ALSA: fix hda AZX_DCAPS_NO_TCSEL quirk check in driver_caps
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / mmc / core / core.c
blob68091dda3f31f49ab9d7130cbad178e93d5ca1c8
1 /*
2 * linux/drivers/mmc/core/core.c
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
27 #include <linux/mmc/card.h>
28 #include <linux/mmc/host.h>
29 #include <linux/mmc/mmc.h>
30 #include <linux/mmc/sd.h>
32 #include "core.h"
33 #include "bus.h"
34 #include "host.h"
35 #include "sdio_bus.h"
37 #include "mmc_ops.h"
38 #include "sd_ops.h"
39 #include "sdio_ops.h"
41 static struct workqueue_struct *workqueue;
44 * Enabling software CRCs on the data blocks can be a significant (30%)
45 * performance cost, and for other reasons may not always be desired.
46 * So we allow it it to be disabled.
48 int use_spi_crc = 1;
49 module_param(use_spi_crc, bool, 0);
52 * We normally treat cards as removed during suspend if they are not
53 * known to be on a non-removable bus, to avoid the risk of writing
54 * back data to a different card after resume. Allow this to be
55 * overridden if necessary.
57 #ifdef CONFIG_MMC_UNSAFE_RESUME
58 int mmc_assume_removable;
59 #else
60 int mmc_assume_removable = 1;
61 #endif
62 EXPORT_SYMBOL(mmc_assume_removable);
63 module_param_named(removable, mmc_assume_removable, bool, 0644);
64 MODULE_PARM_DESC(
65 removable,
66 "MMC/SD cards are removable and may be removed during suspend");
69 * Internal function. Schedule delayed work in the MMC work queue.
71 static int mmc_schedule_delayed_work(struct delayed_work *work,
72 unsigned long delay)
74 return queue_delayed_work(workqueue, work, delay);
78 * Internal function. Flush all scheduled work from the MMC work queue.
80 static void mmc_flush_scheduled_work(void)
82 flush_workqueue(workqueue);
85 /**
86 * mmc_request_done - finish processing an MMC request
87 * @host: MMC host which completed request
88 * @mrq: MMC request which request
90 * MMC drivers should call this function when they have completed
91 * their processing of a request.
93 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
95 struct mmc_command *cmd = mrq->cmd;
96 int err = cmd->error;
98 if (err && cmd->retries && mmc_host_is_spi(host)) {
99 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
100 cmd->retries = 0;
103 if (err && cmd->retries) {
104 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
105 mmc_hostname(host), cmd->opcode, err);
107 cmd->retries--;
108 cmd->error = 0;
109 host->ops->request(host, mrq);
110 } else {
111 led_trigger_event(host->led, LED_OFF);
113 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
114 mmc_hostname(host), cmd->opcode, err,
115 cmd->resp[0], cmd->resp[1],
116 cmd->resp[2], cmd->resp[3]);
118 if (mrq->data) {
119 pr_debug("%s: %d bytes transferred: %d\n",
120 mmc_hostname(host),
121 mrq->data->bytes_xfered, mrq->data->error);
124 if (mrq->stop) {
125 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
126 mmc_hostname(host), mrq->stop->opcode,
127 mrq->stop->error,
128 mrq->stop->resp[0], mrq->stop->resp[1],
129 mrq->stop->resp[2], mrq->stop->resp[3]);
132 if (mrq->done)
133 mrq->done(mrq);
135 mmc_host_clk_gate(host);
139 EXPORT_SYMBOL(mmc_request_done);
141 static void
142 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
144 #ifdef CONFIG_MMC_DEBUG
145 unsigned int i, sz;
146 struct scatterlist *sg;
147 #endif
149 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
150 mmc_hostname(host), mrq->cmd->opcode,
151 mrq->cmd->arg, mrq->cmd->flags);
153 if (mrq->data) {
154 pr_debug("%s: blksz %d blocks %d flags %08x "
155 "tsac %d ms nsac %d\n",
156 mmc_hostname(host), mrq->data->blksz,
157 mrq->data->blocks, mrq->data->flags,
158 mrq->data->timeout_ns / 1000000,
159 mrq->data->timeout_clks);
162 if (mrq->stop) {
163 pr_debug("%s: CMD%u arg %08x flags %08x\n",
164 mmc_hostname(host), mrq->stop->opcode,
165 mrq->stop->arg, mrq->stop->flags);
168 WARN_ON(!host->claimed);
170 mrq->cmd->error = 0;
171 mrq->cmd->mrq = mrq;
172 if (mrq->data) {
173 BUG_ON(mrq->data->blksz > host->max_blk_size);
174 BUG_ON(mrq->data->blocks > host->max_blk_count);
175 BUG_ON(mrq->data->blocks * mrq->data->blksz >
176 host->max_req_size);
178 #ifdef CONFIG_MMC_DEBUG
179 sz = 0;
180 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
181 sz += sg->length;
182 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
183 #endif
185 mrq->cmd->data = mrq->data;
186 mrq->data->error = 0;
187 mrq->data->mrq = mrq;
188 if (mrq->stop) {
189 mrq->data->stop = mrq->stop;
190 mrq->stop->error = 0;
191 mrq->stop->mrq = mrq;
194 mmc_host_clk_ungate(host);
195 led_trigger_event(host->led, LED_FULL);
196 host->ops->request(host, mrq);
199 static void mmc_wait_done(struct mmc_request *mrq)
201 complete(mrq->done_data);
205 * mmc_wait_for_req - start a request and wait for completion
206 * @host: MMC host to start command
207 * @mrq: MMC request to start
209 * Start a new MMC custom command request for a host, and wait
210 * for the command to complete. Does not attempt to parse the
211 * response.
213 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
215 DECLARE_COMPLETION_ONSTACK(complete);
217 mrq->done_data = &complete;
218 mrq->done = mmc_wait_done;
220 mmc_start_request(host, mrq);
222 wait_for_completion(&complete);
225 EXPORT_SYMBOL(mmc_wait_for_req);
228 * mmc_wait_for_cmd - start a command and wait for completion
229 * @host: MMC host to start command
230 * @cmd: MMC command to start
231 * @retries: maximum number of retries
233 * Start a new MMC command for a host, and wait for the command
234 * to complete. Return any error that occurred while the command
235 * was executing. Do not attempt to parse the response.
