drm/i915: Sanity check pread/pwrite
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
blobe5de66ccffda7065ed0bce7f1baed8cff55f378f
1 /*
2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/swap.h>
35 #include <linux/pci.h>
37 #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
39 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
42 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
43 int write);
44 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
45 uint64_t offset,
46 uint64_t size);
47 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
48 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
49 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
50 unsigned alignment);
51 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
52 static int i915_gem_evict_something(struct drm_device *dev, int min_size);
53 static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
54 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
55 struct drm_i915_gem_pwrite *args,
56 struct drm_file *file_priv);
58 static LIST_HEAD(shrink_list);
59 static DEFINE_SPINLOCK(shrink_list_lock);
61 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
62 unsigned long end)
64 drm_i915_private_t *dev_priv = dev->dev_private;
66 if (start >= end ||
67 (start & (PAGE_SIZE - 1)) != 0 ||
68 (end & (PAGE_SIZE - 1)) != 0) {
69 return -EINVAL;
72 drm_mm_init(&dev_priv->mm.gtt_space, start,
73 end - start);
75 dev->gtt_total = (uint32_t) (end - start);
77 return 0;
80 int
81 i915_gem_init_ioctl(struct drm_device *dev, void *data,
82 struct drm_file *file_priv)
84 struct drm_i915_gem_init *args = data;
85 int ret;
87 mutex_lock(&dev->struct_mutex);
88 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
89 mutex_unlock(&dev->struct_mutex);
91 return ret;
94 int
95 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
96 struct drm_file *file_priv)
98 struct drm_i915_gem_get_aperture *args = data;
100 if (!(dev->driver->driver_features & DRIVER_GEM))
101 return -ENODEV;
103 args->aper_size = dev->gtt_total;
104 args->aper_available_size = (args->aper_size -
105 atomic_read(&dev->pin_memory));
107 return 0;
112 * Creates a new mm object and returns a handle to it.
115 i915_gem_create_ioctl(struct drm_device *dev, void *data,
116 struct drm_file *file_priv)
118 struct drm_i915_gem_create *args = data;
119 struct drm_gem_object *obj;
120 int ret;
121 u32 handle;
123 args->size = roundup(args->size, PAGE_SIZE);
125 /* Allocate the new object */
126 obj = drm_gem_object_alloc(dev, args->size);
127 if (obj == NULL)
128 return -ENOMEM;
130 ret = drm_gem_handle_create(file_priv, obj, &handle);
131 mutex_lock(&dev->struct_mutex);
132 drm_gem_object_handle_unreference(obj);
133 mutex_unlock(&dev->struct_mutex);
135 if (ret)
136 return ret;
138 args->handle = handle;
140 return 0;
143 static inline int
144 fast_shmem_read(struct page **pages,
145 loff_t page_base, int page_offset,
146 char __user *data,
147 int length)
149 char __iomem *vaddr;
150 int unwritten;
152 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
153 if (vaddr == NULL)
154 return -ENOMEM;
155 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
156 kunmap_atomic(vaddr, KM_USER0);
158 if (unwritten)
159 return -EFAULT;
161 return 0;
164 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
166 drm_i915_private_t *dev_priv = obj->dev->dev_private;
167 struct drm_i915_gem_object *obj_priv = obj->driver_private;
169 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
170 obj_priv->tiling_mode != I915_TILING_NONE;
173 static inline int
174 slow_shmem_copy(struct page *dst_page,
175 int dst_offset,
176 struct page *src_page,
177 int src_offset,
178 int length)
180 char *dst_vaddr, *src_vaddr;
182 dst_vaddr = kmap_atomic(dst_page, KM_USER0);
183 if (dst_vaddr == NULL)
184 return -ENOMEM;
186 src_vaddr = kmap_atomic(src_page, KM_USER1);
187 if (src_vaddr == NULL) {
188 kunmap_atomic(dst_vaddr, KM_USER0);
189 return -ENOMEM;
192 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
194 kunmap_atomic(src_vaddr, KM_USER1);
195 kunmap_atomic(dst_vaddr, KM_USER0);
197 return 0;
200 static inline int
201 slow_shmem_bit17_copy(struct page *gpu_page,
202 int gpu_offset,
203 struct page *cpu_page,
204 int cpu_offset,
205 int length,
206 int is_read)
208 char *gpu_vaddr, *cpu_vaddr;
210 /* Use the unswizzled path if this page isn't affected. */
211 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
212 if (is_read)
213 return slow_shmem_copy(cpu_page, cpu_offset,
214 gpu_page, gpu_offset, length);
215 else
216 return slow_shmem_copy(gpu_page, gpu_offset,
217 cpu_page, cpu_offset, length);
220 gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
221 if (gpu_vaddr == NULL)
222 return -ENOMEM;
224 cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
225 if (cpu_vaddr == NULL) {
226 kunmap_atomic(gpu_vaddr, KM_USER0);
227 return -ENOMEM;
230 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
231 * XORing with the other bits (A9 for Y, A9 and A10 for X)
233 while (length > 0) {
234 int cacheline_end = ALIGN(gpu_offset + 1, 64);
235 int this_length = min(cacheline_end - gpu_offset, length);
236 int swizzled_gpu_offset = gpu_offset ^ 64;
238 if (is_read) {
239 memcpy(cpu_vaddr + cpu_offset,
240 gpu_vaddr + swizzled_gpu_offset,
241 this_length);
242 } else {
243 memcpy(gpu_vaddr + swizzled_gpu_offset,
244 cpu_vaddr + cpu_offset,
245 this_length);
247 cpu_offset += this_length;
248 gpu_offset += this_length;
249 length -= this_length;
252 kunmap_atomic(cpu_vaddr, KM_USER1);
253 kunmap_atomic(gpu_vaddr, KM_USER0);
255 return 0;
259 * This is the fast shmem pread path, which attempts to copy_from_user directly
260 * from the backing pages of the object to the user's address space. On a
261 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
263 static int
264 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
265 struct drm_i915_gem_pread *args,
266 struct drm_file *file_priv)
268 struct drm_i915_gem_object *obj_priv = obj->driver_private;
269 ssize_t remain;
270 loff_t offset, page_base;
271 char __user *user_data;
272 int page_offset, page_length;
273 int ret;
275 user_data = (char __user *) (uintptr_t) args->data_ptr;
276 remain = args->size;
278 mutex_lock(&dev->struct_mutex);
280 ret = i915_gem_object_get_pages(obj, 0);
281 if (ret != 0)
282 goto fail_unlock;
284 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
285 args->size);
286 if (ret != 0)
287 goto fail_put_pages;
289 obj_priv = obj->driver_private;
290 offset = args->offset;
292 while (remain > 0) {
293 /* Operation in this page
295 * page_base = page offset within aperture
296 * page_offset = offset within page
297 * page_length = bytes to copy for this page
299 page_base = (offset & ~(PAGE_SIZE-1));
300 page_offset = offset & (PAGE_SIZE-1);
301 page_length = remain;
302 if ((page_offset + remain) > PAGE_SIZE)
303 page_length = PAGE_SIZE - page_offset;
305 ret = fast_shmem_read(obj_priv->pages,
306 page_base, page_offset,
307 user_data, page_length);
308 if (ret)
309 goto fail_put_pages;
311 remain -= page_length;
312 user_data += page_length;
313 offset += page_length;
316 fail_put_pages:
317 i915_gem_object_put_pages(obj);
318 fail_unlock:
319 mutex_unlock(&dev->struct_mutex);
321 return ret;
324 static int
325 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
327 int ret;
329 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
331 /* If we've insufficient memory to map in the pages, attempt
332 * to make some space by throwing out some old buffers.
334 if (ret == -ENOMEM) {
335 struct drm_device *dev = obj->dev;
337 ret = i915_gem_evict_something(dev, obj->size);
338 if (ret)
339 return ret;
341 ret = i915_gem_object_get_pages(obj, 0);
344 return ret;
348 * This is the fallback shmem pread path, which allocates temporary storage
349 * in kernel space to copy_to_user into outside of the struct_mutex, so we
350 * can copy out of the object's backing pages while holding the struct mutex
351 * and not take page faults.
353 static int
354 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
355 struct drm_i915_gem_pread *args,
356 struct drm_file *file_priv)
358 struct drm_i915_gem_object *obj_priv = obj->driver_private;
359 struct mm_struct *mm = current->mm;
360 struct page **user_pages;
361 ssize_t remain;
362 loff_t offset, pinned_pages, i;
363 loff_t first_data_page, last_data_page, num_pages;
364 int shmem_page_index, shmem_page_offset;
365 int data_page_index, data_page_offset;
366 int page_length;
367 int ret;
368 uint64_t data_ptr = args->data_ptr;
369 int do_bit17_swizzling;
371 remain = args->size;
373 /* Pin the user pages containing the data. We can't fault while
374 * holding the struct mutex, yet we want to hold it while
375 * dereferencing the user data.
377 first_data_page = data_ptr / PAGE_SIZE;
378 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
379 num_pages = last_data_page - first_data_page + 1;
381 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
382 if (user_pages == NULL)
383 return -ENOMEM;
385 down_read(&mm->mmap_sem);
386 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
387 num_pages, 1, 0, user_pages, NULL);
388 up_read(&mm->mmap_sem);
389 if (pinned_pages < num_pages) {
390 ret = -EFAULT;
391 goto fail_put_user_pages;
394 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
396 mutex_lock(&dev->struct_mutex);
398 ret = i915_gem_object_get_pages_or_evict(obj);
399 if (ret)
400 goto fail_unlock;
402 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
403 args->size);
404 if (ret != 0)
405 goto fail_put_pages;
407 obj_priv = obj->driver_private;
408 offset = args->offset;
410 while (remain > 0) {
411 /* Operation in this page
413 * shmem_page_index = page number within shmem file
414 * shmem_page_offset = offset within page in shmem file
415 * data_page_index = page number in get_user_pages return
416 * data_page_offset = offset with data_page_index page.
417 * page_length = bytes to copy for this page
419 shmem_page_index = offset / PAGE_SIZE;
420 shmem_page_offset = offset & ~PAGE_MASK;
421 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
422 data_page_offset = data_ptr & ~PAGE_MASK;
424 page_length = remain;
425 if ((shmem_page_offset + page_length) > PAGE_SIZE)
426 page_length = PAGE_SIZE - shmem_page_offset;
427 if ((data_page_offset + page_length) > PAGE_SIZE)
428 page_length = PAGE_SIZE - data_page_offset;
430 if (do_bit17_swizzling) {
431 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
432 shmem_page_offset,
433 user_pages[data_page_index],
434 data_page_offset,
435 page_length,
437 } else {
438 ret = slow_shmem_copy(user_pages[data_page_index],
439 data_page_offset,
440 obj_priv->pages[shmem_page_index],
441 shmem_page_offset,
442 page_length);
444 if (ret)
445 goto fail_put_pages;
447 remain -= page_length;
448 data_ptr += page_length;
449 offset += page_length;
452 fail_put_pages:
453 i915_gem_object_put_pages(obj);
454 fail_unlock:
455 mutex_unlock(&dev->struct_mutex);
456 fail_put_user_pages:
457 for (i = 0; i < pinned_pages; i++) {
458 SetPageDirty(user_pages[i]);
459 page_cache_release(user_pages[i]);
461 drm_free_large(user_pages);
463 return ret;
467 * Reads data from the object referenced by handle.
469 * On error, the contents of *data are undefined.
472 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
473 struct drm_file *file_priv)
475 struct drm_i915_gem_pread *args = data;
476 struct drm_gem_object *obj;
477 struct drm_i915_gem_object *obj_priv;
478 int ret;
480 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
481 if (obj == NULL)
482 return -EBADF;
483 obj_priv = obj->driver_private;
485 /* Bounds check source.
487 * XXX: This could use review for overflow issues...
489 if (args->offset > obj->size || args->size > obj->size ||
490 args->offset + args->size > obj->size) {
491 ret = -EINVAL;
492 goto err;
495 if (!access_ok(VERIFY_WRITE,
496 (char __user *)(uintptr_t)args->data_ptr,
497 args->size)) {
498 ret = -EFAULT;
499 goto err;
502 if (i915_gem_object_needs_bit17_swizzle(obj)) {
503 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
504 } else {
505 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
506 if (ret != 0)
507 ret = i915_gem_shmem_pread_slow(dev, obj, args,
508 file_priv);
511 err:
512 drm_gem_object_unreference(obj);
513 return ret;
516 /* This is the fast write path which cannot handle
517 * page faults in the source data
520 static inline int
521 fast_user_write(struct io_mapping *mapping,
522 loff_t page_base, int page_offset,
523 char __user *user_data,
524 int length)
526 char *vaddr_atomic;
527 unsigned long unwritten;
529 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
530 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
531 user_data, length);
532 io_mapping_unmap_atomic(vaddr_atomic);
533 if (unwritten)
534 return -EFAULT;
535 return 0;
538 /* Here's the write path which can sleep for
539 * page faults
542 static inline int
543 slow_kernel_write(struct io_mapping *mapping,
544 loff_t gtt_base, int gtt_offset,
545 struct page *user_page, int user_offset,
546 int length)
548 char *src_vaddr, *dst_vaddr;
549 unsigned long unwritten;
551 dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
552 src_vaddr = kmap_atomic(user_page, KM_USER1);
553 unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
554 src_vaddr + user_offset,
555 length);
556 kunmap_atomic(src_vaddr, KM_USER1);
557 io_mapping_unmap_atomic(dst_vaddr);
558 if (unwritten)
559 return -EFAULT;
560 return 0;
563 static inline int
564 fast_shmem_write(struct page **pages,
565 loff_t page_base, int page_offset,
566 char __user *data,
567 int length)
569 char __iomem *vaddr;
570 unsigned long unwritten;
572 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
573 if (vaddr == NULL)
574 return -ENOMEM;
575 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
576 kunmap_atomic(vaddr, KM_USER0);
578 if (unwritten)
579 return -EFAULT;
580 return 0;
584 * This is the fast pwrite path, where we copy the data directly from the
585 * user into the GTT, uncached.
587 static int
588 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
589 struct drm_i915_gem_pwrite *args,
590 struct drm_file *file_priv)
592 struct drm_i915_gem_object *obj_priv = obj->driver_private;
593 drm_i915_private_t *dev_priv = dev->dev_private;
594 ssize_t remain;
595 loff_t offset, page_base;
596 char __user *user_data;
597 int page_offset, page_length;
598 int ret;
600 user_data = (char __user *) (uintptr_t) args->data_ptr;
601 remain = args->size;
604 mutex_lock(&dev->struct_mutex);
605 ret = i915_gem_object_pin(obj, 0);
606 if (ret) {
607 mutex_unlock(&dev->struct_mutex);
608 return ret;
610 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
611 if (ret)
612 goto fail;
614 obj_priv = obj->driver_private;
615 offset = obj_priv->gtt_offset + args->offset;
617 while (remain > 0) {
618 /* Operation in this page
620 * page_base = page offset within aperture
621 * page_offset = offset within page
622 * page_length = bytes to copy for this page
624 page_base = (offset & ~(PAGE_SIZE-1));
625 page_offset = offset & (PAGE_SIZE-1);
626 page_length = remain;
627 if ((page_offset + remain) > PAGE_SIZE)
628 page_length = PAGE_SIZE - page_offset;
630 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
631 page_offset, user_data, page_length);
633 /* If we get a fault while copying data, then (presumably) our
634 * source page isn't available. Return the error and we'll
635 * retry in the slow path.
637 if (ret)
638 goto fail;
640 remain -= page_length;
641 user_data += page_length;
642 offset += page_length;
645 fail:
646 i915_gem_object_unpin(obj);
647 mutex_unlock(&dev->struct_mutex);
649 return ret;
653 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
654 * the memory and maps it using kmap_atomic for copying.
656 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
657 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
659 static int
660 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
661 struct drm_i915_gem_pwrite *args,
662 struct drm_file *file_priv)
664 struct drm_i915_gem_object *obj_priv = obj->driver_private;
665 drm_i915_private_t *dev_priv = dev->dev_private;
666 ssize_t remain;
667 loff_t gtt_page_base, offset;
668 loff_t first_data_page, last_data_page, num_pages;
669 loff_t pinned_pages, i;
670 struct page **user_pages;
671 struct mm_struct *mm = current->mm;
672 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673 int ret;
674 uint64_t data_ptr = args->data_ptr;
676 remain = args->size;
678 /* Pin the user pages containing the data. We can't fault while
679 * holding the struct mutex, and all of the pwrite implementations
680 * want to hold it while dereferencing the user data.
682 first_data_page = data_ptr / PAGE_SIZE;
683 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
684 num_pages = last_data_page - first_data_page + 1;
686 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
687 if (user_pages == NULL)
688 return -ENOMEM;
690 down_read(&mm->mmap_sem);
691 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
692 num_pages, 0, 0, user_pages, NULL);
693 up_read(&mm->mmap_sem);
694 if (pinned_pages < num_pages) {
695 ret = -EFAULT;
696 goto out_unpin_pages;
699 mutex_lock(&dev->struct_mutex);
700 ret = i915_gem_object_pin(obj, 0);
701 if (ret)
702 goto out_unlock;
704 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
705 if (ret)
706 goto out_unpin_object;
708 obj_priv = obj->driver_private;
709 offset = obj_priv->gtt_offset + args->offset;
711 while (remain > 0) {
712 /* Operation in this page
714 * gtt_page_base = page offset within aperture
715 * gtt_page_offset = offset within page in aperture
716 * data_page_index = page number in get_user_pages return
717 * data_page_offset = offset with data_page_index page.
