MIPS: Octeon: Select CONFIG_HOLES_IN_ZONE
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / rds / iw_rdma.c
blob8b77edbab27228c970eb18b779bb29f12bdce11a
1 /*
2 * Copyright (c) 2006 Oracle. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/ratelimit.h>
37 #include "rds.h"
38 #include "iw.h"
42 * This is stored as mr->r_trans_private.
44 struct rds_iw_mr {
45 struct rds_iw_device *device;
46 struct rds_iw_mr_pool *pool;
47 struct rdma_cm_id *cm_id;
49 struct ib_mr *mr;
50 struct ib_fast_reg_page_list *page_list;
52 struct rds_iw_mapping mapping;
53 unsigned char remap_count;
57 * Our own little MR pool
59 struct rds_iw_mr_pool {
60 struct rds_iw_device *device; /* back ptr to the device that owns us */
62 struct mutex flush_lock; /* serialize fmr invalidate */
63 struct work_struct flush_worker; /* flush worker */
65 spinlock_t list_lock; /* protect variables below */
66 atomic_t item_count; /* total # of MRs */
67 atomic_t dirty_count; /* # dirty of MRs */
68 struct list_head dirty_list; /* dirty mappings */
69 struct list_head clean_list; /* unused & unamapped MRs */
70 atomic_t free_pinned; /* memory pinned by free MRs */
71 unsigned long max_message_size; /* in pages */
72 unsigned long max_items;
73 unsigned long max_items_soft;
74 unsigned long max_free_pinned;
75 int max_pages;
78 static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all);
79 static void rds_iw_mr_pool_flush_worker(struct work_struct *work);
80 static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
81 static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool,
82 struct rds_iw_mr *ibmr,
83 struct scatterlist *sg, unsigned int nents);
84 static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
85 static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
86 struct list_head *unmap_list,
87 struct list_head *kill_list);
88 static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
90 static int rds_iw_get_device(struct rds_sock *rs, struct rds_iw_device **rds_iwdev, struct rdma_cm_id **cm_id)
92 struct rds_iw_device *iwdev;
93 struct rds_iw_cm_id *i_cm_id;
95 *rds_iwdev = NULL;
96 *cm_id = NULL;
98 list_for_each_entry(iwdev, &rds_iw_devices, list) {
99 spin_lock_irq(&iwdev->spinlock);
100 list_for_each_entry(i_cm_id, &iwdev->cm_id_list, list) {
101 struct sockaddr_in *src_addr, *dst_addr;
103 src_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.src_addr;
104 dst_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.dst_addr;
106 rdsdebug("local ipaddr = %x port %d, "
107 "remote ipaddr = %x port %d"
108 "..looking for %x port %d, "
109 "remote ipaddr = %x port %d\n",
110 src_addr->sin_addr.s_addr,
111 src_addr->sin_port,
112 dst_addr->sin_addr.s_addr,
113 dst_addr->sin_port,
114 rs->rs_bound_addr,
115 rs->rs_bound_port,
116 rs->rs_conn_addr,
117 rs->rs_conn_port);
118 #ifdef WORKING_TUPLE_DETECTION
119 if (src_addr->sin_addr.s_addr == rs->rs_bound_addr &&
120 src_addr->sin_port == rs->rs_bound_port &&
121 dst_addr->sin_addr.s_addr == rs->rs_conn_addr &&
122 dst_addr->sin_port == rs->rs_conn_port) {
123 #else
124 /* FIXME - needs to compare the local and remote
125 * ipaddr/port tuple, but the ipaddr is the only
126 * available information in the rds_sock (as the rest are
127 * zero'ed. It doesn't appear to be properly populated
128 * during connection setup...