237 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
239 struct mmc_request mrq = {0};
241 WARN_ON(!host->claimed);
243 memset(cmd->resp, 0, sizeof(cmd->resp));
244 cmd->retries = retries;
246 mrq.cmd = cmd;
247 cmd->data = NULL;
249 mmc_wait_for_req(host, &mrq);
251 return cmd->error;
254 EXPORT_SYMBOL(mmc_wait_for_cmd);
257 * mmc_set_data_timeout - set the timeout for a data command
258 * @data: data phase for command
259 * @card: the MMC card associated with the data transfer
261 * Computes the data timeout parameters according to the
262 * correct algorithm given the card type.
264 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
266 unsigned int mult;
269 * SDIO cards only define an upper 1 s limit on access.
271 if (mmc_card_sdio(card)) {
272 data->timeout_ns = 1000000000;
273 data->timeout_clks = 0;
274 return;
278 * SD cards use a 100 multiplier rather than 10
280 mult = mmc_card_sd(card) ? 100 : 10;
283 * Scale up the multiplier (and therefore the timeout) by
284 * the r2w factor for writes.
286 if (data->flags & MMC_DATA_WRITE)
287 mult <<= card->csd.r2w_factor;
289 data->timeout_ns = card->csd.tacc_ns * mult;
290 data->timeout_clks = card->csd.tacc_clks * mult;
293 * SD cards also have an upper limit on the timeout.
295 if (mmc_card_sd(card)) {
296 unsigned int timeout_us, limit_us;
298 timeout_us = data->timeout_ns / 1000;
299 if (mmc_host_clk_rate(card->host))
300 timeout_us += data->timeout_clks * 1000 /
301 (mmc_host_clk_rate(card->host) / 1000);
303 if (data->flags & MMC_DATA_WRITE)
305 * The limit is really 250 ms, but that is
306 * insufficient for some crappy cards.
308 limit_us = 300000;
309 else
310 limit_us = 100000;
313 * SDHC cards always use these fixed values.
315 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
316 data->timeout_ns = limit_us * 1000;
317 data->timeout_clks = 0;
321 * Some cards need very high timeouts if driven in SPI mode.
322 * The worst observed timeout was 900ms after writing a
323 * continuous stream of data until the internal logic
324 * overflowed.
326 if (mmc_host_is_spi(card->host)) {
327 if (data->flags & MMC_DATA_WRITE) {
328 if (data->timeout_ns < 1000000000)
329 data->timeout_ns = 1000000000; /* 1s */
330 } else {
331 if (data->timeout_ns < 100000000)
332 data->timeout_ns = 100000000; /* 100ms */
336 EXPORT_SYMBOL(mmc_set_data_timeout);
339 * mmc_align_data_size - pads a transfer size to a more optimal value
340 * @card: the MMC card associated with the data transfer
341 * @sz: original transfer size
343 * Pads the original data size with a number of extra bytes in
344 * order to avoid controller bugs and/or performance hits
345 * (e.g. some controllers revert to PIO for certain sizes).
347 * Returns the improved size, which might be unmodified.
349 * Note that this function is only relevant when issuing a
350 * single scatter gather entry.
352 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
355 * FIXME: We don't have a system for the controller to tell
356 * the core about its problems yet, so for now we just 32-bit
357 * align the size.
359 sz = ((sz + 3) / 4) * 4;
361 return sz;
363 EXPORT_SYMBOL(mmc_align_data_size);
366 * mmc_host_enable - enable a host.
367 * @host: mmc host to enable
369 * Hosts that support power saving can use the 'enable' and 'disable'
370 * methods to exit and enter power saving states. For more information
371 * see comments for struct mmc_host_ops.
373 int mmc_host_enable(struct mmc_host *host)
375 if (!(host->caps & MMC_CAP_DISABLE))
376 return 0;
378 if (host->en_dis_recurs)
379 return 0;
381 if (host->nesting_cnt++)
382 return 0;
384 cancel_delayed_work_sync(&host->disable);
386 if (host->enabled)
387 return 0;
389 if (host->ops->enable) {
390 int err;
392 host->en_dis_recurs = 1;
393 err = host->ops->enable(host);
394 host->en_dis_recurs = 0;
396 if (err) {
397 pr_debug("%s: enable error %d\n",
398 mmc_hostname(host), err);
399 return err;
402 host->enabled = 1;
403 return 0;
405 EXPORT_SYMBOL(mmc_host_enable);
407 static int mmc_host_do_disable(struct mmc_host *host, int lazy)
409 if (host->ops->disable) {
410 int err;
412 host->en_dis_recurs = 1;
413 err = host->ops->disable(host, lazy);
414 host->en_dis_recurs = 0;
416 if (err < 0) {
417 pr_debug("%s: disable error %d\n",
418 mmc_hostname(host), err);
419 return err;
421 if (err > 0) {
422 unsigned long delay = msecs_to_jiffies(err);
424 mmc_schedule_delayed_work(&host->disable, delay);
427 host->enabled = 0;
428 return 0;
432 * mmc_host_disable - disable a host.
433 * @host: mmc host to disable
435 * Hosts that support power saving can use the 'enable' and 'disable'
436 * methods to exit and enter power saving states. For more information
437 * see comments for struct mmc_host_ops.
439 int mmc_host_disable(struct mmc_host *host)
441 int err;
443 if (!(host->caps & MMC_CAP_DISABLE))
444 return 0;
446 if (host->en_dis_recurs)
447 return 0;
449 if (--host->nesting_cnt)
450 return 0;
452 if (!host->enabled)
453 return 0;
455 err = mmc_host_do_disable(host, 0);
456 return err;
458 EXPORT_SYMBOL(mmc_host_disable);
461 * __mmc_claim_host - exclusively claim a host
462 * @host: mmc host to claim
463 * @abort: whether or not the operation should be aborted
465 * Claim a host for a set of operations. If @abort is non null and
466 * dereference a non-zero value then this will return prematurely with
467 * that non-zero value without acquiring the lock. Returns zero
468 * with the lock held otherwise.
470 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
472 DECLARE_WAITQUEUE(wait, current);
473 unsigned long flags;
474 int stop;
476 might_sleep();
478 add_wait_queue(&host->wq, &wait);
479 spin_lock_irqsave(&host->lock, flags);
480 while (1) {
481 set_current_state(TASK_UNINTERRUPTIBLE);
482 stop = abort ? atomic_read(abort) : 0;
483 if (stop || !host->claimed || host->claimer == current)
484 break;
485 spin_unlock_irqrestore(&host->lock, flags);
486 schedule();
487 spin_lock_irqsave(&host->lock, flags);
489 set_current_state(TASK_RUNNING);
490 if (!stop) {
491 host->claimed = 1;
492 host->claimer = current;
493 host->claim_cnt += 1;
494 } else
495 wake_up(&host->wq);
496 spin_unlock_irqrestore(&host->lock, flags);
497 remove_wait_queue(&host->wq, &wait);
498 if (!stop)
499 mmc_host_enable(host);
500 return stop;
503 EXPORT_SYMBOL(__mmc_claim_host);
506 * mmc_try_claim_host - try exclusively to claim a host
507 * @host: mmc host to claim
509 * Returns %1 if the host is claimed, %0 otherwise.