718 * page_length = bytes to copy for this page
720 gtt_page_base = offset & PAGE_MASK;
721 gtt_page_offset = offset & ~PAGE_MASK;
722 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
723 data_page_offset = data_ptr & ~PAGE_MASK;
725 page_length = remain;
726 if ((gtt_page_offset + page_length) > PAGE_SIZE)
727 page_length = PAGE_SIZE - gtt_page_offset;
728 if ((data_page_offset + page_length) > PAGE_SIZE)
729 page_length = PAGE_SIZE - data_page_offset;
731 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
732 gtt_page_base, gtt_page_offset,
733 user_pages[data_page_index],
734 data_page_offset,
735 page_length);
737 /* If we get a fault while copying data, then (presumably) our
738 * source page isn't available. Return the error and we'll
739 * retry in the slow path.
741 if (ret)
742 goto out_unpin_object;
744 remain -= page_length;
745 offset += page_length;
746 data_ptr += page_length;
749 out_unpin_object:
750 i915_gem_object_unpin(obj);
751 out_unlock:
752 mutex_unlock(&dev->struct_mutex);
753 out_unpin_pages:
754 for (i = 0; i < pinned_pages; i++)
755 page_cache_release(user_pages[i]);
756 drm_free_large(user_pages);
758 return ret;
762 * This is the fast shmem pwrite path, which attempts to directly
763 * copy_from_user into the kmapped pages backing the object.
765 static int
766 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
767 struct drm_i915_gem_pwrite *args,
768 struct drm_file *file_priv)
770 struct drm_i915_gem_object *obj_priv = obj->driver_private;
771 ssize_t remain;
772 loff_t offset, page_base;
773 char __user *user_data;
774 int page_offset, page_length;
775 int ret;
777 user_data = (char __user *) (uintptr_t) args->data_ptr;
778 remain = args->size;
780 mutex_lock(&dev->struct_mutex);
782 ret = i915_gem_object_get_pages(obj, 0);
783 if (ret != 0)
784 goto fail_unlock;
786 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
787 if (ret != 0)
788 goto fail_put_pages;
790 obj_priv = obj->driver_private;
791 offset = args->offset;
792 obj_priv->dirty = 1;
794 while (remain > 0) {
795 /* Operation in this page
797 * page_base = page offset within aperture
798 * page_offset = offset within page
799 * page_length = bytes to copy for this page
801 page_base = (offset & ~(PAGE_SIZE-1));
802 page_offset = offset & (PAGE_SIZE-1);
803 page_length = remain;
804 if ((page_offset + remain) > PAGE_SIZE)
805 page_length = PAGE_SIZE - page_offset;
807 ret = fast_shmem_write(obj_priv->pages,
808 page_base, page_offset,
809 user_data, page_length);
810 if (ret)
811 goto fail_put_pages;
813 remain -= page_length;
814 user_data += page_length;
815 offset += page_length;
818 fail_put_pages:
819 i915_gem_object_put_pages(obj);
820 fail_unlock:
821 mutex_unlock(&dev->struct_mutex);
823 return ret;
827 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
828 * the memory and maps it using kmap_atomic for copying.
830 * This avoids taking mmap_sem for faulting on the user's address while the
831 * struct_mutex is held.
833 static int
834 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
835 struct drm_i915_gem_pwrite *args,
836 struct drm_file *file_priv)
838 struct drm_i915_gem_object *obj_priv = obj->driver_private;
839 struct mm_struct *mm = current->mm;
840 struct page **user_pages;
841 ssize_t remain;
842 loff_t offset, pinned_pages, i;
843 loff_t first_data_page, last_data_page, num_pages;
844 int shmem_page_index, shmem_page_offset;
845 int data_page_index, data_page_offset;
846 int page_length;
847 int ret;
848 uint64_t data_ptr = args->data_ptr;
849 int do_bit17_swizzling;
851 remain = args->size;
853 /* Pin the user pages containing the data. We can't fault while
854 * holding the struct mutex, and all of the pwrite implementations
855 * want to hold it while dereferencing the user data.
857 first_data_page = data_ptr / PAGE_SIZE;
858 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
859 num_pages = last_data_page - first_data_page + 1;
861 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
862 if (user_pages == NULL)
863 return -ENOMEM;
865 down_read(&mm->mmap_sem);
866 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
867 num_pages, 0, 0, user_pages, NULL);
868 up_read(&mm->mmap_sem);
869 if (pinned_pages < num_pages) {
870 ret = -EFAULT;
871 goto fail_put_user_pages;
874 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
876 mutex_lock(&dev->struct_mutex);
878 ret = i915_gem_object_get_pages_or_evict(obj);
879 if (ret)
880 goto fail_unlock;
882 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
883 if (ret != 0)
884 goto fail_put_pages;
886 obj_priv = obj->driver_private;
887 offset = args->offset;
888 obj_priv->dirty = 1;
890 while (remain > 0) {
891 /* Operation in this page
893 * shmem_page_index = page number within shmem file
894 * shmem_page_offset = offset within page in shmem file
895 * data_page_index = page number in get_user_pages return
896 * data_page_offset = offset with data_page_index page.
897 * page_length = bytes to copy for this page
899 shmem_page_index = offset / PAGE_SIZE;
900 shmem_page_offset = offset & ~PAGE_MASK;
901 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
902 data_page_offset = data_ptr & ~PAGE_MASK;
904 page_length = remain;
905 if ((shmem_page_offset + page_length) > PAGE_SIZE)
906 page_length = PAGE_SIZE - shmem_page_offset;
907 if ((data_page_offset + page_length) > PAGE_SIZE)
908 page_length = PAGE_SIZE - data_page_offset;
910 if (do_bit17_swizzling) {
911 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
912 shmem_page_offset,
913 user_pages[data_page_index],
914 data_page_offset,
915 page_length,
917 } else {
918 ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
919 shmem_page_offset,
920 user_pages[data_page_index],
921 data_page_offset,
922 page_length);
924 if (ret)
925 goto fail_put_pages;
927 remain -= page_length;
928 data_ptr += page_length;
929 offset += page_length;
932 fail_put_pages:
933 i915_gem_object_put_pages(obj);
934 fail_unlock:
935 mutex_unlock(&dev->struct_mutex);
936 fail_put_user_pages:
937 for (i = 0; i < pinned_pages; i++)
938 page_cache_release(user_pages[i]);
939 drm_free_large(user_pages);
941 return ret;
945 * Writes data to the object referenced by handle.
947 * On error, the contents of the buffer that were to be modified are undefined.
950 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
951 struct drm_file *file_priv)
953 struct drm_i915_gem_pwrite *args = data;
954 struct drm_gem_object *obj;
955 struct drm_i915_gem_object *obj_priv;
956 int ret = 0;
958 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
959 if (obj == NULL)
960 return -EBADF;
961 obj_priv = obj->driver_private;
963 /* Bounds check destination.
965 * XXX: This could use review for overflow issues...
967 if (args->offset > obj->size || args->size > obj->size ||
968 args->offset + args->size > obj->size) {
969 ret = -EINVAL;
970 goto err;
973 if (!access_ok(VERIFY_READ,
974 (char __user *)(uintptr_t)args->data_ptr,
975 args->size)) {
976 ret = -EFAULT;
977 goto err;
980 /* We can only do the GTT pwrite on untiled buffers, as otherwise
981 * it would end up going through the fenced access, and we'll get
982 * different detiling behavior between reading and writing.
983 * pread/pwrite currently are reading and writing from the CPU
984 * perspective, requiring manual detiling by the client.
986 if (obj_priv->phys_obj)
987 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
988 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
989 dev->gtt_total != 0) {
990 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
991 if (ret == -EFAULT) {
992 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
993 file_priv);
995 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
996 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
997 } else {
998 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
999 if (ret == -EFAULT) {
1000 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
1001 file_priv);
1005 #if WATCH_PWRITE
1006 if (ret)
1007 DRM_INFO("pwrite failed %d\n", ret);
1008 #endif
1010 err:
1011 drm_gem_object_unreference(obj);
1012 return ret;
1016 * Called when user space prepares to use an object with the CPU, either
1017 * through the mmap ioctl's mapping or a GTT mapping.
1020 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1021 struct drm_file *file_priv)
1023 struct drm_i915_private *dev_priv = dev->dev_private;
1024 struct drm_i915_gem_set_domain *args = data;
1025 struct drm_gem_object *obj;
1026 struct drm_i915_gem_object *obj_priv;
1027 uint32_t read_domains = args->read_domains;
1028 uint32_t write_domain = args->write_domain;
1029 int ret;
1031 if (!(dev->driver->driver_features & DRIVER_GEM))
1032 return -ENODEV;
1034 /* Only handle setting domains to types used by the CPU. */
1035 if (write_domain & I915_GEM_GPU_DOMAINS)
1036 return -EINVAL;
1038 if (read_domains & I915_GEM_GPU_DOMAINS)
1039 return -EINVAL;
1041 /* Having something in the write domain implies it's in the read
1042 * domain, and only that read domain. Enforce that in the request.
1044 if (write_domain != 0 && read_domains != write_domain)
1045 return -EINVAL;
1047 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1048 if (obj == NULL)
1049 return -EBADF;
1050 obj_priv = obj->driver_private;
1052 mutex_lock(&dev->struct_mutex);
1054 intel_mark_busy(dev, obj);
1056 #if WATCH_BUF
1057 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1058 obj, obj->size, read_domains, write_domain);
1059 #endif
1060 if (read_domains & I915_GEM_DOMAIN_GTT) {
1061 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1063 /* Update the LRU on the fence for the CPU access that's
1064 * about to occur.
1066 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1067 list_move_tail(&obj_priv->fence_list,
1068 &dev_priv->mm.fence_list);
1071 /* Silently promote "you're not bound, there was nothing to do"
1072 * to success, since the client was just asking us to
1073 * make sure everything was done.
1075 if (ret == -EINVAL)
1076 ret = 0;
1077 } else {
1078 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1081 drm_gem_object_unreference(obj);
1082 mutex_unlock(&dev->struct_mutex);
1083 return ret;
1087 * Called when user space has done writes to this buffer
1090 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1091 struct drm_file *file_priv)
1093 struct drm_i915_gem_sw_finish *args = data;
1094 struct drm_gem_object *obj;
1095 struct drm_i915_gem_object *obj_priv;
1096 int ret = 0;
1098 if (!(dev->driver->driver_features & DRIVER_GEM))
1099 return -ENODEV;
1101 mutex_lock(&dev->struct_mutex);
1102 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1103 if (obj == NULL) {
1104 mutex_unlock(&dev->struct_mutex);
1105 return -EBADF;
1108 #if WATCH_BUF
1109 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1110 __func__, args->handle, obj, obj->size);
1111 #endif
1112 obj_priv = obj->driver_private;
1114 /* Pinned buffers may be scanout, so flush the cache */
1115 if (obj_priv->pin_count)
1116 i915_gem_object_flush_cpu_write_domain(obj);
1118 drm_gem_object_unreference(obj);
1119 mutex_unlock(&dev->struct_mutex);
1120 return ret;
1124 * Maps the contents of an object, returning the address it is mapped
1125 * into.
1127 * While the mapping holds a reference on the contents of the object, it doesn't
1128 * imply a ref on the object itself.
1131 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1132 struct drm_file *file_priv)
1134 struct drm_i915_gem_mmap *args = data;
1135 struct drm_gem_object *obj;
1136 loff_t offset;
1137 unsigned long addr;
1139 if (!(dev->driver->driver_features & DRIVER_GEM))
1140 return -ENODEV;
1142 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1143 if (obj == NULL)
1144 return -EBADF;
1146 offset = args->offset;
1148 down_write(&current->mm->mmap_sem);
1149 addr = do_mmap(obj->filp, 0, args->size,
1150 PROT_READ | PROT_WRITE, MAP_SHARED,
1151 args->offset);
1152 up_write(&current->mm->mmap_sem);
1153 mutex_lock(&dev->struct_mutex);
1154 drm_gem_object_unreference(obj);
1155 mutex_unlock(&dev->struct_mutex);
1156 if (IS_ERR((void *)addr))
1157 return addr;
1159 args->addr_ptr = (uint64_t) addr;
1161 return 0;
1165 * i915_gem_fault - fault a page into the GTT
1166 * vma: VMA in question
1167 * vmf: fault info
1169 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1170 * from userspace. The fault handler takes care of binding the object to
1171 * the GTT (if needed), allocating and programming a fence register (again,
1172 * only if needed based on whether the old reg is still valid or the object
1173 * is tiled) and inserting a new PTE into the faulting process.
1175 * Note that the faulting process may involve evicting existing objects
1176 * from the GTT and/or fence registers to make room. So performance may
1177 * suffer if the GTT working set is large or there are few fence registers
1178 * left.
1180 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1182 struct drm_gem_object *obj = vma->vm_private_data;
1183 struct drm_device *dev = obj->dev;
1184 struct drm_i915_private *dev_priv = dev->dev_private;
1185 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1186 pgoff_t page_offset;
1187 unsigned long pfn;
1188 int ret = 0;
1189 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1191 /* We don't use vmf->pgoff since that has the fake offset */
1192 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1193 PAGE_SHIFT;
1195 /* Now bind it into the GTT if needed */
1196 mutex_lock(&dev->struct_mutex);
1197 if (!obj_priv->gtt_space) {
1198 ret = i915_gem_object_bind_to_gtt(obj, 0);
1199 if (ret)
1200 goto unlock;
1202 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1204 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1205 if (ret)
1206 goto unlock;
1209 /* Need a new fence register? */
1210 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1211 ret = i915_gem_object_get_fence_reg(obj);
1212 if (ret)
1213 goto unlock;
1216 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1217 page_offset;
1219 /* Finally, remap it using the new GTT offset */
1220 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1221 unlock:
1222 mutex_unlock(&dev->struct_mutex);
1224 switch (ret) {
1225 case 0:
1226 case -ERESTARTSYS:
1227 return VM_FAULT_NOPAGE;
1228 case -ENOMEM:
1229 case -EAGAIN:
1230 return VM_FAULT_OOM;
1231 default:
1232 return VM_FAULT_SIGBUS;
1237 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1238 * @obj: obj in question
1240 * GEM memory mapping works by handing back to userspace a fake mmap offset
1241 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1242 * up the object based on the offset and sets up the various memory mapping
1243 * structures.
1245 * This routine allocates and attaches a fake offset for @obj.
1247 static int
1248 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1250 struct drm_device *dev = obj->dev;
1251 struct drm_gem_mm *mm = dev->mm_private;
1252 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1253 struct drm_map_list *list;
1254 struct drm_local_map *map;
1255 int ret = 0;
1257 /* Set the object up for mmap'ing */
1258 list = &obj->map_list;
1259 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1260 if (!list->map)
1261 return -ENOMEM;
1263 map = list->map;
1264 map->type = _DRM_GEM;
1265 map->size = obj->size;
1266 map->handle = obj;
1268 /* Get a DRM GEM mmap offset allocated... */
1269 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1270 obj->size / PAGE_SIZE, 0, 0);
1271 if (!list->file_offset_node) {
1272 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1273 ret = -ENOMEM;
1274 goto out_free_list;
1277 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1278 obj->size / PAGE_SIZE, 0);
1279 if (!list->file_offset_node) {
1280 ret = -ENOMEM;
1281 goto out_free_list;
1284 list->hash.key = list->file_offset_node->start;
1285 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1286 DRM_ERROR("failed to add to map hash\n");
1287 ret = -ENOMEM;
1288 goto out_free_mm;
1291 /* By now we should be all set, any drm_mmap request on the offset
1292 * below will get to our mmap & fault handler */
1293 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1295 return 0;
1297 out_free_mm:
1298 drm_mm_put_block(list->file_offset_node);
1299 out_free_list:
1300 kfree(list->map);
1302 return ret;
1306 * i915_gem_release_mmap - remove physical page mappings
1307 * @obj: obj in question
1309 * Preserve the reservation of the mmaping with the DRM core code, but
1310 * relinquish ownership of the pages back to the system.
1312 * It is vital that we remove the page mapping if we have mapped a tiled
1313 * object through the GTT and then lose the fence register due to
1314 * resource pressure. Similarly if the object has been moved out of the
1315 * aperture, than pages mapped into userspace must be revoked. Removing the
1316 * mapping will then trigger a page fault on the next user access, allowing
1317 * fixup by i915_gem_fault().
1319 void
1320 i915_gem_release_mmap(struct drm_gem_object *obj)
1322 struct drm_device *dev = obj->dev;
1323 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1325 if (dev->dev_mapping)
1326 unmap_mapping_range(dev->dev_mapping,
1327 obj_priv->mmap_offset, obj->size, 1);
1330 static void
1331 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1333 struct drm_device *dev = obj->dev;
1334 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1335 struct drm_gem_mm *mm = dev->mm_private;
1336 struct drm_map_list *list;
1338 list = &obj->map_list;
1339 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1341 if (list->file_offset_node) {
1342 drm_mm_put_block(list->file_offset_node);
1343 list->file_offset_node = NULL;
1346 if (list->map) {
1347 kfree(list->map);
1348 list->map = NULL;
1351 obj_priv->mmap_offset = 0;
1355 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1356 * @obj: object to check
1358 * Return the required GTT alignment for an object, taking into account
1359 * potential fence register mapping if needed.