130 if (src_addr->sin_addr.s_addr == rs->rs_bound_addr) {
131 #endif
132 spin_unlock_irq(&iwdev->spinlock);
133 *rds_iwdev = iwdev;
134 *cm_id = i_cm_id->cm_id;
135 return 0;
138 spin_unlock_irq(&iwdev->spinlock);
141 return 1;
144 static int rds_iw_add_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
146 struct rds_iw_cm_id *i_cm_id;
148 i_cm_id = kmalloc(sizeof *i_cm_id, GFP_KERNEL);
149 if (!i_cm_id)
150 return -ENOMEM;
152 i_cm_id->cm_id = cm_id;
154 spin_lock_irq(&rds_iwdev->spinlock);
155 list_add_tail(&i_cm_id->list, &rds_iwdev->cm_id_list);
156 spin_unlock_irq(&rds_iwdev->spinlock);
158 return 0;
161 static void rds_iw_remove_cm_id(struct rds_iw_device *rds_iwdev,
162 struct rdma_cm_id *cm_id)
164 struct rds_iw_cm_id *i_cm_id;
166 spin_lock_irq(&rds_iwdev->spinlock);
167 list_for_each_entry(i_cm_id, &rds_iwdev->cm_id_list, list) {
168 if (i_cm_id->cm_id == cm_id) {
169 list_del(&i_cm_id->list);
170 kfree(i_cm_id);
171 break;
174 spin_unlock_irq(&rds_iwdev->spinlock);
178 int rds_iw_update_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
180 struct sockaddr_in *src_addr, *dst_addr;
181 struct rds_iw_device *rds_iwdev_old;
182 struct rds_sock rs;
183 struct rdma_cm_id *pcm_id;
184 int rc;
186 src_addr = (struct sockaddr_in *)&cm_id->route.addr.src_addr;
187 dst_addr = (struct sockaddr_in *)&cm_id->route.addr.dst_addr;
189 rs.rs_bound_addr = src_addr->sin_addr.s_addr;
190 rs.rs_bound_port = src_addr->sin_port;
191 rs.rs_conn_addr = dst_addr->sin_addr.s_addr;
192 rs.rs_conn_port = dst_addr->sin_port;
194 rc = rds_iw_get_device(&rs, &rds_iwdev_old, &pcm_id);
195 if (rc)
196 rds_iw_remove_cm_id(rds_iwdev, cm_id);
198 return rds_iw_add_cm_id(rds_iwdev, cm_id);
201 void rds_iw_add_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
203 struct rds_iw_connection *ic = conn->c_transport_data;
205 /* conn was previously on the nodev_conns_list */
206 spin_lock_irq(&iw_nodev_conns_lock);
207 BUG_ON(list_empty(&iw_nodev_conns));
208 BUG_ON(list_empty(&ic->iw_node));
209 list_del(&ic->iw_node);
211 spin_lock(&rds_iwdev->spinlock);
212 list_add_tail(&ic->iw_node, &rds_iwdev->conn_list);
213 spin_unlock(&rds_iwdev->spinlock);
214 spin_unlock_irq(&iw_nodev_conns_lock);
216 ic->rds_iwdev = rds_iwdev;
219 void rds_iw_remove_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
221 struct rds_iw_connection *ic = conn->c_transport_data;
223 /* place conn on nodev_conns_list */
224 spin_lock(&iw_nodev_conns_lock);
226 spin_lock_irq(&rds_iwdev->spinlock);
227 BUG_ON(list_empty(&ic->iw_node));
228 list_del(&ic->iw_node);
229 spin_unlock_irq(&rds_iwdev->spinlock);
231 list_add_tail(&ic->iw_node, &iw_nodev_conns);
233 spin_unlock(&iw_nodev_conns_lock);
235 rds_iw_remove_cm_id(ic->rds_iwdev, ic->i_cm_id);
236 ic->rds_iwdev = NULL;
239 void __rds_iw_destroy_conns(struct list_head *list, spinlock_t *list_lock)
241 struct rds_iw_connection *ic, *_ic;
242 LIST_HEAD(tmp_list);
244 /* avoid calling conn_destroy with irqs off */
245 spin_lock_irq(list_lock);
246 list_splice(list, &tmp_list);
247 INIT_LIST_HEAD(list);
248 spin_unlock_irq(list_lock);
250 list_for_each_entry_safe(ic, _ic, &tmp_list, iw_node)
251 rds_conn_destroy(ic->conn);
254 static void rds_iw_set_scatterlist(struct rds_iw_scatterlist *sg,
255 struct scatterlist *list, unsigned int sg_len)
257 sg->list = list;
258 sg->len = sg_len;
259 sg->dma_len = 0;
260 sg->dma_npages = 0;
261 sg->bytes = 0;
264 static u64 *rds_iw_map_scatterlist(struct rds_iw_device *rds_iwdev,
265 struct rds_iw_scatterlist *sg)
267 struct ib_device *dev = rds_iwdev->dev;
268 u64 *dma_pages = NULL;
269 int i, j, ret;
271 WARN_ON(sg->dma_len);
273 sg->dma_len = ib_dma_map_sg(dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
274 if (unlikely(!sg->dma_len)) {
275 printk(KERN_WARNING "RDS/IW: dma_map_sg failed!\n");
