 skb
->data
, endframelen
);
1276 jumbo
->skb
->protocol
=
1277 eth_type_trans(jumbo
->skb
, dev
);
1279 skb_checksum_none_assert(jumbo
->skb
);
1280 netif_rx(jumbo
->skb
);
1284 jumbo
->found_start
= 0;
1285 jumbo
->current_size
= 0;
1288 ipg_nic_rx_free_skb(dev
);
1290 dev_kfree_skb_irq(jumbo
->skb
);
1291 jumbo
->found_start
= 0;
1292 jumbo
->current_size
= 0;
1297 static void ipg_nic_rx_no_start_no_end(struct net_device
*dev
,
1298 struct ipg_nic_private
*sp
,
1299 struct ipg_rx
*rxfd
, unsigned entry
)
1301 struct ipg_jumbo
*jumbo
= &sp
->jumbo
;
1303 /* 1: found error, 0 no error */
1304 if (ipg_nic_rx_check_error(dev
) == NORMAL_PACKET
) {
1305 struct sk_buff
*skb
= sp
->rx_buff
[entry
];
1308 if (jumbo
->found_start
) {
1309 jumbo
->current_size
+= sp
->rxfrag_size
;
1310 if (jumbo
->current_size
<= sp
->rxsupport_size
) {
1311 memcpy(skb_put(jumbo
->skb
,
1313 skb
->data
, sp
->rxfrag_size
);
1316 ipg_nic_rx_free_skb(dev
);
1319 dev_kfree_skb_irq(jumbo
->skb
);
1320 jumbo
->found_start
= 0;
1321 jumbo
->current_size
= 0;
1326 static int ipg_nic_rx_jumbo(struct net_device
*dev
)
1328 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1329 unsigned int curr
= sp
->rx_current
;
1330 void __iomem
*ioaddr
= sp
->ioaddr
;
1333 IPG_DEBUG_MSG("_nic_rx\n");
1335 for (i
= 0; i
< IPG_MAXRFDPROCESS_COUNT
; i
++, curr
++) {
1336 unsigned int entry
= curr
% IPG_RFDLIST_LENGTH
;
1337 struct ipg_rx
*rxfd
= sp
->rxd
+ entry
;
1339 if (!(rxfd
->rfs
& cpu_to_le64(IPG_RFS_RFDDONE
)))
1342 switch (ipg_nic_rx_check_frame_type(dev
)) {
1343 case FRAME_WITH_START_WITH_END
:
1344 ipg_nic_rx_with_start_and_end(dev
, sp
, rxfd
, entry
);
1346 case FRAME_WITH_START
:
1347 ipg_nic_rx_with_start(dev
, sp
, rxfd
, entry
);
1349 case FRAME_WITH_END
:
1350 ipg_nic_rx_with_end(dev
, sp
, rxfd
, entry
);
1352 case FRAME_NO_START_NO_END
:
1353 ipg_nic_rx_no_start_no_end(dev
, sp
, rxfd
, entry
);
1358 sp
->rx_current
= curr
;
1360 if (i
== IPG_MAXRFDPROCESS_COUNT
) {
1361 /* There are more RFDs to process, however the
1362 * allocated amount of RFD processing time has
1363 * expired. Assert Interrupt Requested to make
1364 * sure we come back to process the remaining RFDs.