1361 static uint32_t
1362 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1364 struct drm_device *dev = obj->dev;
1365 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1366 int start, i;
1369 * Minimum alignment is 4k (GTT page size), but might be greater
1370 * if a fence register is needed for the object.
1372 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1373 return 4096;
1376 * Previous chips need to be aligned to the size of the smallest
1377 * fence register that can contain the object.
1379 if (IS_I9XX(dev))
1380 start = 1024*1024;
1381 else
1382 start = 512*1024;
1384 for (i = start; i < obj->size; i <<= 1)
1387 return i;
1391 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1392 * @dev: DRM device
1393 * @data: GTT mapping ioctl data
1394 * @file_priv: GEM object info
1396 * Simply returns the fake offset to userspace so it can mmap it.
1397 * The mmap call will end up in drm_gem_mmap(), which will set things
1398 * up so we can get faults in the handler above.
1400 * The fault handler will take care of binding the object into the GTT
1401 * (since it may have been evicted to make room for something), allocating
1402 * a fence register, and mapping the appropriate aperture address into
1403 * userspace.
1406 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1407 struct drm_file *file_priv)
1409 struct drm_i915_gem_mmap_gtt *args = data;
1410 struct drm_i915_private *dev_priv = dev->dev_private;
1411 struct drm_gem_object *obj;
1412 struct drm_i915_gem_object *obj_priv;
1413 int ret;
1415 if (!(dev->driver->driver_features & DRIVER_GEM))
1416 return -ENODEV;
1418 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1419 if (obj == NULL)
1420 return -EBADF;
1422 mutex_lock(&dev->struct_mutex);
1424 obj_priv = obj->driver_private;
1426 if (obj_priv->madv != I915_MADV_WILLNEED) {
1427 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1428 drm_gem_object_unreference(obj);
1429 mutex_unlock(&dev->struct_mutex);
1430 return -EINVAL;
1434 if (!obj_priv->mmap_offset) {
1435 ret = i915_gem_create_mmap_offset(obj);
1436 if (ret) {
1437 drm_gem_object_unreference(obj);
1438 mutex_unlock(&dev->struct_mutex);
1439 return ret;
1443 args->offset = obj_priv->mmap_offset;
1446 * Pull it into the GTT so that we have a page list (makes the
1447 * initial fault faster and any subsequent flushing possible).
1449 if (!obj_priv->agp_mem) {
1450 ret = i915_gem_object_bind_to_gtt(obj, 0);
1451 if (ret) {
1452 drm_gem_object_unreference(obj);
1453 mutex_unlock(&dev->struct_mutex);
1454 return ret;
1456 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1459 drm_gem_object_unreference(obj);
1460 mutex_unlock(&dev->struct_mutex);
1462 return 0;
1465 void
1466 i915_gem_object_put_pages(struct drm_gem_object *obj)
1468 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1469 int page_count = obj->size / PAGE_SIZE;
1470 int i;
1472 BUG_ON(obj_priv->pages_refcount == 0);
1473 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1475 if (--obj_priv->pages_refcount != 0)
1476 return;
1478 if (obj_priv->tiling_mode != I915_TILING_NONE)
1479 i915_gem_object_save_bit_17_swizzle(obj);
1481 if (obj_priv->madv == I915_MADV_DONTNEED)
1482 obj_priv->dirty = 0;
1484 for (i = 0; i < page_count; i++) {
1485 if (obj_priv->dirty)
1486 set_page_dirty(obj_priv->pages[i]);
1488 if (obj_priv->madv == I915_MADV_WILLNEED)
1489 mark_page_accessed(obj_priv->pages[i]);
1491 page_cache_release(obj_priv->pages[i]);
1493 obj_priv->dirty = 0;
1495 drm_free_large(obj_priv->pages);
1496 obj_priv->pages = NULL;
1499 static void
1500 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1502 struct drm_device *dev = obj->dev;
1503 drm_i915_private_t *dev_priv = dev->dev_private;
1504 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1506 /* Add a reference if we're newly entering the active list. */
1507 if (!obj_priv->active) {
1508 drm_gem_object_reference(obj);
1509 obj_priv->active = 1;
1511 /* Move from whatever list we were on to the tail of execution. */
1512 spin_lock(&dev_priv->mm.active_list_lock);
1513 list_move_tail(&obj_priv->list,
1514 &dev_priv->mm.active_list);
1515 spin_unlock(&dev_priv->mm.active_list_lock);
1516 obj_priv->last_rendering_seqno = seqno;
1519 static void
1520 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1522 struct drm_device *dev = obj->dev;
1523 drm_i915_private_t *dev_priv = dev->dev_private;
1524 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1526 BUG_ON(!obj_priv->active);
1527 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1528 obj_priv->last_rendering_seqno = 0;
1531 /* Immediately discard the backing storage */
1532 static void
1533 i915_gem_object_truncate(struct drm_gem_object *obj)
1535 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1536 struct inode *inode;
1538 inode = obj->filp->f_path.dentry->d_inode;
1539 if (inode->i_op->truncate)
1540 inode->i_op->truncate (inode);
1542 obj_priv->madv = __I915_MADV_PURGED;
1545 static inline int
1546 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1548 return obj_priv->madv == I915_MADV_DONTNEED;
1551 static void
1552 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1554 struct drm_device *dev = obj->dev;
1555 drm_i915_private_t *dev_priv = dev->dev_private;
1556 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1558 i915_verify_inactive(dev, __FILE__, __LINE__);
1559 if (obj_priv->pin_count != 0)
1560 list_del_init(&obj_priv->list);
1561 else
1562 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1564 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1566 obj_priv->last_rendering_seqno = 0;
1567 if (obj_priv->active) {
1568 obj_priv->active = 0;
1569 drm_gem_object_unreference(obj);
1571 i915_verify_inactive(dev, __FILE__, __LINE__);
1575 * Creates a new sequence number, emitting a write of it to the status page
1576 * plus an interrupt, which will trigger i915_user_interrupt_handler.
1578 * Must be called with struct_lock held.
1580 * Returned sequence numbers are nonzero on success.
1582 static uint32_t
1583 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1584 uint32_t flush_domains)
1586 drm_i915_private_t *dev_priv = dev->dev_private;
1587 struct drm_i915_file_private *i915_file_priv = NULL;
1588 struct drm_i915_gem_request *request;
1589 uint32_t seqno;
1590 int was_empty;
1591 RING_LOCALS;
1593 if (file_priv != NULL)
1594 i915_file_priv = file_priv->driver_priv;
1596 request = kzalloc(sizeof(*request), GFP_KERNEL);
1597 if (request == NULL)
1598 return 0;
1600 /* Grab the seqno we're going to make this request be, and bump the
1601 * next (skipping 0 so it can be the reserved no-seqno value).
1603 seqno = dev_priv->mm.next_gem_seqno;
1604 dev_priv->mm.next_gem_seqno++;
1605 if (dev_priv->mm.next_gem_seqno == 0)
1606 dev_priv->mm.next_gem_seqno++;
1608 BEGIN_LP_RING(4);
1609 OUT_RING(MI_STORE_DWORD_INDEX);
1610 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1611 OUT_RING(seqno);
1613 OUT_RING(MI_USER_INTERRUPT);
1614 ADVANCE_LP_RING();
1616 DRM_DEBUG("%d\n", seqno);
1618 request->seqno = seqno;
1619 request->emitted_jiffies = jiffies;
1620 was_empty = list_empty(&dev_priv->mm.request_list);
1621 list_add_tail(&request->list, &dev_priv->mm.request_list);
1622 if (i915_file_priv) {
1623 list_add_tail(&request->client_list,
1624 &i915_file_priv->mm.request_list);
1625 } else {
1626 INIT_LIST_HEAD(&request->client_list);
1629 /* Associate any objects on the flushing list matching the write
1630 * domain we're flushing with our flush.
1632 if (flush_domains != 0) {
1633 struct drm_i915_gem_object *obj_priv, *next;
1635 list_for_each_entry_safe(obj_priv, next,
1636 &dev_priv->mm.gpu_write_list,
1637 gpu_write_list) {
1638 struct drm_gem_object *obj = obj_priv->obj;
1640 if ((obj->write_domain & flush_domains) ==
1641 obj->write_domain) {
1642 uint32_t old_write_domain = obj->write_domain;
1644 obj->write_domain = 0;
1645 list_del_init(&obj_priv->gpu_write_list);
1646 i915_gem_object_move_to_active(obj, seqno);
1648 trace_i915_gem_object_change_domain(obj,
1649 obj->read_domains,
1650 old_write_domain);
1656 if (!dev_priv->mm.suspended) {
1657 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1658 if (was_empty)
1659 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1661 return seqno;
1665 * Command execution barrier
1667 * Ensures that all commands in the ring are finished
1668 * before signalling the CPU
1670 static uint32_t
1671 i915_retire_commands(struct drm_device *dev)
1673 drm_i915_private_t *dev_priv = dev->dev_private;
1674 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1675 uint32_t flush_domains = 0;
1676 RING_LOCALS;
1678 /* The sampler always gets flushed on i965 (sigh) */
1679 if (IS_I965G(dev))
1680 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1681 BEGIN_LP_RING(2);
1682 OUT_RING(cmd);
1683 OUT_RING(0); /* noop */
1684 ADVANCE_LP_RING();
1685 return flush_domains;
1689 * Moves buffers associated only with the given active seqno from the active
1690 * to inactive list, potentially freeing them.
1692 static void
1693 i915_gem_retire_request(struct drm_device *dev,
1694 struct drm_i915_gem_request *request)
1696 drm_i915_private_t *dev_priv = dev->dev_private;
1698 trace_i915_gem_request_retire(dev, request->seqno);
1700 /* Move any buffers on the active list that are no longer referenced
1701 * by the ringbuffer to the flushing/inactive lists as appropriate.
1703 spin_lock(&dev_priv->mm.active_list_lock);
1704 while (!list_empty(&dev_priv->mm.active_list)) {
1705 struct drm_gem_object *obj;
1706 struct drm_i915_gem_object *obj_priv;
1708 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1709 struct drm_i915_gem_object,
1710 list);
1711 obj = obj_priv->obj;
1713 /* If the seqno being retired doesn't match the oldest in the
1714 * list, then the oldest in the list must still be newer than
1715 * this seqno.
1717 if (obj_priv->last_rendering_seqno != request->seqno)
1718 goto out;
1720 #if WATCH_LRU
1721 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1722 __func__, request->seqno, obj);
1723 #endif
1725 if (obj->write_domain != 0)
1726 i915_gem_object_move_to_flushing(obj);
1727 else {
1728 /* Take a reference on the object so it won't be
1729 * freed while the spinlock is held. The list
1730 * protection for this spinlock is safe when breaking
1731 * the lock like this since the next thing we do
1732 * is just get the head of the list again.
1734 drm_gem_object_reference(obj);
1735 i915_gem_object_move_to_inactive(obj);
1736 spin_unlock(&dev_priv->mm.active_list_lock);
1737 drm_gem_object_unreference(obj);
1738 spin_lock(&dev_priv->mm.active_list_lock);
1741 out:
1742 spin_unlock(&dev_priv->mm.active_list_lock);
1746 * Returns true if seq1 is later than seq2.
1748 bool
1749 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1751 return (int32_t)(seq1 - seq2) >= 0;
1754 uint32_t
1755 i915_get_gem_seqno(struct drm_device *dev)
1757 drm_i915_private_t *dev_priv = dev->dev_private;
1759 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1763 * This function clears the request list as sequence numbers are passed.
1765 void
1766 i915_gem_retire_requests(struct drm_device *dev)
1768 drm_i915_private_t *dev_priv = dev->dev_private;
1769 uint32_t seqno;
1771 if (!dev_priv->hw_status_page || list_empty(&dev_priv->mm.request_list))
1772 return;
1774 seqno = i915_get_gem_seqno(dev);
1776 while (!list_empty(&dev_priv->mm.request_list)) {
1777 struct drm_i915_gem_request *request;
1778 uint32_t retiring_seqno;
1780 request = list_first_entry(&dev_priv->mm.request_list,
1781 struct drm_i915_gem_request,
1782 list);
1783 retiring_seqno = request->seqno;
1785 if (i915_seqno_passed(seqno, retiring_seqno) ||
1786 atomic_read(&dev_priv->mm.wedged)) {
1787 i915_gem_retire_request(dev, request);
1789 list_del(&request->list);
1790 list_del(&request->client_list);
1791 kfree(request);
1792 } else
1793 break;
1796 if (unlikely (dev_priv->trace_irq_seqno &&
1797 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1798 i915_user_irq_put(dev);
1799 dev_priv->trace_irq_seqno = 0;
1803 void
1804 i915_gem_retire_work_handler(struct work_struct *work)
1806 drm_i915_private_t *dev_priv;
1807 struct drm_device *dev;
1809 dev_priv = container_of(work, drm_i915_private_t,
1810 mm.retire_work.work);
1811 dev = dev_priv->dev;
1813 mutex_lock(&dev->struct_mutex);
1814 i915_gem_retire_requests(dev);
1815 if (!dev_priv->mm.suspended &&
1816 !list_empty(&dev_priv->mm.request_list))
1817 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1818 mutex_unlock(&dev->struct_mutex);
1821 static int
1822 i915_do_wait_request(struct drm_device *dev, uint32_t seqno, int interruptible)
1824 drm_i915_private_t *dev_priv = dev->dev_private;
1825 u32 ier;
1826 int ret = 0;
1828 BUG_ON(seqno == 0);
1830 if (atomic_read(&dev_priv->mm.wedged))
1831 return -EIO;
1833 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1834 if (IS_IGDNG(dev))
1835 ier = I915_READ(DEIER) | I915_READ(GTIER);
1836 else
1837 ier = I915_READ(IER);
1838 if (!ier) {
1839 DRM_ERROR("something (likely vbetool) disabled "
1840 "interrupts, re-enabling\n");
1841 i915_driver_irq_preinstall(dev);
1842 i915_driver_irq_postinstall(dev);
1845 trace_i915_gem_request_wait_begin(dev, seqno);
1847 dev_priv->mm.waiting_gem_seqno = seqno;
1848 i915_user_irq_get(dev);
1849 if (interruptible)
1850 ret = wait_event_interruptible(dev_priv->irq_queue,
1851 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1852 atomic_read(&dev_priv->mm.wedged));
1853 else
1854 wait_event(dev_priv->irq_queue,
1855 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1856 atomic_read(&dev_priv->mm.wedged));
1858 i915_user_irq_put(dev);
1859 dev_priv->mm.waiting_gem_seqno = 0;
1861 trace_i915_gem_request_wait_end(dev, seqno);
1863 if (atomic_read(&dev_priv->mm.wedged))
1864 ret = -EIO;
1866 if (ret && ret != -ERESTARTSYS)
1867 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1868 __func__, ret, seqno, i915_get_gem_seqno(dev));
1870 /* Directly dispatch request retiring. While we have the work queue
1871 * to handle this, the waiter on a request often wants an associated
1872 * buffer to have made it to the inactive list, and we would need
1873 * a separate wait queue to handle that.
1875 if (ret == 0)
1876 i915_gem_retire_requests(dev);
1878 return ret;
1882 * Waits for a sequence number to be signaled, and cleans up the
1883 * request and object lists appropriately for that event.
1885 static int
1886 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1888 return i915_do_wait_request(dev, seqno, 1);
1892 * Waits for the ring to finish up to the latest request. Usefull for waiting
1893 * for flip events, e.g for the overlay support. */
1894 int i915_lp_ring_sync(struct drm_device *dev)
1896 uint32_t seqno;
1897 int ret;
1899 seqno = i915_add_request(dev, NULL, 0);
1901 if (seqno == 0)
1902 return -ENOMEM;
1904 ret = i915_do_wait_request(dev, seqno, 0);
1905 BUG_ON(ret == -ERESTARTSYS);
1906 return ret;
1909 static void
1910 i915_gem_flush(struct drm_device *dev,
1911 uint32_t invalidate_domains,
1912 uint32_t flush_domains)
1914 drm_i915_private_t *dev_priv = dev->dev_private;
1915 uint32_t cmd;
1916 RING_LOCALS;
1918 #if WATCH_EXEC
1919 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1920 invalidate_domains, flush_domains);
1921 #endif
1922 trace_i915_gem_request_flush(dev, dev_priv->mm.next_gem_seqno,
1923 invalidate_domains, flush_domains);
1925 if (flush_domains & I915_GEM_DOMAIN_CPU)
1926 drm_agp_chipset_flush(dev);
1928 if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1930 * read/write caches:
1932 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1933 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
1934 * also flushed at 2d versus 3d pipeline switches.
1936 * read-only caches:
1938 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1939 * MI_READ_FLUSH is set, and is always flushed on 965.
1941 * I915_GEM_DOMAIN_COMMAND may not exist?
1943 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1944 * invalidated when MI_EXE_FLUSH is set.
1946 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1947 * invalidated with every MI_FLUSH.
1949 * TLBs:
1951 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1952 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1953 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1954 * are flushed at any MI_FLUSH.
1957 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1958 if ((invalidate_domains|flush_domains) &
1959 I915_GEM_DOMAIN_RENDER)
1960 cmd &= ~MI_NO_WRITE_FLUSH;
1961 if (!IS_I965G(dev)) {
1963 * On the 965, the sampler cache always gets flushed
1964 * and this bit is reserved.