276 return ERR_PTR(-EBUSY);
279 sg->bytes = 0;
280 sg->dma_npages = 0;
282 ret = -EINVAL;
283 for (i = 0; i < sg->dma_len; ++i) {
284 unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]);
285 u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]);
286 u64 end_addr;
288 sg->bytes += dma_len;
290 end_addr = dma_addr + dma_len;
291 if (dma_addr & PAGE_MASK) {
292 if (i > 0)
293 goto out_unmap;
294 dma_addr &= ~PAGE_MASK;
296 if (end_addr & PAGE_MASK) {
297 if (i < sg->dma_len - 1)
298 goto out_unmap;
299 end_addr = (end_addr + PAGE_MASK) & ~PAGE_MASK;
302 sg->dma_npages += (end_addr - dma_addr) >> PAGE_SHIFT;
305 /* Now gather the dma addrs into one list */
306 if (sg->dma_npages > fastreg_message_size)
307 goto out_unmap;
309 dma_pages = kmalloc(sizeof(u64) * sg->dma_npages, GFP_ATOMIC);
310 if (!dma_pages) {
311 ret = -ENOMEM;
312 goto out_unmap;
315 for (i = j = 0; i < sg->dma_len; ++i) {
316 unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]);
317 u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]);
318 u64 end_addr;
320 end_addr = dma_addr + dma_len;
321 dma_addr &= ~PAGE_MASK;
322 for (; dma_addr < end_addr; dma_addr += PAGE_SIZE)
323 dma_pages[j++] = dma_addr;
324 BUG_ON(j > sg->dma_npages);
327 return dma_pages;
329 out_unmap:
330 ib_dma_unmap_sg(rds_iwdev->dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
331 sg->dma_len = 0;
332 kfree(dma_pages);
333 return ERR_PTR(ret);
337 struct rds_iw_mr_pool *rds_iw_create_mr_pool(struct rds_iw_device *rds_iwdev)
339 struct rds_iw_mr_pool *pool;
341 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
342 if (!pool) {
343 printk(KERN_WARNING "RDS/IW: rds_iw_create_mr_pool alloc error\n");
344 return ERR_PTR(-ENOMEM);
347 pool->device = rds_iwdev;
348 INIT_LIST_HEAD(&pool->dirty_list);
349 INIT_LIST_HEAD(&pool->clean_list);
350 mutex_init(&pool->flush_lock);
351 spin_lock_init(&pool->list_lock);
352 INIT_WORK(&pool->flush_worker, rds_iw_mr_pool_flush_worker);
354 pool->max_message_size = fastreg_message_size;
355 pool->max_items = fastreg_pool_size;
356 pool->max_free_pinned = pool->max_items * pool->max_message_size / 4;
357 pool->max_pages = fastreg_message_size;
359 /* We never allow more than max_items MRs to be allocated.
360 * When we exceed more than max_items_soft, we start freeing
361 * items more aggressively.
362 * Make sure that max_items > max_items_soft > max_items / 2
364 pool->max_items_soft = pool->max_items * 3 / 4;
366 return pool;
369 void rds_iw_get_mr_info(struct rds_iw_device *rds_iwdev, struct rds_info_rdma_connection *iinfo)
371 struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
373 iinfo->rdma_mr_max = pool->max_items;
374 iinfo->rdma_mr_size = pool->max_pages;
377 void rds_iw_destroy_mr_pool(struct rds_iw_mr_pool *pool)
379 flush_workqueue(rds_wq);
380 rds_iw_flush_mr_pool(pool, 1);
381 BUG_ON(atomic_read(&pool->item_count));
382 BUG_ON(atomic_read(&pool->free_pinned));
383 kfree(pool);
386 static inline struct rds_iw_mr *rds_iw_reuse_fmr(struct rds_iw_mr_pool *pool)
388 struct rds_iw_mr *ibmr = NULL;
389 unsigned long flags;
391 spin_lock_irqsave(&pool->list_lock, flags);
392 if (!list_empty(&pool->clean_list)) {
393 ibmr = list_entry(pool->clean_list.next, struct rds_iw_mr, mapping.m_list);
394 list_del_init(&ibmr->mapping.m_list);
396 spin_unlock_irqrestore(&pool->list_lock, flags);
398 return ibmr;
401 static struct rds_iw_mr *rds_iw_alloc_mr(struct rds_iw_device *rds_iwdev)
403 struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
404 struct rds_iw_mr *ibmr = NULL;
405 int err = 0, iter = 0;
407 while (1) {
408 ibmr = rds_iw_reuse_fmr(pool);
409 if (ibmr)
410 return ibmr;
412 /* No clean MRs - now we have the choice of either
413 * allocating a fresh MR up to the limit imposed by the
414 * driver, or flush any dirty unused MRs.