511 int mmc_try_claim_host(struct mmc_host *host)
513 int claimed_host = 0;
514 unsigned long flags;
516 spin_lock_irqsave(&host->lock, flags);
517 if (!host->claimed || host->claimer == current) {
518 host->claimed = 1;
519 host->claimer = current;
520 host->claim_cnt += 1;
521 claimed_host = 1;
523 spin_unlock_irqrestore(&host->lock, flags);
524 return claimed_host;
526 EXPORT_SYMBOL(mmc_try_claim_host);
529 * mmc_do_release_host - release a claimed host
530 * @host: mmc host to release
532 * If you successfully claimed a host, this function will
533 * release it again.
535 void mmc_do_release_host(struct mmc_host *host)
537 unsigned long flags;
539 spin_lock_irqsave(&host->lock, flags);
540 if (--host->claim_cnt) {
541 /* Release for nested claim */
542 spin_unlock_irqrestore(&host->lock, flags);
543 } else {
544 host->claimed = 0;
545 host->claimer = NULL;
546 spin_unlock_irqrestore(&host->lock, flags);
547 wake_up(&host->wq);
550 EXPORT_SYMBOL(mmc_do_release_host);
552 void mmc_host_deeper_disable(struct work_struct *work)
554 struct mmc_host *host =
555 container_of(work, struct mmc_host, disable.work);
557 /* If the host is claimed then we do not want to disable it anymore */
558 if (!mmc_try_claim_host(host))
559 return;
560 mmc_host_do_disable(host, 1);
561 mmc_do_release_host(host);
565 * mmc_host_lazy_disable - lazily disable a host.
566 * @host: mmc host to disable
568 * Hosts that support power saving can use the 'enable' and 'disable'
569 * methods to exit and enter power saving states. For more information
570 * see comments for struct mmc_host_ops.
572 int mmc_host_lazy_disable(struct mmc_host *host)
574 if (!(host->caps & MMC_CAP_DISABLE))
575 return 0;
577 if (host->en_dis_recurs)
578 return 0;
580 if (--host->nesting_cnt)
581 return 0;
583 if (!host->enabled)
584 return 0;
586 if (host->disable_delay) {
587 mmc_schedule_delayed_work(&host->disable,
588 msecs_to_jiffies(host->disable_delay));
589 return 0;
590 } else
591 return mmc_host_do_disable(host, 1);
593 EXPORT_SYMBOL(mmc_host_lazy_disable);
596 * mmc_release_host - release a host
597 * @host: mmc host to release
599 * Release a MMC host, allowing others to claim the host
600 * for their operations.
602 void mmc_release_host(struct mmc_host *host)
604 WARN_ON(!host->claimed);
606 mmc_host_lazy_disable(host);
608 mmc_do_release_host(host);
611 EXPORT_SYMBOL(mmc_release_host);
614 * Internal function that does the actual ios call to the host driver,
615 * optionally printing some debug output.
617 static inline void mmc_set_ios(struct mmc_host *host)
619 struct mmc_ios *ios = &host->ios;
621 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
622 "width %u timing %u\n",
623 mmc_hostname(host), ios->clock, ios->bus_mode,
624 ios->power_mode, ios->chip_select, ios->vdd,
625 ios->bus_width, ios->timing);
627 if (ios->clock > 0)
628 mmc_set_ungated(host);
629 host->ops->set_ios(host, ios);
633 * Control chip select pin on a host.
635 void mmc_set_chip_select(struct mmc_host *host, int mode)
637 host->ios.chip_select = mode;
638 mmc_set_ios(host);
642 * Sets the host clock to the highest possible frequency that
643 * is below "hz".
645 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
647 WARN_ON(hz < host->f_min);
649 if (hz > host->f_max)
650 hz = host->f_max;
652 host->ios.clock = hz;
653 mmc_set_ios(host);
656 #ifdef CONFIG_MMC_CLKGATE
658 * This gates the clock by setting it to 0 Hz.
660 void mmc_gate_clock(struct mmc_host *host)
662 unsigned long flags;
664 spin_lock_irqsave(&host->clk_lock, flags);
665 host->clk_old = host->ios.clock;
666 host->ios.clock = 0;
667 host->clk_gated = true;
668 spin_unlock_irqrestore(&host->clk_lock, flags);
669 mmc_set_ios(host);
673 * This restores the clock from gating by using the cached
674 * clock value.
676 void mmc_ungate_clock(struct mmc_host *host)
679 * We should previously have gated the clock, so the clock shall
680 * be 0 here! The clock may however be 0 during initialization,
681 * when some request operations are performed before setting
682 * the frequency. When ungate is requested in that situation
683 * we just ignore the call.
685 if (host->clk_old) {
686 BUG_ON(host->ios.clock);
687 /* This call will also set host->clk_gated to false */
688 mmc_set_clock(host, host->clk_old);
692 void mmc_set_ungated(struct mmc_host *host)
694 unsigned long flags;
697 * We've been given a new frequency while the clock is gated,
698 * so make sure we regard this as ungating it.
700 spin_lock_irqsave(&host->clk_lock, flags);
701 host->clk_gated = false;
702 spin_unlock_irqrestore(&host->clk_lock, flags);
705 #else
706 void mmc_set_ungated(struct mmc_host *host)
709 #endif
712 * Change the bus mode (open drain/push-pull) of a host.
714 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
716 host->ios.bus_mode = mode;
717 mmc_set_ios(host);
721 * Change data bus width of a host.
723 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
725 host->ios.bus_width = width;
726 mmc_set_ios(host);
730 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
731 * @vdd: voltage (mV)
732 * @low_bits: prefer low bits in boundary cases
734 * This function returns the OCR bit number according to the provided @vdd
735 * value. If conversion is not possible a negative errno value returned.
