2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Copyright notices from the original cpuset code:
8 * --------------------------------------------------
9 * Copyright (C) 2003 BULL SA.
10 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
12 * Portions derived from Patrick Mochel's sysfs code.
13 * sysfs is Copyright (c) 2001-3 Patrick Mochel
15 * 2003-10-10 Written by Simon Derr.
16 * 2003-10-22 Updates by Stephen Hemminger.
17 * 2004 May-July Rework by Paul Jackson.
18 * ---------------------------------------------------
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
25 #include <linux/cgroup.h>
26 #include <linux/errno.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
31 #include <linux/mutex.h>
32 #include <linux/mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/proc_fs.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched.h>
37 #include <linux/backing-dev.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/magic.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/sort.h>
44 #include <linux/kmod.h>
45 #include <linux/delayacct.h>
46 #include <linux/cgroupstats.h>
47 #include <linux/hash.h>
48 #include <linux/namei.h>
49 #include <linux/smp_lock.h>
50 #include <linux/pid_namespace.h>
52 #include <asm/atomic.h>
54 static DEFINE_MUTEX(cgroup_mutex
);
56 /* Generate an array of cgroup subsystem pointers */
57 #define SUBSYS(_x) &_x ## _subsys,
59 static struct cgroup_subsys
*subsys
[] = {
60 #include <linux/cgroup_subsys.h>
64 * A cgroupfs_root represents the root of a cgroup hierarchy,
65 * and may be associated with a superblock to form an active
68 struct cgroupfs_root
{
69 struct super_block
*sb
;
72 * The bitmask of subsystems intended to be attached to this
75 unsigned long subsys_bits
;
77 /* The bitmask of subsystems currently attached to this hierarchy */
78 unsigned long actual_subsys_bits
;
80 /* A list running through the attached subsystems */
81 struct list_head subsys_list
;
83 /* The root cgroup for this hierarchy */
84 struct cgroup top_cgroup
;
86 /* Tracks how many cgroups are currently defined in hierarchy.*/
87 int number_of_cgroups
;
89 /* A list running through the active hierarchies */
90 struct list_head root_list
;
92 /* Hierarchy-specific flags */
95 /* The path to use for release notifications. */
96 char release_agent_path
[PATH_MAX
];
100 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
101 * subsystems that are otherwise unattached - it never has more than a
102 * single cgroup, and all tasks are part of that cgroup.
104 static struct cgroupfs_root rootnode
;
107 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
108 * cgroup_subsys->use_id != 0.
110 #define CSS_ID_MAX (65535)
113 * The css to which this ID points. This pointer is set to valid value
114 * after cgroup is populated. If cgroup is removed, this will be NULL.
115 * This pointer is expected to be RCU-safe because destroy()
116 * is called after synchronize_rcu(). But for safe use, css_is_removed()
117 * css_tryget() should be used for avoiding race.
119 struct cgroup_subsys_state
*css
;
125 * Depth in hierarchy which this ID belongs to.
127 unsigned short depth
;
129 * ID is freed by RCU. (and lookup routine is RCU safe.)
131 struct rcu_head rcu_head
;
133 * Hierarchy of CSS ID belongs to.
135 unsigned short stack
[0]; /* Array of Length (depth+1) */
139 /* The list of hierarchy roots */
141 static LIST_HEAD(roots
);
142 static int root_count
;
144 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
145 #define dummytop (&rootnode.top_cgroup)
147 /* This flag indicates whether tasks in the fork and exit paths should
148 * check for fork/exit handlers to call. This avoids us having to do
149 * extra work in the fork/exit path if none of the subsystems need to
152 static int need_forkexit_callback __read_mostly
;
154 /* convenient tests for these bits */
155 inline int cgroup_is_removed(const struct cgroup
*cgrp
)
157 return test_bit(CGRP_REMOVED
, &cgrp
->flags
);
160 /* bits in struct cgroupfs_root flags field */
162 ROOT_NOPREFIX
, /* mounted subsystems have no named prefix */
165 static int cgroup_is_releasable(const struct cgroup
*cgrp
)
168 (1 << CGRP_RELEASABLE
) |
169 (1 << CGRP_NOTIFY_ON_RELEASE
);
170 return (cgrp
->flags
& bits
) == bits
;
173 static int notify_on_release(const struct cgroup
*cgrp
)
175 return test_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
179 * for_each_subsys() allows you to iterate on each subsystem attached to
180 * an active hierarchy
182 #define for_each_subsys(_root, _ss) \
183 list_for_each_entry(_ss, &_root->subsys_list, sibling)
185 /* for_each_active_root() allows you to iterate across the active hierarchies */
186 #define for_each_active_root(_root) \
187 list_for_each_entry(_root, &roots, root_list)
189 /* the list of cgroups eligible for automatic release. Protected by
190 * release_list_lock */
191 static LIST_HEAD(release_list
);
192 static DEFINE_SPINLOCK(release_list_lock
);
193 static void cgroup_release_agent(struct work_struct
*work
);
194 static DECLARE_WORK(release_agent_work
, cgroup_release_agent
);
195 static void check_for_release(struct cgroup
*cgrp
);
197 /* Link structure for associating css_set objects with cgroups */
198 struct cg_cgroup_link
{
200 * List running through cg_cgroup_links associated with a
201 * cgroup, anchored on cgroup->css_sets
203 struct list_head cgrp_link_list
;
205 * List running through cg_cgroup_links pointing at a
206 * single css_set object, anchored on css_set->cg_links
208 struct list_head cg_link_list
;
212 /* The default css_set - used by init and its children prior to any
213 * hierarchies being mounted. It contains a pointer to the root state
214 * for each subsystem. Also used to anchor the list of css_sets. Not
215 * reference-counted, to improve performance when child cgroups
216 * haven't been created.
219 static struct css_set init_css_set
;
220 static struct cg_cgroup_link init_css_set_link
;
222 static int cgroup_subsys_init_idr(struct cgroup_subsys
*ss
);
224 /* css_set_lock protects the list of css_set objects, and the
225 * chain of tasks off each css_set. Nests outside task->alloc_lock
226 * due to cgroup_iter_start() */
227 static DEFINE_RWLOCK(css_set_lock
);
228 static int css_set_count
;
230 /* hash table for cgroup groups. This improves the performance to
231 * find an existing css_set */
232 #define CSS_SET_HASH_BITS 7
233 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
234 static struct hlist_head css_set_table
[CSS_SET_TABLE_SIZE
];
236 static struct hlist_head
*css_set_hash(struct cgroup_subsys_state
*css
[])
240 unsigned long tmp
= 0UL;
242 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++)
243 tmp
+= (unsigned long)css
[i
];
244 tmp
= (tmp
>> 16) ^ tmp
;
246 index
= hash_long(tmp
, CSS_SET_HASH_BITS
);
248 return &css_set_table
[index
];
251 /* We don't maintain the lists running through each css_set to its
252 * task until after the first call to cgroup_iter_start(). This
253 * reduces the fork()/exit() overhead for people who have cgroups
254 * compiled into their kernel but not actually in use */
255 static int use_task_css_set_links __read_mostly
;
257 /* When we create or destroy a css_set, the operation simply
258 * takes/releases a reference count on all the cgroups referenced
259 * by subsystems in this css_set. This can end up multiple-counting
260 * some cgroups, but that's OK - the ref-count is just a
261 * busy/not-busy indicator; ensuring that we only count each cgroup
262 * once would require taking a global lock to ensure that no
263 * subsystems moved between hierarchies while we were doing so.
265 * Possible TODO: decide at boot time based on the number of
266 * registered subsystems and the number of CPUs or NUMA nodes whether
267 * it's better for performance to ref-count every subsystem, or to
268 * take a global lock and only add one ref count to each hierarchy.
272 * unlink a css_set from the list and free it
274 static void unlink_css_set(struct css_set
*cg
)
276 struct cg_cgroup_link
*link
;
277 struct cg_cgroup_link
*saved_link
;
279 hlist_del(&cg
->hlist
);
282 list_for_each_entry_safe(link
, saved_link
, &cg
->cg_links
,
284 list_del(&link
->cg_link_list
);
285 list_del(&link
->cgrp_link_list
);
290 static void __put_css_set(struct css_set
*cg
, int taskexit
)
294 * Ensure that the refcount doesn't hit zero while any readers
295 * can see it. Similar to atomic_dec_and_lock(), but for an
298 if (atomic_add_unless(&cg
->refcount
, -1, 1))
300 write_lock(&css_set_lock
);
301 if (!atomic_dec_and_test(&cg
->refcount
)) {
302 write_unlock(&css_set_lock
);
306 write_unlock(&css_set_lock
);
309 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
310 struct cgroup
*cgrp
= rcu_dereference(cg
->subsys
[i
]->cgroup
);
311 if (atomic_dec_and_test(&cgrp
->count
) &&
312 notify_on_release(cgrp
)) {
314 set_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
315 check_for_release(cgrp
);
323 * refcounted get/put for css_set objects
325 static inline void get_css_set(struct css_set
*cg
)
327 atomic_inc(&cg
->refcount
);
330 static inline void put_css_set(struct css_set
*cg
)
332 __put_css_set(cg
, 0);
335 static inline void put_css_set_taskexit(struct css_set
*cg
)
337 __put_css_set(cg
, 1);
341 * find_existing_css_set() is a helper for
342 * find_css_set(), and checks to see whether an existing
343 * css_set is suitable.
345 * oldcg: the cgroup group that we're using before the cgroup
348 * cgrp: the cgroup that we're moving into
350 * template: location in which to build the desired set of subsystem
351 * state objects for the new cgroup group
353 static struct css_set
*find_existing_css_set(
354 struct css_set
*oldcg
,
356 struct cgroup_subsys_state
*template[])
359 struct cgroupfs_root
*root
= cgrp
->root
;
360 struct hlist_head
*hhead
;
361 struct hlist_node
*node
;
364 /* Built the set of subsystem state objects that we want to
365 * see in the new css_set */
366 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
367 if (root
->subsys_bits
& (1UL << i
)) {
368 /* Subsystem is in this hierarchy. So we want
369 * the subsystem state from the new
371 template[i
] = cgrp
->subsys
[i
];
373 /* Subsystem is not in this hierarchy, so we
374 * don't want to change the subsystem state */
375 template[i
] = oldcg
->subsys
[i
];
379 hhead
= css_set_hash(template);
380 hlist_for_each_entry(cg
, node
, hhead
, hlist
) {
381 if (!memcmp(template, cg
->subsys
, sizeof(cg
->subsys
))) {
382 /* All subsystems matched */
387 /* No existing cgroup group matched */
391 static void free_cg_links(struct list_head
*tmp
)
393 struct cg_cgroup_link
*link
;
394 struct cg_cgroup_link
*saved_link
;
396 list_for_each_entry_safe(link
, saved_link
, tmp
, cgrp_link_list
) {
397 list_del(&link
->cgrp_link_list
);
403 * allocate_cg_links() allocates "count" cg_cgroup_link structures
404 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
405 * success or a negative error
407 static int allocate_cg_links(int count
, struct list_head
*tmp
)
409 struct cg_cgroup_link
*link
;
412 for (i
= 0; i
< count
; i
++) {
413 link
= kmalloc(sizeof(*link
), GFP_KERNEL
);
418 list_add(&link
->cgrp_link_list
, tmp
);
424 * link_css_set - a helper function to link a css_set to a cgroup
425 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
426 * @cg: the css_set to be linked
427 * @cgrp: the destination cgroup
429 static void link_css_set(struct list_head
*tmp_cg_links
,
430 struct css_set
*cg
, struct cgroup
*cgrp
)
432 struct cg_cgroup_link
*link
;
434 BUG_ON(list_empty(tmp_cg_links
));
435 link
= list_first_entry(tmp_cg_links
, struct cg_cgroup_link
,
438 list_move(&link
->cgrp_link_list
, &cgrp
->css_sets
);
439 list_add(&link
->cg_link_list
, &cg
->cg_links
);
443 * find_css_set() takes an existing cgroup group and a
444 * cgroup object, and returns a css_set object that's
445 * equivalent to the old group, but with the given cgroup
446 * substituted into the appropriate hierarchy. Must be called with
449 static struct css_set
*find_css_set(
450 struct css_set
*oldcg
, struct cgroup
*cgrp
)
453 struct cgroup_subsys_state
*template[CGROUP_SUBSYS_COUNT
];
456 struct list_head tmp_cg_links
;
458 struct hlist_head
*hhead
;
460 /* First see if we already have a cgroup group that matches
462 read_lock(&css_set_lock
);
463 res
= find_existing_css_set(oldcg
, cgrp
, template);
466 read_unlock(&css_set_lock
);
471 res
= kmalloc(sizeof(*res
), GFP_KERNEL
);
475 /* Allocate all the cg_cgroup_link objects that we'll need */
476 if (allocate_cg_links(root_count
, &tmp_cg_links
) < 0) {
481 atomic_set(&res
->refcount
, 1);
482 INIT_LIST_HEAD(&res
->cg_links
);
483 INIT_LIST_HEAD(&res
->tasks
);
484 INIT_HLIST_NODE(&res
->hlist
);
486 /* Copy the set of subsystem state objects generated in
487 * find_existing_css_set() */
488 memcpy(res
->subsys
, template, sizeof(res
->subsys
));
490 write_lock(&css_set_lock
);
491 /* Add reference counts and links from the new css_set. */
492 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
493 struct cgroup
*cgrp
= res
->subsys
[i
]->cgroup
;
494 struct cgroup_subsys
*ss
= subsys
[i
];
495 atomic_inc(&cgrp
->count
);
497 * We want to add a link once per cgroup, so we
498 * only do it for the first subsystem in each
501 if (ss
->root
->subsys_list
.next
== &ss
->sibling
)
502 link_css_set(&tmp_cg_links
, res
, cgrp
);
504 if (list_empty(&rootnode
.subsys_list
))
505 link_css_set(&tmp_cg_links
, res
, dummytop
);
507 BUG_ON(!list_empty(&tmp_cg_links
));
511 /* Add this cgroup group to the hash table */
512 hhead
= css_set_hash(res
->subsys
);
513 hlist_add_head(&res
->hlist
, hhead
);
515 write_unlock(&css_set_lock
);
521 * There is one global cgroup mutex. We also require taking
522 * task_lock() when dereferencing a task's cgroup subsys pointers.