1366 ipg_w32(ipg_r32(ASIC_CTRL
) | IPG_AC_INT_REQUEST
, ASIC_CTRL
);
1369 ipg_nic_rxrestore(dev
);
1374 static int ipg_nic_rx(struct net_device
*dev
)
1376 /* Transfer received Ethernet frames to higher network layers. */
1377 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1378 unsigned int curr
= sp
->rx_current
;
1379 void __iomem
*ioaddr
= sp
->ioaddr
;
1380 struct ipg_rx
*rxfd
;
1383 IPG_DEBUG_MSG("_nic_rx\n");
1385 #define __RFS_MASK \
1386 cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND)
1388 for (i
= 0; i
< IPG_MAXRFDPROCESS_COUNT
; i
++, curr
++) {
1389 unsigned int entry
= curr
% IPG_RFDLIST_LENGTH
;
1390 struct sk_buff
*skb
= sp
->rx_buff
[entry
];
1391 unsigned int framelen
;
1393 rxfd
= sp
->rxd
+ entry
;
1395 if (((rxfd
->rfs
& __RFS_MASK
) != __RFS_MASK
) || !skb
)
1398 /* Get received frame length. */
1399 framelen
= le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXFRAMELEN
;
1401 /* Check for jumbo frame arrival with too small
1404 if (framelen
> sp
->rxfrag_size
) {
1406 ("RFS FrameLen > allocated fragment size.\n");
1408 framelen
= sp
->rxfrag_size
;
1411 if ((IPG_DROP_ON_RX_ETH_ERRORS
&& (le64_to_cpu(rxfd
->rfs
) &
1412 (IPG_RFS_RXFIFOOVERRUN
| IPG_RFS_RXRUNTFRAME
|
1413 IPG_RFS_RXALIGNMENTERROR
| IPG_RFS_RXFCSERROR
|
1414 IPG_RFS_RXOVERSIZEDFRAME
| IPG_RFS_RXLENGTHERROR
)))) {
1416 IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
1417 (unsigned long int) rxfd
->rfs
);
1419 /* Increment general receive error statistic. */
1420 sp
->stats
.rx_errors
++;
1422 /* Increment detailed receive error statistics. */
1423 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXFIFOOVERRUN
) {
1424 IPG_DEBUG_MSG("RX FIFO overrun occurred.\n");
1425 sp
->stats
.rx_fifo_errors
++;
1428 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXRUNTFRAME
) {
1429 IPG_DEBUG_MSG("RX runt occurred.\n");
1430 sp
->stats
.rx_length_errors
++;
1433 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXOVERSIZEDFRAME
) ;
1434 /* Do nothing, error count handled by a IPG
1435 * statistic register.
1438 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXALIGNMENTERROR
) {
1439 IPG_DEBUG_MSG("RX alignment error occurred.\n");
1440 sp
->stats
.rx_frame_errors
++;
1443 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXFCSERROR
) ;
1444 /* Do nothing, error count handled by a IPG
1445 * statistic register.
1448 /* Free the memory associated with the RX
1449 * buffer since it is erroneous and we will
1450 * not pass it to higher layer processes.
1453 __le64 info
= rxfd
->frag_info
;
1455 pci_unmap_single(sp
->pdev
,
1456 le64_to_cpu(info
) & ~IPG_RFI_FRAGLEN
,
1457 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1459 dev_kfree_skb_irq(skb
);
1463 /* Adjust the new buffer length to accommodate the size
1464 * of the received frame.
1466 skb_put(skb
, framelen
);
1468 /* Set the buffer's protocol field to Ethernet. */
1469 skb
->protocol
= eth_type_trans(skb
, dev
);
1471 /* The IPG encountered an error with (or
1472 * there were no) IP/TCP/UDP checksums.
1473 * This may or may not indicate an invalid
1474 * IP/TCP/UDP frame was received. Let the
1475 * upper layer decide.
1477 skb_checksum_none_assert(skb
);
1479 /* Hand off frame for higher layer processing.
1480 * The function netif_rx() releases the sk_buff
1481 * when processing completes.
1486 /* Assure RX buffer is not reused by IPG. */
1487 sp
->rx_buff
[entry
] = NULL
;
1491 * If there are more RFDs to process and the allocated amount of RFD
1492 * processing time has expired, assert Interrupt Requested to make
1493 * sure we come back to process the remaining RFDs.
1495 if (i
== IPG_MAXRFDPROCESS_COUNT
)
1496 ipg_w32(ipg_r32(ASIC_CTRL
) | IPG_AC_INT_REQUEST
, ASIC_CTRL
);
1499 /* Check if the RFD list contained no receive frame data. */
1501 sp
->EmptyRFDListCount
++;
1503 while ((le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RFDDONE
) &&
1504 !((le64_to_cpu(rxfd
->rfs
) & IPG_RFS_FRAMESTART
) &&
1505 (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_FRAMEEND
))) {
1506 unsigned int entry
= curr
++ % IPG_RFDLIST_LENGTH
;
1508 rxfd
= sp
->rxd
+ entry
;
1510 IPG_DEBUG_MSG("Frame requires multiple RFDs.\n");
1512 /* An unexpected event, additional code needed to handle
1513 * properly. So for the time being, just disregard the
1517 /* Free the memory associated with the RX
1518 * buffer since it is erroneous and we will
1519 * not pass it to higher layer processes.
1521 if (sp
->rx_buff
[entry
]) {
1522 pci_unmap_single(sp
->pdev
,
1523 le64_to_cpu(rxfd
->frag_info
) & ~IPG_RFI_FRAGLEN
,
1524 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1525 dev_kfree_skb_irq(sp
->rx_buff
[entry
]);
1528 /* Assure RX buffer is not reused by IPG. */
1529 sp
->rx_buff
[entry
] = NULL
;
1532 sp
->rx_current
= curr
;
1534 /* Check to see if there are a minimum number of used
1535 * RFDs before restoring any (should improve performance.)