1966 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1967 cmd |= MI_READ_FLUSH;
1969 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1970 cmd |= MI_EXE_FLUSH;
1972 #if WATCH_EXEC
1973 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1974 #endif
1975 BEGIN_LP_RING(2);
1976 OUT_RING(cmd);
1977 OUT_RING(MI_NOOP);
1978 ADVANCE_LP_RING();
1983 * Ensures that all rendering to the object has completed and the object is
1984 * safe to unbind from the GTT or access from the CPU.
1986 static int
1987 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1989 struct drm_device *dev = obj->dev;
1990 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1991 int ret;
1993 /* This function only exists to support waiting for existing rendering,
1994 * not for emitting required flushes.
1996 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1998 /* If there is rendering queued on the buffer being evicted, wait for
1999 * it.
2001 if (obj_priv->active) {
2002 #if WATCH_BUF
2003 DRM_INFO("%s: object %p wait for seqno %08x\n",
2004 __func__, obj, obj_priv->last_rendering_seqno);
2005 #endif
2006 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
2007 if (ret != 0)
2008 return ret;
2011 return 0;
2015 * Unbinds an object from the GTT aperture.
2018 i915_gem_object_unbind(struct drm_gem_object *obj)
2020 struct drm_device *dev = obj->dev;
2021 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2022 int ret = 0;
2024 #if WATCH_BUF
2025 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
2026 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
2027 #endif
2028 if (obj_priv->gtt_space == NULL)
2029 return 0;
2031 if (obj_priv->pin_count != 0) {
2032 DRM_ERROR("Attempting to unbind pinned buffer\n");
2033 return -EINVAL;
2036 /* blow away mappings if mapped through GTT */
2037 i915_gem_release_mmap(obj);
2039 /* Move the object to the CPU domain to ensure that
2040 * any possible CPU writes while it's not in the GTT
2041 * are flushed when we go to remap it. This will
2042 * also ensure that all pending GPU writes are finished
2043 * before we unbind.
2045 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2046 if (ret) {
2047 if (ret != -ERESTARTSYS)
2048 DRM_ERROR("set_domain failed: %d\n", ret);
2049 return ret;
2052 BUG_ON(obj_priv->active);
2054 /* release the fence reg _after_ flushing */
2055 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2056 i915_gem_clear_fence_reg(obj);
2058 if (obj_priv->agp_mem != NULL) {
2059 drm_unbind_agp(obj_priv->agp_mem);
2060 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2061 obj_priv->agp_mem = NULL;
2064 i915_gem_object_put_pages(obj);
2065 BUG_ON(obj_priv->pages_refcount);
2067 if (obj_priv->gtt_space) {
2068 atomic_dec(&dev->gtt_count);
2069 atomic_sub(obj->size, &dev->gtt_memory);
2071 drm_mm_put_block(obj_priv->gtt_space);
2072 obj_priv->gtt_space = NULL;
2075 /* Remove ourselves from the LRU list if present. */
2076 if (!list_empty(&obj_priv->list))
2077 list_del_init(&obj_priv->list);
2079 if (i915_gem_object_is_purgeable(obj_priv))
2080 i915_gem_object_truncate(obj);
2082 trace_i915_gem_object_unbind(obj);
2084 return 0;
2087 static struct drm_gem_object *
2088 i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
2090 drm_i915_private_t *dev_priv = dev->dev_private;
2091 struct drm_i915_gem_object *obj_priv;
2092 struct drm_gem_object *best = NULL;
2093 struct drm_gem_object *first = NULL;
2095 /* Try to find the smallest clean object */
2096 list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
2097 struct drm_gem_object *obj = obj_priv->obj;
2098 if (obj->size >= min_size) {
2099 if ((!obj_priv->dirty ||
2100 i915_gem_object_is_purgeable(obj_priv)) &&
2101 (!best || obj->size < best->size)) {
2102 best = obj;
2103 if (best->size == min_size)
2104 return best;
2106 if (!first)
2107 first = obj;
2111 return best ? best : first;
2114 static int
2115 i915_gem_evict_everything(struct drm_device *dev)
2117 drm_i915_private_t *dev_priv = dev->dev_private;
2118 int ret;
2119 uint32_t seqno;
2120 bool lists_empty;
2122 spin_lock(&dev_priv->mm.active_list_lock);
2123 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2124 list_empty(&dev_priv->mm.flushing_list) &&
2125 list_empty(&dev_priv->mm.active_list));
2126 spin_unlock(&dev_priv->mm.active_list_lock);
2128 if (lists_empty)
2129 return -ENOSPC;
2131 /* Flush everything (on to the inactive lists) and evict */
2132 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2133 seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
2134 if (seqno == 0)
2135 return -ENOMEM;
2137 ret = i915_wait_request(dev, seqno);
2138 if (ret)
2139 return ret;
2141 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
2143 ret = i915_gem_evict_from_inactive_list(dev);
2144 if (ret)
2145 return ret;
2147 spin_lock(&dev_priv->mm.active_list_lock);
2148 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2149 list_empty(&dev_priv->mm.flushing_list) &&
2150 list_empty(&dev_priv->mm.active_list));
2151 spin_unlock(&dev_priv->mm.active_list_lock);
2152 BUG_ON(!lists_empty);
2154 return 0;
2157 static int
2158 i915_gem_evict_something(struct drm_device *dev, int min_size)
2160 drm_i915_private_t *dev_priv = dev->dev_private;
2161 struct drm_gem_object *obj;
2162 int ret;
2164 for (;;) {
2165 i915_gem_retire_requests(dev);
2167 /* If there's an inactive buffer available now, grab it
2168 * and be done.
2170 obj = i915_gem_find_inactive_object(dev, min_size);
2171 if (obj) {
2172 struct drm_i915_gem_object *obj_priv;
2174 #if WATCH_LRU
2175 DRM_INFO("%s: evicting %p\n", __func__, obj);
2176 #endif
2177 obj_priv = obj->driver_private;
2178 BUG_ON(obj_priv->pin_count != 0);
2179 BUG_ON(obj_priv->active);
2181 /* Wait on the rendering and unbind the buffer. */
2182 return i915_gem_object_unbind(obj);
2185 /* If we didn't get anything, but the ring is still processing
2186 * things, wait for the next to finish and hopefully leave us
2187 * a buffer to evict.
2189 if (!list_empty(&dev_priv->mm.request_list)) {
2190 struct drm_i915_gem_request *request;
2192 request = list_first_entry(&dev_priv->mm.request_list,
2193 struct drm_i915_gem_request,
2194 list);
2196 ret = i915_wait_request(dev, request->seqno);
2197 if (ret)
2198 return ret;
2200 continue;
2203 /* If we didn't have anything on the request list but there
2204 * are buffers awaiting a flush, emit one and try again.
2205 * When we wait on it, those buffers waiting for that flush
2206 * will get moved to inactive.
2208 if (!list_empty(&dev_priv->mm.flushing_list)) {
2209 struct drm_i915_gem_object *obj_priv;
2211 /* Find an object that we can immediately reuse */
2212 list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
2213 obj = obj_priv->obj;
2214 if (obj->size >= min_size)
2215 break;
2217 obj = NULL;
2220 if (obj != NULL) {
2221 uint32_t seqno;
2223 i915_gem_flush(dev,
2224 obj->write_domain,
2225 obj->write_domain);
2226 seqno = i915_add_request(dev, NULL, obj->write_domain);
2227 if (seqno == 0)
2228 return -ENOMEM;
2230 ret = i915_wait_request(dev, seqno);
2231 if (ret)
2232 return ret;
2234 continue;
2238 /* If we didn't do any of the above, there's no single buffer
2239 * large enough to swap out for the new one, so just evict
2240 * everything and start again. (This should be rare.)
2242 if (!list_empty (&dev_priv->mm.inactive_list))
2243 return i915_gem_evict_from_inactive_list(dev);
2244 else
2245 return i915_gem_evict_everything(dev);
2250 i915_gem_object_get_pages(struct drm_gem_object *obj,
2251 gfp_t gfpmask)
2253 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2254 int page_count, i;
2255 struct address_space *mapping;
2256 struct inode *inode;
2257 struct page *page;
2259 if (obj_priv->pages_refcount++ != 0)
2260 return 0;
2262 /* Get the list of pages out of our struct file. They'll be pinned
2263 * at this point until we release them.
2265 page_count = obj->size / PAGE_SIZE;
2266 BUG_ON(obj_priv->pages != NULL);
2267 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2268 if (obj_priv->pages == NULL) {
2269 obj_priv->pages_refcount--;
2270 return -ENOMEM;
2273 inode = obj->filp->f_path.dentry->d_inode;
2274 mapping = inode->i_mapping;
2275 for (i = 0; i < page_count; i++) {
2276 page = read_cache_page_gfp(mapping, i,
2277 GFP_HIGHUSER |
2278 __GFP_COLD |
2279 __GFP_RECLAIMABLE |
2280 gfpmask);
2281 if (IS_ERR(page))
2282 goto err_pages;
2284 obj_priv->pages[i] = page;
2287 if (obj_priv->tiling_mode != I915_TILING_NONE)
2288 i915_gem_object_do_bit_17_swizzle(obj);
2290 return 0;
2292 err_pages:
2293 while (i--)
2294 page_cache_release(obj_priv->pages[i]);
2296 drm_free_large(obj_priv->pages);
2297 obj_priv->pages = NULL;
2298 obj_priv->pages_refcount--;
2299 return PTR_ERR(page);
2302 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2304 struct drm_gem_object *obj = reg->obj;
2305 struct drm_device *dev = obj->dev;
2306 drm_i915_private_t *dev_priv = dev->dev_private;
2307 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2308 int regnum = obj_priv->fence_reg;
2309 uint64_t val;
2311 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2312 0xfffff000) << 32;
2313 val |= obj_priv->gtt_offset & 0xfffff000;
2314 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2315 if (obj_priv->tiling_mode == I915_TILING_Y)
2316 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2317 val |= I965_FENCE_REG_VALID;
2319 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2322 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2324 struct drm_gem_object *obj = reg->obj;
2325 struct drm_device *dev = obj->dev;
2326 drm_i915_private_t *dev_priv = dev->dev_private;
2327 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2328 int regnum = obj_priv->fence_reg;
2329 int tile_width;
2330 uint32_t fence_reg, val;
2331 uint32_t pitch_val;
2333 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2334 (obj_priv->gtt_offset & (obj->size - 1))) {
2335 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2336 __func__, obj_priv->gtt_offset, obj->size);
2337 return;
2340 if (obj_priv->tiling_mode == I915_TILING_Y &&
2341 HAS_128_BYTE_Y_TILING(dev))
2342 tile_width = 128;
2343 else
2344 tile_width = 512;
2346 /* Note: pitch better be a power of two tile widths */
2347 pitch_val = obj_priv->stride / tile_width;
2348 pitch_val = ffs(pitch_val) - 1;
2350 if (obj_priv->tiling_mode == I915_TILING_Y &&
2351 HAS_128_BYTE_Y_TILING(dev))
2352 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2353 else
2354 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2356 val = obj_priv->gtt_offset;
2357 if (obj_priv->tiling_mode == I915_TILING_Y)
2358 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2359 val |= I915_FENCE_SIZE_BITS(obj->size);
2360 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2361 val |= I830_FENCE_REG_VALID;
2363 if (regnum < 8)
2364 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2365 else
2366 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2367 I915_WRITE(fence_reg, val);
2370 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2372 struct drm_gem_object *obj = reg->obj;
2373 struct drm_device *dev = obj->dev;
2374 drm_i915_private_t *dev_priv = dev->dev_private;
2375 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2376 int regnum = obj_priv->fence_reg;
2377 uint32_t val;
2378 uint32_t pitch_val;
2379 uint32_t fence_size_bits;
2381 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2382 (obj_priv->gtt_offset & (obj->size - 1))) {
2383 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2384 __func__, obj_priv->gtt_offset);
2385 return;
2388 pitch_val = obj_priv->stride / 128;
2389 pitch_val = ffs(pitch_val) - 1;
2390 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2392 val = obj_priv->gtt_offset;
2393 if (obj_priv->tiling_mode == I915_TILING_Y)
2394 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2395 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2396 WARN_ON(fence_size_bits & ~0x00000f00);
2397 val |= fence_size_bits;
2398 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2399 val |= I830_FENCE_REG_VALID;
2401 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2405 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2406 * @obj: object to map through a fence reg
2408 * When mapping objects through the GTT, userspace wants to be able to write
2409 * to them without having to worry about swizzling if the object is tiled.
2411 * This function walks the fence regs looking for a free one for @obj,
2412 * stealing one if it can't find any.
2414 * It then sets up the reg based on the object's properties: address, pitch
2415 * and tiling format.
2418 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2420 struct drm_device *dev = obj->dev;
2421 struct drm_i915_private *dev_priv = dev->dev_private;
2422 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2423 struct drm_i915_fence_reg *reg = NULL;
2424 struct drm_i915_gem_object *old_obj_priv = NULL;
2425 int i, ret, avail;
2427 /* Just update our place in the LRU if our fence is getting used. */
2428 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2429 list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2430 return 0;
2433 switch (obj_priv->tiling_mode) {
2434 case I915_TILING_NONE:
2435 WARN(1, "allocating a fence for non-tiled object?\n");
2436 break;
2437 case I915_TILING_X:
2438 if (!obj_priv->stride)
2439 return -EINVAL;
2440 WARN((obj_priv->stride & (512 - 1)),
2441 "object 0x%08x is X tiled but has non-512B pitch\n",
2442 obj_priv->gtt_offset);
2443 break;
2444 case I915_TILING_Y:
2445 if (!obj_priv->stride)
2446 return -EINVAL;
2447 WARN((obj_priv->stride & (128 - 1)),
2448 "object 0x%08x is Y tiled but has non-128B pitch\n",
2449 obj_priv->gtt_offset);
2450 break;
2453 /* First try to find a free reg */
2454 avail = 0;
2455 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2456 reg = &dev_priv->fence_regs[i];
2457 if (!reg->obj)
2458 break;
2460 old_obj_priv = reg->obj->driver_private;
2461 if (!old_obj_priv->pin_count)
2462 avail++;
2465 /* None available, try to steal one or wait for a user to finish */
2466 if (i == dev_priv->num_fence_regs) {
2467 struct drm_gem_object *old_obj = NULL;
2469 if (avail == 0)
2470 return -ENOSPC;
2472 list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
2473 fence_list) {
2474 old_obj = old_obj_priv->obj;
2476 if (old_obj_priv->pin_count)
2477 continue;
2479 /* Take a reference, as otherwise the wait_rendering
2480 * below may cause the object to get freed out from
2481 * under us.
2483 drm_gem_object_reference(old_obj);
2485 /* i915 uses fences for GPU access to tiled buffers */
2486 if (IS_I965G(dev) || !old_obj_priv->active)
2487 break;
2489 /* This brings the object to the head of the LRU if it
2490 * had been written to. The only way this should
2491 * result in us waiting longer than the expected
2492 * optimal amount of time is if there was a
2493 * fence-using buffer later that was read-only.
2495 i915_gem_object_flush_gpu_write_domain(old_obj);
2496 ret = i915_gem_object_wait_rendering(old_obj);
2497 if (ret != 0) {
2498 drm_gem_object_unreference(old_obj);
2499 return ret;
2502 break;
2506 * Zap this virtual mapping so we can set up a fence again
2507 * for this object next time we need it.
2509 i915_gem_release_mmap(old_obj);
2511 i = old_obj_priv->fence_reg;
2512 reg = &dev_priv->fence_regs[i];
2514 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2515 list_del_init(&old_obj_priv->fence_list);
2517 drm_gem_object_unreference(old_obj);
2520 obj_priv->fence_reg = i;
2521 list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2523 reg->obj = obj;
2525 if (IS_I965G(dev))
2526 i965_write_fence_reg(reg);
2527 else if (IS_I9XX(dev))
2528 i915_write_fence_reg(reg);
2529 else
2530 i830_write_fence_reg(reg);
2532 trace_i915_gem_object_get_fence(obj, i, obj_priv->tiling_mode);
2534 return 0;
2538 * i915_gem_clear_fence_reg - clear out fence register info
2539 * @obj: object to clear
2541 * Zeroes out the fence register itself and clears out the associated
2542 * data structures in dev_priv and obj_priv.
2544 static void
2545 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2547 struct drm_device *dev = obj->dev;
2548 drm_i915_private_t *dev_priv = dev->dev_private;
2549 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2551 if (IS_I965G(dev))
2552 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2553 else {
2554 uint32_t fence_reg;
2556 if (obj_priv->fence_reg < 8)
2557 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2558 else
2559 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2560 8) * 4;
2562 I915_WRITE(fence_reg, 0);
2565 dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2566 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2567 list_del_init(&obj_priv->fence_list);
2571 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2572 * to the buffer to finish, and then resets the fence register.
2573 * @obj: tiled object holding a fence register.
2575 * Zeroes out the fence register itself and clears out the associated
2576 * data structures in dev_priv and obj_priv.
2579 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2581 struct drm_device *dev = obj->dev;
2582 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2584 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2585 return 0;
2587 /* On the i915, GPU access to tiled buffers is via a fence,
2588 * therefore we must wait for any outstanding access to complete
2589 * before clearing the fence.