523 * See "The task_lock() exception", at the end of this comment.
525 * A task must hold cgroup_mutex to modify cgroups.
527 * Any task can increment and decrement the count field without lock.
528 * So in general, code holding cgroup_mutex can't rely on the count
529 * field not changing. However, if the count goes to zero, then only
530 * cgroup_attach_task() can increment it again. Because a count of zero
531 * means that no tasks are currently attached, therefore there is no
532 * way a task attached to that cgroup can fork (the other way to
533 * increment the count). So code holding cgroup_mutex can safely
534 * assume that if the count is zero, it will stay zero. Similarly, if
535 * a task holds cgroup_mutex on a cgroup with zero count, it
536 * knows that the cgroup won't be removed, as cgroup_rmdir()
539 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
540 * (usually) take cgroup_mutex. These are the two most performance
541 * critical pieces of code here. The exception occurs on cgroup_exit(),
542 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
543 * is taken, and if the cgroup count is zero, a usermode call made
544 * to the release agent with the name of the cgroup (path relative to
545 * the root of cgroup file system) as the argument.
547 * A cgroup can only be deleted if both its 'count' of using tasks
548 * is zero, and its list of 'children' cgroups is empty. Since all
549 * tasks in the system use _some_ cgroup, and since there is always at
550 * least one task in the system (init, pid == 1), therefore, top_cgroup
551 * always has either children cgroups and/or using tasks. So we don't
552 * need a special hack to ensure that top_cgroup cannot be deleted.
554 * The task_lock() exception
556 * The need for this exception arises from the action of
557 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
558 * another. It does so using cgroup_mutex, however there are
559 * several performance critical places that need to reference
560 * task->cgroup without the expense of grabbing a system global
561 * mutex. Therefore except as noted below, when dereferencing or, as
562 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
563 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
564 * the task_struct routinely used for such matters.
566 * P.S. One more locking exception. RCU is used to guard the
567 * update of a tasks cgroup pointer by cgroup_attach_task()
571 * cgroup_lock - lock out any changes to cgroup structures
574 void cgroup_lock(void)
576 mutex_lock(&cgroup_mutex
);
580 * cgroup_unlock - release lock on cgroup changes
582 * Undo the lock taken in a previous cgroup_lock() call.
584 void cgroup_unlock(void)
586 mutex_unlock(&cgroup_mutex
);
590 * A couple of forward declarations required, due to cyclic reference loop:
591 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
592 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
596 static int cgroup_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
);
597 static int cgroup_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
);
598 static int cgroup_populate_dir(struct cgroup
*cgrp
);
599 static struct inode_operations cgroup_dir_inode_operations
;
600 static struct file_operations proc_cgroupstats_operations
;
602 static struct backing_dev_info cgroup_backing_dev_info
= {
604 .capabilities
= BDI_CAP_NO_ACCT_AND_WRITEBACK
,
607 static int alloc_css_id(struct cgroup_subsys
*ss
,
608 struct cgroup
*parent
, struct cgroup
*child
);
610 static struct inode
*cgroup_new_inode(mode_t mode
, struct super_block
*sb
)
612 struct inode
*inode
= new_inode(sb
);
615 inode
->i_mode
= mode
;
616 inode
->i_uid
= current_fsuid();
617 inode
->i_gid
= current_fsgid();
618 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
619 inode
->i_mapping
->backing_dev_info
= &cgroup_backing_dev_info
;
625 * Call subsys's pre_destroy handler.
626 * This is called before css refcnt check.
628 static int cgroup_call_pre_destroy(struct cgroup
*cgrp
)
630 struct cgroup_subsys
*ss
;
633 for_each_subsys(cgrp
->root
, ss
)
634 if (ss
->pre_destroy
) {
635 ret
= ss
->pre_destroy(ss
, cgrp
);
642 static void free_cgroup_rcu(struct rcu_head
*obj
)
644 struct cgroup
*cgrp
= container_of(obj
, struct cgroup
, rcu_head
);
649 static void cgroup_diput(struct dentry
*dentry
, struct inode
*inode
)
651 /* is dentry a directory ? if so, kfree() associated cgroup */
652 if (S_ISDIR(inode
->i_mode
)) {
653 struct cgroup
*cgrp
= dentry
->d_fsdata
;
654 struct cgroup_subsys
*ss
;
655 BUG_ON(!(cgroup_is_removed(cgrp
)));
656 /* It's possible for external users to be holding css
657 * reference counts on a cgroup; css_put() needs to
658 * be able to access the cgroup after decrementing
659 * the reference count in order to know if it needs to
660 * queue the cgroup to be handled by the release
664 mutex_lock(&cgroup_mutex
);
666 * Release the subsystem state objects.
668 for_each_subsys(cgrp
->root
, ss
)
669 ss
->destroy(ss
, cgrp
);
671 cgrp
->root
->number_of_cgroups
--;
672 mutex_unlock(&cgroup_mutex
);
675 * Drop the active superblock reference that we took when we
678 deactivate_super(cgrp
->root
->sb
);
680 call_rcu(&cgrp
->rcu_head
, free_cgroup_rcu
);
685 static void remove_dir(struct dentry
*d
)
687 struct dentry
*parent
= dget(d
->d_parent
);
690 simple_rmdir(parent
->d_inode
, d
);
694 static void cgroup_clear_directory(struct dentry
*dentry
)
696 struct list_head
*node
;
698 BUG_ON(!mutex_is_locked(&dentry
->d_inode
->i_mutex
));
699 spin_lock(&dcache_lock
);
700 node
= dentry
->d_subdirs
.next
;
701 while (node
!= &dentry
->d_subdirs
) {
702 struct dentry
*d
= list_entry(node
, struct dentry
, d_u
.d_child
);
705 /* This should never be called on a cgroup
706 * directory with child cgroups */
707 BUG_ON(d
->d_inode
->i_mode
& S_IFDIR
);
709 spin_unlock(&dcache_lock
);
711 simple_unlink(dentry
->d_inode
, d
);
713 spin_lock(&dcache_lock
);
715 node
= dentry
->d_subdirs
.next
;
717 spin_unlock(&dcache_lock
);
721 * NOTE : the dentry must have been dget()'ed
723 static void cgroup_d_remove_dir(struct dentry
*dentry
)
725 cgroup_clear_directory(dentry
);
727 spin_lock(&dcache_lock
);
728 list_del_init(&dentry
->d_u
.d_child
);
729 spin_unlock(&dcache_lock
);
734 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
735 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
736 * reference to css->refcnt. In general, this refcnt is expected to goes down
739 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
741 DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq
);
743 static void cgroup_wakeup_rmdir_waiter(struct cgroup
*cgrp
)
745 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
)))
746 wake_up_all(&cgroup_rmdir_waitq
);
749 void cgroup_exclude_rmdir(struct cgroup_subsys_state
*css
)
754 void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state
*css
)
756 cgroup_wakeup_rmdir_waiter(css
->cgroup
);
761 static int rebind_subsystems(struct cgroupfs_root
*root
,
762 unsigned long final_bits
)
764 unsigned long added_bits
, removed_bits
;
765 struct cgroup
*cgrp
= &root
->top_cgroup
;
768 removed_bits
= root
->actual_subsys_bits
& ~final_bits
;
769 added_bits
= final_bits
& ~root
->actual_subsys_bits
;
770 /* Check that any added subsystems are currently free */
771 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
772 unsigned long bit
= 1UL << i
;
773 struct cgroup_subsys
*ss
= subsys
[i
];
774 if (!(bit
& added_bits
))
776 if (ss
->root
!= &rootnode
) {
777 /* Subsystem isn't free */
782 /* Currently we don't handle adding/removing subsystems when
783 * any child cgroups exist. This is theoretically supportable
784 * but involves complex error handling, so it's being left until
786 if (root
->number_of_cgroups
> 1)
789 /* Process each subsystem */
790 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
791 struct cgroup_subsys
*ss
= subsys
[i
];
792 unsigned long bit
= 1UL << i
;
793 if (bit
& added_bits
) {
794 /* We're binding this subsystem to this hierarchy */
795 BUG_ON(cgrp
->subsys
[i
]);
796 BUG_ON(!dummytop
->subsys
[i
]);
797 BUG_ON(dummytop
->subsys
[i
]->cgroup
!= dummytop
);
798 mutex_lock(&ss
->hierarchy_mutex
);
799 cgrp
->subsys
[i
] = dummytop
->subsys
[i
];
800 cgrp
->subsys
[i
]->cgroup
= cgrp
;
801 list_move(&ss
->sibling
, &root
->subsys_list
);
805 mutex_unlock(&ss
->hierarchy_mutex
);
806 } else if (bit
& removed_bits
) {
807 /* We're removing this subsystem */
808 BUG_ON(cgrp
->subsys
[i
] != dummytop
->subsys
[i
]);
809 BUG_ON(cgrp
->subsys
[i
]->cgroup
!= cgrp
);
810 mutex_lock(&ss
->hierarchy_mutex
);
812 ss
->bind(ss
, dummytop
);
813 dummytop
->subsys
[i
]->cgroup
= dummytop
;
814 cgrp
->subsys
[i
] = NULL
;
815 subsys
[i
]->root
= &rootnode
;
816 list_move(&ss
->sibling
, &rootnode
.subsys_list
);
817 mutex_unlock(&ss
->hierarchy_mutex
);
818 } else if (bit
& final_bits
) {
819 /* Subsystem state should already exist */
820 BUG_ON(!cgrp
->subsys
[i
]);
822 /* Subsystem state shouldn't exist */
823 BUG_ON(cgrp
->subsys
[i
]);
826 root
->subsys_bits
= root
->actual_subsys_bits
= final_bits
;
832 static int cgroup_show_options(struct seq_file
*seq
, struct vfsmount
*vfs
)
834 struct cgroupfs_root
*root
= vfs
->mnt_sb
->s_fs_info
;
835 struct cgroup_subsys
*ss
;
837 mutex_lock(&cgroup_mutex
);
838 for_each_subsys(root
, ss
)
839 seq_printf(seq
, ",%s", ss
->name
);
840 if (test_bit(ROOT_NOPREFIX
, &root
->flags
))
841 seq_puts(seq
, ",noprefix");
842 if (strlen(root
->release_agent_path
))
843 seq_printf(seq
, ",release_agent=%s", root
->release_agent_path
);
844 mutex_unlock(&cgroup_mutex
);
848 struct cgroup_sb_opts
{
849 unsigned long subsys_bits
;
854 /* Convert a hierarchy specifier into a bitmask of subsystems and
856 static int parse_cgroupfs_options(char *data
,
857 struct cgroup_sb_opts
*opts
)
859 char *token
, *o
= data
?: "all";
860 unsigned long mask
= (unsigned long)-1;
862 #ifdef CONFIG_CPUSETS
863 mask
= ~(1UL << cpuset_subsys_id
);
866 opts
->subsys_bits
= 0;
868 opts
->release_agent
= NULL
;
870 while ((token
= strsep(&o
, ",")) != NULL
) {
873 if (!strcmp(token
, "all")) {
874 /* Add all non-disabled subsystems */
876 opts
->subsys_bits
= 0;
877 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
878 struct cgroup_subsys
*ss
= subsys
[i
];
880 opts
->subsys_bits
|= 1ul << i
;
882 } else if (!strcmp(token
, "noprefix")) {
883 set_bit(ROOT_NOPREFIX
, &opts
->flags
);
884 } else if (!strncmp(token
, "release_agent=", 14)) {
885 /* Specifying two release agents is forbidden */
886 if (opts
->release_agent
)
888 opts
->release_agent
= kzalloc(PATH_MAX
, GFP_KERNEL
);
889 if (!opts
->release_agent
)
891 strncpy(opts
->release_agent
, token
+ 14, PATH_MAX
- 1);
892 opts
->release_agent
[PATH_MAX
- 1] = 0;
894 struct cgroup_subsys
*ss
;
896 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
898 if (!strcmp(token
, ss
->name
)) {
900 set_bit(i
, &opts
->subsys_bits
);
904 if (i
== CGROUP_SUBSYS_COUNT
)
910 * Option noprefix was introduced just for backward compatibility
911 * with the old cpuset, so we allow noprefix only if mounting just
912 * the cpuset subsystem.
