intel-iommu: Fix tiny theoretical race in write-buffer flush.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / pci / intel-iommu.c
blob2e2c7406131d46144f0d37732d2daf1a31d39d89
1 /*
2 * Copyright (c) 2006, Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/timer.h>
36 #include <linux/iova.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/sysdev.h>
40 #include <asm/cacheflush.h>
41 #include <asm/iommu.h>
42 #include "pci.h"
44 #define ROOT_SIZE VTD_PAGE_SIZE
45 #define CONTEXT_SIZE VTD_PAGE_SIZE
47 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
48 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
50 #define IOAPIC_RANGE_START (0xfee00000)
51 #define IOAPIC_RANGE_END (0xfeefffff)
52 #define IOVA_START_ADDR (0x1000)
54 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
56 #define MAX_AGAW_WIDTH 64
58 #define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)
60 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
61 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
62 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
64 /* global iommu list, set NULL for ignored DMAR units */
65 static struct intel_iommu **g_iommus;
67 static int rwbf_quirk;
70 * 0: Present
71 * 1-11: Reserved
72 * 12-63: Context Ptr (12 - (haw-1))
73 * 64-127: Reserved
75 struct root_entry {
76 u64 val;
77 u64 rsvd1;
79 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
80 static inline bool root_present(struct root_entry *root)
82 return (root->val & 1);
84 static inline void set_root_present(struct root_entry *root)
86 root->val |= 1;
88 static inline void set_root_value(struct root_entry *root, unsigned long value)
90 root->val |= value & VTD_PAGE_MASK;
93 static inline struct context_entry *
94 get_context_addr_from_root(struct root_entry *root)
96 return (struct context_entry *)
97 (root_present(root)?phys_to_virt(
98 root->val & VTD_PAGE_MASK) :
99 NULL);
103 * low 64 bits:
104 * 0: present
105 * 1: fault processing disable
106 * 2-3: translation type
107 * 12-63: address space root
108 * high 64 bits:
109 * 0-2: address width
110 * 3-6: aval
111 * 8-23: domain id
113 struct context_entry {
114 u64 lo;
115 u64 hi;
118 static inline bool context_present(struct context_entry *context)
120 return (context->lo & 1);
122 static inline void context_set_present(struct context_entry *context)
124 context->lo |= 1;
127 static inline void context_set_fault_enable(struct context_entry *context)
129 context->lo &= (((u64)-1) << 2) | 1;
132 static inline void context_set_translation_type(struct context_entry *context,
133 unsigned long value)
135 context->lo &= (((u64)-1) << 4) | 3;
136 context->lo |= (value & 3) << 2;
139 static inline void context_set_address_root(struct context_entry *context,
140 unsigned long value)
142 context->lo |= value & VTD_PAGE_MASK;
145 static inline void context_set_address_width(struct context_entry *context,
146 unsigned long value)
148 context->hi |= value & 7;
151 static inline void context_set_domain_id(struct context_entry *context,
152 unsigned long value)
154 context->hi |= (value & ((1 << 16) - 1)) << 8;
157 static inline void context_clear_entry(struct context_entry *context)
159 context->lo = 0;
160 context->hi = 0;
164 * 0: readable
165 * 1: writable
166 * 2-6: reserved
167 * 7: super page
168 * 8-10: available
169 * 11: snoop behavior
170 * 12-63: Host physcial address
172 struct dma_pte {
173 u64 val;
176 static inline void dma_clear_pte(struct dma_pte *pte)
178 pte->val = 0;
181 static inline void dma_set_pte_readable(struct dma_pte *pte)
183 pte->val |= DMA_PTE_READ;
186 static inline void dma_set_pte_writable(struct dma_pte *pte)
188 pte->val |= DMA_PTE_WRITE;
191 static inline void dma_set_pte_snp(struct dma_pte *pte)
193 pte->val |= DMA_PTE_SNP;
196 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
198 pte->val = (pte->val & ~3) | (prot & 3);
201 static inline u64 dma_pte_addr(struct dma_pte *pte)
203 return (pte->val & VTD_PAGE_MASK);
206 static inline void dma_set_pte_addr(struct dma_pte *pte, u64 addr)
208 pte->val |= (addr & VTD_PAGE_MASK);
211 static inline bool dma_pte_present(struct dma_pte *pte)
213 return (pte->val & 3) != 0;
216 /* devices under the same p2p bridge are owned in one domain */
217 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
219 /* domain represents a virtual machine, more than one devices
220 * across iommus may be owned in one domain, e.g. kvm guest.
222 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
224 struct dmar_domain {
225 int id; /* domain id */
226 unsigned long iommu_bmp; /* bitmap of iommus this domain uses*/
228 struct list_head devices; /* all devices' list */
229 struct iova_domain iovad; /* iova's that belong to this domain */
231 struct dma_pte *pgd; /* virtual address */
232 spinlock_t mapping_lock; /* page table lock */
233 int gaw; /* max guest address width */
235 /* adjusted guest address width, 0 is level 2 30-bit */
236 int agaw;
238 int flags; /* flags to find out type of domain */
240 int iommu_coherency;/* indicate coherency of iommu access */
241 int iommu_snooping; /* indicate snooping control feature*/
242 int iommu_count; /* reference count of iommu */
243 spinlock_t iommu_lock; /* protect iommu set in domain */
244 u64 max_addr; /* maximum mapped address */
247 /* PCI domain-device relationship */
248 struct device_domain_info {
249 struct list_head link; /* link to domain siblings */
250 struct list_head global; /* link to global list */
251 int segment; /* PCI domain */
252 u8 bus; /* PCI bus number */
253 u8 devfn; /* PCI devfn number */
254 struct pci_dev *dev; /* it's NULL for PCIE-to-PCI bridge */
255 struct dmar_domain *domain; /* pointer to domain */
258 static void flush_unmaps_timeout(unsigned long data);
260 DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
262 #define HIGH_WATER_MARK 250
263 struct deferred_flush_tables {
264 int next;
265 struct iova *iova[HIGH_WATER_MARK];
266 struct dmar_domain *domain[HIGH_WATER_MARK];
269 static struct deferred_flush_tables *deferred_flush;
271 /* bitmap for indexing intel_iommus */
272 static int g_num_of_iommus;
274 static DEFINE_SPINLOCK(async_umap_flush_lock);
275 static LIST_HEAD(unmaps_to_do);
277 static int timer_on;
278 static long list_size;
280 static void domain_remove_dev_info(struct dmar_domain *domain);
282 #ifdef CONFIG_DMAR_DEFAULT_ON
283 int dmar_disabled = 0;
284 #else
285 int dmar_disabled = 1;
286 #endif /*CONFIG_DMAR_DEFAULT_ON*/
288 static int __initdata dmar_map_gfx = 1;
289 static int dmar_forcedac;
290 static int intel_iommu_strict;
292 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
293 static DEFINE_SPINLOCK(device_domain_lock);
294 static LIST_HEAD(device_domain_list);
296 static struct iommu_ops intel_iommu_ops;
298 static int __init intel_iommu_setup(char *str)
300 if (!str)
301 return -EINVAL;
302 while (*str) {
303 if (!strncmp(str, "on", 2)) {
304 dmar_disabled = 0;
305 printk(KERN_INFO "Intel-IOMMU: enabled\n");
306 } else if (!strncmp(str, "off", 3)) {
307 dmar_disabled = 1;
308 printk(KERN_INFO "Intel-IOMMU: disabled\n");
309 } else if (!strncmp(str, "igfx_off", 8)) {
310 dmar_map_gfx = 0;
311 printk(KERN_INFO
312 "Intel-IOMMU: disable GFX device mapping\n");
313 } else if (!strncmp(str, "forcedac", 8)) {
314 printk(KERN_INFO
315 "Intel-IOMMU: Forcing DAC for PCI devices\n");
316 dmar_forcedac = 1;
317 } else if (!strncmp(str, "strict", 6)) {
318 printk(KERN_INFO
319 "Intel-IOMMU: disable batched IOTLB flush\n");
320 intel_iommu_strict = 1;
323 str += strcspn(str, ",");
324 while (*str == ',')
325 str++;
327 return 0;
329 __setup("intel_iommu=", intel_iommu_setup);
331 static struct kmem_cache *iommu_domain_cache;
332 static struct kmem_cache *iommu_devinfo_cache;
333 static struct kmem_cache *iommu_iova_cache;
335 static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
337 unsigned int flags;
338 void *vaddr;
340 /* trying to avoid low memory issues */
341 flags = current->flags & PF_MEMALLOC;
342 current->flags |= PF_MEMALLOC;
343 vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
344 current->flags &= (~PF_MEMALLOC | flags);
345 return vaddr;
349 static inline void *alloc_pgtable_page(void)
351 unsigned int flags;
352 void *vaddr;
354 /* trying to avoid low memory issues */
355 flags = current->flags & PF_MEMALLOC;
356 current->flags |= PF_MEMALLOC;
357 vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
358 current->flags &= (~PF_MEMALLOC | flags);
359 return vaddr;
362 static inline void free_pgtable_page(void *vaddr)
364 free_page((unsigned long)vaddr);
367 static inline void *alloc_domain_mem(void)
369 return iommu_kmem_cache_alloc(iommu_domain_cache);
372 static void free_domain_mem(void *vaddr)
374 kmem_cache_free(iommu_domain_cache, vaddr);
377 static inline void * alloc_devinfo_mem(void)
379 return iommu_kmem_cache_alloc(iommu_devinfo_cache);
382 static inline void free_devinfo_mem(void *vaddr)
384 kmem_cache_free(iommu_devinfo_cache, vaddr);
387 struct iova *alloc_iova_mem(void)
389 return iommu_kmem_cache_alloc(iommu_iova_cache);
392 void free_iova_mem(struct iova *iova)
394 kmem_cache_free(iommu_iova_cache, iova);
398 static inline int width_to_agaw(int width);
400 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
402 unsigned long sagaw;
403 int agaw = -1;
405 sagaw = cap_sagaw(iommu->cap);
406 for (agaw = width_to_agaw(max_gaw);
407 agaw >= 0; agaw--) {
408 if (test_bit(agaw, &sagaw))
409 break;
412 return agaw;
416 * Calculate max SAGAW for each iommu.
418 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
420 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
424 * calculate agaw for each iommu.
425 * "SAGAW" may be different across iommus, use a default agaw, and
426 * get a supported less agaw for iommus that don't support the default agaw.