2591 if (!IS_I965G(dev)) {
2592 int ret;
2594 i915_gem_object_flush_gpu_write_domain(obj);
2595 i915_gem_object_flush_gtt_write_domain(obj);
2596 ret = i915_gem_object_wait_rendering(obj);
2597 if (ret != 0)
2598 return ret;
2601 i915_gem_clear_fence_reg (obj);
2603 return 0;
2607 * Finds free space in the GTT aperture and binds the object there.
2609 static int
2610 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2612 struct drm_device *dev = obj->dev;
2613 drm_i915_private_t *dev_priv = dev->dev_private;
2614 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2615 struct drm_mm_node *free_space;
2616 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2617 int ret;
2619 if (obj_priv->madv != I915_MADV_WILLNEED) {
2620 DRM_ERROR("Attempting to bind a purgeable object\n");
2621 return -EINVAL;
2624 if (alignment == 0)
2625 alignment = i915_gem_get_gtt_alignment(obj);
2626 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2627 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2628 return -EINVAL;
2631 /* If the object is bigger than the entire aperture, reject it early
2632 * before evicting everything in a vain attempt to find space.
2634 if (obj->size > dev->gtt_total) {
2635 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2636 return -E2BIG;
2639 search_free:
2640 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2641 obj->size, alignment, 0);
2642 if (free_space != NULL) {
2643 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2644 alignment);
2645 if (obj_priv->gtt_space != NULL) {
2646 obj_priv->gtt_space->private = obj;
2647 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2650 if (obj_priv->gtt_space == NULL) {
2651 /* If the gtt is empty and we're still having trouble
2652 * fitting our object in, we're out of memory.
2654 #if WATCH_LRU
2655 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2656 #endif
2657 ret = i915_gem_evict_something(dev, obj->size);
2658 if (ret)
2659 return ret;
2661 goto search_free;
2664 #if WATCH_BUF
2665 DRM_INFO("Binding object of size %zd at 0x%08x\n",
2666 obj->size, obj_priv->gtt_offset);
2667 #endif
2668 ret = i915_gem_object_get_pages(obj, gfpmask);
2669 if (ret) {
2670 drm_mm_put_block(obj_priv->gtt_space);
2671 obj_priv->gtt_space = NULL;
2673 if (ret == -ENOMEM) {
2674 /* first try to clear up some space from the GTT */
2675 ret = i915_gem_evict_something(dev, obj->size);
2676 if (ret) {
2677 /* now try to shrink everyone else */
2678 if (gfpmask) {
2679 gfpmask = 0;
2680 goto search_free;
2683 return ret;
2686 goto search_free;
2689 return ret;
2692 /* Create an AGP memory structure pointing at our pages, and bind it
2693 * into the GTT.
2695 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2696 obj_priv->pages,
2697 obj->size >> PAGE_SHIFT,
2698 obj_priv->gtt_offset,
2699 obj_priv->agp_type);
2700 if (obj_priv->agp_mem == NULL) {
2701 i915_gem_object_put_pages(obj);
2702 drm_mm_put_block(obj_priv->gtt_space);
2703 obj_priv->gtt_space = NULL;
2705 ret = i915_gem_evict_something(dev, obj->size);
2706 if (ret)
2707 return ret;
2709 goto search_free;
2711 atomic_inc(&dev->gtt_count);
2712 atomic_add(obj->size, &dev->gtt_memory);
2714 /* Assert that the object is not currently in any GPU domain. As it
2715 * wasn't in the GTT, there shouldn't be any way it could have been in
2716 * a GPU cache
2718 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2719 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2721 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2723 return 0;
2726 void
2727 i915_gem_clflush_object(struct drm_gem_object *obj)
2729 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2731 /* If we don't have a page list set up, then we're not pinned
2732 * to GPU, and we can ignore the cache flush because it'll happen
2733 * again at bind time.
2735 if (obj_priv->pages == NULL)
2736 return;
2738 trace_i915_gem_object_clflush(obj);
2740 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2743 /** Flushes any GPU write domain for the object if it's dirty. */
2744 static void
2745 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2747 struct drm_device *dev = obj->dev;
2748 uint32_t seqno;
2749 uint32_t old_write_domain;
2751 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2752 return;
2754 /* Queue the GPU write cache flushing we need. */
2755 old_write_domain = obj->write_domain;
2756 i915_gem_flush(dev, 0, obj->write_domain);
2757 seqno = i915_add_request(dev, NULL, obj->write_domain);
2758 BUG_ON(obj->write_domain);
2759 i915_gem_object_move_to_active(obj, seqno);
2761 trace_i915_gem_object_change_domain(obj,
2762 obj->read_domains,
2763 old_write_domain);
2766 /** Flushes the GTT write domain for the object if it's dirty. */
2767 static void
2768 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2770 uint32_t old_write_domain;
2772 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2773 return;
2775 /* No actual flushing is required for the GTT write domain. Writes
2776 * to it immediately go to main memory as far as we know, so there's
2777 * no chipset flush. It also doesn't land in render cache.
2779 old_write_domain = obj->write_domain;
2780 obj->write_domain = 0;
2782 trace_i915_gem_object_change_domain(obj,
2783 obj->read_domains,
2784 old_write_domain);
2787 /** Flushes the CPU write domain for the object if it's dirty. */
2788 static void
2789 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2791 struct drm_device *dev = obj->dev;
2792 uint32_t old_write_domain;
2794 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2795 return;
2797 i915_gem_clflush_object(obj);
2798 drm_agp_chipset_flush(dev);
2799 old_write_domain = obj->write_domain;
2800 obj->write_domain = 0;
2802 trace_i915_gem_object_change_domain(obj,
2803 obj->read_domains,
2804 old_write_domain);
2808 * Moves a single object to the GTT read, and possibly write domain.
2810 * This function returns when the move is complete, including waiting on
2811 * flushes to occur.
2814 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2816 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2817 uint32_t old_write_domain, old_read_domains;
2818 int ret;
2820 /* Not valid to be called on unbound objects. */
2821 if (obj_priv->gtt_space == NULL)
2822 return -EINVAL;
2824 i915_gem_object_flush_gpu_write_domain(obj);
2825 /* Wait on any GPU rendering and flushing to occur. */
2826 ret = i915_gem_object_wait_rendering(obj);
2827 if (ret != 0)
2828 return ret;
2830 old_write_domain = obj->write_domain;
2831 old_read_domains = obj->read_domains;
2833 /* If we're writing through the GTT domain, then CPU and GPU caches
2834 * will need to be invalidated at next use.
2836 if (write)
2837 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2839 i915_gem_object_flush_cpu_write_domain(obj);
2841 /* It should now be out of any other write domains, and we can update
2842 * the domain values for our changes.
2844 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2845 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2846 if (write) {
2847 obj->write_domain = I915_GEM_DOMAIN_GTT;
2848 obj_priv->dirty = 1;
2851 trace_i915_gem_object_change_domain(obj,
2852 old_read_domains,
2853 old_write_domain);
2855 return 0;
2859 * Prepare buffer for display plane. Use uninterruptible for possible flush
2860 * wait, as in modesetting process we're not supposed to be interrupted.
2863 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
2865 struct drm_device *dev = obj->dev;
2866 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2867 uint32_t old_write_domain, old_read_domains;
2868 int ret;
2870 /* Not valid to be called on unbound objects. */
2871 if (obj_priv->gtt_space == NULL)
2872 return -EINVAL;
2874 i915_gem_object_flush_gpu_write_domain(obj);
2876 /* Wait on any GPU rendering and flushing to occur. */
2877 if (obj_priv->active) {
2878 #if WATCH_BUF
2879 DRM_INFO("%s: object %p wait for seqno %08x\n",
2880 __func__, obj, obj_priv->last_rendering_seqno);
2881 #endif
2882 ret = i915_do_wait_request(dev, obj_priv->last_rendering_seqno, 0);
2883 if (ret != 0)
2884 return ret;
2887 old_write_domain = obj->write_domain;
2888 old_read_domains = obj->read_domains;
2890 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2892 i915_gem_object_flush_cpu_write_domain(obj);
2894 /* It should now be out of any other write domains, and we can update
2895 * the domain values for our changes.
2897 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2898 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2899 obj->write_domain = I915_GEM_DOMAIN_GTT;
2900 obj_priv->dirty = 1;
2902 trace_i915_gem_object_change_domain(obj,
2903 old_read_domains,
2904 old_write_domain);
2906 return 0;
2910 * Moves a single object to the CPU read, and possibly write domain.
2912 * This function returns when the move is complete, including waiting on
2913 * flushes to occur.
2915 static int
2916 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2918 uint32_t old_write_domain, old_read_domains;
2919 int ret;
2921 i915_gem_object_flush_gpu_write_domain(obj);
2922 /* Wait on any GPU rendering and flushing to occur. */
2923 ret = i915_gem_object_wait_rendering(obj);
2924 if (ret != 0)
2925 return ret;
2927 i915_gem_object_flush_gtt_write_domain(obj);
2929 /* If we have a partially-valid cache of the object in the CPU,
2930 * finish invalidating it and free the per-page flags.
2932 i915_gem_object_set_to_full_cpu_read_domain(obj);
2934 old_write_domain = obj->write_domain;
2935 old_read_domains = obj->read_domains;
2937 /* Flush the CPU cache if it's still invalid. */
2938 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2939 i915_gem_clflush_object(obj);
2941 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2944 /* It should now be out of any other write domains, and we can update
2945 * the domain values for our changes.
2947 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2949 /* If we're writing through the CPU, then the GPU read domains will
2950 * need to be invalidated at next use.
2952 if (write) {
2953 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2954 obj->write_domain = I915_GEM_DOMAIN_CPU;
2957 trace_i915_gem_object_change_domain(obj,
2958 old_read_domains,
2959 old_write_domain);
2961 return 0;
2965 * Set the next domain for the specified object. This
2966 * may not actually perform the necessary flushing/invaliding though,
2967 * as that may want to be batched with other set_domain operations
2969 * This is (we hope) the only really tricky part of gem. The goal
2970 * is fairly simple -- track which caches hold bits of the object
2971 * and make sure they remain coherent. A few concrete examples may
2972 * help to explain how it works. For shorthand, we use the notation
2973 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2974 * a pair of read and write domain masks.
2976 * Case 1: the batch buffer
2978 * 1. Allocated
2979 * 2. Written by CPU
2980 * 3. Mapped to GTT
2981 * 4. Read by GPU
2982 * 5. Unmapped from GTT
2983 * 6. Freed
2985 * Let's take these a step at a time
2987 * 1. Allocated
2988 * Pages allocated from the kernel may still have
2989 * cache contents, so we set them to (CPU, CPU) always.
2990 * 2. Written by CPU (using pwrite)
2991 * The pwrite function calls set_domain (CPU, CPU) and
2992 * this function does nothing (as nothing changes)
2993 * 3. Mapped by GTT
2994 * This function asserts that the object is not
2995 * currently in any GPU-based read or write domains
2996 * 4. Read by GPU
2997 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2998 * As write_domain is zero, this function adds in the
2999 * current read domains (CPU+COMMAND, 0).
3000 * flush_domains is set to CPU.
3001 * invalidate_domains is set to COMMAND
3002 * clflush is run to get data out of the CPU caches
3003 * then i915_dev_set_domain calls i915_gem_flush to
3004 * emit an MI_FLUSH and drm_agp_chipset_flush
3005 * 5. Unmapped from GTT
3006 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3007 * flush_domains and invalidate_domains end up both zero
3008 * so no flushing/invalidating happens
3009 * 6. Freed
3010 * yay, done
3012 * Case 2: The shared render buffer
3014 * 1. Allocated
3015 * 2. Mapped to GTT
3016 * 3. Read/written by GPU
3017 * 4. set_domain to (CPU,CPU)
3018 * 5. Read/written by CPU
3019 * 6. Read/written by GPU
3021 * 1. Allocated
3022 * Same as last example, (CPU, CPU)
3023 * 2. Mapped to GTT
3024 * Nothing changes (assertions find that it is not in the GPU)
3025 * 3. Read/written by GPU
3026 * execbuffer calls set_domain (RENDER, RENDER)
3027 * flush_domains gets CPU
3028 * invalidate_domains gets GPU
3029 * clflush (obj)
3030 * MI_FLUSH and drm_agp_chipset_flush
3031 * 4. set_domain (CPU, CPU)
3032 * flush_domains gets GPU
3033 * invalidate_domains gets CPU
3034 * wait_rendering (obj) to make sure all drawing is complete.
3035 * This will include an MI_FLUSH to get the data from GPU
3036 * to memory
3037 * clflush (obj) to invalidate the CPU cache
3038 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3039 * 5. Read/written by CPU
3040 * cache lines are loaded and dirtied
3041 * 6. Read written by GPU
3042 * Same as last GPU access
3044 * Case 3: The constant buffer
3046 * 1. Allocated
3047 * 2. Written by CPU
3048 * 3. Read by GPU
3049 * 4. Updated (written) by CPU again
3050 * 5. Read by GPU
3052 * 1. Allocated
3053 * (CPU, CPU)
3054 * 2. Written by CPU
3055 * (CPU, CPU)
3056 * 3. Read by GPU
3057 * (CPU+RENDER, 0)
3058 * flush_domains = CPU
3059 * invalidate_domains = RENDER
3060 * clflush (obj)
3061 * MI_FLUSH
3062 * drm_agp_chipset_flush
3063 * 4. Updated (written) by CPU again
3064 * (CPU, CPU)
3065 * flush_domains = 0 (no previous write domain)
3066 * invalidate_domains = 0 (no new read domains)
3067 * 5. Read by GPU
3068 * (CPU+RENDER, 0)
3069 * flush_domains = CPU
3070 * invalidate_domains = RENDER
3071 * clflush (obj)
3072 * MI_FLUSH
3073 * drm_agp_chipset_flush
3075 static void
3076 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3078 struct drm_device *dev = obj->dev;
3079 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3080 uint32_t invalidate_domains = 0;
3081 uint32_t flush_domains = 0;
3082 uint32_t old_read_domains;
3084 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
3085 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
3087 intel_mark_busy(dev, obj);
3089 #if WATCH_BUF
3090 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
3091 __func__, obj,
3092 obj->read_domains, obj->pending_read_domains,
3093 obj->write_domain, obj->pending_write_domain);
3094 #endif
3096 * If the object isn't moving to a new write domain,
3097 * let the object stay in multiple read domains
3099 if (obj->pending_write_domain == 0)
3100 obj->pending_read_domains |= obj->read_domains;
3101 else
3102 obj_priv->dirty = 1;
3105 * Flush the current write domain if
3106 * the new read domains don't match. Invalidate
3107 * any read domains which differ from the old
3108 * write domain
3110 if (obj->write_domain &&
3111 obj->write_domain != obj->pending_read_domains) {
3112 flush_domains |= obj->write_domain;
3113 invalidate_domains |=
3114 obj->pending_read_domains & ~obj->write_domain;
3117 * Invalidate any read caches which may have
3118 * stale data. That is, any new read domains.
3120 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3121 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3122 #if WATCH_BUF
3123 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3124 __func__, flush_domains, invalidate_domains);
3125 #endif
3126 i915_gem_clflush_object(obj);
3129 old_read_domains = obj->read_domains;
3131 /* The actual obj->write_domain will be updated with
3132 * pending_write_domain after we emit the accumulated flush for all
3133 * of our domain changes in execbuffers (which clears objects'
3134 * write_domains). So if we have a current write domain that we
3135 * aren't changing, set pending_write_domain to that.
3137 if (flush_domains == 0 && obj->pending_write_domain == 0)
3138 obj->pending_write_domain = obj->write_domain;
3139 obj->read_domains = obj->pending_read_domains;
3141 dev->invalidate_domains |= invalidate_domains;
3142 dev->flush_domains |= flush_domains;
3143 #if WATCH_BUF
3144 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3145 __func__,
3146 obj->read_domains, obj->write_domain,
3147 dev->invalidate_domains, dev->flush_domains);
3148 #endif
3150 trace_i915_gem_object_change_domain(obj,
3151 old_read_domains,
3152 obj->write_domain);
3156 * Moves the object from a partially CPU read to a full one.
3158 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3159 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3161 static void
3162 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3164 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3166 if (!obj_priv->page_cpu_valid)
3167 return;
3169 /* If we're partially in the CPU read domain, finish moving it in.
3171 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3172 int i;
3174 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3175 if (obj_priv->page_cpu_valid[i])
3176 continue;
3177 drm_clflush_pages(obj_priv->pages + i, 1);
3181 /* Free the page_cpu_valid mappings which are now stale, whether
3182 * or not we've got I915_GEM_DOMAIN_CPU.
3184 kfree(obj_priv->page_cpu_valid);
3185 obj_priv->page_cpu_valid = NULL;
3189 * Set the CPU read domain on a range of the object.
3191 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3192 * not entirely valid. The page_cpu_valid member of the object flags which
3193 * pages have been flushed, and will be respected by
3194 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3195 * of the whole object.
3197 * This function returns when the move is complete, including waiting on
3198 * flushes to occur.