914 if (test_bit(ROOT_NOPREFIX
, &opts
->flags
) &&
915 (opts
->subsys_bits
& mask
))
918 /* We can't have an empty hierarchy */
919 if (!opts
->subsys_bits
)
925 static int cgroup_remount(struct super_block
*sb
, int *flags
, char *data
)
928 struct cgroupfs_root
*root
= sb
->s_fs_info
;
929 struct cgroup
*cgrp
= &root
->top_cgroup
;
930 struct cgroup_sb_opts opts
;
933 mutex_lock(&cgrp
->dentry
->d_inode
->i_mutex
);
934 mutex_lock(&cgroup_mutex
);
936 /* See what subsystems are wanted */
937 ret
= parse_cgroupfs_options(data
, &opts
);
941 /* Don't allow flags to change at remount */
942 if (opts
.flags
!= root
->flags
) {
947 ret
= rebind_subsystems(root
, opts
.subsys_bits
);
951 /* (re)populate subsystem files */
952 cgroup_populate_dir(cgrp
);
954 if (opts
.release_agent
)
955 strcpy(root
->release_agent_path
, opts
.release_agent
);
957 kfree(opts
.release_agent
);
958 mutex_unlock(&cgroup_mutex
);
959 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
964 static struct super_operations cgroup_ops
= {
965 .statfs
= simple_statfs
,
966 .drop_inode
= generic_delete_inode
,
967 .show_options
= cgroup_show_options
,
968 .remount_fs
= cgroup_remount
,
971 static void init_cgroup_housekeeping(struct cgroup
*cgrp
)
973 INIT_LIST_HEAD(&cgrp
->sibling
);
974 INIT_LIST_HEAD(&cgrp
->children
);
975 INIT_LIST_HEAD(&cgrp
->css_sets
);
976 INIT_LIST_HEAD(&cgrp
->release_list
);
977 INIT_LIST_HEAD(&cgrp
->pids_list
);
978 init_rwsem(&cgrp
->pids_mutex
);
980 static void init_cgroup_root(struct cgroupfs_root
*root
)
982 struct cgroup
*cgrp
= &root
->top_cgroup
;
983 INIT_LIST_HEAD(&root
->subsys_list
);
984 INIT_LIST_HEAD(&root
->root_list
);
985 root
->number_of_cgroups
= 1;
987 cgrp
->top_cgroup
= cgrp
;
988 init_cgroup_housekeeping(cgrp
);
991 static int cgroup_test_super(struct super_block
*sb
, void *data
)
993 struct cgroupfs_root
*new = data
;
994 struct cgroupfs_root
*root
= sb
->s_fs_info
;
996 /* First check subsystems */
997 if (new->subsys_bits
!= root
->subsys_bits
)
1000 /* Next check flags */
1001 if (new->flags
!= root
->flags
)
1007 static int cgroup_set_super(struct super_block
*sb
, void *data
)
1010 struct cgroupfs_root
*root
= data
;
1012 ret
= set_anon_super(sb
, NULL
);
1016 sb
->s_fs_info
= root
;
1019 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
1020 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
1021 sb
->s_magic
= CGROUP_SUPER_MAGIC
;
1022 sb
->s_op
= &cgroup_ops
;
1027 static int cgroup_get_rootdir(struct super_block
*sb
)
1029 struct inode
*inode
=
1030 cgroup_new_inode(S_IFDIR
| S_IRUGO
| S_IXUGO
| S_IWUSR
, sb
);
1031 struct dentry
*dentry
;
1036 inode
->i_fop
= &simple_dir_operations
;
1037 inode
->i_op
= &cgroup_dir_inode_operations
;
1038 /* directories start off with i_nlink == 2 (for "." entry) */
1040 dentry
= d_alloc_root(inode
);
1045 sb
->s_root
= dentry
;
1049 static int cgroup_get_sb(struct file_system_type
*fs_type
,
1050 int flags
, const char *unused_dev_name
,
1051 void *data
, struct vfsmount
*mnt
)
1053 struct cgroup_sb_opts opts
;
1055 struct super_block
*sb
;
1056 struct cgroupfs_root
*root
;
1057 struct list_head tmp_cg_links
;
1059 /* First find the desired set of subsystems */
1060 ret
= parse_cgroupfs_options(data
, &opts
);
1062 kfree(opts
.release_agent
);
1066 root
= kzalloc(sizeof(*root
), GFP_KERNEL
);
1068 kfree(opts
.release_agent
);
1072 init_cgroup_root(root
);
1073 root
->subsys_bits
= opts
.subsys_bits
;
1074 root
->flags
= opts
.flags
;
1075 if (opts
.release_agent
) {
1076 strcpy(root
->release_agent_path
, opts
.release_agent
);
1077 kfree(opts
.release_agent
);
1080 sb
= sget(fs_type
, cgroup_test_super
, cgroup_set_super
, root
);
1087 if (sb
->s_fs_info
!= root
) {
1088 /* Reusing an existing superblock */
1089 BUG_ON(sb
->s_root
== NULL
);
1093 /* New superblock */
1094 struct cgroup
*root_cgrp
= &root
->top_cgroup
;
1095 struct inode
*inode
;
1098 BUG_ON(sb
->s_root
!= NULL
);
1100 ret
= cgroup_get_rootdir(sb
);
1102 goto drop_new_super
;
1103 inode
= sb
->s_root
->d_inode
;
1105 mutex_lock(&inode
->i_mutex
);
1106 mutex_lock(&cgroup_mutex
);
1109 * We're accessing css_set_count without locking
1110 * css_set_lock here, but that's OK - it can only be
1111 * increased by someone holding cgroup_lock, and
1112 * that's us. The worst that can happen is that we
1113 * have some link structures left over
1115 ret
= allocate_cg_links(css_set_count
, &tmp_cg_links
);
1117 mutex_unlock(&cgroup_mutex
);
1118 mutex_unlock(&inode
->i_mutex
);
1119 goto drop_new_super
;
1122 ret
= rebind_subsystems(root
, root
->subsys_bits
);
1123 if (ret
== -EBUSY
) {
1124 mutex_unlock(&cgroup_mutex
);
1125 mutex_unlock(&inode
->i_mutex
);
1129 /* EBUSY should be the only error here */
1132 list_add(&root
->root_list
, &roots
);
1135 sb
->s_root
->d_fsdata
= root_cgrp
;
1136 root
->top_cgroup
.dentry
= sb
->s_root
;
1138 /* Link the top cgroup in this hierarchy into all
1139 * the css_set objects */
1140 write_lock(&css_set_lock
);
1141 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++) {
1142 struct hlist_head
*hhead
= &css_set_table
[i
];
1143 struct hlist_node
*node
;
1146 hlist_for_each_entry(cg
, node
, hhead
, hlist
)
1147 link_css_set(&tmp_cg_links
, cg
, root_cgrp
);
1149 write_unlock(&css_set_lock
);
1151 free_cg_links(&tmp_cg_links
);
1153 BUG_ON(!list_empty(&root_cgrp
->sibling
));
1154 BUG_ON(!list_empty(&root_cgrp
->children
));
1155 BUG_ON(root
->number_of_cgroups
!= 1);
1157 cgroup_populate_dir(root_cgrp
);
1158 mutex_unlock(&inode
->i_mutex
);
1159 mutex_unlock(&cgroup_mutex
);
1162 simple_set_mnt(mnt
, sb
);
1166 free_cg_links(&tmp_cg_links
);
1168 deactivate_locked_super(sb
);
1172 static void cgroup_kill_sb(struct super_block
*sb
) {
1173 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1174 struct cgroup
*cgrp
= &root
->top_cgroup
;
1176 struct cg_cgroup_link
*link
;
1177 struct cg_cgroup_link
*saved_link
;
1181 BUG_ON(root
->number_of_cgroups
!= 1);
1182 BUG_ON(!list_empty(&cgrp
->children
));
1183 BUG_ON(!list_empty(&cgrp
->sibling
));
1185 mutex_lock(&cgroup_mutex
);
1187 /* Rebind all subsystems back to the default hierarchy */
1188 ret
= rebind_subsystems(root
, 0);
1189 /* Shouldn't be able to fail ... */
1193 * Release all the links from css_sets to this hierarchy's
1196 write_lock(&css_set_lock
);
1198 list_for_each_entry_safe(link
, saved_link
, &cgrp
->css_sets
,
1200 list_del(&link
->cg_link_list
);
1201 list_del(&link
->cgrp_link_list
);
1204 write_unlock(&css_set_lock
);
1206 if (!list_empty(&root
->root_list
)) {
1207 list_del(&root
->root_list
);
1211 mutex_unlock(&cgroup_mutex
);
1213 kill_litter_super(sb
);
1217 static struct file_system_type cgroup_fs_type
= {
1219 .get_sb
= cgroup_get_sb
,
1220 .kill_sb
= cgroup_kill_sb
,
1223 static inline struct cgroup
*__d_cgrp(struct dentry
*dentry
)
1225 return dentry
->d_fsdata
;
1228 static inline struct cftype
*__d_cft(struct dentry
*dentry
)
1230 return dentry
->d_fsdata
;
1234 * cgroup_path - generate the path of a cgroup
1235 * @cgrp: the cgroup in question
1236 * @buf: the buffer to write the path into
1237 * @buflen: the length of the buffer
1239 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1240 * reference. Writes path of cgroup into buf. Returns 0 on success,
1243 int cgroup_path(const struct cgroup
*cgrp
, char *buf
, int buflen
)
1246 struct dentry
*dentry
= rcu_dereference(cgrp
->dentry
);
1248 if (!dentry
|| cgrp
== dummytop
) {
1250 * Inactive subsystems have no dentry for their root
1257 start
= buf
+ buflen
;
1261 int len
= dentry
->d_name
.len
;
1262 if ((start
-= len
) < buf
)
1263 return -ENAMETOOLONG
;
1264 memcpy(start
, cgrp
->dentry
->d_name
.name
, len
);
1265 cgrp
= cgrp
->parent
;
1268 dentry
= rcu_dereference(cgrp
->dentry
);
1272 return -ENAMETOOLONG
;
1275 memmove(buf
, start
, buf
+ buflen
- start
);
1280 * Return the first subsystem attached to a cgroup's hierarchy, and
1284 static void get_first_subsys(const struct cgroup
*cgrp
,
1285 struct cgroup_subsys_state
**css
, int *subsys_id
)
1287 const struct cgroupfs_root
*root
= cgrp
->root
;
1288 const struct cgroup_subsys
*test_ss
;
1289 BUG_ON(list_empty(&root
->subsys_list
));
1290 test_ss
= list_entry(root
->subsys_list
.next
,
1291 struct cgroup_subsys
, sibling
);
1293 *css
= cgrp
->subsys
[test_ss
->subsys_id
];
1297 *subsys_id
= test_ss
->subsys_id
;
1301 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1302 * @cgrp: the cgroup the task is attaching to
1303 * @tsk: the task to be attached
1305 * Call holding cgroup_mutex. May take task_lock of
1306 * the task 'tsk' during call.
1308 int cgroup_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
1311 struct cgroup_subsys
*ss
;
1312 struct cgroup
*oldcgrp
;
1314 struct css_set
*newcg
;
1315 struct cgroupfs_root
*root
= cgrp
->root
;
1318 get_first_subsys(cgrp
, NULL
, &subsys_id
);
1320 /* Nothing to do if the task is already in that cgroup */
1321 oldcgrp
= task_cgroup(tsk
, subsys_id
);
1322 if (cgrp
== oldcgrp
)
1325 for_each_subsys(root
, ss
) {
1326 if (ss
->can_attach
) {
1327 retval
= ss
->can_attach(ss
, cgrp
, tsk
);
1338 * Locate or allocate a new css_set for this task,
1339 * based on its final set of cgroups
1341 newcg
= find_css_set(cg
, cgrp
);
1347 if (tsk
->flags
& PF_EXITING
) {
1352 rcu_assign_pointer(tsk
->cgroups
, newcg
);
1355 /* Update the css_set linked lists if we're using them */
1356 write_lock(&css_set_lock
);
1357 if (!list_empty(&tsk
->cg_list
)) {
1358 list_del(&tsk
->cg_list
);
1359 list_add(&tsk
->cg_list
, &newcg
->tasks
);
1361 write_unlock(&css_set_lock
);
1363 for_each_subsys(root
, ss
) {
1365 ss
->attach(ss
, cgrp
, oldcgrp
, tsk
);
1367 set_bit(CGRP_RELEASABLE
, &oldcgrp
->flags
);
1372 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1373 * is no longer empty.