428 int iommu_calculate_agaw(struct intel_iommu *iommu)
430 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
433 /* in native case, each domain is related to only one iommu */
434 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
436 int iommu_id;
438 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
440 iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
441 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
442 return NULL;
444 return g_iommus[iommu_id];
447 static void domain_update_iommu_coherency(struct dmar_domain *domain)
449 int i;
451 domain->iommu_coherency = 1;
453 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
454 for (; i < g_num_of_iommus; ) {
455 if (!ecap_coherent(g_iommus[i]->ecap)) {
456 domain->iommu_coherency = 0;
457 break;
459 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
463 static void domain_update_iommu_snooping(struct dmar_domain *domain)
465 int i;
467 domain->iommu_snooping = 1;
469 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
470 for (; i < g_num_of_iommus; ) {
471 if (!ecap_sc_support(g_iommus[i]->ecap)) {
472 domain->iommu_snooping = 0;
473 break;
475 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
479 /* Some capabilities may be different across iommus */
480 static void domain_update_iommu_cap(struct dmar_domain *domain)
482 domain_update_iommu_coherency(domain);
483 domain_update_iommu_snooping(domain);
486 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
488 struct dmar_drhd_unit *drhd = NULL;
489 int i;
491 for_each_drhd_unit(drhd) {
492 if (drhd->ignored)
493 continue;
494 if (segment != drhd->segment)
495 continue;
497 for (i = 0; i < drhd->devices_cnt; i++) {
498 if (drhd->devices[i] &&
499 drhd->devices[i]->bus->number == bus &&
500 drhd->devices[i]->devfn == devfn)
501 return drhd->iommu;
502 if (drhd->devices[i] &&
503 drhd->devices[i]->subordinate &&
504 drhd->devices[i]->subordinate->number <= bus &&
505 drhd->devices[i]->subordinate->subordinate >= bus)
506 return drhd->iommu;
509 if (drhd->include_all)
510 return drhd->iommu;
513 return NULL;
516 static void domain_flush_cache(struct dmar_domain *domain,
517 void *addr, int size)
519 if (!domain->iommu_coherency)
520 clflush_cache_range(addr, size);
523 /* Gets context entry for a given bus and devfn */
524 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
525 u8 bus, u8 devfn)
527 struct root_entry *root;
528 struct context_entry *context;
529 unsigned long phy_addr;
530 unsigned long flags;
532 spin_lock_irqsave(&iommu->lock, flags);
533 root = &iommu->root_entry[bus];
534 context = get_context_addr_from_root(root);
535 if (!context) {
536 context = (struct context_entry *)alloc_pgtable_page();
537 if (!context) {
538 spin_unlock_irqrestore(&iommu->lock, flags);
539 return NULL;
541 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
542 phy_addr = virt_to_phys((void *)context);
543 set_root_value(root, phy_addr);
544 set_root_present(root);
545 __iommu_flush_cache(iommu, root, sizeof(*root));
547 spin_unlock_irqrestore(&iommu->lock, flags);
548 return &context[devfn];
551 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
553 struct root_entry *root;
554 struct context_entry *context;
555 int ret;
556 unsigned long flags;
558 spin_lock_irqsave(&iommu->lock, flags);
559 root = &iommu->root_entry[bus];
560 context = get_context_addr_from_root(root);
561 if (!context) {
562 ret = 0;
563 goto out;
565 ret = context_present(&context[devfn]);
566 out:
567 spin_unlock_irqrestore(&iommu->lock, flags);
568 return ret;
571 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
573 struct root_entry *root;
574 struct context_entry *context;
575 unsigned long flags;
577 spin_lock_irqsave(&iommu->lock, flags);
578 root = &iommu->root_entry[bus];
579 context = get_context_addr_from_root(root);
580 if (context) {
581 context_clear_entry(&context[devfn]);
582 __iommu_flush_cache(iommu, &context[devfn], \
583 sizeof(*context));
585 spin_unlock_irqrestore(&iommu->lock, flags);
588 static void free_context_table(struct intel_iommu *iommu)
590 struct root_entry *root;
591 int i;
592 unsigned long flags;
593 struct context_entry *context;
595 spin_lock_irqsave(&iommu->lock, flags);
596 if (!iommu->root_entry) {
597 goto out;
599 for (i = 0; i < ROOT_ENTRY_NR; i++) {
600 root = &iommu->root_entry[i];
601 context = get_context_addr_from_root(root);
602 if (context)
603 free_pgtable_page(context);
605 free_pgtable_page(iommu->root_entry);
606 iommu->root_entry = NULL;
607 out:
608 spin_unlock_irqrestore(&iommu->lock, flags);
611 /* page table handling */
612 #define LEVEL_STRIDE (9)
613 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
615 static inline int agaw_to_level(int agaw)
617 return agaw + 2;
620 static inline int agaw_to_width(int agaw)
622 return 30 + agaw * LEVEL_STRIDE;
626 static inline int width_to_agaw(int width)
628 return (width - 30) / LEVEL_STRIDE;
631 static inline unsigned int level_to_offset_bits(int level)
633 return (12 + (level - 1) * LEVEL_STRIDE);
636 static inline int address_level_offset(u64 addr, int level)
638 return ((addr >> level_to_offset_bits(level)) & LEVEL_MASK);
641 static inline u64 level_mask(int level)
643 return ((u64)-1 << level_to_offset_bits(level));
646 static inline u64 level_size(int level)
648 return ((u64)1 << level_to_offset_bits(level));
651 static inline u64 align_to_level(u64 addr, int level)
653 return ((addr + level_size(level) - 1) & level_mask(level));
656 static struct dma_pte * addr_to_dma_pte(struct dmar_domain *domain, u64 addr)
658 int addr_width = agaw_to_width(domain->agaw);
659 struct dma_pte *parent, *pte = NULL;
660 int level = agaw_to_level(domain->agaw);
661 int offset;
662 unsigned long flags;
664 BUG_ON(!domain->pgd);
666 addr &= (((u64)1) << addr_width) - 1;
667 parent = domain->pgd;
669 spin_lock_irqsave(&domain->mapping_lock, flags);
670 while (level > 0) {
671 void *tmp_page;
673 offset = address_level_offset(addr, level);
674 pte = &parent[offset];
675 if (level == 1)
676 break;
678 if (!dma_pte_present(pte)) {
679 tmp_page = alloc_pgtable_page();
681 if (!tmp_page) {
682 spin_unlock_irqrestore(&domain->mapping_lock,
683 flags);
684 return NULL;
686 domain_flush_cache(domain, tmp_page, PAGE_SIZE);
687 dma_set_pte_addr(pte, virt_to_phys(tmp_page));
689 * high level table always sets r/w, last level page
690 * table control read/write
692 dma_set_pte_readable(pte);
693 dma_set_pte_writable(pte);
694 domain_flush_cache(domain, pte, sizeof(*pte));
696 parent = phys_to_virt(dma_pte_addr(pte));
697 level--;
700 spin_unlock_irqrestore(&domain->mapping_lock, flags);
701 return pte;
704 /* return address's pte at specific level */
705 static struct dma_pte *dma_addr_level_pte(struct dmar_domain *domain, u64 addr,
706 int level)
708 struct dma_pte *parent, *pte = NULL;
709 int total = agaw_to_level(domain->agaw);
710 int offset;
712 parent = domain->pgd;
713 while (level <= total) {
714 offset = address_level_offset(addr, total);
715 pte = &parent[offset];
716 if (level == total)
717 return pte;
719 if (!dma_pte_present(pte))
720 break;
721 parent = phys_to_virt(dma_pte_addr(pte));
722 total--;
724 return NULL;
727 /* clear one page's page table */
728 static void dma_pte_clear_one(struct dmar_domain *domain, u64 addr)
730 struct dma_pte *pte = NULL;
732 /* get last level pte */
733 pte = dma_addr_level_pte(domain, addr, 1);
735 if (pte) {
736 dma_clear_pte(pte);
737 domain_flush_cache(domain, pte, sizeof(*pte));
741 /* clear last level pte, a tlb flush should be followed */
742 static void dma_pte_clear_range(struct dmar_domain *domain, u64 start, u64 end)
744 int addr_width = agaw_to_width(domain->agaw);
745 int npages;
747 start &= (((u64)1) << addr_width) - 1;
748 end &= (((u64)1) << addr_width) - 1;
749 /* in case it's partial page */
750 start &= PAGE_MASK;
751 end = PAGE_ALIGN(end);
752 npages = (end - start) / VTD_PAGE_SIZE;
754 /* we don't need lock here, nobody else touches the iova range */
755 while (npages--) {
756 dma_pte_clear_one(domain, start);
757 start += VTD_PAGE_SIZE;
761 /* free page table pages. last level pte should already be cleared */
762 static void dma_pte_free_pagetable(struct dmar_domain *domain,
763 u64 start, u64 end)
765 int addr_width = agaw_to_width(domain->agaw);
766 struct dma_pte *pte;
767 int total = agaw_to_level(domain->agaw);
768 int level;
769 u64 tmp;
771 start &= (((u64)1) << addr_width) - 1;
772 end &= (((u64)1) << addr_width) - 1;
774 /* we don't need lock here, nobody else touches the iova range */
775 level = 2;
776 while (level <= total) {
777 tmp = align_to_level(start, level);
778 if (tmp >= end || (tmp + level_size(level) > end))
779 return;
781 while (tmp < end) {
782 pte = dma_addr_level_pte(domain, tmp, level);
783 if (pte) {
784 free_pgtable_page(
785 phys_to_virt(dma_pte_addr(pte)));
786 dma_clear_pte(pte);
787 domain_flush_cache(domain, pte, sizeof(*pte));
789 tmp += level_size(level);
791 level++;
793 /* free pgd */
794 if (start == 0 && end >= ((((u64)1) << addr_width) - 1)) {
795 free_pgtable_page(domain->pgd);
796 domain->pgd = NULL;
800 /* iommu handling */
801 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
803 struct root_entry *root;
804 unsigned long flags;
806 root = (struct root_entry *)alloc_pgtable_page();
807 if (!root)
808 return -ENOMEM;
810 __iommu_flush_cache(iommu, root, ROOT_SIZE);
812 spin_lock_irqsave(&iommu->lock, flags);
813 iommu->root_entry = root;
814 spin_unlock_irqrestore(&iommu->lock, flags);
816 return 0;
819 static void iommu_set_root_entry(struct intel_iommu *iommu)
821 void *addr;
822 u32 cmd, sts;
823 unsigned long flag;
825 addr = iommu->root_entry;
827 spin_lock_irqsave(&iommu->register_lock, flag);
828 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
830 cmd = iommu->gcmd | DMA_GCMD_SRTP;
831 writel(cmd, iommu->reg + DMAR_GCMD_REG);
833 /* Make sure hardware complete it */
834 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
835 readl, (sts & DMA_GSTS_RTPS), sts);
837 spin_unlock_irqrestore(&iommu->register_lock, flag);
840 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
842 u32 val;
843 unsigned long flag;
845 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
846 return;
847 spin_lock_irqsave(&iommu->register_lock, flag);
848 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
850 /* Make sure hardware complete it */
851 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
852 readl, (!(val & DMA_GSTS_WBFS)), val);
854 spin_unlock_irqrestore(&iommu->register_lock, flag);
857 /* return value determine if we need a write buffer flush */
858 static void __iommu_flush_context(struct intel_iommu *iommu,
859 u16 did, u16 source_id, u8 function_mask,
860 u64 type)
862 u64 val = 0;
863 unsigned long flag;
865 switch (type) {
866 case DMA_CCMD_GLOBAL_INVL:
867 val = DMA_CCMD_GLOBAL_INVL;
868 break;
869 case DMA_CCMD_DOMAIN_INVL:
870 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
871 break;
872 case DMA_CCMD_DEVICE_INVL:
873 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
874 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
875 break;
876 default:
877 BUG();
879 val |= DMA_CCMD_ICC;
881 spin_lock_irqsave(&iommu->register_lock, flag);
882 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
884 /* Make sure hardware complete it */
885 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
886 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
888 spin_unlock_irqrestore(&iommu->register_lock, flag);
891 /* return value determine if we need a write buffer flush */
892 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
893 u64 addr, unsigned int size_order, u64 type)
895 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
896 u64 val = 0, val_iva = 0;
897 unsigned long flag;
899 switch (type) {
900 case DMA_TLB_GLOBAL_FLUSH:
901 /* global flush doesn't need set IVA_REG */
902 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
903 break;
904 case DMA_TLB_DSI_FLUSH:
905 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
906 break;
907 case DMA_TLB_PSI_FLUSH:
908 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
909 /* Note: always flush non-leaf currently */
910 val_iva = size_order | addr;
911 break;
912 default:
913 BUG();
915 /* Note: set drain read/write */
916 #if 0
918 * This is probably to be super secure.. Looks like we can
919 * ignore it without any impact.