3200 static int
3201 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3202 uint64_t offset, uint64_t size)
3204 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3205 uint32_t old_read_domains;
3206 int i, ret;
3208 if (offset == 0 && size == obj->size)
3209 return i915_gem_object_set_to_cpu_domain(obj, 0);
3211 i915_gem_object_flush_gpu_write_domain(obj);
3212 /* Wait on any GPU rendering and flushing to occur. */
3213 ret = i915_gem_object_wait_rendering(obj);
3214 if (ret != 0)
3215 return ret;
3216 i915_gem_object_flush_gtt_write_domain(obj);
3218 /* If we're already fully in the CPU read domain, we're done. */
3219 if (obj_priv->page_cpu_valid == NULL &&
3220 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3221 return 0;
3223 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3224 * newly adding I915_GEM_DOMAIN_CPU
3226 if (obj_priv->page_cpu_valid == NULL) {
3227 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3228 GFP_KERNEL);
3229 if (obj_priv->page_cpu_valid == NULL)
3230 return -ENOMEM;
3231 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3232 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3234 /* Flush the cache on any pages that are still invalid from the CPU's
3235 * perspective.
3237 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3238 i++) {
3239 if (obj_priv->page_cpu_valid[i])
3240 continue;
3242 drm_clflush_pages(obj_priv->pages + i, 1);
3244 obj_priv->page_cpu_valid[i] = 1;
3247 /* It should now be out of any other write domains, and we can update
3248 * the domain values for our changes.
3250 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3252 old_read_domains = obj->read_domains;
3253 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3255 trace_i915_gem_object_change_domain(obj,
3256 old_read_domains,
3257 obj->write_domain);
3259 return 0;
3263 * Pin an object to the GTT and evaluate the relocations landing in it.
3265 static int
3266 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3267 struct drm_file *file_priv,
3268 struct drm_i915_gem_exec_object *entry,
3269 struct drm_i915_gem_relocation_entry *relocs)
3271 struct drm_device *dev = obj->dev;
3272 drm_i915_private_t *dev_priv = dev->dev_private;
3273 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3274 int i, ret;
3275 void __iomem *reloc_page;
3277 /* Choose the GTT offset for our buffer and put it there. */
3278 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3279 if (ret)
3280 return ret;
3282 entry->offset = obj_priv->gtt_offset;
3284 /* Apply the relocations, using the GTT aperture to avoid cache
3285 * flushing requirements.
3287 for (i = 0; i < entry->relocation_count; i++) {
3288 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3289 struct drm_gem_object *target_obj;
3290 struct drm_i915_gem_object *target_obj_priv;
3291 uint32_t reloc_val, reloc_offset;
3292 uint32_t __iomem *reloc_entry;
3294 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3295 reloc->target_handle);
3296 if (target_obj == NULL) {
3297 i915_gem_object_unpin(obj);
3298 return -EBADF;
3300 target_obj_priv = target_obj->driver_private;
3302 #if WATCH_RELOC
3303 DRM_INFO("%s: obj %p offset %08x target %d "
3304 "read %08x write %08x gtt %08x "
3305 "presumed %08x delta %08x\n",
3306 __func__,
3307 obj,
3308 (int) reloc->offset,
3309 (int) reloc->target_handle,
3310 (int) reloc->read_domains,
3311 (int) reloc->write_domain,
3312 (int) target_obj_priv->gtt_offset,
3313 (int) reloc->presumed_offset,
3314 reloc->delta);
3315 #endif
3317 /* The target buffer should have appeared before us in the
3318 * exec_object list, so it should have a GTT space bound by now.
3320 if (target_obj_priv->gtt_space == NULL) {
3321 DRM_ERROR("No GTT space found for object %d\n",
3322 reloc->target_handle);
3323 drm_gem_object_unreference(target_obj);
3324 i915_gem_object_unpin(obj);
3325 return -EINVAL;
3328 /* Validate that the target is in a valid r/w GPU domain */
3329 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3330 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3331 DRM_ERROR("reloc with read/write CPU domains: "
3332 "obj %p target %d offset %d "
3333 "read %08x write %08x",
3334 obj, reloc->target_handle,
3335 (int) reloc->offset,
3336 reloc->read_domains,
3337 reloc->write_domain);
3338 drm_gem_object_unreference(target_obj);
3339 i915_gem_object_unpin(obj);
3340 return -EINVAL;
3342 if (reloc->write_domain && target_obj->pending_write_domain &&
3343 reloc->write_domain != target_obj->pending_write_domain) {
3344 DRM_ERROR("Write domain conflict: "
3345 "obj %p target %d offset %d "
3346 "new %08x old %08x\n",
3347 obj, reloc->target_handle,
3348 (int) reloc->offset,
3349 reloc->write_domain,
3350 target_obj->pending_write_domain);
3351 drm_gem_object_unreference(target_obj);
3352 i915_gem_object_unpin(obj);
3353 return -EINVAL;
3356 target_obj->pending_read_domains |= reloc->read_domains;
3357 target_obj->pending_write_domain |= reloc->write_domain;
3359 /* If the relocation already has the right value in it, no
3360 * more work needs to be done.
3362 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3363 drm_gem_object_unreference(target_obj);
3364 continue;
3367 /* Check that the relocation address is valid... */
3368 if (reloc->offset > obj->size - 4) {
3369 DRM_ERROR("Relocation beyond object bounds: "
3370 "obj %p target %d offset %d size %d.\n",
3371 obj, reloc->target_handle,
3372 (int) reloc->offset, (int) obj->size);
3373 drm_gem_object_unreference(target_obj);
3374 i915_gem_object_unpin(obj);
3375 return -EINVAL;
3377 if (reloc->offset & 3) {
3378 DRM_ERROR("Relocation not 4-byte aligned: "
3379 "obj %p target %d offset %d.\n",
3380 obj, reloc->target_handle,
3381 (int) reloc->offset);
3382 drm_gem_object_unreference(target_obj);
3383 i915_gem_object_unpin(obj);
3384 return -EINVAL;
3387 /* and points to somewhere within the target object. */
3388 if (reloc->delta >= target_obj->size) {
3389 DRM_ERROR("Relocation beyond target object bounds: "
3390 "obj %p target %d delta %d size %d.\n",
3391 obj, reloc->target_handle,
3392 (int) reloc->delta, (int) target_obj->size);
3393 drm_gem_object_unreference(target_obj);
3394 i915_gem_object_unpin(obj);
3395 return -EINVAL;
3398 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3399 if (ret != 0) {
3400 drm_gem_object_unreference(target_obj);
3401 i915_gem_object_unpin(obj);
3402 return -EINVAL;
3405 /* Map the page containing the relocation we're going to
3406 * perform.
3408 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3409 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3410 (reloc_offset &
3411 ~(PAGE_SIZE - 1)));
3412 reloc_entry = (uint32_t __iomem *)(reloc_page +
3413 (reloc_offset & (PAGE_SIZE - 1)));
3414 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3416 #if WATCH_BUF
3417 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3418 obj, (unsigned int) reloc->offset,
3419 readl(reloc_entry), reloc_val);
3420 #endif
3421 writel(reloc_val, reloc_entry);
3422 io_mapping_unmap_atomic(reloc_page);
3424 /* The updated presumed offset for this entry will be
3425 * copied back out to the user.
3427 reloc->presumed_offset = target_obj_priv->gtt_offset;
3429 drm_gem_object_unreference(target_obj);
3432 #if WATCH_BUF
3433 if (0)
3434 i915_gem_dump_object(obj, 128, __func__, ~0);
3435 #endif
3436 return 0;
3439 /** Dispatch a batchbuffer to the ring
3441 static int
3442 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3443 struct drm_i915_gem_execbuffer *exec,
3444 struct drm_clip_rect *cliprects,
3445 uint64_t exec_offset)
3447 drm_i915_private_t *dev_priv = dev->dev_private;
3448 int nbox = exec->num_cliprects;
3449 int i = 0, count;
3450 uint32_t exec_start, exec_len;
3451 RING_LOCALS;
3453 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3454 exec_len = (uint32_t) exec->batch_len;
3456 trace_i915_gem_request_submit(dev, dev_priv->mm.next_gem_seqno + 1);
3458 count = nbox ? nbox : 1;
3460 for (i = 0; i < count; i++) {
3461 if (i < nbox) {
3462 int ret = i915_emit_box(dev, cliprects, i,
3463 exec->DR1, exec->DR4);
3464 if (ret)
3465 return ret;
3468 if (IS_I830(dev) || IS_845G(dev)) {
3469 BEGIN_LP_RING(4);
3470 OUT_RING(MI_BATCH_BUFFER);
3471 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3472 OUT_RING(exec_start + exec_len - 4);
3473 OUT_RING(0);
3474 ADVANCE_LP_RING();
3475 } else {
3476 BEGIN_LP_RING(2);
3477 if (IS_I965G(dev)) {
3478 OUT_RING(MI_BATCH_BUFFER_START |
3479 (2 << 6) |
3480 MI_BATCH_NON_SECURE_I965);
3481 OUT_RING(exec_start);
3482 } else {
3483 OUT_RING(MI_BATCH_BUFFER_START |
3484 (2 << 6));
3485 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3487 ADVANCE_LP_RING();
3491 /* XXX breadcrumb */
3492 return 0;
3495 /* Throttle our rendering by waiting until the ring has completed our requests
3496 * emitted over 20 msec ago.
3498 * Note that if we were to use the current jiffies each time around the loop,
3499 * we wouldn't escape the function with any frames outstanding if the time to
3500 * render a frame was over 20ms.
3502 * This should get us reasonable parallelism between CPU and GPU but also
3503 * relatively low latency when blocking on a particular request to finish.
3505 static int
3506 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3508 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3509 int ret = 0;
3510 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3512 mutex_lock(&dev->struct_mutex);
3513 while (!list_empty(&i915_file_priv->mm.request_list)) {
3514 struct drm_i915_gem_request *request;
3516 request = list_first_entry(&i915_file_priv->mm.request_list,
3517 struct drm_i915_gem_request,
3518 client_list);
3520 if (time_after_eq(request->emitted_jiffies, recent_enough))
3521 break;
3523 ret = i915_wait_request(dev, request->seqno);
3524 if (ret != 0)
3525 break;
3527 mutex_unlock(&dev->struct_mutex);
3529 return ret;
3532 static int
3533 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
3534 uint32_t buffer_count,
3535 struct drm_i915_gem_relocation_entry **relocs)
3537 uint32_t reloc_count = 0, reloc_index = 0, i;
3538 int ret;
3540 *relocs = NULL;
3541 for (i = 0; i < buffer_count; i++) {
3542 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3543 return -EINVAL;
3544 reloc_count += exec_list[i].relocation_count;
3547 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3548 if (*relocs == NULL)
3549 return -ENOMEM;
3551 for (i = 0; i < buffer_count; i++) {
3552 struct drm_i915_gem_relocation_entry __user *user_relocs;
3554 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3556 ret = copy_from_user(&(*relocs)[reloc_index],
3557 user_relocs,
3558 exec_list[i].relocation_count *
3559 sizeof(**relocs));
3560 if (ret != 0) {
3561 drm_free_large(*relocs);
3562 *relocs = NULL;
3563 return -EFAULT;
3566 reloc_index += exec_list[i].relocation_count;
3569 return 0;
3572 static int
3573 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
3574 uint32_t buffer_count,
3575 struct drm_i915_gem_relocation_entry *relocs)
3577 uint32_t reloc_count = 0, i;
3578 int ret = 0;
3580 for (i = 0; i < buffer_count; i++) {
3581 struct drm_i915_gem_relocation_entry __user *user_relocs;
3582 int unwritten;
3584 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3586 unwritten = copy_to_user(user_relocs,
3587 &relocs[reloc_count],
3588 exec_list[i].relocation_count *
3589 sizeof(*relocs));
3591 if (unwritten) {
3592 ret = -EFAULT;
3593 goto err;
3596 reloc_count += exec_list[i].relocation_count;
3599 err:
3600 drm_free_large(relocs);
3602 return ret;
3605 static int
3606 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
3607 uint64_t exec_offset)
3609 uint32_t exec_start, exec_len;
3611 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3612 exec_len = (uint32_t) exec->batch_len;
3614 if ((exec_start | exec_len) & 0x7)
3615 return -EINVAL;
3617 if (!exec_start)
3618 return -EINVAL;
3620 return 0;
3624 i915_gem_execbuffer(struct drm_device *dev, void *data,
3625 struct drm_file *file_priv)
3627 drm_i915_private_t *dev_priv = dev->dev_private;
3628 struct drm_i915_gem_execbuffer *args = data;
3629 struct drm_i915_gem_exec_object *exec_list = NULL;
3630 struct drm_gem_object **object_list = NULL;
3631 struct drm_gem_object *batch_obj;
3632 struct drm_i915_gem_object *obj_priv;
3633 struct drm_clip_rect *cliprects = NULL;
3634 struct drm_i915_gem_relocation_entry *relocs;
3635 int ret, ret2, i, pinned = 0;
3636 uint64_t exec_offset;
3637 uint32_t seqno, flush_domains, reloc_index;
3638 int pin_tries;
3640 #if WATCH_EXEC
3641 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3642 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3643 #endif
3645 if (args->buffer_count < 1) {
3646 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3647 return -EINVAL;
3649 /* Copy in the exec list from userland */
3650 exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
3651 object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
3652 if (exec_list == NULL || object_list == NULL) {
3653 DRM_ERROR("Failed to allocate exec or object list "
3654 "for %d buffers\n",
3655 args->buffer_count);
3656 ret = -ENOMEM;
3657 goto pre_mutex_err;
3659 ret = copy_from_user(exec_list,
3660 (struct drm_i915_relocation_entry __user *)
3661 (uintptr_t) args->buffers_ptr,
3662 sizeof(*exec_list) * args->buffer_count);
3663 if (ret != 0) {
3664 DRM_ERROR("copy %d exec entries failed %d\n",
3665 args->buffer_count, ret);
3666 goto pre_mutex_err;
3669 if (args->num_cliprects != 0) {
3670 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3671 GFP_KERNEL);
3672 if (cliprects == NULL)
3673 goto pre_mutex_err;
3675 ret = copy_from_user(cliprects,
3676 (struct drm_clip_rect __user *)
3677 (uintptr_t) args->cliprects_ptr,
3678 sizeof(*cliprects) * args->num_cliprects);
3679 if (ret != 0) {
3680 DRM_ERROR("copy %d cliprects failed: %d\n",
3681 args->num_cliprects, ret);
3682 ret = -EFAULT;
3683 goto pre_mutex_err;
3687 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3688 &relocs);
3689 if (ret != 0)
3690 goto pre_mutex_err;
3692 mutex_lock(&dev->struct_mutex);
3694 i915_verify_inactive(dev, __FILE__, __LINE__);
3696 if (atomic_read(&dev_priv->mm.wedged)) {
3697 DRM_ERROR("Execbuf while wedged\n");
3698 mutex_unlock(&dev->struct_mutex);
3699 ret = -EIO;
3700 goto pre_mutex_err;
3703 if (dev_priv->mm.suspended) {
3704 DRM_ERROR("Execbuf while VT-switched.\n");
3705 mutex_unlock(&dev->struct_mutex);
3706 ret = -EBUSY;
3707 goto pre_mutex_err;
3710 /* Look up object handles */
3711 for (i = 0; i < args->buffer_count; i++) {
3712 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3713 exec_list[i].handle);
3714 if (object_list[i] == NULL) {
3715 DRM_ERROR("Invalid object handle %d at index %d\n",
3716 exec_list[i].handle, i);
3717 ret = -EBADF;
3718 goto err;
3721 obj_priv = object_list[i]->driver_private;
3722 if (obj_priv->in_execbuffer) {
3723 DRM_ERROR("Object %p appears more than once in object list\n",
3724 object_list[i]);
3725 ret = -EBADF;
3726 goto err;
3728 obj_priv->in_execbuffer = true;
3731 /* Pin and relocate */
3732 for (pin_tries = 0; ; pin_tries++) {
3733 ret = 0;
3734 reloc_index = 0;
3736 for (i = 0; i < args->buffer_count; i++) {
3737 object_list[i]->pending_read_domains = 0;
3738 object_list[i]->pending_write_domain = 0;
3739 ret = i915_gem_object_pin_and_relocate(object_list[i],
3740 file_priv,
3741 &exec_list[i],
3742 &relocs[reloc_index]);
3743 if (ret)
3744 break;
3745 pinned = i + 1;
3746 reloc_index += exec_list[i].relocation_count;
3748 /* success */
3749 if (ret == 0)
3750 break;
3752 /* error other than GTT full, or we've already tried again */
3753 if (ret != -ENOSPC || pin_tries >= 1) {
3754 if (ret != -ERESTARTSYS) {
3755 unsigned long long total_size = 0;
3756 for (i = 0; i < args->buffer_count; i++)
3757 total_size += object_list[i]->size;
3758 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes: %d\n",
3759 pinned+1, args->buffer_count,
3760 total_size, ret);
3761 DRM_ERROR("%d objects [%d pinned], "
3762 "%d object bytes [%d pinned], "
3763 "%d/%d gtt bytes\n",
3764 atomic_read(&dev->object_count),
3765 atomic_read(&dev->pin_count),
3766 atomic_read(&dev->object_memory),
3767 atomic_read(&dev->pin_memory),
3768 atomic_read(&dev->gtt_memory),
3769 dev->gtt_total);
3771 goto err;
3774 /* unpin all of our buffers */
3775 for (i = 0; i < pinned; i++)
3776 i915_gem_object_unpin(object_list[i]);
3777 pinned = 0;
3779 /* evict everyone we can from the aperture */
3780 ret = i915_gem_evict_everything(dev);
3781 if (ret && ret != -ENOSPC)
3782 goto err;
3785 /* Set the pending read domains for the batch buffer to COMMAND */
3786 batch_obj = object_list[args->buffer_count-1];
3787 if (batch_obj->pending_write_domain) {
3788 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3789 ret = -EINVAL;
3790 goto err;
3792 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3794 /* Sanity check the batch buffer, prior to moving objects */
3795 exec_offset = exec_list[args->buffer_count - 1].offset;
3796 ret = i915_gem_check_execbuffer (args, exec_offset);
3797 if (ret != 0) {
3798 DRM_ERROR("execbuf with invalid offset/length\n");
3799 goto err;
3802 i915_verify_inactive(dev, __FILE__, __LINE__);
3804 /* Zero the global flush/invalidate flags. These
3805 * will be modified as new domains are computed
3806 * for each object
3808 dev->invalidate_domains = 0;
3809 dev->flush_domains = 0;
3811 for (i = 0; i < args->buffer_count; i++) {
3812 struct drm_gem_object *obj = object_list[i];
3814 /* Compute new gpu domains and update invalidate/flush */
3815 i915_gem_object_set_to_gpu_domain(obj);
3818 i915_verify_inactive(dev, __FILE__, __LINE__);
3820 if (dev->invalidate_domains | dev->flush_domains) {
3821 #if WATCH_EXEC
3822 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3823 __func__,
3824 dev->invalidate_domains,
3825 dev->flush_domains);
3826 #endif
3827 i915_gem_flush(dev,
3828 dev->invalidate_domains,
3829 dev->flush_domains);
3830 if (dev->flush_domains & I915_GEM_GPU_DOMAINS)
3831 (void)i915_add_request(dev, file_priv,
3832 dev->flush_domains);
3835 for (i = 0; i < args->buffer_count; i++) {
3836 struct drm_gem_object *obj = object_list[i];
3837 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3838 uint32_t old_write_domain = obj->write_domain;
3840 obj->write_domain = obj->pending_write_domain;
3841 if (obj->write_domain)
3842 list_move_tail(&obj_priv->gpu_write_list,
3843 &dev_priv->mm.gpu_write_list);
3844 else
3845 list_del_init(&obj_priv->gpu_write_list);
3847 trace_i915_gem_object_change_domain(obj,
3848 obj->read_domains,
3849 old_write_domain);
3852 i915_verify_inactive(dev, __FILE__, __LINE__);
3854 #if WATCH_COHERENCY
3855 for (i = 0; i < args->buffer_count; i++) {
3856 i915_gem_object_check_coherency(object_list[i],
3857 exec_list[i].handle);
3859 #endif
3861 #if WATCH_EXEC
3862 i915_gem_dump_object(batch_obj,
3863 args->batch_len,
3864 __func__,
3865 ~0);
3866 #endif
3868 /* Exec the batchbuffer */
3869 ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3870 if (ret) {
3871 DRM_ERROR("dispatch failed %d\n", ret);
3872 goto err;
3876 * Ensure that the commands in the batch buffer are
3877 * finished before the interrupt fires
3879 flush_domains = i915_retire_commands(dev);
3881 i915_verify_inactive(dev, __FILE__, __LINE__);
3884 * Get a seqno representing the execution of the current buffer,
3885 * which we can wait on. We would like to mitigate these interrupts,
3886 * likely by only creating seqnos occasionally (so that we have
3887 * *some* interrupts representing completion of buffers that we can
3888 * wait on when trying to clear up gtt space).