1375 cgroup_wakeup_rmdir_waiter(cgrp
);
1380 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1381 * held. May take task_lock of task
1383 static int attach_task_by_pid(struct cgroup
*cgrp
, u64 pid
)
1385 struct task_struct
*tsk
;
1386 const struct cred
*cred
= current_cred(), *tcred
;
1391 tsk
= find_task_by_vpid(pid
);
1392 if (!tsk
|| tsk
->flags
& PF_EXITING
) {
1397 tcred
= __task_cred(tsk
);
1399 cred
->euid
!= tcred
->uid
&&
1400 cred
->euid
!= tcred
->suid
) {
1404 get_task_struct(tsk
);
1408 get_task_struct(tsk
);
1411 ret
= cgroup_attach_task(cgrp
, tsk
);
1412 put_task_struct(tsk
);
1416 static int cgroup_tasks_write(struct cgroup
*cgrp
, struct cftype
*cft
, u64 pid
)
1419 if (!cgroup_lock_live_group(cgrp
))
1421 ret
= attach_task_by_pid(cgrp
, pid
);
1426 /* The various types of files and directories in a cgroup file system */
1427 enum cgroup_filetype
{
1431 FILE_NOTIFY_ON_RELEASE
,
1436 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1437 * @cgrp: the cgroup to be checked for liveness
1439 * On success, returns true; the lock should be later released with
1440 * cgroup_unlock(). On failure returns false with no lock held.
1442 bool cgroup_lock_live_group(struct cgroup
*cgrp
)
1444 mutex_lock(&cgroup_mutex
);
1445 if (cgroup_is_removed(cgrp
)) {
1446 mutex_unlock(&cgroup_mutex
);
1452 static int cgroup_release_agent_write(struct cgroup
*cgrp
, struct cftype
*cft
,
1455 BUILD_BUG_ON(sizeof(cgrp
->root
->release_agent_path
) < PATH_MAX
);
1456 if (!cgroup_lock_live_group(cgrp
))
1458 strcpy(cgrp
->root
->release_agent_path
, buffer
);
1463 static int cgroup_release_agent_show(struct cgroup
*cgrp
, struct cftype
*cft
,
1464 struct seq_file
*seq
)
1466 if (!cgroup_lock_live_group(cgrp
))
1468 seq_puts(seq
, cgrp
->root
->release_agent_path
);
1469 seq_putc(seq
, '\n');
1474 /* A buffer size big enough for numbers or short strings */
1475 #define CGROUP_LOCAL_BUFFER_SIZE 64
1477 static ssize_t
cgroup_write_X64(struct cgroup
*cgrp
, struct cftype
*cft
,
1479 const char __user
*userbuf
,
1480 size_t nbytes
, loff_t
*unused_ppos
)
1482 char buffer
[CGROUP_LOCAL_BUFFER_SIZE
];
1488 if (nbytes
>= sizeof(buffer
))
1490 if (copy_from_user(buffer
, userbuf
, nbytes
))
1493 buffer
[nbytes
] = 0; /* nul-terminate */
1495 if (cft
->write_u64
) {
1496 u64 val
= simple_strtoull(buffer
, &end
, 0);
1499 retval
= cft
->write_u64(cgrp
, cft
, val
);
1501 s64 val
= simple_strtoll(buffer
, &end
, 0);
1504 retval
= cft
->write_s64(cgrp
, cft
, val
);
1511 static ssize_t
cgroup_write_string(struct cgroup
*cgrp
, struct cftype
*cft
,
1513 const char __user
*userbuf
,
1514 size_t nbytes
, loff_t
*unused_ppos
)
1516 char local_buffer
[CGROUP_LOCAL_BUFFER_SIZE
];
1518 size_t max_bytes
= cft
->max_write_len
;
1519 char *buffer
= local_buffer
;
1522 max_bytes
= sizeof(local_buffer
) - 1;
1523 if (nbytes
>= max_bytes
)
1525 /* Allocate a dynamic buffer if we need one */
1526 if (nbytes
>= sizeof(local_buffer
)) {
1527 buffer
= kmalloc(nbytes
+ 1, GFP_KERNEL
);
1531 if (nbytes
&& copy_from_user(buffer
, userbuf
, nbytes
)) {
1536 buffer
[nbytes
] = 0; /* nul-terminate */
1538 retval
= cft
->write_string(cgrp
, cft
, buffer
);
1542 if (buffer
!= local_buffer
)
1547 static ssize_t
cgroup_file_write(struct file
*file
, const char __user
*buf
,
1548 size_t nbytes
, loff_t
*ppos
)
1550 struct cftype
*cft
= __d_cft(file
->f_dentry
);
1551 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
1553 if (cgroup_is_removed(cgrp
))
1556 return cft
->write(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1557 if (cft
->write_u64
|| cft
->write_s64
)
1558 return cgroup_write_X64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1559 if (cft
->write_string
)
1560 return cgroup_write_string(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1562 int ret
= cft
->trigger(cgrp
, (unsigned int)cft
->private);
1563 return ret
? ret
: nbytes
;
1568 static ssize_t
cgroup_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
,
1570 char __user
*buf
, size_t nbytes
,
1573 char tmp
[CGROUP_LOCAL_BUFFER_SIZE
];
1574 u64 val
= cft
->read_u64(cgrp
, cft
);
1575 int len
= sprintf(tmp
, "%llu\n", (unsigned long long) val
);
1577 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
1580 static ssize_t
cgroup_read_s64(struct cgroup
*cgrp
, struct cftype
*cft
,
1582 char __user
*buf
, size_t nbytes
,
1585 char tmp
[CGROUP_LOCAL_BUFFER_SIZE
];
1586 s64 val
= cft
->read_s64(cgrp
, cft
);
1587 int len
= sprintf(tmp
, "%lld\n", (long long) val
);
1589 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
1592 static ssize_t
cgroup_file_read(struct file
*file
, char __user
*buf
,
1593 size_t nbytes
, loff_t
*ppos
)
1595 struct cftype
*cft
= __d_cft(file
->f_dentry
);
1596 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
1598 if (cgroup_is_removed(cgrp
))
1602 return cft
->read(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1604 return cgroup_read_u64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1606 return cgroup_read_s64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1611 * seqfile ops/methods for returning structured data. Currently just
1612 * supports string->u64 maps, but can be extended in future.
1615 struct cgroup_seqfile_state
{
1617 struct cgroup
*cgroup
;
1620 static int cgroup_map_add(struct cgroup_map_cb
*cb
, const char *key
, u64 value
)
1622 struct seq_file
*sf
= cb
->state
;
1623 return seq_printf(sf
, "%s %llu\n", key
, (unsigned long long)value
);
1626 static int cgroup_seqfile_show(struct seq_file
*m
, void *arg
)
1628 struct cgroup_seqfile_state
*state
= m
->private;
1629 struct cftype
*cft
= state
->cft
;
1630 if (cft
->read_map
) {
1631 struct cgroup_map_cb cb
= {
1632 .fill
= cgroup_map_add
,
1635 return cft
->read_map(state
->cgroup
, cft
, &cb
);
1637 return cft
->read_seq_string(state
->cgroup
, cft
, m
);
1640 static int cgroup_seqfile_release(struct inode
*inode
, struct file
*file
)
1642 struct seq_file
*seq
= file
->private_data
;
1643 kfree(seq
->private);
1644 return single_release(inode
, file
);
1647 static struct file_operations cgroup_seqfile_operations
= {
1649 .write
= cgroup_file_write
,
1650 .llseek
= seq_lseek
,
1651 .release
= cgroup_seqfile_release
,
1654 static int cgroup_file_open(struct inode
*inode
, struct file
*file
)
1659 err
= generic_file_open(inode
, file
);
1662 cft
= __d_cft(file
->f_dentry
);
1664 if (cft
->read_map
|| cft
->read_seq_string
) {
1665 struct cgroup_seqfile_state
*state
=
1666 kzalloc(sizeof(*state
), GFP_USER
);
1670 state
->cgroup
= __d_cgrp(file
->f_dentry
->d_parent
);
1671 file
->f_op
= &cgroup_seqfile_operations
;
1672 err
= single_open(file
, cgroup_seqfile_show
, state
);
1675 } else if (cft
->open
)
1676 err
= cft
->open(inode
, file
);
1683 static int cgroup_file_release(struct inode
*inode
, struct file
*file
)
1685 struct cftype
*cft
= __d_cft(file
->f_dentry
);
1687 return cft
->release(inode
, file
);
1692 * cgroup_rename - Only allow simple rename of directories in place.
1694 static int cgroup_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
1695 struct inode
*new_dir
, struct dentry
*new_dentry
)
1697 if (!S_ISDIR(old_dentry
->d_inode
->i_mode
))
1699 if (new_dentry
->d_inode
)
1701 if (old_dir
!= new_dir
)
1703 return simple_rename(old_dir
, old_dentry
, new_dir
, new_dentry
);
1706 static struct file_operations cgroup_file_operations
= {
1707 .read
= cgroup_file_read
,
1708 .write
= cgroup_file_write
,
1709 .llseek
= generic_file_llseek
,
1710 .open
= cgroup_file_open
,
1711 .release
= cgroup_file_release
,
1714 static struct inode_operations cgroup_dir_inode_operations
= {
1715 .lookup
= simple_lookup
,
1716 .mkdir
= cgroup_mkdir
,
1717 .rmdir
= cgroup_rmdir
,
1718 .rename
= cgroup_rename
,
1721 static int cgroup_create_file(struct dentry
*dentry
, mode_t mode
,
1722 struct super_block
*sb
)
1724 static const struct dentry_operations cgroup_dops
= {
1725 .d_iput
= cgroup_diput
,
1728 struct inode
*inode
;
1732 if (dentry
->d_inode
)
1735 inode
= cgroup_new_inode(mode
, sb
);
1739 if (S_ISDIR(mode
)) {
1740 inode
->i_op
= &cgroup_dir_inode_operations
;
1741 inode
->i_fop
= &simple_dir_operations
;
1743 /* start off with i_nlink == 2 (for "." entry) */
1746 /* start with the directory inode held, so that we can
1747 * populate it without racing with another mkdir */
1748 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_CHILD
);
1749 } else if (S_ISREG(mode
)) {
1751 inode
->i_fop
= &cgroup_file_operations
;
1753 dentry
->d_op
= &cgroup_dops
;
1754 d_instantiate(dentry
, inode
);
1755 dget(dentry
); /* Extra count - pin the dentry in core */
1760 * cgroup_create_dir - create a directory for an object.
1761 * @cgrp: the cgroup we create the directory for. It must have a valid
1762 * ->parent field. And we are going to fill its ->dentry field.
1763 * @dentry: dentry of the new cgroup
1764 * @mode: mode to set on new directory.
1766 static int cgroup_create_dir(struct cgroup
*cgrp
, struct dentry
*dentry
,
1769 struct dentry
*parent
;
1772 parent
= cgrp
->parent
->dentry
;
1773 error
= cgroup_create_file(dentry
, S_IFDIR
| mode
, cgrp
->root
->sb
);
1775 dentry
->d_fsdata
= cgrp
;
1776 inc_nlink(parent
->d_inode
);
1777 rcu_assign_pointer(cgrp
->dentry
, dentry
);
1786 * cgroup_file_mode - deduce file mode of a control file
1787 * @cft: the control file in question
1789 * returns cft->mode if ->mode is not 0
1790 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
1791 * returns S_IRUGO if it has only a read handler
1792 * returns S_IWUSR if it has only a write hander
1794 static mode_t
cgroup_file_mode(const struct cftype
*cft
)
1801 if (cft
->read
|| cft
->read_u64
|| cft
->read_s64
||
1802 cft
->read_map
|| cft
->read_seq_string
)
1805 if (cft
->write
|| cft
->write_u64
|| cft
->write_s64
||
1806 cft
->write_string
|| cft
->trigger
)
1812 int cgroup_add_file(struct cgroup
*cgrp
,
1813 struct cgroup_subsys
*subsys
,
1814 const struct cftype
*cft
)
1816 struct dentry
*dir
= cgrp
->dentry
;
1817 struct dentry
*dentry
;
1821 char name
[MAX_CGROUP_TYPE_NAMELEN
+ MAX_CFTYPE_NAME
+ 2] = { 0 };
1822 if (subsys
&& !test_bit(ROOT_NOPREFIX
, &cgrp
->root
->flags
)) {
1823 strcpy(name
, subsys
->name
);
1826 strcat(name
, cft
->name
);
1827 BUG_ON(!mutex_is_locked(&dir
->d_inode
->i_mutex
));
1828 dentry
= lookup_one_len(name
, dir
, strlen(name
));
1829 if (!IS_ERR(dentry
)) {
1830 mode
= cgroup_file_mode(cft
);
1831 error
= cgroup_create_file(dentry
, mode
| S_IFREG
,
1834 dentry
->d_fsdata
= (void *)cft
;
1837 error
= PTR_ERR(dentry
);
1841 int cgroup_add_files(struct cgroup
*cgrp
,
1842 struct cgroup_subsys
*subsys
,
1843 const struct cftype cft
[],
1847 for (i
= 0; i
< count
; i
++) {
1848 err
= cgroup_add_file(cgrp
, subsys
, &cft
[i
]);
1856 * cgroup_task_count - count the number of tasks in a cgroup.
1857 * @cgrp: the cgroup in question
1859 * Return the number of tasks in the cgroup.