921 if (cap_read_drain(iommu->cap))
922 val |= DMA_TLB_READ_DRAIN;
923 #endif
924 if (cap_write_drain(iommu->cap))
925 val |= DMA_TLB_WRITE_DRAIN;
927 spin_lock_irqsave(&iommu->register_lock, flag);
928 /* Note: Only uses first TLB reg currently */
929 if (val_iva)
930 dmar_writeq(iommu->reg + tlb_offset, val_iva);
931 dmar_writeq(iommu->reg + tlb_offset + 8, val);
933 /* Make sure hardware complete it */
934 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
935 dmar_readq, (!(val & DMA_TLB_IVT)), val);
937 spin_unlock_irqrestore(&iommu->register_lock, flag);
939 /* check IOTLB invalidation granularity */
940 if (DMA_TLB_IAIG(val) == 0)
941 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
942 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
943 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
944 (unsigned long long)DMA_TLB_IIRG(type),
945 (unsigned long long)DMA_TLB_IAIG(val));
948 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
949 u64 addr, unsigned int pages)
951 unsigned int mask;
953 BUG_ON(addr & (~VTD_PAGE_MASK));
954 BUG_ON(pages == 0);
956 /* Fallback to domain selective flush if no PSI support */
957 if (!cap_pgsel_inv(iommu->cap))
958 return iommu->flush.flush_iotlb(iommu, did, 0, 0,
959 DMA_TLB_DSI_FLUSH);
962 * PSI requires page size to be 2 ^ x, and the base address is naturally
963 * aligned to the size
965 mask = ilog2(__roundup_pow_of_two(pages));
966 /* Fallback to domain selective flush if size is too big */
967 if (mask > cap_max_amask_val(iommu->cap))
968 return iommu->flush.flush_iotlb(iommu, did, 0, 0,
969 DMA_TLB_DSI_FLUSH);
971 return iommu->flush.flush_iotlb(iommu, did, addr, mask,
972 DMA_TLB_PSI_FLUSH);
975 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
977 u32 pmen;
978 unsigned long flags;
980 spin_lock_irqsave(&iommu->register_lock, flags);
981 pmen = readl(iommu->reg + DMAR_PMEN_REG);
982 pmen &= ~DMA_PMEN_EPM;
983 writel(pmen, iommu->reg + DMAR_PMEN_REG);
985 /* wait for the protected region status bit to clear */
986 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
987 readl, !(pmen & DMA_PMEN_PRS), pmen);
989 spin_unlock_irqrestore(&iommu->register_lock, flags);
992 static int iommu_enable_translation(struct intel_iommu *iommu)
994 u32 sts;
995 unsigned long flags;
997 spin_lock_irqsave(&iommu->register_lock, flags);
998 writel(iommu->gcmd|DMA_GCMD_TE, iommu->reg + DMAR_GCMD_REG);
1000 /* Make sure hardware complete it */
1001 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1002 readl, (sts & DMA_GSTS_TES), sts);
1004 iommu->gcmd |= DMA_GCMD_TE;
1005 spin_unlock_irqrestore(&iommu->register_lock, flags);
1006 return 0;
1009 static int iommu_disable_translation(struct intel_iommu *iommu)
1011 u32 sts;
1012 unsigned long flag;
1014 spin_lock_irqsave(&iommu->register_lock, flag);
1015 iommu->gcmd &= ~DMA_GCMD_TE;
1016 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1018 /* Make sure hardware complete it */
1019 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1020 readl, (!(sts & DMA_GSTS_TES)), sts);
1022 spin_unlock_irqrestore(&iommu->register_lock, flag);
1023 return 0;
1027 static int iommu_init_domains(struct intel_iommu *iommu)
1029 unsigned long ndomains;
1030 unsigned long nlongs;
1032 ndomains = cap_ndoms(iommu->cap);
1033 pr_debug("Number of Domains supportd <%ld>\n", ndomains);
1034 nlongs = BITS_TO_LONGS(ndomains);
1036 /* TBD: there might be 64K domains,
1037 * consider other allocation for future chip
1039 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1040 if (!iommu->domain_ids) {
1041 printk(KERN_ERR "Allocating domain id array failed\n");
1042 return -ENOMEM;
1044 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1045 GFP_KERNEL);
1046 if (!iommu->domains) {
1047 printk(KERN_ERR "Allocating domain array failed\n");
1048 kfree(iommu->domain_ids);
1049 return -ENOMEM;
1052 spin_lock_init(&iommu->lock);
1055 * if Caching mode is set, then invalid translations are tagged
1056 * with domainid 0. Hence we need to pre-allocate it.
1058 if (cap_caching_mode(iommu->cap))
1059 set_bit(0, iommu->domain_ids);
1060 return 0;
1064 static void domain_exit(struct dmar_domain *domain);
1065 static void vm_domain_exit(struct dmar_domain *domain);
1067 void free_dmar_iommu(struct intel_iommu *iommu)
1069 struct dmar_domain *domain;
1070 int i;
1071 unsigned long flags;
1073 i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
1074 for (; i < cap_ndoms(iommu->cap); ) {
1075 domain = iommu->domains[i];
1076 clear_bit(i, iommu->domain_ids);
1078 spin_lock_irqsave(&domain->iommu_lock, flags);
1079 if (--domain->iommu_count == 0) {
1080 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1081 vm_domain_exit(domain);
1082 else
1083 domain_exit(domain);
1085 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1087 i = find_next_bit(iommu->domain_ids,
1088 cap_ndoms(iommu->cap), i+1);
1091 if (iommu->gcmd & DMA_GCMD_TE)
1092 iommu_disable_translation(iommu);
1094 if (iommu->irq) {
1095 set_irq_data(iommu->irq, NULL);
1096 /* This will mask the irq */
1097 free_irq(iommu->irq, iommu);
1098 destroy_irq(iommu->irq);
1101 kfree(iommu->domains);
1102 kfree(iommu->domain_ids);
1104 g_iommus[iommu->seq_id] = NULL;
1106 /* if all iommus are freed, free g_iommus */
1107 for (i = 0; i < g_num_of_iommus; i++) {
1108 if (g_iommus[i])
1109 break;
1112 if (i == g_num_of_iommus)
1113 kfree(g_iommus);
1115 /* free context mapping */
1116 free_context_table(iommu);
1119 static struct dmar_domain * iommu_alloc_domain(struct intel_iommu *iommu)
1121 unsigned long num;
1122 unsigned long ndomains;
1123 struct dmar_domain *domain;
1124 unsigned long flags;
1126 domain = alloc_domain_mem();
1127 if (!domain)
1128 return NULL;
1130 ndomains = cap_ndoms(iommu->cap);
1132 spin_lock_irqsave(&iommu->lock, flags);
1133 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1134 if (num >= ndomains) {
1135 spin_unlock_irqrestore(&iommu->lock, flags);
1136 free_domain_mem(domain);
1137 printk(KERN_ERR "IOMMU: no free domain ids\n");
1138 return NULL;
1141 set_bit(num, iommu->domain_ids);
1142 domain->id = num;
1143 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1144 set_bit(iommu->seq_id, &domain->iommu_bmp);
1145 domain->flags = 0;
1146 iommu->domains[num] = domain;
1147 spin_unlock_irqrestore(&iommu->lock, flags);
1149 return domain;
1152 static void iommu_free_domain(struct dmar_domain *domain)
1154 unsigned long flags;
1155 struct intel_iommu *iommu;
1157 iommu = domain_get_iommu(domain);
1159 spin_lock_irqsave(&iommu->lock, flags);
1160 clear_bit(domain->id, iommu->domain_ids);
1161 spin_unlock_irqrestore(&iommu->lock, flags);
1164 static struct iova_domain reserved_iova_list;
1165 static struct lock_class_key reserved_alloc_key;
1166 static struct lock_class_key reserved_rbtree_key;
1168 static void dmar_init_reserved_ranges(void)
1170 struct pci_dev *pdev = NULL;
1171 struct iova *iova;
1172 int i;
1173 u64 addr, size;
1175 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1177 lockdep_set_class(&reserved_iova_list.iova_alloc_lock,
1178 &reserved_alloc_key);
1179 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1180 &reserved_rbtree_key);
1182 /* IOAPIC ranges shouldn't be accessed by DMA */
1183 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1184 IOVA_PFN(IOAPIC_RANGE_END));
1185 if (!iova)
1186 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1188 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1189 for_each_pci_dev(pdev) {
1190 struct resource *r;
1192 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1193 r = &pdev->resource[i];
1194 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1195 continue;
1196 addr = r->start;
1197 addr &= PAGE_MASK;
1198 size = r->end - addr;
1199 size = PAGE_ALIGN(size);
1200 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(addr),
1201 IOVA_PFN(size + addr) - 1);
1202 if (!iova)
1203 printk(KERN_ERR "Reserve iova failed\n");
1209 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1211 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1214 static inline int guestwidth_to_adjustwidth(int gaw)
1216 int agaw;
1217 int r = (gaw - 12) % 9;
1219 if (r == 0)
1220 agaw = gaw;
1221 else
1222 agaw = gaw + 9 - r;
1223 if (agaw > 64)
1224 agaw = 64;
1225 return agaw;
1228 static int domain_init(struct dmar_domain *domain, int guest_width)
1230 struct intel_iommu *iommu;
1231 int adjust_width, agaw;
1232 unsigned long sagaw;
1234 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1235 spin_lock_init(&domain->mapping_lock);
1236 spin_lock_init(&domain->iommu_lock);
1238 domain_reserve_special_ranges(domain);
1240 /* calculate AGAW */
1241 iommu = domain_get_iommu(domain);
1242 if (guest_width > cap_mgaw(iommu->cap))
1243 guest_width = cap_mgaw(iommu->cap);
1244 domain->gaw = guest_width;
1245 adjust_width = guestwidth_to_adjustwidth(guest_width);
1246 agaw = width_to_agaw(adjust_width);
1247 sagaw = cap_sagaw(iommu->cap);
1248 if (!test_bit(agaw, &sagaw)) {
1249 /* hardware doesn't support it, choose a bigger one */
1250 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1251 agaw = find_next_bit(&sagaw, 5, agaw);
1252 if (agaw >= 5)
1253 return -ENODEV;
1255 domain->agaw = agaw;
1256 INIT_LIST_HEAD(&domain->devices);
1258 if (ecap_coherent(iommu->ecap))
1259 domain->iommu_coherency = 1;
1260 else
1261 domain->iommu_coherency = 0;
1263 if (ecap_sc_support(iommu->ecap))
1264 domain->iommu_snooping = 1;
1265 else
1266 domain->iommu_snooping = 0;
1268 domain->iommu_count = 1;
1270 /* always allocate the top pgd */
1271 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
1272 if (!domain->pgd)
1273 return -ENOMEM;
1274 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1275 return 0;
1278 static void domain_exit(struct dmar_domain *domain)
1280 u64 end;
1282 /* Domain 0 is reserved, so dont process it */
1283 if (!domain)
1284 return;
1286 domain_remove_dev_info(domain);
1287 /* destroy iovas */
1288 put_iova_domain(&domain->iovad);
1289 end = DOMAIN_MAX_ADDR(domain->gaw);
1290 end = end & (~PAGE_MASK);
1292 /* clear ptes */
1293 dma_pte_clear_range(domain, 0, end);
1295 /* free page tables */
1296 dma_pte_free_pagetable(domain, 0, end);
1298 iommu_free_domain(domain);
1299 free_domain_mem(domain);
1302 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1303 u8 bus, u8 devfn, int translation)
1305 struct context_entry *context;
1306 unsigned long flags;
1307 struct intel_iommu *iommu;
1308 struct dma_pte *pgd;
1309 unsigned long num;
1310 unsigned long ndomains;
1311 int id;
1312 int agaw;
1314 pr_debug("Set context mapping for %02x:%02x.%d\n",
1315 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1317 BUG_ON(!domain->pgd);
1318 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1319 translation != CONTEXT_TT_MULTI_LEVEL);
1321 iommu = device_to_iommu(segment, bus, devfn);
1322 if (!iommu)
1323 return -ENODEV;
1325 context = device_to_context_entry(iommu, bus, devfn);
1326 if (!context)
1327 return -ENOMEM;
1328 spin_lock_irqsave(&iommu->lock, flags);
1329 if (context_present(context)) {
1330 spin_unlock_irqrestore(&iommu->lock, flags);
1331 return 0;
1334 id = domain->id;
1335 pgd = domain->pgd;
1337 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) {
1338 int found = 0;
1340 /* find an available domain id for this device in iommu */
1341 ndomains = cap_ndoms(iommu->cap);
1342 num = find_first_bit(iommu->domain_ids, ndomains);
1343 for (; num < ndomains; ) {
1344 if (iommu->domains[num] == domain) {
1345 id = num;
1346 found = 1;
1347 break;
1349 num = find_next_bit(iommu->domain_ids,
1350 cap_ndoms(iommu->cap), num+1);
1353 if (found == 0) {
1354 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1355 if (num >= ndomains) {
1356 spin_unlock_irqrestore(&iommu->lock, flags);
1357 printk(KERN_ERR "IOMMU: no free domain ids\n");
1358 return -EFAULT;
1361 set_bit(num, iommu->domain_ids);
1362 iommu->domains[num] = domain;
1363 id = num;
1366 /* Skip top levels of page tables for
1367 * iommu which has less agaw than default.