415 * We try to avoid stalling in the send path if possible,
416 * so we allocate as long as we're allowed to.
418 * We're fussy with enforcing the FMR limit, though. If the driver
419 * tells us we can't use more than N fmrs, we shouldn't start
420 * arguing with it */
421 if (atomic_inc_return(&pool->item_count) <= pool->max_items)
422 break;
424 atomic_dec(&pool->item_count);
426 if (++iter > 2) {
427 rds_iw_stats_inc(s_iw_rdma_mr_pool_depleted);
428 return ERR_PTR(-EAGAIN);
431 /* We do have some empty MRs. Flush them out. */
432 rds_iw_stats_inc(s_iw_rdma_mr_pool_wait);
433 rds_iw_flush_mr_pool(pool, 0);
436 ibmr = kzalloc(sizeof(*ibmr), GFP_KERNEL);
437 if (!ibmr) {
438 err = -ENOMEM;
439 goto out_no_cigar;
442 spin_lock_init(&ibmr->mapping.m_lock);
443 INIT_LIST_HEAD(&ibmr->mapping.m_list);
444 ibmr->mapping.m_mr = ibmr;
446 err = rds_iw_init_fastreg(pool, ibmr);
447 if (err)
448 goto out_no_cigar;
450 rds_iw_stats_inc(s_iw_rdma_mr_alloc);
451 return ibmr;
453 out_no_cigar:
454 if (ibmr) {
455 rds_iw_destroy_fastreg(pool, ibmr);
456 kfree(ibmr);
458 atomic_dec(&pool->item_count);
459 return ERR_PTR(err);
462 void rds_iw_sync_mr(void *trans_private, int direction)
464 struct rds_iw_mr *ibmr = trans_private;
465 struct rds_iw_device *rds_iwdev = ibmr->device;
467 switch (direction) {
468 case DMA_FROM_DEVICE:
469 ib_dma_sync_sg_for_cpu(rds_iwdev->dev, ibmr->mapping.m_sg.list,
470 ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
471 break;
472 case DMA_TO_DEVICE:
473 ib_dma_sync_sg_for_device(rds_iwdev->dev, ibmr->mapping.m_sg.list,
474 ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
475 break;
479 static inline unsigned int rds_iw_flush_goal(struct rds_iw_mr_pool *pool, int free_all)
481 unsigned int item_count;
483 item_count = atomic_read(&pool->item_count);
484 if (free_all)
485 return item_count;
487 return 0;
491 * Flush our pool of MRs.
492 * At a minimum, all currently unused MRs are unmapped.
493 * If the number of MRs allocated exceeds the limit, we also try
494 * to free as many MRs as needed to get back to this limit.
496 static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all)
498 struct rds_iw_mr *ibmr, *next;
499 LIST_HEAD(unmap_list);
500 LIST_HEAD(kill_list);
501 unsigned long flags;
502 unsigned int nfreed = 0, ncleaned = 0, free_goal;
503 int ret = 0;
505 rds_iw_stats_inc(s_iw_rdma_mr_pool_flush);
507 mutex_lock(&pool->flush_lock);
509 spin_lock_irqsave(&pool->list_lock, flags);
510 /* Get the list of all mappings to be destroyed */
511 list_splice_init(&pool->dirty_list, &unmap_list);
512 if (free_all)
513 list_splice_init(&pool->clean_list, &kill_list);
514 spin_unlock_irqrestore(&pool->list_lock, flags);
516 free_goal = rds_iw_flush_goal(pool, free_all);
518 /* Batched invalidate of dirty MRs.