1861 int cgroup_task_count(const struct cgroup
*cgrp
)
1864 struct cg_cgroup_link
*link
;
1866 read_lock(&css_set_lock
);
1867 list_for_each_entry(link
, &cgrp
->css_sets
, cgrp_link_list
) {
1868 count
+= atomic_read(&link
->cg
->refcount
);
1870 read_unlock(&css_set_lock
);
1875 * Advance a list_head iterator. The iterator should be positioned at
1876 * the start of a css_set
1878 static void cgroup_advance_iter(struct cgroup
*cgrp
,
1879 struct cgroup_iter
*it
)
1881 struct list_head
*l
= it
->cg_link
;
1882 struct cg_cgroup_link
*link
;
1885 /* Advance to the next non-empty css_set */
1888 if (l
== &cgrp
->css_sets
) {
1892 link
= list_entry(l
, struct cg_cgroup_link
, cgrp_link_list
);
1894 } while (list_empty(&cg
->tasks
));
1896 it
->task
= cg
->tasks
.next
;
1900 * To reduce the fork() overhead for systems that are not actually
1901 * using their cgroups capability, we don't maintain the lists running
1902 * through each css_set to its tasks until we see the list actually
1903 * used - in other words after the first call to cgroup_iter_start().
1905 * The tasklist_lock is not held here, as do_each_thread() and
1906 * while_each_thread() are protected by RCU.
1908 static void cgroup_enable_task_cg_lists(void)
1910 struct task_struct
*p
, *g
;
1911 write_lock(&css_set_lock
);
1912 use_task_css_set_links
= 1;
1913 do_each_thread(g
, p
) {
1916 * We should check if the process is exiting, otherwise
1917 * it will race with cgroup_exit() in that the list
1918 * entry won't be deleted though the process has exited.
1920 if (!(p
->flags
& PF_EXITING
) && list_empty(&p
->cg_list
))
1921 list_add(&p
->cg_list
, &p
->cgroups
->tasks
);
1923 } while_each_thread(g
, p
);
1924 write_unlock(&css_set_lock
);
1927 void cgroup_iter_start(struct cgroup
*cgrp
, struct cgroup_iter
*it
)
1930 * The first time anyone tries to iterate across a cgroup,
1931 * we need to enable the list linking each css_set to its
1932 * tasks, and fix up all existing tasks.
1934 if (!use_task_css_set_links
)
1935 cgroup_enable_task_cg_lists();
1937 read_lock(&css_set_lock
);
1938 it
->cg_link
= &cgrp
->css_sets
;
1939 cgroup_advance_iter(cgrp
, it
);
1942 struct task_struct
*cgroup_iter_next(struct cgroup
*cgrp
,
1943 struct cgroup_iter
*it
)
1945 struct task_struct
*res
;
1946 struct list_head
*l
= it
->task
;
1947 struct cg_cgroup_link
*link
;
1949 /* If the iterator cg is NULL, we have no tasks */
1952 res
= list_entry(l
, struct task_struct
, cg_list
);
1953 /* Advance iterator to find next entry */
1955 link
= list_entry(it
->cg_link
, struct cg_cgroup_link
, cgrp_link_list
);
1956 if (l
== &link
->cg
->tasks
) {
1957 /* We reached the end of this task list - move on to
1958 * the next cg_cgroup_link */
1959 cgroup_advance_iter(cgrp
, it
);
1966 void cgroup_iter_end(struct cgroup
*cgrp
, struct cgroup_iter
*it
)
1968 read_unlock(&css_set_lock
);
1971 static inline int started_after_time(struct task_struct
*t1
,
1972 struct timespec
*time
,
1973 struct task_struct
*t2
)
1975 int start_diff
= timespec_compare(&t1
->start_time
, time
);
1976 if (start_diff
> 0) {
1978 } else if (start_diff
< 0) {
1982 * Arbitrarily, if two processes started at the same
1983 * time, we'll say that the lower pointer value
1984 * started first. Note that t2 may have exited by now
1985 * so this may not be a valid pointer any longer, but
1986 * that's fine - it still serves to distinguish
1987 * between two tasks started (effectively) simultaneously.
1994 * This function is a callback from heap_insert() and is used to order
1996 * In this case we order the heap in descending task start time.
1998 static inline int started_after(void *p1
, void *p2
)
2000 struct task_struct
*t1
= p1
;
2001 struct task_struct
*t2
= p2
;
2002 return started_after_time(t1
, &t2
->start_time
, t2
);
2006 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2007 * @scan: struct cgroup_scanner containing arguments for the scan
2009 * Arguments include pointers to callback functions test_task() and
2011 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2012 * and if it returns true, call process_task() for it also.
2013 * The test_task pointer may be NULL, meaning always true (select all tasks).
2014 * Effectively duplicates cgroup_iter_{start,next,end}()
2015 * but does not lock css_set_lock for the call to process_task().
2016 * The struct cgroup_scanner may be embedded in any structure of the caller's
2018 * It is guaranteed that process_task() will act on every task that
2019 * is a member of the cgroup for the duration of this call. This
2020 * function may or may not call process_task() for tasks that exit
2021 * or move to a different cgroup during the call, or are forked or
2022 * move into the cgroup during the call.
2024 * Note that test_task() may be called with locks held, and may in some
2025 * situations be called multiple times for the same task, so it should
2027 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2028 * pre-allocated and will be used for heap operations (and its "gt" member will
2029 * be overwritten), else a temporary heap will be used (allocation of which
2030 * may cause this function to fail).
2032 int cgroup_scan_tasks(struct cgroup_scanner
*scan
)
2035 struct cgroup_iter it
;
2036 struct task_struct
*p
, *dropped
;
2037 /* Never dereference latest_task, since it's not refcounted */
2038 struct task_struct
*latest_task
= NULL
;
2039 struct ptr_heap tmp_heap
;
2040 struct ptr_heap
*heap
;
2041 struct timespec latest_time
= { 0, 0 };
2044 /* The caller supplied our heap and pre-allocated its memory */
2046 heap
->gt
= &started_after
;
2048 /* We need to allocate our own heap memory */
2050 retval
= heap_init(heap
, PAGE_SIZE
, GFP_KERNEL
, &started_after
);
2052 /* cannot allocate the heap */
2058 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2059 * to determine which are of interest, and using the scanner's
2060 * "process_task" callback to process any of them that need an update.
2061 * Since we don't want to hold any locks during the task updates,
2062 * gather tasks to be processed in a heap structure.
2063 * The heap is sorted by descending task start time.
2064 * If the statically-sized heap fills up, we overflow tasks that
2065 * started later, and in future iterations only consider tasks that
2066 * started after the latest task in the previous pass. This
2067 * guarantees forward progress and that we don't miss any tasks.
2070 cgroup_iter_start(scan
->cg
, &it
);
2071 while ((p
= cgroup_iter_next(scan
->cg
, &it
))) {
2073 * Only affect tasks that qualify per the caller's callback,
2074 * if he provided one
2076 if (scan
->test_task
&& !scan
->test_task(p
, scan
))
2079 * Only process tasks that started after the last task
2082 if (!started_after_time(p
, &latest_time
, latest_task
))
2084 dropped
= heap_insert(heap
, p
);
2085 if (dropped
== NULL
) {
2087 * The new task was inserted; the heap wasn't
2091 } else if (dropped
!= p
) {
2093 * The new task was inserted, and pushed out a
2097 put_task_struct(dropped
);
2100 * Else the new task was newer than anything already in
2101 * the heap and wasn't inserted
2104 cgroup_iter_end(scan
->cg
, &it
);
2107 for (i
= 0; i
< heap
->size
; i
++) {
2108 struct task_struct
*q
= heap
->ptrs
[i
];
2110 latest_time
= q
->start_time
;
2113 /* Process the task per the caller's callback */
2114 scan
->process_task(q
, scan
);
2118 * If we had to process any tasks at all, scan again
2119 * in case some of them were in the middle of forking
2120 * children that didn't get processed.
2121 * Not the most efficient way to do it, but it avoids
2122 * having to take callback_mutex in the fork path
2126 if (heap
== &tmp_heap
)
2127 heap_free(&tmp_heap
);
2132 * Stuff for reading the 'tasks' file.
2134 * Reading this file can return large amounts of data if a cgroup has
2135 * *lots* of attached tasks. So it may need several calls to read(),
2136 * but we cannot guarantee that the information we produce is correct
2137 * unless we produce it entirely atomically.
2142 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
2143 * 'cgrp'. Return actual number of pids loaded. No need to
2144 * task_lock(p) when reading out p->cgroup, since we're in an RCU
2145 * read section, so the css_set can't go away, and is
2146 * immutable after creation.
2148 static int pid_array_load(pid_t
*pidarray
, int npids
, struct cgroup
*cgrp
)
2151 struct cgroup_iter it
;
2152 struct task_struct
*tsk
;
2153 cgroup_iter_start(cgrp
, &it
);
2154 while ((tsk
= cgroup_iter_next(cgrp
, &it
))) {
2155 if (unlikely(n
== npids
))
2157 pid
= task_pid_vnr(tsk
);
2159 pidarray
[n
++] = pid
;
2161 cgroup_iter_end(cgrp
, &it
);
2166 * cgroupstats_build - build and fill cgroupstats
2167 * @stats: cgroupstats to fill information into
2168 * @dentry: A dentry entry belonging to the cgroup for which stats have
2171 * Build and fill cgroupstats so that taskstats can export it to user
2174 int cgroupstats_build(struct cgroupstats
*stats
, struct dentry
*dentry
)
2177 struct cgroup
*cgrp
;
2178 struct cgroup_iter it
;
2179 struct task_struct
*tsk
;
2182 * Validate dentry by checking the superblock operations,
2183 * and make sure it's a directory.
2185 if (dentry
->d_sb
->s_op
!= &cgroup_ops
||
2186 !S_ISDIR(dentry
->d_inode
->i_mode
))
2190 cgrp
= dentry
->d_fsdata
;
2192 cgroup_iter_start(cgrp
, &it
);
2193 while ((tsk
= cgroup_iter_next(cgrp
, &it
))) {
2194 switch (tsk
->state
) {
2196 stats
->nr_running
++;
2198 case TASK_INTERRUPTIBLE
:
2199 stats
->nr_sleeping
++;
2201 case TASK_UNINTERRUPTIBLE
:
2202 stats
->nr_uninterruptible
++;
2205 stats
->nr_stopped
++;
2208 if (delayacct_is_task_waiting_on_io(tsk
))
2209 stats
->nr_io_wait
++;
2213 cgroup_iter_end(cgrp
, &it
);
2220 * Cache pids for all threads in the same pid namespace that are
2221 * opening the same "tasks" file.
2223 struct cgroup_pids
{
2224 /* The node in cgrp->pids_list */
2225 struct list_head list
;
2226 /* The cgroup those pids belong to */
2227 struct cgroup
*cgrp
;
2228 /* The namepsace those pids belong to */
2229 struct pid_namespace
*ns
;
2230 /* Array of process ids in the cgroup */
2232 /* How many files are using the this tasks_pids array */
2234 /* Length of the current tasks_pids array */
2238 static int cmppid(const void *a
, const void *b
)
2240 return *(pid_t
*)a
- *(pid_t
*)b
;
2244 * seq_file methods for the "tasks" file. The seq_file position is the
2245 * next pid to display; the seq_file iterator is a pointer to the pid
2246 * in the cgroup->tasks_pids array.
2249 static void *cgroup_tasks_start(struct seq_file
*s
, loff_t
*pos
)
2252 * Initially we receive a position value that corresponds to
2253 * one more than the last pid shown (or 0 on the first call or
2254 * after a seek to the start). Use a binary-search to find the
2255 * next pid to display, if any
2257 struct cgroup_pids
*cp
= s
->private;
2258 struct cgroup
*cgrp
= cp
->cgrp
;
2259 int index
= 0, pid
= *pos
;
2262 down_read(&cgrp
->pids_mutex
);
2264 int end
= cp
->length
;
2266 while (index
< end
) {
2267 int mid
= (index
+ end
) / 2;
2268 if (cp
->tasks_pids
[mid
] == pid
) {
2271 } else if (cp
->tasks_pids
[mid
] <= pid
)
2277 /* If we're off the end of the array, we're done */
2278 if (index
>= cp
->length
)
2280 /* Update the abstract position to be the actual pid that we found */
2281 iter
= cp
->tasks_pids
+ index
;
2286 static void cgroup_tasks_stop(struct seq_file
*s
, void *v
)
2288 struct cgroup_pids
*cp
= s
->private;
2289 struct cgroup
*cgrp
= cp
->cgrp
;
2290 up_read(&cgrp
->pids_mutex
);
2293 static void *cgroup_tasks_next(struct seq_file
*s
, void *v
, loff_t
*pos
)
2295 struct cgroup_pids
*cp
= s
->private;
2297 int *end
= cp
->tasks_pids
+ cp
->length
;
2300 * Advance to the next pid in the array. If this goes off the
2312 static int cgroup_tasks_show(struct seq_file
*s
, void *v
)
2314 return seq_printf(s
, "%d\n", *(int *)v
);
2317 static struct seq_operations cgroup_tasks_seq_operations
= {
2318 .start
= cgroup_tasks_start
,
2319 .stop
= cgroup_tasks_stop
,
2320 .next
= cgroup_tasks_next
,
2321 .show
= cgroup_tasks_show
,
2324 static void release_cgroup_pid_array(struct cgroup_pids
*cp
)
2326 struct cgroup
*cgrp
= cp
->cgrp
;
2328 down_write(&cgrp
->pids_mutex
);
2329 BUG_ON(!cp
->use_count
);
2330 if (!--cp
->use_count
) {
2331 list_del(&cp
->list
);
2333 kfree(cp
->tasks_pids
);
2336 up_write(&cgrp
->pids_mutex
);
2339 static int cgroup_tasks_release(struct inode
*inode
, struct file
*file
)
2341 struct seq_file
*seq
;
2342 struct cgroup_pids
*cp
;
2344 if (!(file
->f_mode
& FMODE_READ
))
2347 seq
= file
->private_data
;
2350 release_cgroup_pid_array(cp
);
2351 return seq_release(inode
, file
);
2354 static struct file_operations cgroup_tasks_operations
= {
2356 .llseek
= seq_lseek
,
2357 .write
= cgroup_file_write
,
2358 .release
= cgroup_tasks_release
,
2362 * Handle an open on 'tasks' file. Prepare an array containing the
2363 * process id's of tasks currently attached to the cgroup being opened.