737 * Depending on the @low_bits flag the function prefers low or high OCR bits
738 * on boundary voltages. For example,
739 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
740 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
742 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
744 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
746 const int max_bit = ilog2(MMC_VDD_35_36);
747 int bit;
749 if (vdd < 1650 || vdd > 3600)
750 return -EINVAL;
752 if (vdd >= 1650 && vdd <= 1950)
753 return ilog2(MMC_VDD_165_195);
755 if (low_bits)
756 vdd -= 1;
758 /* Base 2000 mV, step 100 mV, bit's base 8. */
759 bit = (vdd - 2000) / 100 + 8;
760 if (bit > max_bit)
761 return max_bit;
762 return bit;
766 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
767 * @vdd_min: minimum voltage value (mV)
768 * @vdd_max: maximum voltage value (mV)
770 * This function returns the OCR mask bits according to the provided @vdd_min
771 * and @vdd_max values. If conversion is not possible the function returns 0.
773 * Notes wrt boundary cases:
774 * This function sets the OCR bits for all boundary voltages, for example
775 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
776 * MMC_VDD_34_35 mask.
778 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
780 u32 mask = 0;
782 if (vdd_max < vdd_min)
783 return 0;
785 /* Prefer high bits for the boundary vdd_max values. */
786 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
787 if (vdd_max < 0)
788 return 0;
790 /* Prefer low bits for the boundary vdd_min values. */
791 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
792 if (vdd_min < 0)
793 return 0;
795 /* Fill the mask, from max bit to min bit. */
796 while (vdd_max >= vdd_min)
797 mask |= 1 << vdd_max--;
799 return mask;
801 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
803 #ifdef CONFIG_REGULATOR
806 * mmc_regulator_get_ocrmask - return mask of supported voltages
807 * @supply: regulator to use
809 * This returns either a negative errno, or a mask of voltages that
810 * can be provided to MMC/SD/SDIO devices using the specified voltage
811 * regulator. This would normally be called before registering the
812 * MMC host adapter.
814 int mmc_regulator_get_ocrmask(struct regulator *supply)
816 int result = 0;
817 int count;
818 int i;
820 count = regulator_count_voltages(supply);
821 if (count < 0)
822 return count;
824 for (i = 0; i < count; i++) {
825 int vdd_uV;
826 int vdd_mV;
828 vdd_uV = regulator_list_voltage(supply, i);
829 if (vdd_uV <= 0)
830 continue;
832 vdd_mV = vdd_uV / 1000;
833 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
836 return result;
838 EXPORT_SYMBOL(mmc_regulator_get_ocrmask);
841 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
842 * @mmc: the host to regulate
843 * @supply: regulator to use
844 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
846 * Returns zero on success, else negative errno.
848 * MMC host drivers may use this to enable or disable a regulator using
849 * a particular supply voltage. This would normally be called from the
850 * set_ios() method.
852 int mmc_regulator_set_ocr(struct mmc_host *mmc,
853 struct regulator *supply,
854 unsigned short vdd_bit)
856 int result = 0;
857 int min_uV, max_uV;
859 if (vdd_bit) {
860 int tmp;
861 int voltage;
863 /* REVISIT mmc_vddrange_to_ocrmask() may have set some
864 * bits this regulator doesn't quite support ... don't
865 * be too picky, most cards and regulators are OK with
866 * a 0.1V range goof (it's a small error percentage).
868 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
869 if (tmp == 0) {
870 min_uV = 1650 * 1000;
871 max_uV = 1950 * 1000;
872 } else {
873 min_uV = 1900 * 1000 + tmp * 100 * 1000;
874 max_uV = min_uV + 100 * 1000;
877 /* avoid needless changes to this voltage; the regulator
878 * might not allow this operation
880 voltage = regulator_get_voltage(supply);
881 if (voltage < 0)
882 result = voltage;
883 else if (voltage < min_uV || voltage > max_uV)
884 result = regulator_set_voltage(supply, min_uV, max_uV);
885 else
886 result = 0;
888 if (result == 0 && !mmc->regulator_enabled) {
889 result = regulator_enable(supply);
890 if (!result)
891 mmc->regulator_enabled = true;
893 } else if (mmc->regulator_enabled) {
894 result = regulator_disable(supply);
895 if (result == 0)
896 mmc->regulator_enabled = false;
899 if (result)
900 dev_err(mmc_dev(mmc),
901 "could not set regulator OCR (%d)\n", result);
902 return result;
904 EXPORT_SYMBOL(mmc_regulator_set_ocr);
906 #endif /* CONFIG_REGULATOR */
909 * Mask off any voltages we don't support and select
910 * the lowest voltage
912 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
914 int bit;
916 ocr &= host->ocr_avail;
918 bit = ffs(ocr);
919 if (bit) {
920 bit -= 1;
922 ocr &= 3 << bit;
924 host->ios.vdd = bit;
925 mmc_set_ios(host);
926 } else {
927 pr_warning("%s: host doesn't support card's voltages\n",
928 mmc_hostname(host));
929 ocr = 0;
932 return ocr;
935 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, bool cmd11)
937 struct mmc_command cmd = {0};
938 int err = 0;
940 BUG_ON(!host);
943 * Send CMD11 only if the request is to switch the card to
944 * 1.8V signalling.
946 if ((signal_voltage != MMC_SIGNAL_VOLTAGE_330) && cmd11) {
947 cmd.opcode = SD_SWITCH_VOLTAGE;
948 cmd.arg = 0;
949 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
951 err = mmc_wait_for_cmd(host, &cmd, 0);
952 if (err)
953 return err;
955 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
956 return -EIO;
959 host->ios.signal_voltage = signal_voltage;
961 if (host->ops->start_signal_voltage_switch)
962 err = host->ops->start_signal_voltage_switch(host, &host->ios);
964 return err;
968 * Select timing parameters for host.
970 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
972 host->ios.timing = timing;
973 mmc_set_ios(host);
977 * Select appropriate driver type for host.
979 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
981 host->ios.drv_type = drv_type;
982 mmc_set_ios(host);
986 * Apply power to the MMC stack. This is a two-stage process.
987 * First, we enable power to the card without the clock running.
988 * We then wait a bit for the power to stabilise. Finally,
989 * enable the bus drivers and clock to the card.
991 * We must _NOT_ enable the clock prior to power stablising.
993 * If a host does all the power sequencing itself, ignore the
994 * initial MMC_POWER_UP stage.