519 * For FMR based MRs, the mappings on the unmap list are
520 * actually members of an ibmr (ibmr->mapping). They either
521 * migrate to the kill_list, or have been cleaned and should be
522 * moved to the clean_list.
523 * For fastregs, they will be dynamically allocated, and
524 * will be destroyed by the unmap function.
526 if (!list_empty(&unmap_list)) {
527 ncleaned = rds_iw_unmap_fastreg_list(pool, &unmap_list, &kill_list);
528 /* If we've been asked to destroy all MRs, move those
529 * that were simply cleaned to the kill list */
530 if (free_all)
531 list_splice_init(&unmap_list, &kill_list);
534 /* Destroy any MRs that are past their best before date */
535 list_for_each_entry_safe(ibmr, next, &kill_list, mapping.m_list) {
536 rds_iw_stats_inc(s_iw_rdma_mr_free);
537 list_del(&ibmr->mapping.m_list);
538 rds_iw_destroy_fastreg(pool, ibmr);
539 kfree(ibmr);
540 nfreed++;
543 /* Anything that remains are laundered ibmrs, which we can add
544 * back to the clean list. */
545 if (!list_empty(&unmap_list)) {
546 spin_lock_irqsave(&pool->list_lock, flags);
547 list_splice(&unmap_list, &pool->clean_list);
548 spin_unlock_irqrestore(&pool->list_lock, flags);
551 atomic_sub(ncleaned, &pool->dirty_count);
552 atomic_sub(nfreed, &pool->item_count);
554 mutex_unlock(&pool->flush_lock);
555 return ret;
558 static void rds_iw_mr_pool_flush_worker(struct work_struct *work)
560 struct rds_iw_mr_pool *pool = container_of(work, struct rds_iw_mr_pool, flush_worker);
562 rds_iw_flush_mr_pool(pool, 0);
565 void rds_iw_free_mr(void *trans_private, int invalidate)
567 struct rds_iw_mr *ibmr = trans_private;
568 struct rds_iw_mr_pool *pool = ibmr->device->mr_pool;
570 rdsdebug("RDS/IW: free_mr nents %u\n", ibmr->mapping.m_sg.len);
571 if (!pool)
572 return;
574 /* Return it to the pool's free list */
575 rds_iw_free_fastreg(pool, ibmr);
577 /* If we've pinned too many pages, request a flush */
578 if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
579 atomic_read(&pool->dirty_count) >= pool->max_items / 10)
580 queue_work(rds_wq, &pool->flush_worker);
582 if (invalidate) {
583 if (likely(!in_interrupt())) {
584 rds_iw_flush_mr_pool(pool, 0);
585 } else {
586 /* We get here if the user created a MR marked
587 * as use_once and invalidate at the same time. */
588 queue_work(rds_wq, &pool->flush_worker);
593 void rds_iw_flush_mrs(void)
595 struct rds_iw_device *rds_iwdev;
597 list_for_each_entry(rds_iwdev, &rds_iw_devices, list) {
598 struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
600 if (pool)
601 rds_iw_flush_mr_pool(pool, 0);
605 void *rds_iw_get_mr(struct scatterlist *sg, unsigned long nents,
606 struct rds_sock *rs, u32 *key_ret)
608 struct rds_iw_device *rds_iwdev;
609 struct rds_iw_mr *ibmr = NULL;
610 struct rdma_cm_id *cm_id;
611 int ret;
613 ret = rds_iw_get_device(rs, &rds_iwdev, &cm_id);
614 if (ret || !cm_id) {
615 ret = -ENODEV;
616 goto out;
619 if (!rds_iwdev->mr_pool) {
620 ret = -ENODEV;
621 goto out;
624 ibmr = rds_iw_alloc_mr(rds_iwdev);
625 if (IS_ERR(ibmr))
626 return ibmr;
628 ibmr->cm_id = cm_id;
629 ibmr->device = rds_iwdev;
631 ret = rds_iw_map_fastreg(rds_iwdev->mr_pool, ibmr, sg, nents);
632 if (ret == 0)
633 *key_ret = ibmr->mr->rkey;
634 else
635 printk(KERN_WARNING "RDS/IW: failed to map mr (errno=%d)\n", ret);
637 out:
638 if (ret) {
639 if (ibmr)
640 rds_iw_free_mr(ibmr, 0);
641 ibmr = ERR_PTR(ret);
643 return ibmr;
647 * iWARP fastreg handling
649 * The life cycle of a fastreg registration is a bit different from
650 * FMRs.