2366 static int cgroup_tasks_open(struct inode
*unused
, struct file
*file
)
2368 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
2369 struct pid_namespace
*ns
= current
->nsproxy
->pid_ns
;
2370 struct cgroup_pids
*cp
;
2375 /* Nothing to do for write-only files */
2376 if (!(file
->f_mode
& FMODE_READ
))
2380 * If cgroup gets more users after we read count, we won't have
2381 * enough space - tough. This race is indistinguishable to the
2382 * caller from the case that the additional cgroup users didn't
2383 * show up until sometime later on.
2385 npids
= cgroup_task_count(cgrp
);
2386 pidarray
= kmalloc(npids
* sizeof(pid_t
), GFP_KERNEL
);
2389 npids
= pid_array_load(pidarray
, npids
, cgrp
);
2390 sort(pidarray
, npids
, sizeof(pid_t
), cmppid
, NULL
);
2393 * Store the array in the cgroup, freeing the old
2394 * array if necessary
2396 down_write(&cgrp
->pids_mutex
);
2398 list_for_each_entry(cp
, &cgrp
->pids_list
, list
) {
2403 cp
= kzalloc(sizeof(*cp
), GFP_KERNEL
);
2405 up_write(&cgrp
->pids_mutex
);
2412 list_add(&cp
->list
, &cgrp
->pids_list
);
2414 kfree(cp
->tasks_pids
);
2415 cp
->tasks_pids
= pidarray
;
2418 up_write(&cgrp
->pids_mutex
);
2420 file
->f_op
= &cgroup_tasks_operations
;
2422 retval
= seq_open(file
, &cgroup_tasks_seq_operations
);
2424 release_cgroup_pid_array(cp
);
2427 ((struct seq_file
*)file
->private_data
)->private = cp
;
2431 static u64
cgroup_read_notify_on_release(struct cgroup
*cgrp
,
2434 return notify_on_release(cgrp
);
2437 static int cgroup_write_notify_on_release(struct cgroup
*cgrp
,
2441 clear_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
2443 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
2445 clear_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
2450 * for the common functions, 'private' gives the type of file
2452 static struct cftype files
[] = {
2455 .open
= cgroup_tasks_open
,
2456 .write_u64
= cgroup_tasks_write
,
2457 .release
= cgroup_tasks_release
,
2458 .private = FILE_TASKLIST
,
2459 .mode
= S_IRUGO
| S_IWUSR
,
2463 .name
= "notify_on_release",
2464 .read_u64
= cgroup_read_notify_on_release
,
2465 .write_u64
= cgroup_write_notify_on_release
,
2466 .private = FILE_NOTIFY_ON_RELEASE
,
2470 static struct cftype cft_release_agent
= {
2471 .name
= "release_agent",
2472 .read_seq_string
= cgroup_release_agent_show
,
2473 .write_string
= cgroup_release_agent_write
,
2474 .max_write_len
= PATH_MAX
,
2475 .private = FILE_RELEASE_AGENT
,
2478 static int cgroup_populate_dir(struct cgroup
*cgrp
)
2481 struct cgroup_subsys
*ss
;
2483 /* First clear out any existing files */
2484 cgroup_clear_directory(cgrp
->dentry
);
2486 err
= cgroup_add_files(cgrp
, NULL
, files
, ARRAY_SIZE(files
));
2490 if (cgrp
== cgrp
->top_cgroup
) {
2491 if ((err
= cgroup_add_file(cgrp
, NULL
, &cft_release_agent
)) < 0)
2495 for_each_subsys(cgrp
->root
, ss
) {
2496 if (ss
->populate
&& (err
= ss
->populate(ss
, cgrp
)) < 0)
2499 /* This cgroup is ready now */
2500 for_each_subsys(cgrp
->root
, ss
) {
2501 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
2503 * Update id->css pointer and make this css visible from
2504 * CSS ID functions. This pointer will be dereferened
2505 * from RCU-read-side without locks.
2508 rcu_assign_pointer(css
->id
->css
, css
);
2514 static void init_cgroup_css(struct cgroup_subsys_state
*css
,
2515 struct cgroup_subsys
*ss
,
2516 struct cgroup
*cgrp
)
2519 atomic_set(&css
->refcnt
, 1);
2522 if (cgrp
== dummytop
)
2523 set_bit(CSS_ROOT
, &css
->flags
);
2524 BUG_ON(cgrp
->subsys
[ss
->subsys_id
]);
2525 cgrp
->subsys
[ss
->subsys_id
] = css
;
2528 static void cgroup_lock_hierarchy(struct cgroupfs_root
*root
)
2530 /* We need to take each hierarchy_mutex in a consistent order */
2533 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2534 struct cgroup_subsys
*ss
= subsys
[i
];
2535 if (ss
->root
== root
)
2536 mutex_lock(&ss
->hierarchy_mutex
);
2540 static void cgroup_unlock_hierarchy(struct cgroupfs_root
*root
)
2544 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2545 struct cgroup_subsys
*ss
= subsys
[i
];
2546 if (ss
->root
== root
)
2547 mutex_unlock(&ss
->hierarchy_mutex
);
2552 * cgroup_create - create a cgroup
2553 * @parent: cgroup that will be parent of the new cgroup
2554 * @dentry: dentry of the new cgroup
2555 * @mode: mode to set on new inode
2557 * Must be called with the mutex on the parent inode held
2559 static long cgroup_create(struct cgroup
*parent
, struct dentry
*dentry
,
2562 struct cgroup
*cgrp
;
2563 struct cgroupfs_root
*root
= parent
->root
;
2565 struct cgroup_subsys
*ss
;
2566 struct super_block
*sb
= root
->sb
;
2568 cgrp
= kzalloc(sizeof(*cgrp
), GFP_KERNEL
);
2572 /* Grab a reference on the superblock so the hierarchy doesn't
2573 * get deleted on unmount if there are child cgroups. This
2574 * can be done outside cgroup_mutex, since the sb can't
2575 * disappear while someone has an open control file on the
2577 atomic_inc(&sb
->s_active
);
2579 mutex_lock(&cgroup_mutex
);
2581 init_cgroup_housekeeping(cgrp
);
2583 cgrp
->parent
= parent
;
2584 cgrp
->root
= parent
->root
;
2585 cgrp
->top_cgroup
= parent
->top_cgroup
;
2587 if (notify_on_release(parent
))
2588 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
2590 for_each_subsys(root
, ss
) {
2591 struct cgroup_subsys_state
*css
= ss
->create(ss
, cgrp
);
2596 init_cgroup_css(css
, ss
, cgrp
);
2598 if (alloc_css_id(ss
, parent
, cgrp
))
2600 /* At error, ->destroy() callback has to free assigned ID. */
2603 cgroup_lock_hierarchy(root
);
2604 list_add(&cgrp
->sibling
, &cgrp
->parent
->children
);
2605 cgroup_unlock_hierarchy(root
);
2606 root
->number_of_cgroups
++;
2608 err
= cgroup_create_dir(cgrp
, dentry
, mode
);
2612 /* The cgroup directory was pre-locked for us */
2613 BUG_ON(!mutex_is_locked(&cgrp
->dentry
->d_inode
->i_mutex
));
2615 err
= cgroup_populate_dir(cgrp
);
2616 /* If err < 0, we have a half-filled directory - oh well ;) */
2618 mutex_unlock(&cgroup_mutex
);
2619 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
2625 cgroup_lock_hierarchy(root
);
2626 list_del(&cgrp
->sibling
);
2627 cgroup_unlock_hierarchy(root
);
2628 root
->number_of_cgroups
--;
2632 for_each_subsys(root
, ss
) {
2633 if (cgrp
->subsys
[ss
->subsys_id
])
2634 ss
->destroy(ss
, cgrp
);
2637 mutex_unlock(&cgroup_mutex
);
2639 /* Release the reference count that we took on the superblock */
2640 deactivate_super(sb
);
2646 static int cgroup_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
2648 struct cgroup
*c_parent
= dentry
->d_parent
->d_fsdata
;
2650 /* the vfs holds inode->i_mutex already */
2651 return cgroup_create(c_parent
, dentry
, mode
| S_IFDIR
);
2654 static int cgroup_has_css_refs(struct cgroup
*cgrp
)
2656 /* Check the reference count on each subsystem. Since we
2657 * already established that there are no tasks in the
2658 * cgroup, if the css refcount is also 1, then there should
2659 * be no outstanding references, so the subsystem is safe to
2660 * destroy. We scan across all subsystems rather than using
2661 * the per-hierarchy linked list of mounted subsystems since
2662 * we can be called via check_for_release() with no
2663 * synchronization other than RCU, and the subsystem linked
2664 * list isn't RCU-safe */
2666 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2667 struct cgroup_subsys
*ss
= subsys
[i
];
2668 struct cgroup_subsys_state
*css
;
2669 /* Skip subsystems not in this hierarchy */
2670 if (ss
->root
!= cgrp
->root
)
2672 css
= cgrp
->subsys
[ss
->subsys_id
];
2673 /* When called from check_for_release() it's possible
2674 * that by this point the cgroup has been removed
2675 * and the css deleted. But a false-positive doesn't
2676 * matter, since it can only happen if the cgroup
2677 * has been deleted and hence no longer needs the
2678 * release agent to be called anyway. */
2679 if (css
&& (atomic_read(&css
->refcnt
) > 1))
2686 * Atomically mark all (or else none) of the cgroup's CSS objects as
2687 * CSS_REMOVED. Return true on success, or false if the cgroup has
2688 * busy subsystems. Call with cgroup_mutex held
2691 static int cgroup_clear_css_refs(struct cgroup
*cgrp
)
2693 struct cgroup_subsys
*ss
;
2694 unsigned long flags
;
2695 bool failed
= false;
2696 local_irq_save(flags
);
2697 for_each_subsys(cgrp
->root
, ss
) {
2698 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
2701 /* We can only remove a CSS with a refcnt==1 */
2702 refcnt
= atomic_read(&css
->refcnt
);
2709 * Drop the refcnt to 0 while we check other
2710 * subsystems. This will cause any racing
2711 * css_tryget() to spin until we set the
2712 * CSS_REMOVED bits or abort
2714 if (atomic_cmpxchg(&css
->refcnt
, refcnt
, 0) == refcnt
)
2720 for_each_subsys(cgrp
->root
, ss
) {
2721 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
2724 * Restore old refcnt if we previously managed
2725 * to clear it from 1 to 0
2727 if (!atomic_read(&css
->refcnt
))
2728 atomic_set(&css
->refcnt
, 1);
2730 /* Commit the fact that the CSS is removed */
2731 set_bit(CSS_REMOVED
, &css
->flags
);
2734 local_irq_restore(flags
);
2738 static int cgroup_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
)
2740 struct cgroup
*cgrp
= dentry
->d_fsdata
;
2742 struct cgroup
*parent
;
2746 /* the vfs holds both inode->i_mutex already */
2748 mutex_lock(&cgroup_mutex
);
2749 if (atomic_read(&cgrp
->count
) != 0) {
2750 mutex_unlock(&cgroup_mutex
);
2753 if (!list_empty(&cgrp
->children
)) {
2754 mutex_unlock(&cgroup_mutex
);
2757 mutex_unlock(&cgroup_mutex
);
2760 * In general, subsystem has no css->refcnt after pre_destroy(). But
2761 * in racy cases, subsystem may have to get css->refcnt after
2762 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
2763 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
2764 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
2765 * and subsystem's reference count handling. Please see css_get/put
2766 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
2768 set_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
2771 * Call pre_destroy handlers of subsys. Notify subsystems
2772 * that rmdir() request comes.
2774 ret
= cgroup_call_pre_destroy(cgrp
);
2776 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
2780 mutex_lock(&cgroup_mutex
);
2781 parent
= cgrp
->parent
;
2782 if (atomic_read(&cgrp
->count
) || !list_empty(&cgrp
->children
)) {
2783 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
2784 mutex_unlock(&cgroup_mutex
);
2787 prepare_to_wait(&cgroup_rmdir_waitq
, &wait
, TASK_INTERRUPTIBLE
);
2788 if (!cgroup_clear_css_refs(cgrp
)) {
2789 mutex_unlock(&cgroup_mutex
);
2791 * Because someone may call cgroup_wakeup_rmdir_waiter() before
2792 * prepare_to_wait(), we need to check this flag.