996 static void mmc_power_up(struct mmc_host *host)
998 int bit;
1000 /* If ocr is set, we use it */
1001 if (host->ocr)
1002 bit = ffs(host->ocr) - 1;
1003 else
1004 bit = fls(host->ocr_avail) - 1;
1006 host->ios.vdd = bit;
1007 if (mmc_host_is_spi(host)) {
1008 host->ios.chip_select = MMC_CS_HIGH;
1009 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1010 } else {
1011 host->ios.chip_select = MMC_CS_DONTCARE;
1012 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1014 host->ios.power_mode = MMC_POWER_UP;
1015 host->ios.bus_width = MMC_BUS_WIDTH_1;
1016 host->ios.timing = MMC_TIMING_LEGACY;
1017 mmc_set_ios(host);
1020 * This delay should be sufficient to allow the power supply
1021 * to reach the minimum voltage.
1023 mmc_delay(10);
1025 host->ios.clock = host->f_init;
1027 host->ios.power_mode = MMC_POWER_ON;
1028 mmc_set_ios(host);
1031 * This delay must be at least 74 clock sizes, or 1 ms, or the
1032 * time required to reach a stable voltage.
1034 mmc_delay(10);
1037 static void mmc_power_off(struct mmc_host *host)
1039 host->ios.clock = 0;
1040 host->ios.vdd = 0;
1043 * Reset ocr mask to be the highest possible voltage supported for
1044 * this mmc host. This value will be used at next power up.
1046 host->ocr = 1 << (fls(host->ocr_avail) - 1);
1048 if (!mmc_host_is_spi(host)) {
1049 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1050 host->ios.chip_select = MMC_CS_DONTCARE;
1052 host->ios.power_mode = MMC_POWER_OFF;
1053 host->ios.bus_width = MMC_BUS_WIDTH_1;
1054 host->ios.timing = MMC_TIMING_LEGACY;
1055 mmc_set_ios(host);
1059 * Cleanup when the last reference to the bus operator is dropped.
1061 static void __mmc_release_bus(struct mmc_host *host)
1063 BUG_ON(!host);
1064 BUG_ON(host->bus_refs);
1065 BUG_ON(!host->bus_dead);
1067 host->bus_ops = NULL;
1071 * Increase reference count of bus operator
1073 static inline void mmc_bus_get(struct mmc_host *host)
1075 unsigned long flags;
1077 spin_lock_irqsave(&host->lock, flags);
1078 host->bus_refs++;
1079 spin_unlock_irqrestore(&host->lock, flags);
1083 * Decrease reference count of bus operator and free it if
1084 * it is the last reference.
1086 static inline void mmc_bus_put(struct mmc_host *host)
1088 unsigned long flags;
1090 spin_lock_irqsave(&host->lock, flags);
1091 host->bus_refs--;
1092 if ((host->bus_refs == 0) && host->bus_ops)
1093 __mmc_release_bus(host);
1094 spin_unlock_irqrestore(&host->lock, flags);
1098 * Assign a mmc bus handler to a host. Only one bus handler may control a
1099 * host at any given time.
1101 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1103 unsigned long flags;
1105 BUG_ON(!host);
1106 BUG_ON(!ops);
1108 WARN_ON(!host->claimed);
1110 spin_lock_irqsave(&host->lock, flags);
1112 BUG_ON(host->bus_ops);
1113 BUG_ON(host->bus_refs);
1115 host->bus_ops = ops;
1116 host->bus_refs = 1;
1117 host->bus_dead = 0;
1119 spin_unlock_irqrestore(&host->lock, flags);
1123 * Remove the current bus handler from a host. Assumes that there are
1124 * no interesting cards left, so the bus is powered down.
1126 void mmc_detach_bus(struct mmc_host *host)
1128 unsigned long flags;
1130 BUG_ON(!host);
1132 WARN_ON(!host->claimed);
1133 WARN_ON(!host->bus_ops);
1135 spin_lock_irqsave(&host->lock, flags);
1137 host->bus_dead = 1;
1139 spin_unlock_irqrestore(&host->lock, flags);
1141 mmc_power_off(host);
1143 mmc_bus_put(host);
1147 * mmc_detect_change - process change of state on a MMC socket
1148 * @host: host which changed state.
1149 * @delay: optional delay to wait before detection (jiffies)
1151 * MMC drivers should call this when they detect a card has been
1152 * inserted or removed. The MMC layer will confirm that any
1153 * present card is still functional, and initialize any newly
1154 * inserted.
1156 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1158 #ifdef CONFIG_MMC_DEBUG
1159 unsigned long flags;
1160 spin_lock_irqsave(&host->lock, flags);
1161 WARN_ON(host->removed);
1162 spin_unlock_irqrestore(&host->lock, flags);
1163 #endif
1165 mmc_schedule_delayed_work(&host->detect, delay);
1168 EXPORT_SYMBOL(mmc_detect_change);
1170 void mmc_init_erase(struct mmc_card *card)
1172 unsigned int sz;
1174 if (is_power_of_2(card->erase_size))
1175 card->erase_shift = ffs(card->erase_size) - 1;
1176 else
1177 card->erase_shift = 0;
1180 * It is possible to erase an arbitrarily large area of an SD or MMC
1181 * card. That is not desirable because it can take a long time
1182 * (minutes) potentially delaying more important I/O, and also the
1183 * timeout calculations become increasingly hugely over-estimated.
1184 * Consequently, 'pref_erase' is defined as a guide to limit erases
1185 * to that size and alignment.
1187 * For SD cards that define Allocation Unit size, limit erases to one
1188 * Allocation Unit at a time. For MMC cards that define High Capacity
1189 * Erase Size, whether it is switched on or not, limit to that size.
1190 * Otherwise just have a stab at a good value. For modern cards it
1191 * will end up being 4MiB. Note that if the value is too small, it
1192 * can end up taking longer to erase.