651 * The idea behind fastreg is to have one MR, to which we bind different
652 * mappings over time. To avoid stalling on the expensive map and invalidate
653 * operations, these operations are pipelined on the same send queue on
654 * which we want to send the message containing the r_key.
656 * This creates a bit of a problem for us, as we do not have the destination
657 * IP in GET_MR, so the connection must be setup prior to the GET_MR call for
658 * RDMA to be correctly setup. If a fastreg request is present, rds_iw_xmit
659 * will try to queue a LOCAL_INV (if needed) and a FAST_REG_MR work request
660 * before queuing the SEND. When completions for these arrive, they are
661 * dispatched to the MR has a bit set showing that RDMa can be performed.
663 * There is another interesting aspect that's related to invalidation.
664 * The application can request that a mapping is invalidated in FREE_MR.
665 * The expectation there is that this invalidation step includes ALL
666 * PREVIOUSLY FREED MRs.
668 static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool,
669 struct rds_iw_mr *ibmr)
671 struct rds_iw_device *rds_iwdev = pool->device;
672 struct ib_fast_reg_page_list *page_list = NULL;
673 struct ib_mr *mr;
674 int err;
676 mr = ib_alloc_fast_reg_mr(rds_iwdev->pd, pool->max_message_size);
677 if (IS_ERR(mr)) {
678 err = PTR_ERR(mr);
680 printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_mr failed (err=%d)\n", err);
681 return err;
684 /* FIXME - this is overkill, but mapping->m_sg.dma_len/mapping->m_sg.dma_npages
685 * is not filled in.
687 page_list = ib_alloc_fast_reg_page_list(rds_iwdev->dev, pool->max_message_size);
688 if (IS_ERR(page_list)) {
689 err = PTR_ERR(page_list);
691 printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_page_list failed (err=%d)\n", err);
692 ib_dereg_mr(mr);
693 return err;
696 ibmr->page_list = page_list;
697 ibmr->mr = mr;
698 return 0;
701 static int rds_iw_rdma_build_fastreg(struct rds_iw_mapping *mapping)
703 struct rds_iw_mr *ibmr = mapping->m_mr;
704 struct ib_send_wr f_wr, *failed_wr;
705 int ret;
708 * Perform a WR for the fast_reg_mr. Each individual page
709 * in the sg list is added to the fast reg page list and placed
710 * inside the fast_reg_mr WR. The key used is a rolling 8bit
711 * counter, which should guarantee uniqueness.
713 ib_update_fast_reg_key(ibmr->mr, ibmr->remap_count++);
714 mapping->m_rkey = ibmr->mr->rkey;
716 memset(&f_wr, 0, sizeof(f_wr));
717 f_wr.wr_id = RDS_IW_FAST_REG_WR_ID;
718 f_wr.opcode = IB_WR_FAST_REG_MR;
719 f_wr.wr.fast_reg.length = mapping->m_sg.bytes;
720 f_wr.wr.fast_reg.rkey = mapping->m_rkey;
721 f_wr.wr.fast_reg.page_list = ibmr->page_list;
722 f_wr.wr.fast_reg.page_list_len = mapping->m_sg.dma_len;
723 f_wr.wr.fast_reg.page_shift = PAGE_SHIFT;
724 f_wr.wr.fast_reg.access_flags = IB_ACCESS_LOCAL_WRITE |
725 IB_ACCESS_REMOTE_READ |
726 IB_ACCESS_REMOTE_WRITE;
727 f_wr.wr.fast_reg.iova_start = 0;
728 f_wr.send_flags = IB_SEND_SIGNALED;
730 failed_wr = &f_wr;
731 ret = ib_post_send(ibmr->cm_id->qp, &f_wr, &failed_wr);
732 BUG_ON(failed_wr != &f_wr);
733 if (ret)
734 printk_ratelimited(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
735 __func__, __LINE__, ret);
736 return ret;
739 static int rds_iw_rdma_fastreg_inv(struct rds_iw_mr *ibmr)
741 struct ib_send_wr s_wr, *failed_wr;
742 int ret = 0;
744 if (!ibmr->cm_id->qp || !ibmr->mr)
745 goto out;
747 memset(&s_wr, 0, sizeof(s_wr));
748 s_wr.wr_id = RDS_IW_LOCAL_INV_WR_ID;
749 s_wr.opcode = IB_WR_LOCAL_INV;