1537 if ((curr
- sp
->rx_dirty
) >= IPG_MINUSEDRFDSTOFREE
)
1538 ipg_nic_rxrestore(dev
);
1543 static void ipg_reset_after_host_error(struct work_struct
*work
)
1545 struct ipg_nic_private
*sp
=
1546 container_of(work
, struct ipg_nic_private
, task
.work
);
1547 struct net_device
*dev
= sp
->dev
;
1550 * Acknowledge HostError interrupt by resetting
1553 ipg_reset(dev
, IPG_AC_GLOBAL_RESET
| IPG_AC_HOST
| IPG_AC_DMA
);
1558 if (ipg_io_config(dev
) < 0) {
1559 printk(KERN_INFO
"%s: Cannot recover from PCI error.\n",
1561 schedule_delayed_work(&sp
->task
, HZ
);
1565 static irqreturn_t
ipg_interrupt_handler(int irq
, void *dev_inst
)
1567 struct net_device
*dev
= dev_inst
;
1568 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1569 void __iomem
*ioaddr
= sp
->ioaddr
;
1570 unsigned int handled
= 0;
1573 IPG_DEBUG_MSG("_interrupt_handler\n");
1576 ipg_nic_rxrestore(dev
);
1578 spin_lock(&sp
->lock
);
1580 /* Get interrupt source information, and acknowledge
1581 * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly,
1582 * IntRequested, MacControlFrame, LinkEvent) interrupts
1583 * if issued. Also, all IPG interrupts are disabled by
1584 * reading IntStatusAck.
1586 status
= ipg_r16(INT_STATUS_ACK
);
1588 IPG_DEBUG_MSG("IntStatusAck = %4.4x\n", status
);
1590 /* Shared IRQ of remove event. */
1591 if (!(status
& IPG_IS_RSVD_MASK
))
1596 if (unlikely(!netif_running(dev
)))
1599 /* If RFDListEnd interrupt, restore all used RFDs. */
1600 if (status
& IPG_IS_RFD_LIST_END
) {
1601 IPG_DEBUG_MSG("RFDListEnd Interrupt.\n");
1603 /* The RFD list end indicates an RFD was encountered
1604 * with a 0 NextPtr, or with an RFDDone bit set to 1
1605 * (indicating the RFD is not read for use by the
1606 * IPG.) Try to restore all RFDs.
1608 ipg_nic_rxrestore(dev
);
1611 /* Increment the RFDlistendCount counter. */
1612 sp
->RFDlistendCount
++;
1616 /* If RFDListEnd, RxDMAPriority, RxDMAComplete, or
1617 * IntRequested interrupt, process received frames. */
1618 if ((status
& IPG_IS_RX_DMA_PRIORITY
) ||
1619 (status
& IPG_IS_RFD_LIST_END
) ||
1620 (status
& IPG_IS_RX_DMA_COMPLETE
) ||
1621 (status
& IPG_IS_INT_REQUESTED
)) {
1623 /* Increment the RFD list checked counter if interrupted
1624 * only to check the RFD list. */
1625 if (status
& (~(IPG_IS_RX_DMA_PRIORITY
| IPG_IS_RFD_LIST_END
|
1626 IPG_IS_RX_DMA_COMPLETE
| IPG_IS_INT_REQUESTED
) &
1627 (IPG_IS_HOST_ERROR
| IPG_IS_TX_DMA_COMPLETE
|
1628 IPG_IS_LINK_EVENT
| IPG_IS_TX_COMPLETE
|
1629 IPG_IS_UPDATE_STATS
)))
1630 sp
->RFDListCheckedCount
++;
1634 ipg_nic_rx_jumbo(dev
);
1639 /* If TxDMAComplete interrupt, free used TFDs. */
1640 if (status
& IPG_IS_TX_DMA_COMPLETE
)
1641 ipg_nic_txfree(dev
);
1643 /* TxComplete interrupts indicate one of numerous actions.
1644 * Determine what action to take based on TXSTATUS register.