1194 if (mmc_card_sd(card) && card->ssr.au) {
1195 card->pref_erase = card->ssr.au;
1196 card->erase_shift = ffs(card->ssr.au) - 1;
1197 } else if (card->ext_csd.hc_erase_size) {
1198 card->pref_erase = card->ext_csd.hc_erase_size;
1199 } else {
1200 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1201 if (sz < 128)
1202 card->pref_erase = 512 * 1024 / 512;
1203 else if (sz < 512)
1204 card->pref_erase = 1024 * 1024 / 512;
1205 else if (sz < 1024)
1206 card->pref_erase = 2 * 1024 * 1024 / 512;
1207 else
1208 card->pref_erase = 4 * 1024 * 1024 / 512;
1209 if (card->pref_erase < card->erase_size)
1210 card->pref_erase = card->erase_size;
1211 else {
1212 sz = card->pref_erase % card->erase_size;
1213 if (sz)
1214 card->pref_erase += card->erase_size - sz;
1219 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1220 unsigned int arg, unsigned int qty)
1222 unsigned int erase_timeout;
1224 if (card->ext_csd.erase_group_def & 1) {
1225 /* High Capacity Erase Group Size uses HC timeouts */
1226 if (arg == MMC_TRIM_ARG)
1227 erase_timeout = card->ext_csd.trim_timeout;
1228 else
1229 erase_timeout = card->ext_csd.hc_erase_timeout;
1230 } else {
1231 /* CSD Erase Group Size uses write timeout */
1232 unsigned int mult = (10 << card->csd.r2w_factor);
1233 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1234 unsigned int timeout_us;
1236 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1237 if (card->csd.tacc_ns < 1000000)
1238 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1239 else
1240 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1243 * ios.clock is only a target. The real clock rate might be
1244 * less but not that much less, so fudge it by multiplying by 2.
1246 timeout_clks <<= 1;
1247 timeout_us += (timeout_clks * 1000) /
1248 (card->host->ios.clock / 1000);
1250 erase_timeout = timeout_us / 1000;
1253 * Theoretically, the calculation could underflow so round up
1254 * to 1ms in that case.
1256 if (!erase_timeout)
1257 erase_timeout = 1;
1260 /* Multiplier for secure operations */
1261 if (arg & MMC_SECURE_ARGS) {
1262 if (arg == MMC_SECURE_ERASE_ARG)
1263 erase_timeout *= card->ext_csd.sec_erase_mult;
1264 else
1265 erase_timeout *= card->ext_csd.sec_trim_mult;
1268 erase_timeout *= qty;
1271 * Ensure at least a 1 second timeout for SPI as per
1272 * 'mmc_set_data_timeout()'
1274 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1275 erase_timeout = 1000;
1277 return erase_timeout;
1280 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1281 unsigned int arg,
1282 unsigned int qty)
1284 unsigned int erase_timeout;
1286 if (card->ssr.erase_timeout) {
1287 /* Erase timeout specified in SD Status Register (SSR) */
1288 erase_timeout = card->ssr.erase_timeout * qty +
1289 card->ssr.erase_offset;
1290 } else {
1292 * Erase timeout not specified in SD Status Register (SSR) so
1293 * use 250ms per write block.
1295 erase_timeout = 250 * qty;
1298 /* Must not be less than 1 second */
1299 if (erase_timeout < 1000)
1300 erase_timeout = 1000;
1302 return erase_timeout;
1305 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1306 unsigned int arg,
1307 unsigned int qty)
1309 if (mmc_card_sd(card))
1310 return mmc_sd_erase_timeout(card, arg, qty);
1311 else
1312 return mmc_mmc_erase_timeout(card, arg, qty);
1315 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1316 unsigned int to, unsigned int arg)
1318 struct mmc_command cmd = {0};
1319 unsigned int qty = 0;
1320 int err;
1323 * qty is used to calculate the erase timeout which depends on how many
1324 * erase groups (or allocation units in SD terminology) are affected.
1325 * We count erasing part of an erase group as one erase group.
1326 * For SD, the allocation units are always a power of 2. For MMC, the
1327 * erase group size is almost certainly also power of 2, but it does not
1328 * seem to insist on that in the JEDEC standard, so we fall back to
1329 * division in that case. SD may not specify an allocation unit size,
1330 * in which case the timeout is based on the number of write blocks.
1332 * Note that the timeout for secure trim 2 will only be correct if the
1333 * number of erase groups specified is the same as the total of all
1334 * preceding secure trim 1 commands. Since the power may have been
1335 * lost since the secure trim 1 commands occurred, it is generally
1336 * impossible to calculate the secure trim 2 timeout correctly.
1338 if (card->erase_shift)
1339 qty += ((to >> card->erase_shift) -
1340 (from >> card->erase_shift)) + 1;
1341 else if (mmc_card_sd(card))
1342 qty += to - from + 1;
1343 else
1344 qty += ((to / card->erase_size) -
1345 (from / card->erase_size)) + 1;
1347 if (!mmc_card_blockaddr(card)) {
1348 from <<= 9;
1349 to <<= 9;
1352 if (mmc_card_sd(card))
1353 cmd.opcode = SD_ERASE_WR_BLK_START;
1354 else
1355 cmd.opcode = MMC_ERASE_GROUP_START;
1356 cmd.arg = from;
1357 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1358 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1359 if (err) {
1360 printk(KERN_ERR "mmc_erase: group start error %d, "
1361 "status %#x\n", err, cmd.resp[0]);
1362 err = -EINVAL;
1363 goto out;
1366 memset(&cmd, 0, sizeof(struct mmc_command));
1367 if (mmc_card_sd(card))
1368 cmd.opcode = SD_ERASE_WR_BLK_END;
1369 else
1370 cmd.opcode = MMC_ERASE_GROUP_END;
1371 cmd.arg = to;
1372 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1373 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1374 if (err) {
1375 printk(KERN_ERR "mmc_erase: group end error %d, status %#x\n",
1376 err, cmd.resp[0]);
1377 err = -EINVAL;
1378 goto out;
1381 memset(&cmd, 0, sizeof(struct mmc_command));
1382 cmd.opcode = MMC_ERASE;
1383 cmd.arg = arg;
1384 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1385 cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
1386 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1387 if (err) {
1388 printk(KERN_ERR "mmc_erase: erase error %d, status %#x\n",
1389 err, cmd.resp[0]);
1390 err = -EIO;
1391 goto out;
1394 if (mmc_host_is_spi(card->host))
1395 goto out;
1397 do {
1398 memset(&cmd, 0, sizeof(struct mmc_command));
1399 cmd.opcode = MMC_SEND_STATUS;
1400 cmd.arg = card->rca << 16;
1401 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1402 /* Do not retry else we can't see errors */
1403 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1404 if (err || (cmd.resp[0] & 0xFDF92000)) {
1405 printk(KERN_ERR "error %d requesting status %#x\n",
1406 err, cmd.resp[0]);
1407 err = -EIO;
1408 goto out;
1410 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1411 R1_CURRENT_STATE(cmd.resp[0]) == 7);
1412 out:
1413 return err;
1417 * mmc_erase - erase sectors.
1418 * @card: card to erase
1419 * @from: first sector to erase
1420 * @nr: number of sectors to erase
1421 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1423 * Caller must claim host before calling this function.