1369 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1370 pgd = phys_to_virt(dma_pte_addr(pgd));
1371 if (!dma_pte_present(pgd)) {
1372 spin_unlock_irqrestore(&iommu->lock, flags);
1373 return -ENOMEM;
1378 context_set_domain_id(context, id);
1381 * In pass through mode, AW must be programmed to indicate the largest
1382 * AGAW value supported by hardware. And ASR is ignored by hardware.
1384 if (likely(translation == CONTEXT_TT_MULTI_LEVEL)) {
1385 context_set_address_width(context, iommu->agaw);
1386 context_set_address_root(context, virt_to_phys(pgd));
1387 } else
1388 context_set_address_width(context, iommu->msagaw);
1390 context_set_translation_type(context, translation);
1391 context_set_fault_enable(context);
1392 context_set_present(context);
1393 domain_flush_cache(domain, context, sizeof(*context));
1396 * It's a non-present to present mapping. If hardware doesn't cache
1397 * non-present entry we only need to flush the write-buffer. If the
1398 * _does_ cache non-present entries, then it does so in the special
1399 * domain #0, which we have to flush:
1401 if (cap_caching_mode(iommu->cap)) {
1402 iommu->flush.flush_context(iommu, 0,
1403 (((u16)bus) << 8) | devfn,
1404 DMA_CCMD_MASK_NOBIT,
1405 DMA_CCMD_DEVICE_INVL);
1406 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_DSI_FLUSH);
1407 } else {
1408 iommu_flush_write_buffer(iommu);
1410 spin_unlock_irqrestore(&iommu->lock, flags);
1412 spin_lock_irqsave(&domain->iommu_lock, flags);
1413 if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1414 domain->iommu_count++;
1415 domain_update_iommu_cap(domain);
1417 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1418 return 0;
1421 static int
1422 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1423 int translation)
1425 int ret;
1426 struct pci_dev *tmp, *parent;
1428 ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1429 pdev->bus->number, pdev->devfn,
1430 translation);
1431 if (ret)
1432 return ret;
1434 /* dependent device mapping */
1435 tmp = pci_find_upstream_pcie_bridge(pdev);
1436 if (!tmp)
1437 return 0;
1438 /* Secondary interface's bus number and devfn 0 */
1439 parent = pdev->bus->self;
1440 while (parent != tmp) {
1441 ret = domain_context_mapping_one(domain,
1442 pci_domain_nr(parent->bus),
1443 parent->bus->number,
1444 parent->devfn, translation);
1445 if (ret)
1446 return ret;
1447 parent = parent->bus->self;
1449 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
1450 return domain_context_mapping_one(domain,
1451 pci_domain_nr(tmp->subordinate),
1452 tmp->subordinate->number, 0,
1453 translation);
1454 else /* this is a legacy PCI bridge */
1455 return domain_context_mapping_one(domain,
1456 pci_domain_nr(tmp->bus),
1457 tmp->bus->number,
1458 tmp->devfn,
1459 translation);
1462 static int domain_context_mapped(struct pci_dev *pdev)
1464 int ret;
1465 struct pci_dev *tmp, *parent;
1466 struct intel_iommu *iommu;
1468 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1469 pdev->devfn);
1470 if (!iommu)
1471 return -ENODEV;
1473 ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1474 if (!ret)
1475 return ret;
1476 /* dependent device mapping */
1477 tmp = pci_find_upstream_pcie_bridge(pdev);
1478 if (!tmp)
1479 return ret;
1480 /* Secondary interface's bus number and devfn 0 */
1481 parent = pdev->bus->self;
1482 while (parent != tmp) {
1483 ret = device_context_mapped(iommu, parent->bus->number,
1484 parent->devfn);
1485 if (!ret)
1486 return ret;
1487 parent = parent->bus->self;
1489 if (tmp->is_pcie)
1490 return device_context_mapped(iommu, tmp->subordinate->number,
1492 else
1493 return device_context_mapped(iommu, tmp->bus->number,
1494 tmp->devfn);
1497 static int
1498 domain_page_mapping(struct dmar_domain *domain, dma_addr_t iova,
1499 u64 hpa, size_t size, int prot)
1501 u64 start_pfn, end_pfn;
1502 struct dma_pte *pte;
1503 int index;
1504 int addr_width = agaw_to_width(domain->agaw);
1506 hpa &= (((u64)1) << addr_width) - 1;
1508 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1509 return -EINVAL;
1510 iova &= PAGE_MASK;
1511 start_pfn = ((u64)hpa) >> VTD_PAGE_SHIFT;
1512 end_pfn = (VTD_PAGE_ALIGN(((u64)hpa) + size)) >> VTD_PAGE_SHIFT;
1513 index = 0;
1514 while (start_pfn < end_pfn) {
1515 pte = addr_to_dma_pte(domain, iova + VTD_PAGE_SIZE * index);
1516 if (!pte)
1517 return -ENOMEM;
1518 /* We don't need lock here, nobody else
1519 * touches the iova range
1521 BUG_ON(dma_pte_addr(pte));
1522 dma_set_pte_addr(pte, start_pfn << VTD_PAGE_SHIFT);
1523 dma_set_pte_prot(pte, prot);
1524 if (prot & DMA_PTE_SNP)
1525 dma_set_pte_snp(pte);
1526 domain_flush_cache(domain, pte, sizeof(*pte));
1527 start_pfn++;
1528 index++;
1530 return 0;
1533 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1535 if (!iommu)
1536 return;
1538 clear_context_table(iommu, bus, devfn);
1539 iommu->flush.flush_context(iommu, 0, 0, 0,
1540 DMA_CCMD_GLOBAL_INVL);
1541 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1544 static void domain_remove_dev_info(struct dmar_domain *domain)
1546 struct device_domain_info *info;
1547 unsigned long flags;
1548 struct intel_iommu *iommu;
1550 spin_lock_irqsave(&device_domain_lock, flags);
1551 while (!list_empty(&domain->devices)) {
1552 info = list_entry(domain->devices.next,
1553 struct device_domain_info, link);
1554 list_del(&info->link);
1555 list_del(&info->global);
1556 if (info->dev)
1557 info->dev->dev.archdata.iommu = NULL;
1558 spin_unlock_irqrestore(&device_domain_lock, flags);
1560 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1561 iommu_detach_dev(iommu, info->bus, info->devfn);
1562 free_devinfo_mem(info);
1564 spin_lock_irqsave(&device_domain_lock, flags);
1566 spin_unlock_irqrestore(&device_domain_lock, flags);
1570 * find_domain
1571 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1573 static struct dmar_domain *
1574 find_domain(struct pci_dev *pdev)
1576 struct device_domain_info *info;
1578 /* No lock here, assumes no domain exit in normal case */
1579 info = pdev->dev.archdata.iommu;
1580 if (info)
1581 return info->domain;
1582 return NULL;
1585 /* domain is initialized */
1586 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1588 struct dmar_domain *domain, *found = NULL;
1589 struct intel_iommu *iommu;
1590 struct dmar_drhd_unit *drhd;
1591 struct device_domain_info *info, *tmp;
1592 struct pci_dev *dev_tmp;
1593 unsigned long flags;
1594 int bus = 0, devfn = 0;
1595 int segment;
1597 domain = find_domain(pdev);
1598 if (domain)
1599 return domain;
1601 segment = pci_domain_nr(pdev->bus);
1603 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1604 if (dev_tmp) {
1605 if (dev_tmp->is_pcie) {
1606 bus = dev_tmp->subordinate->number;
1607 devfn = 0;
1608 } else {
1609 bus = dev_tmp->bus->number;
1610 devfn = dev_tmp->devfn;
1612 spin_lock_irqsave(&device_domain_lock, flags);
1613 list_for_each_entry(info, &device_domain_list, global) {
1614 if (info->segment == segment &&
1615 info->bus == bus && info->devfn == devfn) {
1616 found = info->domain;
1617 break;
1620 spin_unlock_irqrestore(&device_domain_lock, flags);
1621 /* pcie-pci bridge already has a domain, uses it */
1622 if (found) {
1623 domain = found;
1624 goto found_domain;
1628 /* Allocate new domain for the device */
1629 drhd = dmar_find_matched_drhd_unit(pdev);
1630 if (!drhd) {
1631 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1632 pci_name(pdev));
1633 return NULL;
1635 iommu = drhd->iommu;
1637 domain = iommu_alloc_domain(iommu);
1638 if (!domain)
1639 goto error;
1641 if (domain_init(domain, gaw)) {
1642 domain_exit(domain);
1643 goto error;
1646 /* register pcie-to-pci device */
1647 if (dev_tmp) {
1648 info = alloc_devinfo_mem();
1649 if (!info) {
1650 domain_exit(domain);
1651 goto error;
1653 info->segment = segment;
1654 info->bus = bus;
1655 info->devfn = devfn;
1656 info->dev = NULL;
1657 info->domain = domain;
1658 /* This domain is shared by devices under p2p bridge */
1659 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
1661 /* pcie-to-pci bridge already has a domain, uses it */
1662 found = NULL;
1663 spin_lock_irqsave(&device_domain_lock, flags);
1664 list_for_each_entry(tmp, &device_domain_list, global) {
1665 if (tmp->segment == segment &&
1666 tmp->bus == bus && tmp->devfn == devfn) {
1667 found = tmp->domain;
1668 break;
1671 if (found) {
1672 free_devinfo_mem(info);
1673 domain_exit(domain);
1674 domain = found;
1675 } else {
1676 list_add(&info->link, &domain->devices);
1677 list_add(&info->global, &device_domain_list);
1679 spin_unlock_irqrestore(&device_domain_lock, flags);
1682 found_domain:
1683 info = alloc_devinfo_mem();
1684 if (!info)
1685 goto error;
1686 info->segment = segment;