1646 if (status
& IPG_IS_TX_COMPLETE
)
1647 ipg_nic_txcleanup(dev
);
1649 /* If UpdateStats interrupt, update Linux Ethernet statistics */
1650 if (status
& IPG_IS_UPDATE_STATS
)
1651 ipg_nic_get_stats(dev
);
1653 /* If HostError interrupt, reset IPG. */
1654 if (status
& IPG_IS_HOST_ERROR
) {
1655 IPG_DDEBUG_MSG("HostError Interrupt\n");
1657 schedule_delayed_work(&sp
->task
, 0);
1660 /* If LinkEvent interrupt, resolve autonegotiation. */
1661 if (status
& IPG_IS_LINK_EVENT
) {
1662 if (ipg_config_autoneg(dev
) < 0)
1663 printk(KERN_INFO
"%s: Auto-negotiation error.\n",
1667 /* If MACCtrlFrame interrupt, do nothing. */
1668 if (status
& IPG_IS_MAC_CTRL_FRAME
)
1669 IPG_DEBUG_MSG("MACCtrlFrame interrupt.\n");
1671 /* If RxComplete interrupt, do nothing. */
1672 if (status
& IPG_IS_RX_COMPLETE
)
1673 IPG_DEBUG_MSG("RxComplete interrupt.\n");
1675 /* If RxEarly interrupt, do nothing. */
1676 if (status
& IPG_IS_RX_EARLY
)
1677 IPG_DEBUG_MSG("RxEarly interrupt.\n");
1680 /* Re-enable IPG interrupts. */
1681 ipg_w16(IPG_IE_TX_DMA_COMPLETE
| IPG_IE_RX_DMA_COMPLETE
|
1682 IPG_IE_HOST_ERROR
| IPG_IE_INT_REQUESTED
| IPG_IE_TX_COMPLETE
|
1683 IPG_IE_LINK_EVENT
| IPG_IE_UPDATE_STATS
, INT_ENABLE
);
1685 spin_unlock(&sp
->lock
);
1687 return IRQ_RETVAL(handled
);
1690 static void ipg_rx_clear(struct ipg_nic_private
*sp
)
1694 for (i
= 0; i
< IPG_RFDLIST_LENGTH
; i
++) {
1695 if (sp
->rx_buff
[i
]) {
1696 struct ipg_rx
*rxfd
= sp
->rxd
+ i
;
1698 dev_kfree_skb_irq(sp
->rx_buff
[i
]);
1699 sp
->rx_buff
[i
] = NULL
;
1700 pci_unmap_single(sp
->pdev
,
1701 le64_to_cpu(rxfd
->frag_info
) & ~IPG_RFI_FRAGLEN
,
1702 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1707 static void ipg_tx_clear(struct ipg_nic_private
*sp
)
1711 for (i
= 0; i
< IPG_TFDLIST_LENGTH
; i
++) {
1712 if (sp
->tx_buff
[i
]) {
1713 struct ipg_tx
*txfd
= sp
->txd
+ i
;
1715 pci_unmap_single(sp
->pdev
,
1716 le64_to_cpu(txfd
->frag_info
) & ~IPG_TFI_FRAGLEN
,
1717 sp
->tx_buff
[i
]->len
, PCI_DMA_TODEVICE
);
1719 dev_kfree_skb_irq(sp
->tx_buff
[i
]);
1721 sp
->tx_buff
[i
] = NULL
;
1726 static int ipg_nic_open(struct net_device
*dev
)
1728 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1729 void __iomem
*ioaddr
= sp
->ioaddr
;
1730 struct pci_dev
*pdev
= sp
->pdev
;
1733 IPG_DEBUG_MSG("_nic_open\n");
1735 sp
->rx_buf_sz
= sp
->rxsupport_size
;
1737 /* Check for interrupt line conflicts, and request interrupt
1740 * IMPORTANT: Disable IPG interrupts prior to registering
1743 ipg_w16(0x0000, INT_ENABLE
);
1745 /* Register the interrupt line to be used by the IPG within
1748 rc
= request_irq(pdev
->irq
, ipg_interrupt_handler
, IRQF_SHARED
,
1751 printk(KERN_INFO
"%s: Error when requesting interrupt.\n",
1756 dev
->irq
= pdev
->irq
;
1760 sp
->rxd
= dma_alloc_coherent(&pdev
->dev
, IPG_RX_RING_BYTES
,
1761 &sp
->rxd_map
, GFP_KERNEL
);
1763 goto err_free_irq_0
;
1765 sp
->txd
= dma_alloc_coherent(&pdev
->dev
, IPG_TX_RING_BYTES
,
1766 &sp
->txd_map
, GFP_KERNEL
);
1770 rc
= init_rfdlist(dev
);
1772 printk(KERN_INFO
"%s: Error during configuration.\n",
1779 rc
= ipg_io_config(dev
);
1781 printk(KERN_INFO
"%s: Error during configuration.\n",
1783 goto err_release_tfdlist_3
;