1425 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1426 unsigned int arg)
1428 unsigned int rem, to = from + nr;
1430 if (!(card->host->caps & MMC_CAP_ERASE) ||
1431 !(card->csd.cmdclass & CCC_ERASE))
1432 return -EOPNOTSUPP;
1434 if (!card->erase_size)
1435 return -EOPNOTSUPP;
1437 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1438 return -EOPNOTSUPP;
1440 if ((arg & MMC_SECURE_ARGS) &&
1441 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1442 return -EOPNOTSUPP;
1444 if ((arg & MMC_TRIM_ARGS) &&
1445 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1446 return -EOPNOTSUPP;
1448 if (arg == MMC_SECURE_ERASE_ARG) {
1449 if (from % card->erase_size || nr % card->erase_size)
1450 return -EINVAL;
1453 if (arg == MMC_ERASE_ARG) {
1454 rem = from % card->erase_size;
1455 if (rem) {
1456 rem = card->erase_size - rem;
1457 from += rem;
1458 if (nr > rem)
1459 nr -= rem;
1460 else
1461 return 0;
1463 rem = nr % card->erase_size;
1464 if (rem)
1465 nr -= rem;
1468 if (nr == 0)
1469 return 0;
1471 to = from + nr;
1473 if (to <= from)
1474 return -EINVAL;
1476 /* 'from' and 'to' are inclusive */
1477 to -= 1;
1479 return mmc_do_erase(card, from, to, arg);
1481 EXPORT_SYMBOL(mmc_erase);
1483 int mmc_can_erase(struct mmc_card *card)
1485 if ((card->host->caps & MMC_CAP_ERASE) &&
1486 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1487 return 1;
1488 return 0;
1490 EXPORT_SYMBOL(mmc_can_erase);
1492 int mmc_can_trim(struct mmc_card *card)
1494 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
1495 return 1;
1496 return 0;
1498 EXPORT_SYMBOL(mmc_can_trim);
1500 int mmc_can_secure_erase_trim(struct mmc_card *card)
1502 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
1503 return 1;
1504 return 0;
1506 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1508 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1509 unsigned int nr)
1511 if (!card->erase_size)
1512 return 0;
1513 if (from % card->erase_size || nr % card->erase_size)
1514 return 0;
1515 return 1;
1517 EXPORT_SYMBOL(mmc_erase_group_aligned);
1519 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1521 struct mmc_command cmd = {0};
1523 if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
1524 return 0;
1526 cmd.opcode = MMC_SET_BLOCKLEN;
1527 cmd.arg = blocklen;
1528 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1529 return mmc_wait_for_cmd(card->host, &cmd, 5);
1531 EXPORT_SYMBOL(mmc_set_blocklen);
1533 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
1535 host->f_init = freq;
1537 #ifdef CONFIG_MMC_DEBUG
1538 pr_info("%s: %s: trying to init card at %u Hz\n",
1539 mmc_hostname(host), __func__, host->f_init);
1540 #endif
1541 mmc_power_up(host);
1544 * sdio_reset sends CMD52 to reset card. Since we do not know
1545 * if the card is being re-initialized, just send it. CMD52
1546 * should be ignored by SD/eMMC cards.
1548 sdio_reset(host);
1549 mmc_go_idle(host);
1551 mmc_send_if_cond(host, host->ocr_avail);
1553 /* Order's important: probe SDIO, then SD, then MMC */
1554 if (!mmc_attach_sdio(host))
1555 return 0;
1556 if (!mmc_attach_sd(host))
1557 return 0;
1558 if (!mmc_attach_mmc(host))
1559 return 0;
1561 mmc_power_off(host);
1562 return -EIO;
1565 void mmc_rescan(struct work_struct *work)
1567 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
1568 struct mmc_host *host =
1569 container_of(work, struct mmc_host, detect.work);
1570 int i;
1572 if (host->rescan_disable)
1573 return;
1575 mmc_bus_get(host);
1578 * if there is a _removable_ card registered, check whether it is
1579 * still present
1581 if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
1582 && !(host->caps & MMC_CAP_NONREMOVABLE))
1583 host->bus_ops->detect(host);
1586 * Let mmc_bus_put() free the bus/bus_ops if we've found that
1587 * the card is no longer present.
1589 mmc_bus_put(host);
1590 mmc_bus_get(host);
1592 /* if there still is a card present, stop here */
1593 if (host->bus_ops != NULL) {
1594 mmc_bus_put(host);
1595 goto out;
1599 * Only we can add a new handler, so it's safe to
1600 * release the lock here.
1602 mmc_bus_put(host);
1604 if (host->ops->get_cd && host->ops->get_cd(host) == 0)
1605 goto out;
1607 mmc_claim_host(host);
1608 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
1609 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
1610 break;
1611 if (freqs[i] <= host->f_min)
1612 break;
1614 mmc_release_host(host);
1616 out:
1617 if (host->caps & MMC_CAP_NEEDS_POLL)
1618 mmc_schedule_delayed_work(&host->detect, HZ);
1621 void mmc_start_host(struct mmc_host *host)
1623 mmc_power_off(host);
1624 mmc_detect_change(host, 0);
1627 void mmc_stop_host(struct mmc_host *host)
1629 #ifdef CONFIG_MMC_DEBUG
1630 unsigned long flags;
1631 spin_lock_irqsave(&host->lock, flags);
1632 host->removed = 1;
1633 spin_unlock_irqrestore(&host->lock, flags);
1634 #endif
1636 if (host->caps & MMC_CAP_DISABLE)
1637 cancel_delayed_work(&host->disable);
1638 cancel_delayed_work_sync(&host->detect);
1639 mmc_flush_scheduled_work();
1641 /* clear pm flags now and let card drivers set them as needed */
1642 host->pm_flags = 0;
1644 mmc_bus_get(host);
1645 if (host->bus_ops && !host->bus_dead) {
1646 if (host->bus_ops->remove)
1647 host->bus_ops->remove(host);
1649 mmc_claim_host(host);
1650 mmc_detach_bus(host);
1651 mmc_release_host(host);
1652 mmc_bus_put(host);
1653 return;
1655 mmc_bus_put(host);
1657 BUG_ON(host->card);
1659 mmc_power_off(host);
1662 int mmc_power_save_host(struct mmc_host *host)