3890 seqno = i915_add_request(dev, file_priv, flush_domains);
3891 BUG_ON(seqno == 0);
3892 for (i = 0; i < args->buffer_count; i++) {
3893 struct drm_gem_object *obj = object_list[i];
3895 i915_gem_object_move_to_active(obj, seqno);
3896 #if WATCH_LRU
3897 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3898 #endif
3900 #if WATCH_LRU
3901 i915_dump_lru(dev, __func__);
3902 #endif
3904 i915_verify_inactive(dev, __FILE__, __LINE__);
3906 err:
3907 for (i = 0; i < pinned; i++)
3908 i915_gem_object_unpin(object_list[i]);
3910 for (i = 0; i < args->buffer_count; i++) {
3911 if (object_list[i]) {
3912 obj_priv = object_list[i]->driver_private;
3913 obj_priv->in_execbuffer = false;
3915 drm_gem_object_unreference(object_list[i]);
3918 mutex_unlock(&dev->struct_mutex);
3920 if (!ret) {
3921 /* Copy the new buffer offsets back to the user's exec list. */
3922 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3923 (uintptr_t) args->buffers_ptr,
3924 exec_list,
3925 sizeof(*exec_list) * args->buffer_count);
3926 if (ret) {
3927 ret = -EFAULT;
3928 DRM_ERROR("failed to copy %d exec entries "
3929 "back to user (%d)\n",
3930 args->buffer_count, ret);
3934 /* Copy the updated relocations out regardless of current error
3935 * state. Failure to update the relocs would mean that the next
3936 * time userland calls execbuf, it would do so with presumed offset
3937 * state that didn't match the actual object state.
3939 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3940 relocs);
3941 if (ret2 != 0) {
3942 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3944 if (ret == 0)
3945 ret = ret2;
3948 pre_mutex_err:
3949 drm_free_large(object_list);
3950 drm_free_large(exec_list);
3951 kfree(cliprects);
3953 return ret;
3957 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3959 struct drm_device *dev = obj->dev;
3960 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3961 int ret;
3963 i915_verify_inactive(dev, __FILE__, __LINE__);
3965 if (obj_priv->gtt_space != NULL) {
3966 if (alignment == 0)
3967 alignment = i915_gem_get_gtt_alignment(obj);
3968 if (obj_priv->gtt_offset & (alignment - 1)) {
3969 ret = i915_gem_object_unbind(obj);
3970 if (ret)
3971 return ret;
3975 if (obj_priv->gtt_space == NULL) {
3976 ret = i915_gem_object_bind_to_gtt(obj, alignment);
3977 if (ret)
3978 return ret;
3981 * Pre-965 chips need a fence register set up in order to
3982 * properly handle tiled surfaces.
3984 if (!IS_I965G(dev) && obj_priv->tiling_mode != I915_TILING_NONE) {
3985 ret = i915_gem_object_get_fence_reg(obj);
3986 if (ret != 0) {
3987 if (ret != -EBUSY && ret != -ERESTARTSYS)
3988 DRM_ERROR("Failure to install fence: %d\n",
3989 ret);
3990 return ret;
3993 obj_priv->pin_count++;
3995 /* If the object is not active and not pending a flush,
3996 * remove it from the inactive list
3998 if (obj_priv->pin_count == 1) {
3999 atomic_inc(&dev->pin_count);
4000 atomic_add(obj->size, &dev->pin_memory);
4001 if (!obj_priv->active &&
4002 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
4003 !list_empty(&obj_priv->list))
4004 list_del_init(&obj_priv->list);
4006 i915_verify_inactive(dev, __FILE__, __LINE__);
4008 return 0;
4011 void
4012 i915_gem_object_unpin(struct drm_gem_object *obj)
4014 struct drm_device *dev = obj->dev;
4015 drm_i915_private_t *dev_priv = dev->dev_private;
4016 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4018 i915_verify_inactive(dev, __FILE__, __LINE__);
4019 obj_priv->pin_count--;
4020 BUG_ON(obj_priv->pin_count < 0);
4021 BUG_ON(obj_priv->gtt_space == NULL);
4023 /* If the object is no longer pinned, and is
4024 * neither active nor being flushed, then stick it on
4025 * the inactive list
4027 if (obj_priv->pin_count == 0) {
4028 if (!obj_priv->active &&
4029 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4030 list_move_tail(&obj_priv->list,
4031 &dev_priv->mm.inactive_list);
4032 atomic_dec(&dev->pin_count);
4033 atomic_sub(obj->size, &dev->pin_memory);
4035 i915_verify_inactive(dev, __FILE__, __LINE__);
4039 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4040 struct drm_file *file_priv)
4042 struct drm_i915_gem_pin *args = data;
4043 struct drm_gem_object *obj;
4044 struct drm_i915_gem_object *obj_priv;
4045 int ret;
4047 mutex_lock(&dev->struct_mutex);
4049 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4050 if (obj == NULL) {
4051 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4052 args->handle);
4053 mutex_unlock(&dev->struct_mutex);
4054 return -EBADF;
4056 obj_priv = obj->driver_private;
4058 if (obj_priv->madv != I915_MADV_WILLNEED) {
4059 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4060 drm_gem_object_unreference(obj);
4061 mutex_unlock(&dev->struct_mutex);
4062 return -EINVAL;
4065 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4066 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4067 args->handle);
4068 drm_gem_object_unreference(obj);
4069 mutex_unlock(&dev->struct_mutex);
4070 return -EINVAL;
4073 obj_priv->user_pin_count++;
4074 obj_priv->pin_filp = file_priv;
4075 if (obj_priv->user_pin_count == 1) {
4076 ret = i915_gem_object_pin(obj, args->alignment);
4077 if (ret != 0) {
4078 drm_gem_object_unreference(obj);
4079 mutex_unlock(&dev->struct_mutex);
4080 return ret;
4084 /* XXX - flush the CPU caches for pinned objects
4085 * as the X server doesn't manage domains yet
4087 i915_gem_object_flush_cpu_write_domain(obj);
4088 args->offset = obj_priv->gtt_offset;
4089 drm_gem_object_unreference(obj);
4090 mutex_unlock(&dev->struct_mutex);
4092 return 0;
4096 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4097 struct drm_file *file_priv)
4099 struct drm_i915_gem_pin *args = data;
4100 struct drm_gem_object *obj;
4101 struct drm_i915_gem_object *obj_priv;
4103 mutex_lock(&dev->struct_mutex);
4105 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4106 if (obj == NULL) {
4107 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4108 args->handle);
4109 mutex_unlock(&dev->struct_mutex);
4110 return -EBADF;
4113 obj_priv = obj->driver_private;
4114 if (obj_priv->pin_filp != file_priv) {
4115 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4116 args->handle);
4117 drm_gem_object_unreference(obj);
4118 mutex_unlock(&dev->struct_mutex);
4119 return -EINVAL;
4121 obj_priv->user_pin_count--;
4122 if (obj_priv->user_pin_count == 0) {
4123 obj_priv->pin_filp = NULL;
4124 i915_gem_object_unpin(obj);
4127 drm_gem_object_unreference(obj);
4128 mutex_unlock(&dev->struct_mutex);
4129 return 0;
4133 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4134 struct drm_file *file_priv)
4136 struct drm_i915_gem_busy *args = data;
4137 struct drm_gem_object *obj;
4138 struct drm_i915_gem_object *obj_priv;
4140 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4141 if (obj == NULL) {
4142 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4143 args->handle);
4144 return -EBADF;
4147 mutex_lock(&dev->struct_mutex);
4148 /* Update the active list for the hardware's current position.
4149 * Otherwise this only updates on a delayed timer or when irqs are
4150 * actually unmasked, and our working set ends up being larger than
4151 * required.
4153 i915_gem_retire_requests(dev);
4155 obj_priv = obj->driver_private;
4156 /* Don't count being on the flushing list against the object being
4157 * done. Otherwise, a buffer left on the flushing list but not getting
4158 * flushed (because nobody's flushing that domain) won't ever return
4159 * unbusy and get reused by libdrm's bo cache. The other expected
4160 * consumer of this interface, OpenGL's occlusion queries, also specs
4161 * that the objects get unbusy "eventually" without any interference.
4163 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
4165 drm_gem_object_unreference(obj);
4166 mutex_unlock(&dev->struct_mutex);
4167 return 0;
4171 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4172 struct drm_file *file_priv)
4174 return i915_gem_ring_throttle(dev, file_priv);
4178 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4179 struct drm_file *file_priv)
4181 struct drm_i915_gem_madvise *args = data;
4182 struct drm_gem_object *obj;
4183 struct drm_i915_gem_object *obj_priv;
4185 switch (args->madv) {
4186 case I915_MADV_DONTNEED:
4187 case I915_MADV_WILLNEED:
4188 break;
4189 default:
4190 return -EINVAL;
4193 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4194 if (obj == NULL) {
4195 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4196 args->handle);
4197 return -EBADF;
4200 mutex_lock(&dev->struct_mutex);
4201 obj_priv = obj->driver_private;
4203 if (obj_priv->pin_count) {
4204 drm_gem_object_unreference(obj);
4205 mutex_unlock(&dev->struct_mutex);
4207 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4208 return -EINVAL;
4211 if (obj_priv->madv != __I915_MADV_PURGED)
4212 obj_priv->madv = args->madv;
4214 /* if the object is no longer bound, discard its backing storage */
4215 if (i915_gem_object_is_purgeable(obj_priv) &&
4216 obj_priv->gtt_space == NULL)
4217 i915_gem_object_truncate(obj);
4219 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4221 drm_gem_object_unreference(obj);
4222 mutex_unlock(&dev->struct_mutex);
4224 return 0;
4227 int i915_gem_init_object(struct drm_gem_object *obj)
4229 struct drm_i915_gem_object *obj_priv;
4231 obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
4232 if (obj_priv == NULL)
4233 return -ENOMEM;
4236 * We've just allocated pages from the kernel,
4237 * so they've just been written by the CPU with
4238 * zeros. They'll need to be clflushed before we
4239 * use them with the GPU.
4241 obj->write_domain = I915_GEM_DOMAIN_CPU;
4242 obj->read_domains = I915_GEM_DOMAIN_CPU;
4244 obj_priv->agp_type = AGP_USER_MEMORY;
4246 obj->driver_private = obj_priv;
4247 obj_priv->obj = obj;
4248 obj_priv->fence_reg = I915_FENCE_REG_NONE;
4249 INIT_LIST_HEAD(&obj_priv->list);
4250 INIT_LIST_HEAD(&obj_priv->gpu_write_list);
4251 INIT_LIST_HEAD(&obj_priv->fence_list);
4252 obj_priv->madv = I915_MADV_WILLNEED;
4254 trace_i915_gem_object_create(obj);
4256 return 0;
4259 void i915_gem_free_object(struct drm_gem_object *obj)
4261 struct drm_device *dev = obj->dev;
4262 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4264 trace_i915_gem_object_destroy(obj);
4266 while (obj_priv->pin_count > 0)
4267 i915_gem_object_unpin(obj);
4269 if (obj_priv->phys_obj)
4270 i915_gem_detach_phys_object(dev, obj);
4272 i915_gem_object_unbind(obj);
4274 if (obj_priv->mmap_offset)
4275 i915_gem_free_mmap_offset(obj);
4277 kfree(obj_priv->page_cpu_valid);
4278 kfree(obj_priv->bit_17);
4279 kfree(obj->driver_private);
4282 /** Unbinds all inactive objects. */
4283 static int
4284 i915_gem_evict_from_inactive_list(struct drm_device *dev)
4286 drm_i915_private_t *dev_priv = dev->dev_private;
4288 while (!list_empty(&dev_priv->mm.inactive_list)) {
4289 struct drm_gem_object *obj;
4290 int ret;
4292 obj = list_first_entry(&dev_priv->mm.inactive_list,
4293 struct drm_i915_gem_object,
4294 list)->obj;
4296 ret = i915_gem_object_unbind(obj);
4297 if (ret != 0) {
4298 DRM_ERROR("Error unbinding object: %d\n", ret);
4299 return ret;
4303 return 0;
4307 i915_gem_idle(struct drm_device *dev)
4309 drm_i915_private_t *dev_priv = dev->dev_private;
4310 uint32_t seqno, cur_seqno, last_seqno;
4311 int stuck, ret;
4313 mutex_lock(&dev->struct_mutex);
4315 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
4316 mutex_unlock(&dev->struct_mutex);
4317 return 0;
4320 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4321 * We need to replace this with a semaphore, or something.
4323 dev_priv->mm.suspended = 1;
4324 del_timer(&dev_priv->hangcheck_timer);
4326 /* Cancel the retire work handler, wait for it to finish if running
4328 mutex_unlock(&dev->struct_mutex);
4329 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4330 mutex_lock(&dev->struct_mutex);
4332 i915_kernel_lost_context(dev);
4334 /* Flush the GPU along with all non-CPU write domains
4336 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
4337 seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
4339 if (seqno == 0) {
4340 mutex_unlock(&dev->struct_mutex);
4341 return -ENOMEM;
4344 dev_priv->mm.waiting_gem_seqno = seqno;
4345 last_seqno = 0;
4346 stuck = 0;
4347 for (;;) {
4348 cur_seqno = i915_get_gem_seqno(dev);
4349 if (i915_seqno_passed(cur_seqno, seqno))
4350 break;
4351 if (last_seqno == cur_seqno) {
4352 if (stuck++ > 100) {
4353 DRM_ERROR("hardware wedged\n");
4354 atomic_set(&dev_priv->mm.wedged, 1);
4355 DRM_WAKEUP(&dev_priv->irq_queue);
4356 break;
4359 msleep(10);
4360 last_seqno = cur_seqno;
4362 dev_priv->mm.waiting_gem_seqno = 0;
4364 i915_gem_retire_requests(dev);
4366 spin_lock(&dev_priv->mm.active_list_lock);
4367 if (!atomic_read(&dev_priv->mm.wedged)) {
4368 /* Active and flushing should now be empty as we've
4369 * waited for a sequence higher than any pending execbuffer
4371 WARN_ON(!list_empty(&dev_priv->mm.active_list));
4372 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
4373 /* Request should now be empty as we've also waited
4374 * for the last request in the list
4376 WARN_ON(!list_empty(&dev_priv->mm.request_list));
4379 /* Empty the active and flushing lists to inactive. If there's
4380 * anything left at this point, it means that we're wedged and
4381 * nothing good's going to happen by leaving them there. So strip
4382 * the GPU domains and just stuff them onto inactive.