1687 info->bus = pdev->bus->number;
1688 info->devfn = pdev->devfn;
1689 info->dev = pdev;
1690 info->domain = domain;
1691 spin_lock_irqsave(&device_domain_lock, flags);
1692 /* somebody is fast */
1693 found = find_domain(pdev);
1694 if (found != NULL) {
1695 spin_unlock_irqrestore(&device_domain_lock, flags);
1696 if (found != domain) {
1697 domain_exit(domain);
1698 domain = found;
1700 free_devinfo_mem(info);
1701 return domain;
1703 list_add(&info->link, &domain->devices);
1704 list_add(&info->global, &device_domain_list);
1705 pdev->dev.archdata.iommu = info;
1706 spin_unlock_irqrestore(&device_domain_lock, flags);
1707 return domain;
1708 error:
1709 /* recheck it here, maybe others set it */
1710 return find_domain(pdev);
1713 static int iommu_prepare_identity_map(struct pci_dev *pdev,
1714 unsigned long long start,
1715 unsigned long long end)
1717 struct dmar_domain *domain;
1718 unsigned long size;
1719 unsigned long long base;
1720 int ret;
1722 printk(KERN_INFO
1723 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1724 pci_name(pdev), start, end);
1725 /* page table init */
1726 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1727 if (!domain)
1728 return -ENOMEM;
1730 /* The address might not be aligned */
1731 base = start & PAGE_MASK;
1732 size = end - base;
1733 size = PAGE_ALIGN(size);
1734 if (!reserve_iova(&domain->iovad, IOVA_PFN(base),
1735 IOVA_PFN(base + size) - 1)) {
1736 printk(KERN_ERR "IOMMU: reserve iova failed\n");
1737 ret = -ENOMEM;
1738 goto error;
1741 pr_debug("Mapping reserved region %lx@%llx for %s\n",
1742 size, base, pci_name(pdev));
1744 * RMRR range might have overlap with physical memory range,
1745 * clear it first
1747 dma_pte_clear_range(domain, base, base + size);
1749 ret = domain_page_mapping(domain, base, base, size,
1750 DMA_PTE_READ|DMA_PTE_WRITE);
1751 if (ret)
1752 goto error;
1754 /* context entry init */
1755 ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
1756 if (!ret)
1757 return 0;
1758 error:
1759 domain_exit(domain);
1760 return ret;
1764 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
1765 struct pci_dev *pdev)
1767 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
1768 return 0;
1769 return iommu_prepare_identity_map(pdev, rmrr->base_address,
1770 rmrr->end_address + 1);
1773 #ifdef CONFIG_DMAR_GFX_WA
1774 struct iommu_prepare_data {
1775 struct pci_dev *pdev;
1776 int ret;
1779 static int __init iommu_prepare_work_fn(unsigned long start_pfn,
1780 unsigned long end_pfn, void *datax)
1782 struct iommu_prepare_data *data;
1784 data = (struct iommu_prepare_data *)datax;
1786 data->ret = iommu_prepare_identity_map(data->pdev,
1787 start_pfn<<PAGE_SHIFT, end_pfn<<PAGE_SHIFT);
1788 return data->ret;
1792 static int __init iommu_prepare_with_active_regions(struct pci_dev *pdev)
1794 int nid;
1795 struct iommu_prepare_data data;
1797 data.pdev = pdev;
1798 data.ret = 0;
1800 for_each_online_node(nid) {
1801 work_with_active_regions(nid, iommu_prepare_work_fn, &data);
1802 if (data.ret)
1803 return data.ret;
1805 return data.ret;
1808 static void __init iommu_prepare_gfx_mapping(void)
1810 struct pci_dev *pdev = NULL;
1811 int ret;
1813 for_each_pci_dev(pdev) {
1814 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO ||
1815 !IS_GFX_DEVICE(pdev))
1816 continue;
1817 printk(KERN_INFO "IOMMU: gfx device %s 1-1 mapping\n",
1818 pci_name(pdev));
1819 ret = iommu_prepare_with_active_regions(pdev);
1820 if (ret)
1821 printk(KERN_ERR "IOMMU: mapping reserved region failed\n");
1824 #else /* !CONFIG_DMAR_GFX_WA */
1825 static inline void iommu_prepare_gfx_mapping(void)
1827 return;
1829 #endif
1831 #ifdef CONFIG_DMAR_FLOPPY_WA
1832 static inline void iommu_prepare_isa(void)
1834 struct pci_dev *pdev;
1835 int ret;
1837 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
1838 if (!pdev)
1839 return;
1841 printk(KERN_INFO "IOMMU: Prepare 0-16M unity mapping for LPC\n");
1842 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
1844 if (ret)
1845 printk(KERN_ERR "IOMMU: Failed to create 0-64M identity map, "
1846 "floppy might not work\n");
1849 #else
1850 static inline void iommu_prepare_isa(void)
1852 return;
1854 #endif /* !CONFIG_DMAR_FLPY_WA */
1856 /* Initialize each context entry as pass through.*/
1857 static int __init init_context_pass_through(void)
1859 struct pci_dev *pdev = NULL;
1860 struct dmar_domain *domain;
1861 int ret;
1863 for_each_pci_dev(pdev) {
1864 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1865 ret = domain_context_mapping(domain, pdev,
1866 CONTEXT_TT_PASS_THROUGH);
1867 if (ret)
1868 return ret;
1870 return 0;
1873 static int __init init_dmars(void)
1875 struct dmar_drhd_unit *drhd;
1876 struct dmar_rmrr_unit *rmrr;
1877 struct pci_dev *pdev;
1878 struct intel_iommu *iommu;
1879 int i, ret;
1880 int pass_through = 1;
1883 * for each drhd
1884 * allocate root
1885 * initialize and program root entry to not present
1886 * endfor
1888 for_each_drhd_unit(drhd) {
1889 g_num_of_iommus++;
1891 * lock not needed as this is only incremented in the single
1892 * threaded kernel __init code path all other access are read
1893 * only
1897 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
1898 GFP_KERNEL);
1899 if (!g_iommus) {
1900 printk(KERN_ERR "Allocating global iommu array failed\n");
1901 ret = -ENOMEM;
1902 goto error;
1905 deferred_flush = kzalloc(g_num_of_iommus *
1906 sizeof(struct deferred_flush_tables), GFP_KERNEL);
1907 if (!deferred_flush) {
1908 kfree(g_iommus);
1909 ret = -ENOMEM;
1910 goto error;
1913 for_each_drhd_unit(drhd) {
1914 if (drhd->ignored)
1915 continue;
1917 iommu = drhd->iommu;
1918 g_iommus[iommu->seq_id] = iommu;
1920 ret = iommu_init_domains(iommu);
1921 if (ret)
1922 goto error;
1925 * TBD:
1926 * we could share the same root & context tables
1927 * amoung all IOMMU's. Need to Split it later.
1929 ret = iommu_alloc_root_entry(iommu);
1930 if (ret) {
1931 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
1932 goto error;
1934 if (!ecap_pass_through(iommu->ecap))
1935 pass_through = 0;
1937 if (iommu_pass_through)
1938 if (!pass_through) {
1939 printk(KERN_INFO
1940 "Pass Through is not supported by hardware.\n");
1941 iommu_pass_through = 0;
1945 * Start from the sane iommu hardware state.
1947 for_each_drhd_unit(drhd) {
1948 if (drhd->ignored)
1949 continue;
1951 iommu = drhd->iommu;
1954 * If the queued invalidation is already initialized by us
1955 * (for example, while enabling interrupt-remapping) then
1956 * we got the things already rolling from a sane state.
1958 if (iommu->qi)
1959 continue;
1962 * Clear any previous faults.
1964 dmar_fault(-1, iommu);
1966 * Disable queued invalidation if supported and already enabled
1967 * before OS handover.
1969 dmar_disable_qi(iommu);
1972 for_each_drhd_unit(drhd) {
1973 if (drhd->ignored)
1974 continue;
1976 iommu = drhd->iommu;
1978 if (dmar_enable_qi(iommu)) {
1980 * Queued Invalidate not enabled, use Register Based
1981 * Invalidate
1983 iommu->flush.flush_context = __iommu_flush_context;
1984 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
1985 printk(KERN_INFO "IOMMU 0x%Lx: using Register based "
1986 "invalidation\n",
1987 (unsigned long long)drhd->reg_base_addr);
1988 } else {
1989 iommu->flush.flush_context = qi_flush_context;
1990 iommu->flush.flush_iotlb = qi_flush_iotlb;
1991 printk(KERN_INFO "IOMMU 0x%Lx: using Queued "
1992 "invalidation\n",
1993 (unsigned long long)drhd->reg_base_addr);
1997 #ifdef CONFIG_INTR_REMAP
1998 if (!intr_remapping_enabled) {
1999 ret = enable_intr_remapping(0);
2000 if (ret)
2001 printk(KERN_ERR
2002 "IOMMU: enable interrupt remapping failed\n");
2004 #endif
2006 * If pass through is set and enabled, context entries of all pci
2007 * devices are intialized by pass through translation type.
2009 if (iommu_pass_through) {
2010 ret = init_context_pass_through();
2011 if (ret) {
2012 printk(KERN_ERR "IOMMU: Pass through init failed.\n");
2013 iommu_pass_through = 0;
2018 * If pass through is not set or not enabled, setup context entries for
2019 * identity mappings for rmrr, gfx, and isa.
2021 if (!iommu_pass_through) {
2023 * For each rmrr
2024 * for each dev attached to rmrr
2025 * do
2026 * locate drhd for dev, alloc domain for dev
2027 * allocate free domain
2028 * allocate page table entries for rmrr
2029 * if context not allocated for bus
2030 * allocate and init context
2031 * set present in root table for this bus
2032 * init context with domain, translation etc
2033 * endfor
2034 * endfor
2036 for_each_rmrr_units(rmrr) {
2037 for (i = 0; i < rmrr->devices_cnt; i++) {
2038 pdev = rmrr->devices[i];
2040 * some BIOS lists non-exist devices in DMAR
2041 * table.