1664 int ret = 0;
1666 mmc_bus_get(host);
1668 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
1669 mmc_bus_put(host);
1670 return -EINVAL;
1673 if (host->bus_ops->power_save)
1674 ret = host->bus_ops->power_save(host);
1676 mmc_bus_put(host);
1678 mmc_power_off(host);
1680 return ret;
1682 EXPORT_SYMBOL(mmc_power_save_host);
1684 int mmc_power_restore_host(struct mmc_host *host)
1686 int ret;
1688 mmc_bus_get(host);
1690 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
1691 mmc_bus_put(host);
1692 return -EINVAL;
1695 mmc_power_up(host);
1696 ret = host->bus_ops->power_restore(host);
1698 mmc_bus_put(host);
1700 return ret;
1702 EXPORT_SYMBOL(mmc_power_restore_host);
1704 int mmc_card_awake(struct mmc_host *host)
1706 int err = -ENOSYS;
1708 mmc_bus_get(host);
1710 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
1711 err = host->bus_ops->awake(host);
1713 mmc_bus_put(host);
1715 return err;
1717 EXPORT_SYMBOL(mmc_card_awake);
1719 int mmc_card_sleep(struct mmc_host *host)
1721 int err = -ENOSYS;
1723 mmc_bus_get(host);
1725 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
1726 err = host->bus_ops->sleep(host);
1728 mmc_bus_put(host);
1730 return err;
1732 EXPORT_SYMBOL(mmc_card_sleep);
1734 int mmc_card_can_sleep(struct mmc_host *host)
1736 struct mmc_card *card = host->card;
1738 if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
1739 return 1;
1740 return 0;
1742 EXPORT_SYMBOL(mmc_card_can_sleep);
1744 #ifdef CONFIG_PM
1747 * mmc_suspend_host - suspend a host
1748 * @host: mmc host
1750 int mmc_suspend_host(struct mmc_host *host)
1752 int err = 0;
1754 if (host->caps & MMC_CAP_DISABLE)
1755 cancel_delayed_work(&host->disable);
1756 cancel_delayed_work(&host->detect);
1757 mmc_flush_scheduled_work();
1759 mmc_bus_get(host);
1760 if (host->bus_ops && !host->bus_dead) {
1761 if (host->bus_ops->suspend)
1762 err = host->bus_ops->suspend(host);
1763 if (err == -ENOSYS || !host->bus_ops->resume) {
1765 * We simply "remove" the card in this case.
1766 * It will be redetected on resume.
1768 if (host->bus_ops->remove)
1769 host->bus_ops->remove(host);
1770 mmc_claim_host(host);
1771 mmc_detach_bus(host);
1772 mmc_release_host(host);
1773 host->pm_flags = 0;
1774 err = 0;
1777 mmc_bus_put(host);
1779 if (!err && !mmc_card_keep_power(host))
1780 mmc_power_off(host);
1782 return err;
1785 EXPORT_SYMBOL(mmc_suspend_host);
1788 * mmc_resume_host - resume a previously suspended host
1789 * @host: mmc host
1791 int mmc_resume_host(struct mmc_host *host)
1793 int err = 0;
1795 mmc_bus_get(host);
1796 if (host->bus_ops && !host->bus_dead) {
1797 if (!mmc_card_keep_power(host)) {
1798 mmc_power_up(host);
1799 mmc_select_voltage(host, host->ocr);
1801 * Tell runtime PM core we just powered up the card,
1802 * since it still believes the card is powered off.
1803 * Note that currently runtime PM is only enabled
1804 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
1806 if (mmc_card_sdio(host->card) &&
1807 (host->caps & MMC_CAP_POWER_OFF_CARD)) {
1808 pm_runtime_disable(&host->card->dev);
1809 pm_runtime_set_active(&host->card->dev);
1810 pm_runtime_enable(&host->card->dev);
1813 BUG_ON(!host->bus_ops->resume);
1814 err = host->bus_ops->resume(host);
1815 if (err) {
1816 printk(KERN_WARNING "%s: error %d during resume "
1817 "(card was removed?)\n",
1818 mmc_hostname(host), err);
1819 err = 0;
1822 host->pm_flags &= ~MMC_PM_KEEP_POWER;
1823 mmc_bus_put(host);
1825 return err;
1827 EXPORT_SYMBOL(mmc_resume_host);
1829 /* Do the card removal on suspend if card is assumed removeable
1830 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
1831 to sync the card.
1833 int mmc_pm_notify(struct notifier_block *notify_block,
1834 unsigned long mode, void *unused)
1836 struct mmc_host *host = container_of(
1837 notify_block, struct mmc_host, pm_notify);
1838 unsigned long flags;
1841 switch (mode) {
1842 case PM_HIBERNATION_PREPARE:
1843 case PM_SUSPEND_PREPARE:
1845 spin_lock_irqsave(&host->lock, flags);
1846 host->rescan_disable = 1;
1847 spin_unlock_irqrestore(&host->lock, flags);
1848 cancel_delayed_work_sync(&host->detect);
1850 if (!host->bus_ops || host->bus_ops->suspend)
1851 break;
1853 mmc_claim_host(host);
1855 if (host->bus_ops->remove)
1856 host->bus_ops->remove(host);
1858 mmc_detach_bus(host);
1859 mmc_release_host(host);
1860 host->pm_flags = 0;
1861 break;
1863 case PM_POST_SUSPEND:
1864 case PM_POST_HIBERNATION:
1865 case PM_POST_RESTORE:
1867 spin_lock_irqsave(&host->lock, flags);
1868 host->rescan_disable = 0;
1869 spin_unlock_irqrestore(&host->lock, flags);
1870 mmc_detect_change(host, 0);
1874 return 0;
1876 #endif
1878 static int __init mmc_init(void)
1880 int ret;
1882 workqueue = alloc_ordered_workqueue("kmmcd", 0);
1883 if (!workqueue)
1884 return -ENOMEM;
1886 ret = mmc_register_bus();
1887 if (ret)
1888 goto destroy_workqueue;
1890 ret = mmc_register_host_class();
1891 if (ret)
1892 goto unregister_bus;
1894 ret = sdio_register_bus();
1895 if (ret)
1896 goto unregister_host_class;
1898 return 0;
1900 unregister_host_class:
1901 mmc_unregister_host_class();
1902 unregister_bus:
1903 mmc_unregister_bus();
1904 destroy_workqueue:
1905 destroy_workqueue(workqueue);
1907 return ret;
1910 static void __exit mmc_exit(void)
1912 sdio_unregister_bus();
1913 mmc_unregister_host_class();
1914 mmc_unregister_bus();
1915 destroy_workqueue(workqueue);
1918 subsys_initcall(mmc_init);
1919 module_exit(mmc_exit);
1921 MODULE_LICENSE("GPL");