2794 if (test_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
))
2796 finish_wait(&cgroup_rmdir_waitq
, &wait
);
2797 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
2798 if (signal_pending(current
))
2802 /* NO css_tryget() can success after here. */
2803 finish_wait(&cgroup_rmdir_waitq
, &wait
);
2804 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
2806 spin_lock(&release_list_lock
);
2807 set_bit(CGRP_REMOVED
, &cgrp
->flags
);
2808 if (!list_empty(&cgrp
->release_list
))
2809 list_del(&cgrp
->release_list
);
2810 spin_unlock(&release_list_lock
);
2812 cgroup_lock_hierarchy(cgrp
->root
);
2813 /* delete this cgroup from parent->children */
2814 list_del(&cgrp
->sibling
);
2815 cgroup_unlock_hierarchy(cgrp
->root
);
2817 spin_lock(&cgrp
->dentry
->d_lock
);
2818 d
= dget(cgrp
->dentry
);
2819 spin_unlock(&d
->d_lock
);
2821 cgroup_d_remove_dir(d
);
2824 set_bit(CGRP_RELEASABLE
, &parent
->flags
);
2825 check_for_release(parent
);
2827 mutex_unlock(&cgroup_mutex
);
2831 static void __init
cgroup_init_subsys(struct cgroup_subsys
*ss
)
2833 struct cgroup_subsys_state
*css
;
2835 printk(KERN_INFO
"Initializing cgroup subsys %s\n", ss
->name
);
2837 /* Create the top cgroup state for this subsystem */
2838 list_add(&ss
->sibling
, &rootnode
.subsys_list
);
2839 ss
->root
= &rootnode
;
2840 css
= ss
->create(ss
, dummytop
);
2841 /* We don't handle early failures gracefully */
2842 BUG_ON(IS_ERR(css
));
2843 init_cgroup_css(css
, ss
, dummytop
);
2845 /* Update the init_css_set to contain a subsys
2846 * pointer to this state - since the subsystem is
2847 * newly registered, all tasks and hence the
2848 * init_css_set is in the subsystem's top cgroup. */
2849 init_css_set
.subsys
[ss
->subsys_id
] = dummytop
->subsys
[ss
->subsys_id
];
2851 need_forkexit_callback
|= ss
->fork
|| ss
->exit
;
2853 /* At system boot, before all subsystems have been
2854 * registered, no tasks have been forked, so we don't
2855 * need to invoke fork callbacks here. */
2856 BUG_ON(!list_empty(&init_task
.tasks
));
2858 mutex_init(&ss
->hierarchy_mutex
);
2859 lockdep_set_class(&ss
->hierarchy_mutex
, &ss
->subsys_key
);
2864 * cgroup_init_early - cgroup initialization at system boot
2866 * Initialize cgroups at system boot, and initialize any
2867 * subsystems that request early init.
2869 int __init
cgroup_init_early(void)
2872 atomic_set(&init_css_set
.refcount
, 1);
2873 INIT_LIST_HEAD(&init_css_set
.cg_links
);
2874 INIT_LIST_HEAD(&init_css_set
.tasks
);
2875 INIT_HLIST_NODE(&init_css_set
.hlist
);
2877 init_cgroup_root(&rootnode
);
2879 init_task
.cgroups
= &init_css_set
;
2881 init_css_set_link
.cg
= &init_css_set
;
2882 list_add(&init_css_set_link
.cgrp_link_list
,
2883 &rootnode
.top_cgroup
.css_sets
);
2884 list_add(&init_css_set_link
.cg_link_list
,
2885 &init_css_set
.cg_links
);
2887 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++)
2888 INIT_HLIST_HEAD(&css_set_table
[i
]);
2890 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2891 struct cgroup_subsys
*ss
= subsys
[i
];
2894 BUG_ON(strlen(ss
->name
) > MAX_CGROUP_TYPE_NAMELEN
);
2895 BUG_ON(!ss
->create
);
2896 BUG_ON(!ss
->destroy
);
2897 if (ss
->subsys_id
!= i
) {
2898 printk(KERN_ERR
"cgroup: Subsys %s id == %d\n",
2899 ss
->name
, ss
->subsys_id
);
2904 cgroup_init_subsys(ss
);
2910 * cgroup_init - cgroup initialization
2912 * Register cgroup filesystem and /proc file, and initialize
2913 * any subsystems that didn't request early init.
2915 int __init
cgroup_init(void)
2919 struct hlist_head
*hhead
;
2921 err
= bdi_init(&cgroup_backing_dev_info
);
2925 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2926 struct cgroup_subsys
*ss
= subsys
[i
];
2927 if (!ss
->early_init
)
2928 cgroup_init_subsys(ss
);
2930 cgroup_subsys_init_idr(ss
);
2933 /* Add init_css_set to the hash table */
2934 hhead
= css_set_hash(init_css_set
.subsys
);
2935 hlist_add_head(&init_css_set
.hlist
, hhead
);
2937 err
= register_filesystem(&cgroup_fs_type
);
2941 proc_create("cgroups", 0, NULL
, &proc_cgroupstats_operations
);
2945 bdi_destroy(&cgroup_backing_dev_info
);
2951 * proc_cgroup_show()
2952 * - Print task's cgroup paths into seq_file, one line for each hierarchy
2953 * - Used for /proc/<pid>/cgroup.
2954 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
2955 * doesn't really matter if tsk->cgroup changes after we read it,
2956 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
2957 * anyway. No need to check that tsk->cgroup != NULL, thanks to
2958 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
2959 * cgroup to top_cgroup.
2962 /* TODO: Use a proper seq_file iterator */
2963 static int proc_cgroup_show(struct seq_file
*m
, void *v
)
2966 struct task_struct
*tsk
;
2969 struct cgroupfs_root
*root
;
2972 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
2978 tsk
= get_pid_task(pid
, PIDTYPE_PID
);
2984 mutex_lock(&cgroup_mutex
);
2986 for_each_active_root(root
) {
2987 struct cgroup_subsys
*ss
;
2988 struct cgroup
*cgrp
;
2992 seq_printf(m
, "%lu:", root
->subsys_bits
);
2993 for_each_subsys(root
, ss
)
2994 seq_printf(m
, "%s%s", count
++ ? "," : "", ss
->name
);
2996 get_first_subsys(&root
->top_cgroup
, NULL
, &subsys_id
);
2997 cgrp
= task_cgroup(tsk
, subsys_id
);
2998 retval
= cgroup_path(cgrp
, buf
, PAGE_SIZE
);
3006 mutex_unlock(&cgroup_mutex
);
3007 put_task_struct(tsk
);
3014 static int cgroup_open(struct inode
*inode
, struct file
*file
)
3016 struct pid
*pid
= PROC_I(inode
)->pid
;
3017 return single_open(file
, proc_cgroup_show
, pid
);
3020 struct file_operations proc_cgroup_operations
= {
3021 .open
= cgroup_open
,
3023 .llseek
= seq_lseek
,
3024 .release
= single_release
,
3027 /* Display information about each subsystem and each hierarchy */
3028 static int proc_cgroupstats_show(struct seq_file
*m
, void *v
)
3032 seq_puts(m
, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
3033 mutex_lock(&cgroup_mutex
);
3034 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3035 struct cgroup_subsys
*ss
= subsys
[i
];
3036 seq_printf(m
, "%s\t%lu\t%d\t%d\n",
3037 ss
->name
, ss
->root
->subsys_bits
,
3038 ss
->root
->number_of_cgroups
, !ss
->disabled
);
3040 mutex_unlock(&cgroup_mutex
);
3044 static int cgroupstats_open(struct inode
*inode
, struct file
*file
)
3046 return single_open(file
, proc_cgroupstats_show
, NULL
);
3049 static struct file_operations proc_cgroupstats_operations
= {
3050 .open
= cgroupstats_open
,
3052 .llseek
= seq_lseek
,
3053 .release
= single_release
,
3057 * cgroup_fork - attach newly forked task to its parents cgroup.
3058 * @child: pointer to task_struct of forking parent process.
3060 * Description: A task inherits its parent's cgroup at fork().
3062 * A pointer to the shared css_set was automatically copied in
3063 * fork.c by dup_task_struct(). However, we ignore that copy, since
3064 * it was not made under the protection of RCU or cgroup_mutex, so
3065 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
3066 * have already changed current->cgroups, allowing the previously
3067 * referenced cgroup group to be removed and freed.
3069 * At the point that cgroup_fork() is called, 'current' is the parent
3070 * task, and the passed argument 'child' points to the child task.
3072 void cgroup_fork(struct task_struct
*child
)
3075 child
->cgroups
= current
->cgroups
;
3076 get_css_set(child
->cgroups
);
3077 task_unlock(current
);
3078 INIT_LIST_HEAD(&child
->cg_list
);
3082 * cgroup_fork_callbacks - run fork callbacks
3083 * @child: the new task
3085 * Called on a new task very soon before adding it to the
3086 * tasklist. No need to take any locks since no-one can
3087 * be operating on this task.
3089 void cgroup_fork_callbacks(struct task_struct
*child
)
3091 if (need_forkexit_callback
) {
3093 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3094 struct cgroup_subsys
*ss
= subsys
[i
];
3096 ss
->fork(ss
, child
);
3102 * cgroup_post_fork - called on a new task after adding it to the task list
3103 * @child: the task in question
3105 * Adds the task to the list running through its css_set if necessary.
3106 * Has to be after the task is visible on the task list in case we race
3107 * with the first call to cgroup_iter_start() - to guarantee that the
3108 * new task ends up on its list.
3110 void cgroup_post_fork(struct task_struct
*child
)
3112 if (use_task_css_set_links
) {
3113 write_lock(&css_set_lock
);
3115 if (list_empty(&child
->cg_list
))
3116 list_add(&child
->cg_list
, &child
->cgroups
->tasks
);
3118 write_unlock(&css_set_lock
);
3122 * cgroup_exit - detach cgroup from exiting task
3123 * @tsk: pointer to task_struct of exiting process
3124 * @run_callback: run exit callbacks?
3126 * Description: Detach cgroup from @tsk and release it.
3128 * Note that cgroups marked notify_on_release force every task in
3129 * them to take the global cgroup_mutex mutex when exiting.
3130 * This could impact scaling on very large systems. Be reluctant to
3131 * use notify_on_release cgroups where very high task exit scaling
3132 * is required on large systems.
3134 * the_top_cgroup_hack:
3136 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
3138 * We call cgroup_exit() while the task is still competent to
3139 * handle notify_on_release(), then leave the task attached to the
3140 * root cgroup in each hierarchy for the remainder of its exit.
3142 * To do this properly, we would increment the reference count on
3143 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
3144 * code we would add a second cgroup function call, to drop that
3145 * reference. This would just create an unnecessary hot spot on
3146 * the top_cgroup reference count, to no avail.
3148 * Normally, holding a reference to a cgroup without bumping its
3149 * count is unsafe. The cgroup could go away, or someone could
3150 * attach us to a different cgroup, decrementing the count on
3151 * the first cgroup that we never incremented. But in this case,
3152 * top_cgroup isn't going away, and either task has PF_EXITING set,
3153 * which wards off any cgroup_attach_task() attempts, or task is a failed
3154 * fork, never visible to cgroup_attach_task.
3156 void cgroup_exit(struct task_struct
*tsk
, int run_callbacks
)
3161 if (run_callbacks
&& need_forkexit_callback
) {
3162 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3163 struct cgroup_subsys
*ss
= subsys
[i
];
3170 * Unlink from the css_set task list if necessary.