1786 /* Resolve autonegotiation. */
1787 if (ipg_config_autoneg(dev
) < 0)
1788 printk(KERN_INFO
"%s: Auto-negotiation error.\n", dev
->name
);
1790 /* initialize JUMBO Frame control variable */
1791 sp
->jumbo
.found_start
= 0;
1792 sp
->jumbo
.current_size
= 0;
1793 sp
->jumbo
.skb
= NULL
;
1795 /* Enable transmit and receive operation of the IPG. */
1796 ipg_w32((ipg_r32(MAC_CTRL
) | IPG_MC_RX_ENABLE
| IPG_MC_TX_ENABLE
) &
1797 IPG_MC_RSVD_MASK
, MAC_CTRL
);
1799 netif_start_queue(dev
);
1803 err_release_tfdlist_3
:
1807 dma_free_coherent(&pdev
->dev
, IPG_TX_RING_BYTES
, sp
->txd
, sp
->txd_map
);
1809 dma_free_coherent(&pdev
->dev
, IPG_RX_RING_BYTES
, sp
->rxd
, sp
->rxd_map
);
1811 free_irq(pdev
->irq
, dev
);
1815 static int ipg_nic_stop(struct net_device
*dev
)
1817 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1818 void __iomem
*ioaddr
= sp
->ioaddr
;
1819 struct pci_dev
*pdev
= sp
->pdev
;
1821 IPG_DEBUG_MSG("_nic_stop\n");
1823 netif_stop_queue(dev
);
1825 IPG_DUMPTFDLIST(dev
);
1828 (void) ipg_r16(INT_STATUS_ACK
);
1830 ipg_reset(dev
, IPG_AC_GLOBAL_RESET
| IPG_AC_HOST
| IPG_AC_DMA
);
1832 synchronize_irq(pdev
->irq
);
1833 } while (ipg_r16(INT_ENABLE
) & IPG_IE_RSVD_MASK
);
1839 pci_free_consistent(pdev
, IPG_RX_RING_BYTES
, sp
->rxd
, sp
->rxd_map
);
1840 pci_free_consistent(pdev
, IPG_TX_RING_BYTES
, sp
->txd
, sp
->txd_map
);
1842 free_irq(pdev
->irq
, dev
);
1847 static netdev_tx_t
ipg_nic_hard_start_xmit(struct sk_buff
*skb
,
1848 struct net_device
*dev
)
1850 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1851 void __iomem
*ioaddr
= sp
->ioaddr
;
1852 unsigned int entry
= sp
->tx_current
% IPG_TFDLIST_LENGTH
;
1853 unsigned long flags
;
1854 struct ipg_tx
*txfd
;
1856 IPG_DDEBUG_MSG("_nic_hard_start_xmit\n");
1858 /* If in 10Mbps mode, stop the transmit queue so
1859 * no more transmit frames are accepted.
1861 if (sp
->tenmbpsmode
)
1862 netif_stop_queue(dev
);
1864 if (sp
->reset_current_tfd
) {
1865 sp
->reset_current_tfd
= 0;
1869 txfd
= sp
->txd
+ entry
;
1871 sp
->tx_buff
[entry
] = skb
;
1873 /* Clear all TFC fields, except TFDDONE. */
1874 txfd
->tfc
= cpu_to_le64(IPG_TFC_TFDDONE
);
1876 /* Specify the TFC field within the TFD. */
1877 txfd
->tfc
|= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED
|
1878 (IPG_TFC_FRAMEID
& sp
->tx_current
) |
1879 (IPG_TFC_FRAGCOUNT
& (1 << 24)));
1881 * 16--17 (WordAlign) <- 3 (disable),
1882 * 0--15 (FrameId) <- sp->tx_current,
1883 * 24--27 (FragCount) <- 1
1886 /* Request TxComplete interrupts at an interval defined
1887 * by the constant IPG_FRAMESBETWEENTXCOMPLETES.
1888 * Request TxComplete interrupt for every frame
1889 * if in 10Mbps mode to accommodate problem with 10Mbps
1892 if (sp
->tenmbpsmode
)
1893 txfd
->tfc
|= cpu_to_le64(IPG_TFC_TXINDICATE
);
1894 txfd
->tfc
|= cpu_to_le64(IPG_TFC_TXDMAINDICATE
);
1895 /* Based on compilation option, determine if FCS is to be
1896 * appended to transmit frame by IPG.
1898 if (!(IPG_APPEND_FCS_ON_TX
))
1899 txfd
->tfc
|= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE
);
1901 /* Based on compilation option, determine if IP, TCP and/or
1902 * UDP checksums are to be added to transmit frame by IPG.