2043 if (!pdev)
2044 continue;
2045 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2046 if (ret)
2047 printk(KERN_ERR
2048 "IOMMU: mapping reserved region failed\n");
2052 iommu_prepare_gfx_mapping();
2054 iommu_prepare_isa();
2058 * for each drhd
2059 * enable fault log
2060 * global invalidate context cache
2061 * global invalidate iotlb
2062 * enable translation
2064 for_each_drhd_unit(drhd) {
2065 if (drhd->ignored)
2066 continue;
2067 iommu = drhd->iommu;
2069 iommu_flush_write_buffer(iommu);
2071 ret = dmar_set_interrupt(iommu);
2072 if (ret)
2073 goto error;
2075 iommu_set_root_entry(iommu);
2077 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2078 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2079 iommu_disable_protect_mem_regions(iommu);
2081 ret = iommu_enable_translation(iommu);
2082 if (ret)
2083 goto error;
2086 return 0;
2087 error:
2088 for_each_drhd_unit(drhd) {
2089 if (drhd->ignored)
2090 continue;
2091 iommu = drhd->iommu;
2092 free_iommu(iommu);
2094 kfree(g_iommus);
2095 return ret;
2098 static inline u64 aligned_size(u64 host_addr, size_t size)
2100 u64 addr;
2101 addr = (host_addr & (~PAGE_MASK)) + size;
2102 return PAGE_ALIGN(addr);
2105 struct iova *
2106 iommu_alloc_iova(struct dmar_domain *domain, size_t size, u64 end)
2108 struct iova *piova;
2110 /* Make sure it's in range */
2111 end = min_t(u64, DOMAIN_MAX_ADDR(domain->gaw), end);
2112 if (!size || (IOVA_START_ADDR + size > end))
2113 return NULL;
2115 piova = alloc_iova(&domain->iovad,
2116 size >> PAGE_SHIFT, IOVA_PFN(end), 1);
2117 return piova;
2120 static struct iova *
2121 __intel_alloc_iova(struct device *dev, struct dmar_domain *domain,
2122 size_t size, u64 dma_mask)
2124 struct pci_dev *pdev = to_pci_dev(dev);
2125 struct iova *iova = NULL;
2127 if (dma_mask <= DMA_BIT_MASK(32) || dmar_forcedac)
2128 iova = iommu_alloc_iova(domain, size, dma_mask);
2129 else {
2131 * First try to allocate an io virtual address in
2132 * DMA_BIT_MASK(32) and if that fails then try allocating
2133 * from higher range
2135 iova = iommu_alloc_iova(domain, size, DMA_BIT_MASK(32));
2136 if (!iova)
2137 iova = iommu_alloc_iova(domain, size, dma_mask);
2140 if (!iova) {
2141 printk(KERN_ERR"Allocating iova for %s failed", pci_name(pdev));
2142 return NULL;
2145 return iova;
2148 static struct dmar_domain *
2149 get_valid_domain_for_dev(struct pci_dev *pdev)
2151 struct dmar_domain *domain;
2152 int ret;
2154 domain = get_domain_for_dev(pdev,
2155 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2156 if (!domain) {
2157 printk(KERN_ERR
2158 "Allocating domain for %s failed", pci_name(pdev));
2159 return NULL;
2162 /* make sure context mapping is ok */
2163 if (unlikely(!domain_context_mapped(pdev))) {
2164 ret = domain_context_mapping(domain, pdev,
2165 CONTEXT_TT_MULTI_LEVEL);
2166 if (ret) {
2167 printk(KERN_ERR
2168 "Domain context map for %s failed",
2169 pci_name(pdev));
2170 return NULL;
2174 return domain;
2177 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2178 size_t size, int dir, u64 dma_mask)
2180 struct pci_dev *pdev = to_pci_dev(hwdev);
2181 struct dmar_domain *domain;
2182 phys_addr_t start_paddr;
2183 struct iova *iova;
2184 int prot = 0;
2185 int ret;
2186 struct intel_iommu *iommu;
2188 BUG_ON(dir == DMA_NONE);
2189 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2190 return paddr;
2192 domain = get_valid_domain_for_dev(pdev);
2193 if (!domain)
2194 return 0;
2196 iommu = domain_get_iommu(domain);
2197 size = aligned_size((u64)paddr, size);
2199 iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
2200 if (!iova)
2201 goto error;
2203 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2206 * Check if DMAR supports zero-length reads on write only
2207 * mappings..
2209 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2210 !cap_zlr(iommu->cap))
2211 prot |= DMA_PTE_READ;
2212 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2213 prot |= DMA_PTE_WRITE;
2215 * paddr - (paddr + size) might be partial page, we should map the whole
2216 * page. Note: if two part of one page are separately mapped, we
2217 * might have two guest_addr mapping to the same host paddr, but this
2218 * is not a big problem
2220 ret = domain_page_mapping(domain, start_paddr,
2221 ((u64)paddr) & PAGE_MASK, size, prot);
2222 if (ret)
2223 goto error;
2225 /* it's a non-present to present mapping. Only flush if caching mode */
2226 if (cap_caching_mode(iommu->cap))
2227 iommu_flush_iotlb_psi(iommu, 0, start_paddr,
2228 size >> VTD_PAGE_SHIFT);
2229 else
2230 iommu_flush_write_buffer(iommu);
2232 return start_paddr + ((u64)paddr & (~PAGE_MASK));
2234 error:
2235 if (iova)
2236 __free_iova(&domain->iovad, iova);
2237 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2238 pci_name(pdev), size, (unsigned long long)paddr, dir);
2239 return 0;
2242 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2243 unsigned long offset, size_t size,
2244 enum dma_data_direction dir,
2245 struct dma_attrs *attrs)
2247 return __intel_map_single(dev, page_to_phys(page) + offset, size,
2248 dir, to_pci_dev(dev)->dma_mask);
2251 static void flush_unmaps(void)
2253 int i, j;
2255 timer_on = 0;
2257 /* just flush them all */
2258 for (i = 0; i < g_num_of_iommus; i++) {
2259 struct intel_iommu *iommu = g_iommus[i];
2260 if (!iommu)
2261 continue;
2263 if (deferred_flush[i].next) {
2264 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2265 DMA_TLB_GLOBAL_FLUSH);
2266 for (j = 0; j < deferred_flush[i].next; j++) {
2267 __free_iova(&deferred_flush[i].domain[j]->iovad,
2268 deferred_flush[i].iova[j]);
2270 deferred_flush[i].next = 0;
2274 list_size = 0;
2277 static void flush_unmaps_timeout(unsigned long data)
2279 unsigned long flags;
2281 spin_lock_irqsave(&async_umap_flush_lock, flags);
2282 flush_unmaps();
2283 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2286 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2288 unsigned long flags;
2289 int next, iommu_id;
2290 struct intel_iommu *iommu;
2292 spin_lock_irqsave(&async_umap_flush_lock, flags);
2293 if (list_size == HIGH_WATER_MARK)
2294 flush_unmaps();
2296 iommu = domain_get_iommu(dom);
2297 iommu_id = iommu->seq_id;
2299 next = deferred_flush[iommu_id].next;
2300 deferred_flush[iommu_id].domain[next] = dom;
2301 deferred_flush[iommu_id].iova[next] = iova;
2302 deferred_flush[iommu_id].next++;
2304 if (!timer_on) {
2305 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2306 timer_on = 1;
2308 list_size++;
2309 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2312 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2313 size_t size, enum dma_data_direction dir,
2314 struct dma_attrs *attrs)
2316 struct pci_dev *pdev = to_pci_dev(dev);
2317 struct dmar_domain *domain;
2318 unsigned long start_addr;
2319 struct iova *iova;
2320 struct intel_iommu *iommu;
2322 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2323 return;
2324 domain = find_domain(pdev);
2325 BUG_ON(!domain);
2327 iommu = domain_get_iommu(domain);
2329 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2330 if (!iova)
2331 return;
2333 start_addr = iova->pfn_lo << PAGE_SHIFT;
2334 size = aligned_size((u64)dev_addr, size);
2336 pr_debug("Device %s unmapping: %zx@%llx\n",
2337 pci_name(pdev), size, (unsigned long long)start_addr);
2339 /* clear the whole page */
2340 dma_pte_clear_range(domain, start_addr, start_addr + size);
2341 /* free page tables */
2342 dma_pte_free_pagetable(domain, start_addr, start_addr + size);
2343 if (intel_iommu_strict) {
2344 iommu_flush_iotlb_psi(iommu, domain->id, start_addr,
2345 size >> VTD_PAGE_SHIFT);
2346 /* free iova */
2347 __free_iova(&domain->iovad, iova);
2348 } else {
2349 add_unmap(domain, iova);
2351 * queue up the release of the unmap to save the 1/6th of the
2352 * cpu used up by the iotlb flush operation...
2357 static void intel_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
2358 int dir)
2360 intel_unmap_page(dev, dev_addr, size, dir, NULL);
2363 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2364 dma_addr_t *dma_handle, gfp_t flags)
2366 void *vaddr;
2367 int order;
2369 size = PAGE_ALIGN(size);
2370 order = get_order(size);
2371 flags &= ~(GFP_DMA | GFP_DMA32);
2373 vaddr = (void *)__get_free_pages(flags, order);
2374 if (!vaddr)
2375 return NULL;
2376 memset(vaddr, 0, size);
2378 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2379 DMA_BIDIRECTIONAL,
2380 hwdev->coherent_dma_mask);
2381 if (*dma_handle)
2382 return vaddr;
2383 free_pages((unsigned long)vaddr, order);
2384 return NULL;
2387 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2388 dma_addr_t dma_handle)
2390 int order;
2392 size = PAGE_ALIGN(size);
2393 order = get_order(size);
2395 intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL);
2396 free_pages((unsigned long)vaddr, order);
2399 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2400 int nelems, enum dma_data_direction dir,
2401 struct dma_attrs *attrs)
2403 int i;
2404 struct pci_dev *pdev = to_pci_dev(hwdev);
2405 struct dmar_domain *domain;
2406 unsigned long start_addr;
2407 struct iova *iova;
2408 size_t size = 0;
2409 phys_addr_t addr;
2410 struct scatterlist *sg;
2411 struct intel_iommu *iommu;
2413 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2414 return;
2416 domain = find_domain(pdev);
2417 BUG_ON(!domain);
2419 iommu = domain_get_iommu(domain);
2421 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
2422 if (!iova)
2423 return;
2424 for_each_sg(sglist, sg, nelems, i) {
2425 addr = page_to_phys(sg_page(sg)) + sg->offset;
2426 size += aligned_size((u64)addr, sg->length);
2429 start_addr = iova->pfn_lo << PAGE_SHIFT;
2431 /* clear the whole page */
2432 dma_pte_clear_range(domain, start_addr, start_addr + size);
2433 /* free page tables */
2434 dma_pte_free_pagetable(domain, start_addr, start_addr + size);
2436 iommu_flush_iotlb_psi(iommu, domain->id, start_addr,
2437 size >> VTD_PAGE_SHIFT);
2439 /* free iova */
2440 __free_iova(&domain->iovad, iova);
2443 static int intel_nontranslate_map_sg(struct device *hddev,
2444 struct scatterlist *sglist, int nelems, int dir)
2446 int i;
2447 struct scatterlist *sg;
2449 for_each_sg(sglist, sg, nelems, i) {
2450 BUG_ON(!sg_page(sg));
2451 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
2452 sg->dma_length = sg->length;
2454 return nelems;
2457 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
2458 enum dma_data_direction dir, struct dma_attrs *attrs)
2460 phys_addr_t addr;
2461 int i;
2462 struct pci_dev *pdev = to_pci_dev(hwdev);
2463 struct dmar_domain *domain;
2464 size_t size = 0;
2465 int prot = 0;
2466 size_t offset = 0;
2467 struct iova *iova = NULL;
2468 int ret;
2469 struct scatterlist *sg;
2470 unsigned long start_addr;
2471 struct intel_iommu *iommu;
2473 BUG_ON(dir == DMA_NONE);
2474 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2475 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
2477 domain = get_valid_domain_for_dev(pdev);
2478 if (!domain)
2479 return 0;
2481 iommu = domain_get_iommu(domain);
2483 for_each_sg(sglist, sg, nelems, i) {
2484 addr = page_to_phys(sg_page(sg)) + sg->offset;
2485 size += aligned_size((u64)addr, sg->length);
2488 iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
2489 if (!iova) {
2490 sglist->dma_length = 0;
2491 return 0;
2495 * Check if DMAR supports zero-length reads on write only
2496 * mappings..