750 s_wr.ex.invalidate_rkey = ibmr->mr->rkey;
751 s_wr.send_flags = IB_SEND_SIGNALED;
753 failed_wr = &s_wr;
754 ret = ib_post_send(ibmr->cm_id->qp, &s_wr, &failed_wr);
755 if (ret) {
756 printk_ratelimited(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
757 __func__, __LINE__, ret);
758 goto out;
760 out:
761 return ret;
764 static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool,
765 struct rds_iw_mr *ibmr,
766 struct scatterlist *sg,
767 unsigned int sg_len)
769 struct rds_iw_device *rds_iwdev = pool->device;
770 struct rds_iw_mapping *mapping = &ibmr->mapping;
771 u64 *dma_pages;
772 int i, ret = 0;
774 rds_iw_set_scatterlist(&mapping->m_sg, sg, sg_len);
776 dma_pages = rds_iw_map_scatterlist(rds_iwdev, &mapping->m_sg);
777 if (IS_ERR(dma_pages)) {
778 ret = PTR_ERR(dma_pages);
779 dma_pages = NULL;
780 goto out;
783 if (mapping->m_sg.dma_len > pool->max_message_size) {
784 ret = -EMSGSIZE;
785 goto out;
788 for (i = 0; i < mapping->m_sg.dma_npages; ++i)
789 ibmr->page_list->page_list[i] = dma_pages[i];
791 ret = rds_iw_rdma_build_fastreg(mapping);
792 if (ret)
793 goto out;
795 rds_iw_stats_inc(s_iw_rdma_mr_used);
797 out:
798 kfree(dma_pages);
800 return ret;
804 * "Free" a fastreg MR.
806 static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool,
807 struct rds_iw_mr *ibmr)
809 unsigned long flags;
810 int ret;
812 if (!ibmr->mapping.m_sg.dma_len)
813 return;
815 ret = rds_iw_rdma_fastreg_inv(ibmr);
816 if (ret)
817 return;
819 /* Try to post the LOCAL_INV WR to the queue. */
820 spin_lock_irqsave(&pool->list_lock, flags);
822 list_add_tail(&ibmr->mapping.m_list, &pool->dirty_list);
823 atomic_add(ibmr->mapping.m_sg.len, &pool->free_pinned);
824 atomic_inc(&pool->dirty_count);
826 spin_unlock_irqrestore(&pool->list_lock, flags);
829 static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
830 struct list_head *unmap_list,
831 struct list_head *kill_list)
833 struct rds_iw_mapping *mapping, *next;
834 unsigned int ncleaned = 0;
835 LIST_HEAD(laundered);
837 /* Batched invalidation of fastreg MRs.
838 * Why do we do it this way, even though we could pipeline unmap
839 * and remap? The reason is the application semantics - when the
840 * application requests an invalidation of MRs, it expects all
841 * previously released R_Keys to become invalid.
843 * If we implement MR reuse naively, we risk memory corruption
844 * (this has actually been observed). So the default behavior
845 * requires that a MR goes through an explicit unmap operation before
846 * we can reuse it again.
848 * We could probably improve on this a little, by allowing immediate
849 * reuse of a MR on the same socket (eg you could add small
850 * cache of unused MRs to strct rds_socket - GET_MR could grab one
851 * of these without requiring an explicit invalidate).
853 while (!list_empty(unmap_list)) {
854 unsigned long flags;
856 spin_lock_irqsave(&pool->list_lock, flags);
857 list_for_each_entry_safe(mapping, next, unmap_list, m_list) {
858 list_move(&mapping->m_list, &laundered);
859 ncleaned++;
861 spin_unlock_irqrestore(&pool->list_lock, flags);
864 /* Move all laundered mappings back to the unmap list.
865 * We do not kill any WRs right now - it doesn't seem the
866 * fastreg API has a max_remap limit. */
867 list_splice_init(&laundered, unmap_list);
869 return ncleaned;
872 static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool,
873 struct rds_iw_mr *ibmr)
875 if (ibmr->page_list)
876 ib_free_fast_reg_page_list(ibmr->page_list);
877 if (ibmr->mr)
878 ib_dereg_mr(ibmr->mr);