1904 if (IPG_ADD_IPCHECKSUM_ON_TX
)
1905 txfd
->tfc
|= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE
);
1907 if (IPG_ADD_TCPCHECKSUM_ON_TX
)
1908 txfd
->tfc
|= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE
);
1910 if (IPG_ADD_UDPCHECKSUM_ON_TX
)
1911 txfd
->tfc
|= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE
);
1913 /* Based on compilation option, determine if VLAN tag info is to be
1914 * inserted into transmit frame by IPG.
1916 if (IPG_INSERT_MANUAL_VLAN_TAG
) {
1917 txfd
->tfc
|= cpu_to_le64(IPG_TFC_VLANTAGINSERT
|
1918 ((u64
) IPG_MANUAL_VLAN_VID
<< 32) |
1919 ((u64
) IPG_MANUAL_VLAN_CFI
<< 44) |
1920 ((u64
) IPG_MANUAL_VLAN_USERPRIORITY
<< 45));
1923 /* The fragment start location within system memory is defined
1924 * by the sk_buff structure's data field. The physical address
1925 * of this location within the system's virtual memory space
1926 * is determined using the IPG_HOST2BUS_MAP function.
1928 txfd
->frag_info
= cpu_to_le64(pci_map_single(sp
->pdev
, skb
->data
,
1929 skb
->len
, PCI_DMA_TODEVICE
));
1931 /* The length of the fragment within system memory is defined by
1932 * the sk_buff structure's len field.
1934 txfd
->frag_info
|= cpu_to_le64(IPG_TFI_FRAGLEN
&
1935 ((u64
) (skb
->len
& 0xffff) << 48));
1937 /* Clear the TFDDone bit last to indicate the TFD is ready
1938 * for transfer to the IPG.
1940 txfd
->tfc
&= cpu_to_le64(~IPG_TFC_TFDDONE
);
1942 spin_lock_irqsave(&sp
->lock
, flags
);
1948 ipg_w32(IPG_DC_TX_DMA_POLL_NOW
, DMA_CTRL
);
1950 if (sp
->tx_current
== (sp
->tx_dirty
+ IPG_TFDLIST_LENGTH
))
1951 netif_stop_queue(dev
);
1953 spin_unlock_irqrestore(&sp
->lock
, flags
);
1955 return NETDEV_TX_OK
;
1958 static void ipg_set_phy_default_param(unsigned char rev
,
1959 struct net_device
*dev
, int phy_address
)
1961 unsigned short length
;
1962 unsigned char revision
;
1963 unsigned short *phy_param
;
1964 unsigned short address
, value
;
1966 phy_param
= &DefaultPhyParam
[0];
1967 length
= *phy_param
& 0x00FF;
1968 revision
= (unsigned char)((*phy_param
) >> 8);
1970 while (length
!= 0) {
1971 if (rev
== revision
) {
1972 while (length
> 1) {
1973 address
= *phy_param
;
1974 value
= *(phy_param
+ 1);
1976 mdio_write(dev
, phy_address
, address
, value
);
1981 phy_param
+= length
/ 2;
1982 length
= *phy_param
& 0x00FF;
1983 revision
= (unsigned char)((*phy_param
) >> 8);
1989 static int read_eeprom(struct net_device
*dev
, int eep_addr
)
1991 void __iomem
*ioaddr
= ipg_ioaddr(dev
);
1996 value
= IPG_EC_EEPROM_READOPCODE
| (eep_addr
& 0xff);
1997 ipg_w16(value
, EEPROM_CTRL
);
1999 for (i
= 0; i
< 1000; i
++) {
2003 data
= ipg_r16(EEPROM_CTRL
);
2004 if (!(data
& IPG_EC_EEPROM_BUSY
)) {
2005 ret
= ipg_r16(EEPROM_DATA
);
2012 static void ipg_init_mii(struct net_device
*dev
)
2014 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2015 struct mii_if_info
*mii_if
= &sp
->mii_if
;
2019 mii_if
->mdio_read
= mdio_read
;
2020 mii_if
->mdio_write
= mdio_write
;
2021 mii_if
->phy_id_mask
= 0x1f;
2022 mii_if
->reg_num_mask
= 0x1f;
2024 mii_if
->phy_id
= phyaddr
= ipg_find_phyaddr(dev
);
2026 if (phyaddr
!= 0x1f) {
2027 u16 mii_phyctrl
, mii_1000cr
;
2029 mii_1000cr
= mdio_read(dev
, phyaddr
, MII_CTRL1000
);
2030 mii_1000cr
|= ADVERTISE_1000FULL
| ADVERTISE_1000HALF
|
2031 GMII_PHY_1000BASETCONTROL_PreferMaster
;
2032 mdio_write(dev
, phyaddr
, MII_CTRL1000
, mii_1000cr
);
2034 mii_phyctrl
= mdio_read(dev
, phyaddr
, MII_BMCR
);
2036 /* Set default phyparam */
2037 ipg_set_phy_default_param(sp
->pdev
->revision
, dev
, phyaddr
);
2040 mii_phyctrl
|= BMCR_RESET
| BMCR_ANRESTART
;
2041 mdio_write(dev
, phyaddr
, MII_BMCR
, mii_phyctrl
);
2046 static int ipg_hw_init(struct net_device
*dev
)
2048 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2049 void __iomem
*ioaddr
= sp
->ioaddr
;
2053 /* Read/Write and Reset EEPROM Value */
2054 /* Read LED Mode Configuration from EEPROM */
2055 sp
->led_mode
= read_eeprom(dev
, 6);
2057 /* Reset all functions within the IPG. Do not assert
2058 * RST_OUT as not compatible with some PHYs.