2498 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2499 !cap_zlr(iommu->cap))
2500 prot |= DMA_PTE_READ;
2501 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2502 prot |= DMA_PTE_WRITE;
2504 start_addr = iova->pfn_lo << PAGE_SHIFT;
2505 offset = 0;
2506 for_each_sg(sglist, sg, nelems, i) {
2507 addr = page_to_phys(sg_page(sg)) + sg->offset;
2508 size = aligned_size((u64)addr, sg->length);
2509 ret = domain_page_mapping(domain, start_addr + offset,
2510 ((u64)addr) & PAGE_MASK,
2511 size, prot);
2512 if (ret) {
2513 /* clear the page */
2514 dma_pte_clear_range(domain, start_addr,
2515 start_addr + offset);
2516 /* free page tables */
2517 dma_pte_free_pagetable(domain, start_addr,
2518 start_addr + offset);
2519 /* free iova */
2520 __free_iova(&domain->iovad, iova);
2521 return 0;
2523 sg->dma_address = start_addr + offset +
2524 ((u64)addr & (~PAGE_MASK));
2525 sg->dma_length = sg->length;
2526 offset += size;
2529 /* it's a non-present to present mapping. Only flush if caching mode */
2530 if (cap_caching_mode(iommu->cap))
2531 iommu_flush_iotlb_psi(iommu, 0, start_addr,
2532 offset >> VTD_PAGE_SHIFT);
2533 else
2534 iommu_flush_write_buffer(iommu);
2536 return nelems;
2539 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
2541 return !dma_addr;
2544 struct dma_map_ops intel_dma_ops = {
2545 .alloc_coherent = intel_alloc_coherent,
2546 .free_coherent = intel_free_coherent,
2547 .map_sg = intel_map_sg,
2548 .unmap_sg = intel_unmap_sg,
2549 .map_page = intel_map_page,
2550 .unmap_page = intel_unmap_page,
2551 .mapping_error = intel_mapping_error,
2554 static inline int iommu_domain_cache_init(void)
2556 int ret = 0;
2558 iommu_domain_cache = kmem_cache_create("iommu_domain",
2559 sizeof(struct dmar_domain),
2561 SLAB_HWCACHE_ALIGN,
2563 NULL);
2564 if (!iommu_domain_cache) {
2565 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
2566 ret = -ENOMEM;
2569 return ret;
2572 static inline int iommu_devinfo_cache_init(void)
2574 int ret = 0;
2576 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
2577 sizeof(struct device_domain_info),
2579 SLAB_HWCACHE_ALIGN,
2580 NULL);
2581 if (!iommu_devinfo_cache) {
2582 printk(KERN_ERR "Couldn't create devinfo cache\n");
2583 ret = -ENOMEM;
2586 return ret;
2589 static inline int iommu_iova_cache_init(void)
2591 int ret = 0;
2593 iommu_iova_cache = kmem_cache_create("iommu_iova",
2594 sizeof(struct iova),
2596 SLAB_HWCACHE_ALIGN,
2597 NULL);
2598 if (!iommu_iova_cache) {
2599 printk(KERN_ERR "Couldn't create iova cache\n");
2600 ret = -ENOMEM;
2603 return ret;
2606 static int __init iommu_init_mempool(void)
2608 int ret;
2609 ret = iommu_iova_cache_init();
2610 if (ret)
2611 return ret;
2613 ret = iommu_domain_cache_init();
2614 if (ret)
2615 goto domain_error;
2617 ret = iommu_devinfo_cache_init();
2618 if (!ret)
2619 return ret;
2621 kmem_cache_destroy(iommu_domain_cache);
2622 domain_error:
2623 kmem_cache_destroy(iommu_iova_cache);
2625 return -ENOMEM;
2628 static void __init iommu_exit_mempool(void)
2630 kmem_cache_destroy(iommu_devinfo_cache);
2631 kmem_cache_destroy(iommu_domain_cache);
2632 kmem_cache_destroy(iommu_iova_cache);
2636 static void __init init_no_remapping_devices(void)
2638 struct dmar_drhd_unit *drhd;
2640 for_each_drhd_unit(drhd) {
2641 if (!drhd->include_all) {
2642 int i;
2643 for (i = 0; i < drhd->devices_cnt; i++)
2644 if (drhd->devices[i] != NULL)
2645 break;
2646 /* ignore DMAR unit if no pci devices exist */
2647 if (i == drhd->devices_cnt)
2648 drhd->ignored = 1;
2652 if (dmar_map_gfx)
2653 return;
2655 for_each_drhd_unit(drhd) {
2656 int i;
2657 if (drhd->ignored || drhd->include_all)
2658 continue;
2660 for (i = 0; i < drhd->devices_cnt; i++)
2661 if (drhd->devices[i] &&
2662 !IS_GFX_DEVICE(drhd->devices[i]))
2663 break;
2665 if (i < drhd->devices_cnt)
2666 continue;
2668 /* bypass IOMMU if it is just for gfx devices */
2669 drhd->ignored = 1;
2670 for (i = 0; i < drhd->devices_cnt; i++) {
2671 if (!drhd->devices[i])
2672 continue;
2673 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
2678 #ifdef CONFIG_SUSPEND
2679 static int init_iommu_hw(void)
2681 struct dmar_drhd_unit *drhd;
2682 struct intel_iommu *iommu = NULL;
2684 for_each_active_iommu(iommu, drhd)
2685 if (iommu->qi)
2686 dmar_reenable_qi(iommu);
2688 for_each_active_iommu(iommu, drhd) {
2689 iommu_flush_write_buffer(iommu);
2691 iommu_set_root_entry(iommu);
2693 iommu->flush.flush_context(iommu, 0, 0, 0,
2694 DMA_CCMD_GLOBAL_INVL);
2695 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2696 DMA_TLB_GLOBAL_FLUSH);
2697 iommu_disable_protect_mem_regions(iommu);
2698 iommu_enable_translation(iommu);
2701 return 0;
2704 static void iommu_flush_all(void)
2706 struct dmar_drhd_unit *drhd;
2707 struct intel_iommu *iommu;
2709 for_each_active_iommu(iommu, drhd) {
2710 iommu->flush.flush_context(iommu, 0, 0, 0,
2711 DMA_CCMD_GLOBAL_INVL);
2712 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2713 DMA_TLB_GLOBAL_FLUSH);
2717 static int iommu_suspend(struct sys_device *dev, pm_message_t state)
2719 struct dmar_drhd_unit *drhd;
2720 struct intel_iommu *iommu = NULL;
2721 unsigned long flag;
2723 for_each_active_iommu(iommu, drhd) {
2724 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
2725 GFP_ATOMIC);
2726 if (!iommu->iommu_state)
2727 goto nomem;
2730 iommu_flush_all();
2732 for_each_active_iommu(iommu, drhd) {
2733 iommu_disable_translation(iommu);
2735 spin_lock_irqsave(&iommu->register_lock, flag);
2737 iommu->iommu_state[SR_DMAR_FECTL_REG] =
2738 readl(iommu->reg + DMAR_FECTL_REG);
2739 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
2740 readl(iommu->reg + DMAR_FEDATA_REG);
2741 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
2742 readl(iommu->reg + DMAR_FEADDR_REG);
2743 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
2744 readl(iommu->reg + DMAR_FEUADDR_REG);
2746 spin_unlock_irqrestore(&iommu->register_lock, flag);
2748 return 0;
2750 nomem:
2751 for_each_active_iommu(iommu, drhd)
2752 kfree(iommu->iommu_state);
2754 return -ENOMEM;
2757 static int iommu_resume(struct sys_device *dev)
2759 struct dmar_drhd_unit *drhd;
2760 struct intel_iommu *iommu = NULL;
2761 unsigned long flag;
2763 if (init_iommu_hw()) {
2764 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
2765 return -EIO;
2768 for_each_active_iommu(iommu, drhd) {
2770 spin_lock_irqsave(&iommu->register_lock, flag);
2772 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
2773 iommu->reg + DMAR_FECTL_REG);
2774 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
2775 iommu->reg + DMAR_FEDATA_REG);
2776 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
2777 iommu->reg + DMAR_FEADDR_REG);
2778 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
2779 iommu->reg + DMAR_FEUADDR_REG);
2781 spin_unlock_irqrestore(&iommu->register_lock, flag);
2784 for_each_active_iommu(iommu, drhd)
2785 kfree(iommu->iommu_state);
2787 return 0;
2790 static struct sysdev_class iommu_sysclass = {
2791 .name = "iommu",
2792 .resume = iommu_resume,
2793 .suspend = iommu_suspend,
2796 static struct sys_device device_iommu = {
2797 .cls = &iommu_sysclass,
2800 static int __init init_iommu_sysfs(void)
2802 int error;
2804 error = sysdev_class_register(&iommu_sysclass);
2805 if (error)
2806 return error;
2808 error = sysdev_register(&device_iommu);
2809 if (error)
2810 sysdev_class_unregister(&iommu_sysclass);
2812 return error;
2815 #else
2816 static int __init init_iommu_sysfs(void)
2818 return 0;
2820 #endif /* CONFIG_PM */
2822 int __init intel_iommu_init(void)
2824 int ret = 0;
2826 if (dmar_table_init())
2827 return -ENODEV;
2829 if (dmar_dev_scope_init())
2830 return -ENODEV;
2833 * Check the need for DMA-remapping initialization now.
2834 * Above initialization will also be used by Interrupt-remapping.