3171 * Optimistically check cg_list before taking
3174 if (!list_empty(&tsk
->cg_list
)) {
3175 write_lock(&css_set_lock
);
3176 if (!list_empty(&tsk
->cg_list
))
3177 list_del(&tsk
->cg_list
);
3178 write_unlock(&css_set_lock
);
3181 /* Reassign the task to the init_css_set. */
3184 tsk
->cgroups
= &init_css_set
;
3187 put_css_set_taskexit(cg
);
3191 * cgroup_clone - clone the cgroup the given subsystem is attached to
3192 * @tsk: the task to be moved
3193 * @subsys: the given subsystem
3194 * @nodename: the name for the new cgroup
3196 * Duplicate the current cgroup in the hierarchy that the given
3197 * subsystem is attached to, and move this task into the new
3200 int cgroup_clone(struct task_struct
*tsk
, struct cgroup_subsys
*subsys
,
3203 struct dentry
*dentry
;
3205 struct cgroup
*parent
, *child
;
3206 struct inode
*inode
;
3208 struct cgroupfs_root
*root
;
3209 struct cgroup_subsys
*ss
;
3211 /* We shouldn't be called by an unregistered subsystem */
3212 BUG_ON(!subsys
->active
);
3214 /* First figure out what hierarchy and cgroup we're dealing
3215 * with, and pin them so we can drop cgroup_mutex */
3216 mutex_lock(&cgroup_mutex
);
3218 root
= subsys
->root
;
3219 if (root
== &rootnode
) {
3220 mutex_unlock(&cgroup_mutex
);
3224 /* Pin the hierarchy */
3225 if (!atomic_inc_not_zero(&root
->sb
->s_active
)) {
3226 /* We race with the final deactivate_super() */
3227 mutex_unlock(&cgroup_mutex
);
3231 /* Keep the cgroup alive */
3233 parent
= task_cgroup(tsk
, subsys
->subsys_id
);
3238 mutex_unlock(&cgroup_mutex
);
3240 /* Now do the VFS work to create a cgroup */
3241 inode
= parent
->dentry
->d_inode
;
3243 /* Hold the parent directory mutex across this operation to
3244 * stop anyone else deleting the new cgroup */
3245 mutex_lock(&inode
->i_mutex
);
3246 dentry
= lookup_one_len(nodename
, parent
->dentry
, strlen(nodename
));
3247 if (IS_ERR(dentry
)) {
3249 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename
,
3251 ret
= PTR_ERR(dentry
);
3255 /* Create the cgroup directory, which also creates the cgroup */
3256 ret
= vfs_mkdir(inode
, dentry
, 0755);
3257 child
= __d_cgrp(dentry
);
3261 "Failed to create cgroup %s: %d\n", nodename
,
3266 /* The cgroup now exists. Retake cgroup_mutex and check
3267 * that we're still in the same state that we thought we
3269 mutex_lock(&cgroup_mutex
);
3270 if ((root
!= subsys
->root
) ||
3271 (parent
!= task_cgroup(tsk
, subsys
->subsys_id
))) {
3272 /* Aargh, we raced ... */
3273 mutex_unlock(&inode
->i_mutex
);
3276 deactivate_super(root
->sb
);
3277 /* The cgroup is still accessible in the VFS, but
3278 * we're not going to try to rmdir() it at this
3281 "Race in cgroup_clone() - leaking cgroup %s\n",
3286 /* do any required auto-setup */
3287 for_each_subsys(root
, ss
) {
3289 ss
->post_clone(ss
, child
);
3292 /* All seems fine. Finish by moving the task into the new cgroup */
3293 ret
= cgroup_attach_task(child
, tsk
);
3294 mutex_unlock(&cgroup_mutex
);
3297 mutex_unlock(&inode
->i_mutex
);
3299 mutex_lock(&cgroup_mutex
);
3301 mutex_unlock(&cgroup_mutex
);
3302 deactivate_super(root
->sb
);
3307 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
3308 * @cgrp: the cgroup in question
3309 * @task: the task in question
3311 * See if @cgrp is a descendant of @task's cgroup in the appropriate
3314 * If we are sending in dummytop, then presumably we are creating
3315 * the top cgroup in the subsystem.
3317 * Called only by the ns (nsproxy) cgroup.
3319 int cgroup_is_descendant(const struct cgroup
*cgrp
, struct task_struct
*task
)
3322 struct cgroup
*target
;
3325 if (cgrp
== dummytop
)
3328 get_first_subsys(cgrp
, NULL
, &subsys_id
);
3329 target
= task_cgroup(task
, subsys_id
);
3330 while (cgrp
!= target
&& cgrp
!= cgrp
->top_cgroup
)
3331 cgrp
= cgrp
->parent
;
3332 ret
= (cgrp
== target
);
3336 static void check_for_release(struct cgroup
*cgrp
)
3338 /* All of these checks rely on RCU to keep the cgroup
3339 * structure alive */
3340 if (cgroup_is_releasable(cgrp
) && !atomic_read(&cgrp
->count
)
3341 && list_empty(&cgrp
->children
) && !cgroup_has_css_refs(cgrp
)) {
3342 /* Control Group is currently removeable. If it's not
3343 * already queued for a userspace notification, queue
3345 int need_schedule_work
= 0;
3346 spin_lock(&release_list_lock
);
3347 if (!cgroup_is_removed(cgrp
) &&
3348 list_empty(&cgrp
->release_list
)) {
3349 list_add(&cgrp
->release_list
, &release_list
);
3350 need_schedule_work
= 1;
3352 spin_unlock(&release_list_lock
);
3353 if (need_schedule_work
)
3354 schedule_work(&release_agent_work
);
3358 void __css_put(struct cgroup_subsys_state
*css
)
3360 struct cgroup
*cgrp
= css
->cgroup
;
3362 if (atomic_dec_return(&css
->refcnt
) == 1) {
3363 if (notify_on_release(cgrp
)) {
3364 set_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
3365 check_for_release(cgrp
);
3367 cgroup_wakeup_rmdir_waiter(cgrp
);
3373 * Notify userspace when a cgroup is released, by running the
3374 * configured release agent with the name of the cgroup (path
3375 * relative to the root of cgroup file system) as the argument.
3377 * Most likely, this user command will try to rmdir this cgroup.
3379 * This races with the possibility that some other task will be
3380 * attached to this cgroup before it is removed, or that some other
3381 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
3382 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
3383 * unused, and this cgroup will be reprieved from its death sentence,
3384 * to continue to serve a useful existence. Next time it's released,
3385 * we will get notified again, if it still has 'notify_on_release' set.
3387 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
3388 * means only wait until the task is successfully execve()'d. The
3389 * separate release agent task is forked by call_usermodehelper(),
3390 * then control in this thread returns here, without waiting for the
3391 * release agent task. We don't bother to wait because the caller of
3392 * this routine has no use for the exit status of the release agent
3393 * task, so no sense holding our caller up for that.
3395 static void cgroup_release_agent(struct work_struct
*work
)
3397 BUG_ON(work
!= &release_agent_work
);
3398 mutex_lock(&cgroup_mutex
);
3399 spin_lock(&release_list_lock
);
3400 while (!list_empty(&release_list
)) {
3401 char *argv
[3], *envp
[3];
3403 char *pathbuf
= NULL
, *agentbuf
= NULL
;
3404 struct cgroup
*cgrp
= list_entry(release_list
.next
,
3407 list_del_init(&cgrp
->release_list
);
3408 spin_unlock(&release_list_lock
);
3409 pathbuf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
3412 if (cgroup_path(cgrp
, pathbuf
, PAGE_SIZE
) < 0)
3414 agentbuf
= kstrdup(cgrp
->root
->release_agent_path
, GFP_KERNEL
);
3419 argv
[i
++] = agentbuf
;
3420 argv
[i
++] = pathbuf
;
3424 /* minimal command environment */
3425 envp
[i
++] = "HOME=/";
3426 envp
[i
++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
3429 /* Drop the lock while we invoke the usermode helper,
3430 * since the exec could involve hitting disk and hence
3431 * be a slow process */
3432 mutex_unlock(&cgroup_mutex
);
3433 call_usermodehelper(argv
[0], argv
, envp
, UMH_WAIT_EXEC
);
3434 mutex_lock(&cgroup_mutex
);
3438 spin_lock(&release_list_lock
);
3440 spin_unlock(&release_list_lock
);
3441 mutex_unlock(&cgroup_mutex
);
3444 static int __init
cgroup_disable(char *str
)
3449 while ((token
= strsep(&str
, ",")) != NULL
) {
3453 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3454 struct cgroup_subsys
*ss
= subsys
[i
];
3456 if (!strcmp(token
, ss
->name
)) {
3458 printk(KERN_INFO
"Disabling %s control group"
3459 " subsystem\n", ss
->name
);
3466 __setup("cgroup_disable=", cgroup_disable
);
3469 * Functons for CSS ID.
3473 *To get ID other than 0, this should be called when !cgroup_is_removed().
3475 unsigned short css_id(struct cgroup_subsys_state
*css
)
3477 struct css_id
*cssid
= rcu_dereference(css
->id
);
3484 unsigned short css_depth(struct cgroup_subsys_state
*css
)
3486 struct css_id
*cssid
= rcu_dereference(css
->id
);
3489 return cssid
->depth
;
3493 bool css_is_ancestor(struct cgroup_subsys_state
*child
,
3494 const struct cgroup_subsys_state
*root
)
3496 struct css_id
*child_id
= rcu_dereference(child
->id
);
3497 struct css_id
*root_id
= rcu_dereference(root
->id
);
3499 if (!child_id
|| !root_id
|| (child_id
->depth
< root_id
->depth
))
3501 return child_id
->stack
[root_id
->depth
] == root_id
->id
;
3504 static void __free_css_id_cb(struct rcu_head
*head
)
3508 id
= container_of(head
, struct css_id
, rcu_head
);
3512 void free_css_id(struct cgroup_subsys
*ss
, struct cgroup_subsys_state
*css
)
3514 struct css_id
*id
= css
->id
;
3515 /* When this is called before css_id initialization, id can be NULL */
3519 BUG_ON(!ss
->use_id
);
3521 rcu_assign_pointer(id
->css
, NULL
);
3522 rcu_assign_pointer(css
->id
, NULL
);
3523 spin_lock(&ss
->id_lock
);
3524 idr_remove(&ss
->idr
, id
->id
);
3525 spin_unlock(&ss
->id_lock
);
3526 call_rcu(&id
->rcu_head
, __free_css_id_cb
);
3530 * This is called by init or create(). Then, calls to this function are
3531 * always serialized (By cgroup_mutex() at create()).
3534 static struct css_id
*get_new_cssid(struct cgroup_subsys
*ss
, int depth
)
3536 struct css_id
*newid
;
3537 int myid
, error
, size
;
3539 BUG_ON(!ss
->use_id
);
3541 size
= sizeof(*newid
) + sizeof(unsigned short) * (depth
+ 1);
3542 newid
= kzalloc(size
, GFP_KERNEL
);
3544 return ERR_PTR(-ENOMEM
);
3546 if (unlikely(!idr_pre_get(&ss
->idr
, GFP_KERNEL
))) {
3550 spin_lock(&ss
->id_lock
);
3551 /* Don't use 0. allocates an ID of 1-65535 */
3552 error
= idr_get_new_above(&ss
->idr
, newid
, 1, &myid
);
3553 spin_unlock(&ss
->id_lock
);
3555 /* Returns error when there are no free spaces for new ID.*/
3560 if (myid
> CSS_ID_MAX
)
3564 newid
->depth
= depth
;
3568 spin_lock(&ss
->id_lock
);
3569 idr_remove(&ss
->idr
, myid
);
3570 spin_unlock(&ss
->id_lock
);
3573 return ERR_PTR(error
);
3577 static int __init
cgroup_subsys_init_idr(struct cgroup_subsys
*ss
)
3579 struct css_id
*newid
;
3580 struct cgroup_subsys_state
*rootcss
;
3582 spin_lock_init(&ss
->id_lock
);
3585 rootcss
= init_css_set
.subsys
[ss
->subsys_id
];
3586 newid
= get_new_cssid(ss
, 0);
3588 return PTR_ERR(newid
);
3590 newid
->stack
[0] = newid
->id
;
3591 newid
->css
= rootcss
;
3592 rootcss
->id
= newid
;
3596 static int alloc_css_id(struct cgroup_subsys
*ss
, struct cgroup
*parent
,
3597 struct cgroup
*child
)
3599 int subsys_id
, i
, depth
= 0;
3600 struct cgroup_subsys_state
*parent_css
, *child_css
;
3601 struct css_id
*child_id
, *parent_id
= NULL
;
3603 subsys_id
= ss
->subsys_id
;
3604 parent_css
= parent
->subsys
[subsys_id
];
3605 child_css
= child
->subsys
[subsys_id
];
3606 depth
= css_depth(parent_css
) + 1;
3607 parent_id
= parent_css
->id
;
3609 child_id
= get_new_cssid(ss
, depth
);
3610 if (IS_ERR(child_id
))
3611 return PTR_ERR(child_id
);
3613 for (i
= 0; i
< depth
; i
++)
3614 child_id
->stack
[i
] = parent_id
->stack
[i
];
3615 child_id
->stack
[depth
] = child_id
->id
;
3617 * child_id->css pointer will be set after this cgroup is available
3618 * see cgroup_populate_dir()
3620 rcu_assign_pointer(child_css
->id
, child_id
);
3626 * css_lookup - lookup css by id
3627 * @ss: cgroup subsys to be looked into.
3630 * Returns pointer to cgroup_subsys_state if there is valid one with id.
3631 * NULL if not. Should be called under rcu_read_lock()
3633 struct cgroup_subsys_state
*css_lookup(struct cgroup_subsys
*ss
, int id
)
3635 struct css_id
*cssid
= NULL
;
3637 BUG_ON(!ss
->use_id
);
3638 cssid
= idr_find(&ss
->idr
, id
);
3640 if (unlikely(!cssid
))
3643 return rcu_dereference(cssid
->css
);
3647 * css_get_next - lookup next cgroup under specified hierarchy.
3648 * @ss: pointer to subsystem
3649 * @id: current position of iteration.
3650 * @root: pointer to css. search tree under this.
3651 * @foundid: position of found object.
3653 * Search next css under the specified hierarchy of rootid. Calling under
3654 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
3656 struct cgroup_subsys_state
*
3657 css_get_next(struct cgroup_subsys
*ss
, int id
,
3658 struct cgroup_subsys_state
*root
, int *foundid
)
3660 struct cgroup_subsys_state
*ret
= NULL
;
3663 int rootid
= css_id(root
);
3664 int depth
= css_depth(root
);
3669 BUG_ON(!ss
->use_id
);
3670 /* fill start point for scan */
3674 * scan next entry from bitmap(tree), tmpid is updated after
3677 spin_lock(&ss
->id_lock
);
3678 tmp
= idr_get_next(&ss
->idr
, &tmpid
);
3679 spin_unlock(&ss
->id_lock
);
3683 if (tmp
->depth
>= depth
&& tmp
->stack
[depth
] == rootid
) {
3684 ret
= rcu_dereference(tmp
->css
);
3690 /* continue to scan from next id */