2060 rc
= ipg_reset(dev
, IPG_RESET_MASK
);
2066 /* Read MAC Address from EEPROM */
2067 for (i
= 0; i
< 3; i
++)
2068 sp
->station_addr
[i
] = read_eeprom(dev
, 16 + i
);
2070 for (i
= 0; i
< 3; i
++)
2071 ipg_w16(sp
->station_addr
[i
], STATION_ADDRESS_0
+ 2*i
);
2073 /* Set station address in ethernet_device structure. */
2074 dev
->dev_addr
[0] = ipg_r16(STATION_ADDRESS_0
) & 0x00ff;
2075 dev
->dev_addr
[1] = (ipg_r16(STATION_ADDRESS_0
) & 0xff00) >> 8;
2076 dev
->dev_addr
[2] = ipg_r16(STATION_ADDRESS_1
) & 0x00ff;
2077 dev
->dev_addr
[3] = (ipg_r16(STATION_ADDRESS_1
) & 0xff00) >> 8;
2078 dev
->dev_addr
[4] = ipg_r16(STATION_ADDRESS_2
) & 0x00ff;
2079 dev
->dev_addr
[5] = (ipg_r16(STATION_ADDRESS_2
) & 0xff00) >> 8;
2084 static int ipg_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
2086 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2089 mutex_lock(&sp
->mii_mutex
);
2090 rc
= generic_mii_ioctl(&sp
->mii_if
, if_mii(ifr
), cmd
, NULL
);
2091 mutex_unlock(&sp
->mii_mutex
);
2096 static int ipg_nic_change_mtu(struct net_device
*dev
, int new_mtu
)
2098 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2101 /* Function to accommodate changes to Maximum Transfer Unit
2102 * (or MTU) of IPG NIC. Cannot use default function since
2103 * the default will not allow for MTU > 1500 bytes.
2106 IPG_DEBUG_MSG("_nic_change_mtu\n");
2109 * Check that the new MTU value is between 68 (14 byte header, 46 byte
2110 * payload, 4 byte FCS) and 10 KB, which is the largest supported MTU.
2112 if (new_mtu
< 68 || new_mtu
> 10240)
2115 err
= ipg_nic_stop(dev
);
2121 sp
->max_rxframe_size
= new_mtu
;
2123 sp
->rxfrag_size
= new_mtu
;
2124 if (sp
->rxfrag_size
> 4088)
2125 sp
->rxfrag_size
= 4088;
2127 sp
->rxsupport_size
= sp
->max_rxframe_size
;
2129 if (new_mtu
> 0x0600)
2130 sp
->is_jumbo
= true;
2132 sp
->is_jumbo
= false;
2134 return ipg_nic_open(dev
);
2137 static int ipg_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2139 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2142 mutex_lock(&sp
->mii_mutex
);
2143 rc
= mii_ethtool_gset(&sp
->mii_if
, cmd
);
2144 mutex_unlock(&sp
->mii_mutex
);
2149 static int ipg_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2151 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2154 mutex_lock(&sp
->mii_mutex
);
2155 rc
= mii_ethtool_sset(&sp
->mii_if
, cmd
);
2156 mutex_unlock(&sp
->mii_mutex
);
2161 static int ipg_nway_reset(struct net_device
*dev
)
2163 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2166 mutex_lock(&sp
->mii_mutex
);
2167 rc
= mii_nway_restart(&sp
->mii_if
);
2168 mutex_unlock(&sp
->mii_mutex
);
2173 static const struct ethtool_ops ipg_ethtool_ops
= {
2174 .get_settings
= ipg_get_settings
,
2175 .set_settings
= ipg_set_settings
,
2176 .nway_reset
= ipg_nway_reset
,
2179 static void __devexit
ipg_remove(struct pci_dev
*pdev
)
2181 struct net_device
*dev
= pci_get_drvdata(pdev
);
2182 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2184 IPG_DEBUG_MSG("_remove\n");