2836 if (no_iommu || (swiotlb && !iommu_pass_through) || dmar_disabled)
2837 return -ENODEV;
2839 iommu_init_mempool();
2840 dmar_init_reserved_ranges();
2842 init_no_remapping_devices();
2844 ret = init_dmars();
2845 if (ret) {
2846 printk(KERN_ERR "IOMMU: dmar init failed\n");
2847 put_iova_domain(&reserved_iova_list);
2848 iommu_exit_mempool();
2849 return ret;
2851 printk(KERN_INFO
2852 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
2854 init_timer(&unmap_timer);
2855 force_iommu = 1;
2857 if (!iommu_pass_through) {
2858 printk(KERN_INFO
2859 "Multi-level page-table translation for DMAR.\n");
2860 dma_ops = &intel_dma_ops;
2861 } else
2862 printk(KERN_INFO
2863 "DMAR: Pass through translation for DMAR.\n");
2865 init_iommu_sysfs();
2867 register_iommu(&intel_iommu_ops);
2869 return 0;
2872 static int vm_domain_add_dev_info(struct dmar_domain *domain,
2873 struct pci_dev *pdev)
2875 struct device_domain_info *info;
2876 unsigned long flags;
2878 info = alloc_devinfo_mem();
2879 if (!info)
2880 return -ENOMEM;
2882 info->segment = pci_domain_nr(pdev->bus);
2883 info->bus = pdev->bus->number;
2884 info->devfn = pdev->devfn;
2885 info->dev = pdev;
2886 info->domain = domain;
2888 spin_lock_irqsave(&device_domain_lock, flags);
2889 list_add(&info->link, &domain->devices);
2890 list_add(&info->global, &device_domain_list);
2891 pdev->dev.archdata.iommu = info;
2892 spin_unlock_irqrestore(&device_domain_lock, flags);
2894 return 0;
2897 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
2898 struct pci_dev *pdev)
2900 struct pci_dev *tmp, *parent;
2902 if (!iommu || !pdev)
2903 return;
2905 /* dependent device detach */
2906 tmp = pci_find_upstream_pcie_bridge(pdev);
2907 /* Secondary interface's bus number and devfn 0 */
2908 if (tmp) {
2909 parent = pdev->bus->self;
2910 while (parent != tmp) {
2911 iommu_detach_dev(iommu, parent->bus->number,
2912 parent->devfn);
2913 parent = parent->bus->self;
2915 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
2916 iommu_detach_dev(iommu,
2917 tmp->subordinate->number, 0);
2918 else /* this is a legacy PCI bridge */
2919 iommu_detach_dev(iommu, tmp->bus->number,
2920 tmp->devfn);
2924 static void vm_domain_remove_one_dev_info(struct dmar_domain *domain,
2925 struct pci_dev *pdev)
2927 struct device_domain_info *info;
2928 struct intel_iommu *iommu;
2929 unsigned long flags;
2930 int found = 0;
2931 struct list_head *entry, *tmp;
2933 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
2934 pdev->devfn);
2935 if (!iommu)
2936 return;
2938 spin_lock_irqsave(&device_domain_lock, flags);
2939 list_for_each_safe(entry, tmp, &domain->devices) {
2940 info = list_entry(entry, struct device_domain_info, link);
2941 /* No need to compare PCI domain; it has to be the same */
2942 if (info->bus == pdev->bus->number &&
2943 info->devfn == pdev->devfn) {
2944 list_del(&info->link);
2945 list_del(&info->global);
2946 if (info->dev)
2947 info->dev->dev.archdata.iommu = NULL;
2948 spin_unlock_irqrestore(&device_domain_lock, flags);
2950 iommu_detach_dev(iommu, info->bus, info->devfn);
2951 iommu_detach_dependent_devices(iommu, pdev);
2952 free_devinfo_mem(info);
2954 spin_lock_irqsave(&device_domain_lock, flags);
2956 if (found)
2957 break;
2958 else
2959 continue;
2962 /* if there is no other devices under the same iommu
2963 * owned by this domain, clear this iommu in iommu_bmp
2964 * update iommu count and coherency
2966 if (iommu == device_to_iommu(info->segment, info->bus,
2967 info->devfn))
2968 found = 1;
2971 if (found == 0) {
2972 unsigned long tmp_flags;
2973 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
2974 clear_bit(iommu->seq_id, &domain->iommu_bmp);
2975 domain->iommu_count--;
2976 domain_update_iommu_cap(domain);
2977 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
2980 spin_unlock_irqrestore(&device_domain_lock, flags);
2983 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
2985 struct device_domain_info *info;
2986 struct intel_iommu *iommu;
2987 unsigned long flags1, flags2;
2989 spin_lock_irqsave(&device_domain_lock, flags1);
2990 while (!list_empty(&domain->devices)) {
2991 info = list_entry(domain->devices.next,
2992 struct device_domain_info, link);
2993 list_del(&info->link);
2994 list_del(&info->global);
2995 if (info->dev)
2996 info->dev->dev.archdata.iommu = NULL;
2998 spin_unlock_irqrestore(&device_domain_lock, flags1);
3000 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
3001 iommu_detach_dev(iommu, info->bus, info->devfn);
3002 iommu_detach_dependent_devices(iommu, info->dev);
3004 /* clear this iommu in iommu_bmp, update iommu count
3005 * and capabilities
3007 spin_lock_irqsave(&domain->iommu_lock, flags2);
3008 if (test_and_clear_bit(iommu->seq_id,
3009 &domain->iommu_bmp)) {
3010 domain->iommu_count--;
3011 domain_update_iommu_cap(domain);
3013 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3015 free_devinfo_mem(info);
3016 spin_lock_irqsave(&device_domain_lock, flags1);
3018 spin_unlock_irqrestore(&device_domain_lock, flags1);
3021 /* domain id for virtual machine, it won't be set in context */
3022 static unsigned long vm_domid;
3024 static int vm_domain_min_agaw(struct dmar_domain *domain)
3026 int i;
3027 int min_agaw = domain->agaw;
3029 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
3030 for (; i < g_num_of_iommus; ) {
3031 if (min_agaw > g_iommus[i]->agaw)
3032 min_agaw = g_iommus[i]->agaw;
3034 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
3037 return min_agaw;
3040 static struct dmar_domain *iommu_alloc_vm_domain(void)
3042 struct dmar_domain *domain;
3044 domain = alloc_domain_mem();
3045 if (!domain)
3046 return NULL;
3048 domain->id = vm_domid++;
3049 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
3050 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3052 return domain;
3055 static int vm_domain_init(struct dmar_domain *domain, int guest_width)
3057 int adjust_width;
3059 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3060 spin_lock_init(&domain->mapping_lock);
3061 spin_lock_init(&domain->iommu_lock);
3063 domain_reserve_special_ranges(domain);
3065 /* calculate AGAW */
3066 domain->gaw = guest_width;
3067 adjust_width = guestwidth_to_adjustwidth(guest_width);
3068 domain->agaw = width_to_agaw(adjust_width);
3070 INIT_LIST_HEAD(&domain->devices);
3072 domain->iommu_count = 0;
3073 domain->iommu_coherency = 0;
3074 domain->max_addr = 0;
3076 /* always allocate the top pgd */
3077 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
3078 if (!domain->pgd)
3079 return -ENOMEM;
3080 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3081 return 0;
3084 static void iommu_free_vm_domain(struct dmar_domain *domain)
3086 unsigned long flags;
3087 struct dmar_drhd_unit *drhd;
3088 struct intel_iommu *iommu;
3089 unsigned long i;
3090 unsigned long ndomains;
3092 for_each_drhd_unit(drhd) {
3093 if (drhd->ignored)
3094 continue;
3095 iommu = drhd->iommu;
3097 ndomains = cap_ndoms(iommu->cap);
3098 i = find_first_bit(iommu->domain_ids, ndomains);
3099 for (; i < ndomains; ) {
3100 if (iommu->domains[i] == domain) {
3101 spin_lock_irqsave(&iommu->lock, flags);
3102 clear_bit(i, iommu->domain_ids);
3103 iommu->domains[i] = NULL;
3104 spin_unlock_irqrestore(&iommu->lock, flags);
3105 break;
3107 i = find_next_bit(iommu->domain_ids, ndomains, i+1);
3112 static void vm_domain_exit(struct dmar_domain *domain)
3114 u64 end;
3116 /* Domain 0 is reserved, so dont process it */
3117 if (!domain)
3118 return;
3120 vm_domain_remove_all_dev_info(domain);
3121 /* destroy iovas */
3122 put_iova_domain(&domain->iovad);
3123 end = DOMAIN_MAX_ADDR(domain->gaw);
3124 end = end & (~VTD_PAGE_MASK);
3126 /* clear ptes */
3127 dma_pte_clear_range(domain, 0, end);
3129 /* free page tables */
3130 dma_pte_free_pagetable(domain, 0, end);
3132 iommu_free_vm_domain(domain);
3133 free_domain_mem(domain);
3136 static int intel_iommu_domain_init(struct iommu_domain *domain)
3138 struct dmar_domain *dmar_domain;
3140 dmar_domain = iommu_alloc_vm_domain();
3141 if (!dmar_domain) {
3142 printk(KERN_ERR
3143 "intel_iommu_domain_init: dmar_domain == NULL\n");
3144 return -ENOMEM;
3146 if (vm_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3147 printk(KERN_ERR
3148 "intel_iommu_domain_init() failed\n");
3149 vm_domain_exit(dmar_domain);
3150 return -ENOMEM;
3152 domain->priv = dmar_domain;
3154 return 0;
3157 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
3159 struct dmar_domain *dmar_domain = domain->priv;
3161 domain->priv = NULL;
3162 vm_domain_exit(dmar_domain);
3165 static int intel_iommu_attach_device(struct iommu_domain *domain,
3166 struct device *dev)
3168 struct dmar_domain *dmar_domain = domain->priv;
3169 struct pci_dev *pdev = to_pci_dev(dev);
3170 struct intel_iommu *iommu;
3171 int addr_width;
3172 u64 end;
3173 int ret;
3175 /* normally pdev is not mapped */
3176 if (unlikely(domain_context_mapped(pdev))) {
3177 struct dmar_domain *old_domain;
3179 old_domain = find_domain(pdev);
3180 if (old_domain) {
3181 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
3182 vm_domain_remove_one_dev_info(old_domain, pdev);
3183 else
3184 domain_remove_dev_info(old_domain);
3188 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3189 pdev->devfn);
3190 if (!iommu)
3191 return -ENODEV;
3193 /* check if this iommu agaw is sufficient for max mapped address */
3194 addr_width = agaw_to_width(iommu->agaw);
3195 end = DOMAIN_MAX_ADDR(addr_width);
3196 end = end & VTD_PAGE_MASK;
3197 if (end < dmar_domain->max_addr) {
3198 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3199 "sufficient for the mapped address (%llx)\n",
3200 __func__, iommu->agaw, dmar_domain->max_addr);
3201 return -EFAULT;
3204 ret = domain_context_mapping(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
3205 if (ret)
3206 return ret;
3208 ret = vm_domain_add_dev_info(dmar_domain, pdev);
3209 return ret;
3212 static void intel_iommu_detach_device(struct iommu_domain *domain,
3213 struct device *dev)
3215 struct dmar_domain *dmar_domain = domain->priv;
3216 struct pci_dev *pdev = to_pci_dev(dev);
3218 vm_domain_remove_one_dev_info(dmar_domain, pdev);
3221 static int intel_iommu_map_range(struct iommu_domain *domain,
3222 unsigned long iova, phys_addr_t hpa,
3223 size_t size, int iommu_prot)
3225 struct dmar_domain *dmar_domain = domain->priv;
3226 u64 max_addr;
3227 int addr_width;
3228 int prot = 0;
3229 int ret;
3231 if (iommu_prot & IOMMU_READ)
3232 prot |= DMA_PTE_READ;
3233 if (iommu_prot & IOMMU_WRITE)
3234 prot |= DMA_PTE_WRITE;
3235 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
3236 prot |= DMA_PTE_SNP;
3238 max_addr = (iova & VTD_PAGE_MASK) + VTD_PAGE_ALIGN(size);
3239 if (dmar_domain->max_addr < max_addr) {
3240 int min_agaw;
3241 u64 end;
3243 /* check if minimum agaw is sufficient for mapped address */
3244 min_agaw = vm_domain_min_agaw(dmar_domain);
3245 addr_width = agaw_to_width(min_agaw);
3246 end = DOMAIN_MAX_ADDR(addr_width);
3247 end = end & VTD_PAGE_MASK;
3248 if (end < max_addr) {
3249 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3250 "sufficient for the mapped address (%llx)\n",
3251 __func__, min_agaw, max_addr);
3252 return -EFAULT;
3254 dmar_domain->max_addr = max_addr;
3257 ret = domain_page_mapping(dmar_domain, iova, hpa, size, prot);
3258 return ret;
3261 static void intel_iommu_unmap_range(struct iommu_domain *domain,
3262 unsigned long iova, size_t size)
3264 struct dmar_domain *dmar_domain = domain->priv;
3265 dma_addr_t base;
3267 /* The address might not be aligned */
3268 base = iova & VTD_PAGE_MASK;
3269 size = VTD_PAGE_ALIGN(size);
3270 dma_pte_clear_range(dmar_domain, base, base + size);
3272 if (dmar_domain->max_addr == base + size)
3273 dmar_domain->max_addr = base;
3276 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
3277 unsigned long iova)
3279 struct dmar_domain *dmar_domain = domain->priv;
3280 struct dma_pte *pte;
3281 u64 phys = 0;
3283 pte = addr_to_dma_pte(dmar_domain, iova);
3284 if (pte)
3285 phys = dma_pte_addr(pte);
3287 return phys;
3290 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
3291 unsigned long cap)
3293 struct dmar_domain *dmar_domain = domain->priv;
3295 if (cap == IOMMU_CAP_CACHE_COHERENCY)
3296 return dmar_domain->iommu_snooping;
3298 return 0;
3301 static struct iommu_ops intel_iommu_ops = {
3302 .domain_init = intel_iommu_domain_init,
3303 .domain_destroy = intel_iommu_domain_destroy,
3304 .attach_dev = intel_iommu_attach_device,
3305 .detach_dev = intel_iommu_detach_device,
3306 .map = intel_iommu_map_range,
3307 .unmap = intel_iommu_unmap_range,
3308 .iova_to_phys = intel_iommu_iova_to_phys,
3309 .domain_has_cap = intel_iommu_domain_has_cap,
3312 static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
3315 * Mobile 4 Series Chipset neglects to set RWBF capability,
3316 * but needs it:
3318 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
3319 rwbf_quirk = 1;
3322 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);