2186 /* Un-register Ethernet device. */
2187 unregister_netdev(dev
);
2189 pci_iounmap(pdev
, sp
->ioaddr
);
2191 pci_release_regions(pdev
);
2194 pci_disable_device(pdev
);
2195 pci_set_drvdata(pdev
, NULL
);
2198 static const struct net_device_ops ipg_netdev_ops
= {
2199 .ndo_open
= ipg_nic_open
,
2200 .ndo_stop
= ipg_nic_stop
,
2201 .ndo_start_xmit
= ipg_nic_hard_start_xmit
,
2202 .ndo_get_stats
= ipg_nic_get_stats
,
2203 .ndo_set_multicast_list
= ipg_nic_set_multicast_list
,
2204 .ndo_do_ioctl
= ipg_ioctl
,
2205 .ndo_tx_timeout
= ipg_tx_timeout
,
2206 .ndo_change_mtu
= ipg_nic_change_mtu
,
2207 .ndo_set_mac_address
= eth_mac_addr
,
2208 .ndo_validate_addr
= eth_validate_addr
,
2211 static int __devinit
ipg_probe(struct pci_dev
*pdev
,
2212 const struct pci_device_id
*id
)
2214 unsigned int i
= id
->driver_data
;
2215 struct ipg_nic_private
*sp
;
2216 struct net_device
*dev
;
2217 void __iomem
*ioaddr
;
2220 rc
= pci_enable_device(pdev
);
2224 printk(KERN_INFO
"%s: %s\n", pci_name(pdev
), ipg_brand_name
[i
]);
2226 pci_set_master(pdev
);
2228 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(40));
2230 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
2232 printk(KERN_ERR
"%s: DMA config failed.\n",
2239 * Initialize net device.
2241 dev
= alloc_etherdev(sizeof(struct ipg_nic_private
));
2243 printk(KERN_ERR
"%s: alloc_etherdev failed\n", pci_name(pdev
));
2248 sp
= netdev_priv(dev
);
2249 spin_lock_init(&sp
->lock
);
2250 mutex_init(&sp
->mii_mutex
);
2252 sp
->is_jumbo
= IPG_IS_JUMBO
;
2253 sp
->rxfrag_size
= IPG_RXFRAG_SIZE
;
2254 sp
->rxsupport_size
= IPG_RXSUPPORT_SIZE
;
2255 sp
->max_rxframe_size
= IPG_MAX_RXFRAME_SIZE
;
2257 /* Declare IPG NIC functions for Ethernet device methods.
2259 dev
->netdev_ops
= &ipg_netdev_ops
;
2260 SET_NETDEV_DEV(dev
, &pdev
->dev
);
2261 SET_ETHTOOL_OPS(dev
, &ipg_ethtool_ops
);
2263 rc
= pci_request_regions(pdev
, DRV_NAME
);
2265 goto err_free_dev_1
;
2267 ioaddr
= pci_iomap(pdev
, 1, pci_resource_len(pdev
, 1));
2269 printk(KERN_ERR
"%s cannot map MMIO\n", pci_name(pdev
));
2271 goto err_release_regions_2
;
2274 /* Save the pointer to the PCI device information. */
2275 sp
->ioaddr
= ioaddr
;
2279 INIT_DELAYED_WORK(&sp
->task
, ipg_reset_after_host_error
);
2281 pci_set_drvdata(pdev
, dev
);
2283 rc
= ipg_hw_init(dev
);
2287 rc
= register_netdev(dev
);
2291 printk(KERN_INFO
"Ethernet device registered as: %s\n", dev
->name
);
2296 pci_iounmap(pdev
, ioaddr
);
2297 err_release_regions_2
:
2298 pci_release_regions(pdev
);
2302 pci_disable_device(pdev
);
2306 static struct pci_driver ipg_pci_driver
= {
2307 .name
= IPG_DRIVER_NAME
,
2308 .id_table
= ipg_pci_tbl
,
2310 .remove
= __devexit_p(ipg_remove
),
2313 static int __init
ipg_init_module(void)
2315 return pci_register_driver(&ipg_pci_driver
);
2318 static void __exit
ipg_exit_module(void)
2320 pci_unregister_driver(&ipg_pci_driver
);
2323 module_init(ipg_init_module
);
2324 module_exit(ipg_exit_module
);