4384 while (!list_empty(&dev_priv->mm.active_list)) {
4385 struct drm_gem_object *obj;
4386 uint32_t old_write_domain;
4388 obj = list_first_entry(&dev_priv->mm.active_list,
4389 struct drm_i915_gem_object,
4390 list)->obj;
4391 old_write_domain = obj->write_domain;
4392 obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4393 i915_gem_object_move_to_inactive(obj);
4395 trace_i915_gem_object_change_domain(obj,
4396 obj->read_domains,
4397 old_write_domain);
4399 spin_unlock(&dev_priv->mm.active_list_lock);
4401 while (!list_empty(&dev_priv->mm.flushing_list)) {
4402 struct drm_gem_object *obj;
4403 uint32_t old_write_domain;
4405 obj = list_first_entry(&dev_priv->mm.flushing_list,
4406 struct drm_i915_gem_object,
4407 list)->obj;
4408 old_write_domain = obj->write_domain;
4409 obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4410 i915_gem_object_move_to_inactive(obj);
4412 trace_i915_gem_object_change_domain(obj,
4413 obj->read_domains,
4414 old_write_domain);
4418 /* Move all inactive buffers out of the GTT. */
4419 ret = i915_gem_evict_from_inactive_list(dev);
4420 WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
4421 if (ret) {
4422 mutex_unlock(&dev->struct_mutex);
4423 return ret;
4426 i915_gem_cleanup_ringbuffer(dev);
4427 mutex_unlock(&dev->struct_mutex);
4429 return 0;
4432 static int
4433 i915_gem_init_hws(struct drm_device *dev)
4435 drm_i915_private_t *dev_priv = dev->dev_private;
4436 struct drm_gem_object *obj;
4437 struct drm_i915_gem_object *obj_priv;
4438 int ret;
4440 /* If we need a physical address for the status page, it's already
4441 * initialized at driver load time.
4443 if (!I915_NEED_GFX_HWS(dev))
4444 return 0;
4446 obj = drm_gem_object_alloc(dev, 4096);
4447 if (obj == NULL) {
4448 DRM_ERROR("Failed to allocate status page\n");
4449 return -ENOMEM;
4451 obj_priv = obj->driver_private;
4452 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4454 ret = i915_gem_object_pin(obj, 4096);
4455 if (ret != 0) {
4456 drm_gem_object_unreference(obj);
4457 return ret;
4460 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
4462 dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4463 if (dev_priv->hw_status_page == NULL) {
4464 DRM_ERROR("Failed to map status page.\n");
4465 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4466 i915_gem_object_unpin(obj);
4467 drm_gem_object_unreference(obj);
4468 return -EINVAL;
4470 dev_priv->hws_obj = obj;
4471 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
4472 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4473 I915_READ(HWS_PGA); /* posting read */
4474 DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4476 return 0;
4479 static void
4480 i915_gem_cleanup_hws(struct drm_device *dev)
4482 drm_i915_private_t *dev_priv = dev->dev_private;
4483 struct drm_gem_object *obj;
4484 struct drm_i915_gem_object *obj_priv;
4486 if (dev_priv->hws_obj == NULL)
4487 return;
4489 obj = dev_priv->hws_obj;
4490 obj_priv = obj->driver_private;
4492 kunmap(obj_priv->pages[0]);
4493 i915_gem_object_unpin(obj);
4494 drm_gem_object_unreference(obj);
4495 dev_priv->hws_obj = NULL;
4497 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4498 dev_priv->hw_status_page = NULL;
4500 /* Write high address into HWS_PGA when disabling. */
4501 I915_WRITE(HWS_PGA, 0x1ffff000);
4505 i915_gem_init_ringbuffer(struct drm_device *dev)
4507 drm_i915_private_t *dev_priv = dev->dev_private;
4508 struct drm_gem_object *obj;
4509 struct drm_i915_gem_object *obj_priv;
4510 drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4511 int ret;
4512 u32 head;
4514 ret = i915_gem_init_hws(dev);
4515 if (ret != 0)
4516 return ret;
4518 obj = drm_gem_object_alloc(dev, 128 * 1024);
4519 if (obj == NULL) {
4520 DRM_ERROR("Failed to allocate ringbuffer\n");
4521 i915_gem_cleanup_hws(dev);
4522 return -ENOMEM;
4524 obj_priv = obj->driver_private;
4526 ret = i915_gem_object_pin(obj, 4096);
4527 if (ret != 0) {
4528 drm_gem_object_unreference(obj);
4529 i915_gem_cleanup_hws(dev);
4530 return ret;
4533 /* Set up the kernel mapping for the ring. */
4534 ring->Size = obj->size;
4536 ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4537 ring->map.size = obj->size;
4538 ring->map.type = 0;
4539 ring->map.flags = 0;
4540 ring->map.mtrr = 0;
4542 drm_core_ioremap_wc(&ring->map, dev);
4543 if (ring->map.handle == NULL) {
4544 DRM_ERROR("Failed to map ringbuffer.\n");
4545 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4546 i915_gem_object_unpin(obj);
4547 drm_gem_object_unreference(obj);
4548 i915_gem_cleanup_hws(dev);
4549 return -EINVAL;
4551 ring->ring_obj = obj;
4552 ring->virtual_start = ring->map.handle;
4554 /* Stop the ring if it's running. */
4555 I915_WRITE(PRB0_CTL, 0);
4556 I915_WRITE(PRB0_TAIL, 0);
4557 I915_WRITE(PRB0_HEAD, 0);
4559 /* Initialize the ring. */
4560 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4561 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4563 /* G45 ring initialization fails to reset head to zero */
4564 if (head != 0) {
4565 DRM_ERROR("Ring head not reset to zero "
4566 "ctl %08x head %08x tail %08x start %08x\n",
4567 I915_READ(PRB0_CTL),
4568 I915_READ(PRB0_HEAD),
4569 I915_READ(PRB0_TAIL),
4570 I915_READ(PRB0_START));
4571 I915_WRITE(PRB0_HEAD, 0);
4573 DRM_ERROR("Ring head forced to zero "
4574 "ctl %08x head %08x tail %08x start %08x\n",
4575 I915_READ(PRB0_CTL),
4576 I915_READ(PRB0_HEAD),
4577 I915_READ(PRB0_TAIL),
4578 I915_READ(PRB0_START));
4581 I915_WRITE(PRB0_CTL,
4582 ((obj->size - 4096) & RING_NR_PAGES) |
4583 RING_NO_REPORT |
4584 RING_VALID);
4586 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4588 /* If the head is still not zero, the ring is dead */
4589 if (head != 0) {
4590 DRM_ERROR("Ring initialization failed "
4591 "ctl %08x head %08x tail %08x start %08x\n",
4592 I915_READ(PRB0_CTL),
4593 I915_READ(PRB0_HEAD),
4594 I915_READ(PRB0_TAIL),
4595 I915_READ(PRB0_START));
4596 return -EIO;
4599 /* Update our cache of the ring state */
4600 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4601 i915_kernel_lost_context(dev);
4602 else {
4603 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4604 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4605 ring->space = ring->head - (ring->tail + 8);
4606 if (ring->space < 0)
4607 ring->space += ring->Size;
4610 return 0;
4613 void
4614 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4616 drm_i915_private_t *dev_priv = dev->dev_private;
4618 if (dev_priv->ring.ring_obj == NULL)
4619 return;
4621 drm_core_ioremapfree(&dev_priv->ring.map, dev);
4623 i915_gem_object_unpin(dev_priv->ring.ring_obj);
4624 drm_gem_object_unreference(dev_priv->ring.ring_obj);
4625 dev_priv->ring.ring_obj = NULL;
4626 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4628 i915_gem_cleanup_hws(dev);
4632 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4633 struct drm_file *file_priv)
4635 drm_i915_private_t *dev_priv = dev->dev_private;
4636 int ret;
4638 if (drm_core_check_feature(dev, DRIVER_MODESET))
4639 return 0;
4641 if (atomic_read(&dev_priv->mm.wedged)) {
4642 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4643 atomic_set(&dev_priv->mm.wedged, 0);
4646 mutex_lock(&dev->struct_mutex);
4647 dev_priv->mm.suspended = 0;
4649 ret = i915_gem_init_ringbuffer(dev);
4650 if (ret != 0) {
4651 mutex_unlock(&dev->struct_mutex);
4652 return ret;
4655 spin_lock(&dev_priv->mm.active_list_lock);
4656 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4657 spin_unlock(&dev_priv->mm.active_list_lock);
4659 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4660 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4661 BUG_ON(!list_empty(&dev_priv->mm.request_list));
4662 mutex_unlock(&dev->struct_mutex);
4664 drm_irq_install(dev);
4666 return 0;
4670 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4671 struct drm_file *file_priv)
4673 if (drm_core_check_feature(dev, DRIVER_MODESET))
4674 return 0;
4676 drm_irq_uninstall(dev);
4677 return i915_gem_idle(dev);
4680 void
4681 i915_gem_lastclose(struct drm_device *dev)
4683 int ret;
4685 if (drm_core_check_feature(dev, DRIVER_MODESET))
4686 return;
4688 ret = i915_gem_idle(dev);
4689 if (ret)
4690 DRM_ERROR("failed to idle hardware: %d\n", ret);
4693 void
4694 i915_gem_load(struct drm_device *dev)
4696 int i;
4697 drm_i915_private_t *dev_priv = dev->dev_private;
4699 spin_lock_init(&dev_priv->mm.active_list_lock);
4700 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4701 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4702 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4703 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4704 INIT_LIST_HEAD(&dev_priv->mm.request_list);
4705 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4706 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4707 i915_gem_retire_work_handler);
4708 dev_priv->mm.next_gem_seqno = 1;
4710 spin_lock(&shrink_list_lock);
4711 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4712 spin_unlock(&shrink_list_lock);
4714 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4715 if (IS_I915G(dev) || IS_I915GM(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4716 u32 tmp = I915_READ(MI_ARB_STATE);
4717 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4718 /* arb state is a masked write, so set bit + bit in mask */
4719 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4720 I915_WRITE(MI_ARB_STATE, tmp);
4724 /* Old X drivers will take 0-2 for front, back, depth buffers */
4725 dev_priv->fence_reg_start = 3;
4727 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4728 dev_priv->num_fence_regs = 16;
4729 else
4730 dev_priv->num_fence_regs = 8;
4732 /* Initialize fence registers to zero */
4733 if (IS_I965G(dev)) {
4734 for (i = 0; i < 16; i++)
4735 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4736 } else {
4737 for (i = 0; i < 8; i++)
4738 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4739 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4740 for (i = 0; i < 8; i++)
4741 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4744 i915_gem_detect_bit_6_swizzle(dev);
4748 * Create a physically contiguous memory object for this object
4749 * e.g. for cursor + overlay regs
4751 int i915_gem_init_phys_object(struct drm_device *dev,
4752 int id, int size)
4754 drm_i915_private_t *dev_priv = dev->dev_private;
4755 struct drm_i915_gem_phys_object *phys_obj;
4756 int ret;
4758 if (dev_priv->mm.phys_objs[id - 1] || !size)
4759 return 0;
4761 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4762 if (!phys_obj)
4763 return -ENOMEM;
4765 phys_obj->id = id;
4767 phys_obj->handle = drm_pci_alloc(dev, size, 0);
4768 if (!phys_obj->handle) {
4769 ret = -ENOMEM;
4770 goto kfree_obj;
4772 #ifdef CONFIG_X86
4773 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4774 #endif
4776 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4778 return 0;
4779 kfree_obj:
4780 kfree(phys_obj);
4781 return ret;
4784 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4786 drm_i915_private_t *dev_priv = dev->dev_private;
4787 struct drm_i915_gem_phys_object *phys_obj;
4789 if (!dev_priv->mm.phys_objs[id - 1])
4790 return;
4792 phys_obj = dev_priv->mm.phys_objs[id - 1];
4793 if (phys_obj->cur_obj) {
4794 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4797 #ifdef CONFIG_X86
4798 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4799 #endif
4800 drm_pci_free(dev, phys_obj->handle);
4801 kfree(phys_obj);
4802 dev_priv->mm.phys_objs[id - 1] = NULL;
4805 void i915_gem_free_all_phys_object(struct drm_device *dev)
4807 int i;
4809 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4810 i915_gem_free_phys_object(dev, i);
4813 void i915_gem_detach_phys_object(struct drm_device *dev,
4814 struct drm_gem_object *obj)
4816 struct drm_i915_gem_object *obj_priv;
4817 int i;
4818 int ret;
4819 int page_count;
4821 obj_priv = obj->driver_private;
4822 if (!obj_priv->phys_obj)
4823 return;
4825 ret = i915_gem_object_get_pages(obj, 0);
4826 if (ret)
4827 goto out;
4829 page_count = obj->size / PAGE_SIZE;
4831 for (i = 0; i < page_count; i++) {
4832 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4833 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4835 memcpy(dst, src, PAGE_SIZE);
4836 kunmap_atomic(dst, KM_USER0);
4838 drm_clflush_pages(obj_priv->pages, page_count);
4839 drm_agp_chipset_flush(dev);
4841 i915_gem_object_put_pages(obj);
4842 out:
4843 obj_priv->phys_obj->cur_obj = NULL;
4844 obj_priv->phys_obj = NULL;
4848 i915_gem_attach_phys_object(struct drm_device *dev,
4849 struct drm_gem_object *obj, int id)
4851 drm_i915_private_t *dev_priv = dev->dev_private;
4852 struct drm_i915_gem_object *obj_priv;
4853 int ret = 0;
4854 int page_count;
4855 int i;
4857 if (id > I915_MAX_PHYS_OBJECT)
4858 return -EINVAL;
4860 obj_priv = obj->driver_private;
4862 if (obj_priv->phys_obj) {
4863 if (obj_priv->phys_obj->id == id)
4864 return 0;
4865 i915_gem_detach_phys_object(dev, obj);
4869 /* create a new object */
4870 if (!dev_priv->mm.phys_objs[id - 1]) {
4871 ret = i915_gem_init_phys_object(dev, id,
4872 obj->size);
4873 if (ret) {
4874 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4875 goto out;
4879 /* bind to the object */
4880 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4881 obj_priv->phys_obj->cur_obj = obj;
4883 ret = i915_gem_object_get_pages(obj, 0);
4884 if (ret) {
4885 DRM_ERROR("failed to get page list\n");
4886 goto out;
4889 page_count = obj->size / PAGE_SIZE;
4891 for (i = 0; i < page_count; i++) {
4892 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4893 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4895 memcpy(dst, src, PAGE_SIZE);
4896 kunmap_atomic(src, KM_USER0);
4899 i915_gem_object_put_pages(obj);
4901 return 0;
4902 out:
4903 return ret;
4906 static int
4907 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4908 struct drm_i915_gem_pwrite *args,
4909 struct drm_file *file_priv)
4911 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4912 void *obj_addr;
4913 int ret;
4914 char __user *user_data;
4916 user_data = (char __user *) (uintptr_t) args->data_ptr;
4917 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4919 DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
4920 ret = copy_from_user(obj_addr, user_data, args->size);
4921 if (ret)
4922 return -EFAULT;
4924 drm_agp_chipset_flush(dev);
4925 return 0;
4928 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4930 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4932 /* Clean up our request list when the client is going away, so that
4933 * later retire_requests won't dereference our soon-to-be-gone
4934 * file_priv.
4936 mutex_lock(&dev->struct_mutex);
4937 while (!list_empty(&i915_file_priv->mm.request_list))
4938 list_del_init(i915_file_priv->mm.request_list.next);
4939 mutex_unlock(&dev->struct_mutex);
4942 static int
4943 i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
4945 drm_i915_private_t *dev_priv, *next_dev;
4946 struct drm_i915_gem_object *obj_priv, *next_obj;
4947 int cnt = 0;
4948 int would_deadlock = 1;
4950 /* "fast-path" to count number of available objects */
4951 if (nr_to_scan == 0) {
4952 spin_lock(&shrink_list_lock);
4953 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4954 struct drm_device *dev = dev_priv->dev;
4956 if (mutex_trylock(&dev->struct_mutex)) {
4957 list_for_each_entry(obj_priv,
4958 &dev_priv->mm.inactive_list,
4959 list)
4960 cnt++;
4961 mutex_unlock(&dev->struct_mutex);
4964 spin_unlock(&shrink_list_lock);
4966 return (cnt / 100) * sysctl_vfs_cache_pressure;
4969 spin_lock(&shrink_list_lock);
4971 /* first scan for clean buffers */
4972 list_for_each_entry_safe(dev_priv, next_dev,
4973 &shrink_list, mm.shrink_list) {
4974 struct drm_device *dev = dev_priv->dev;
4976 if (! mutex_trylock(&dev->struct_mutex))
4977 continue;
4979 spin_unlock(&shrink_list_lock);
4981 i915_gem_retire_requests(dev);
4983 list_for_each_entry_safe(obj_priv, next_obj,
4984 &dev_priv->mm.inactive_list,
4985 list) {
4986 if (i915_gem_object_is_purgeable(obj_priv)) {
4987 i915_gem_object_unbind(obj_priv->obj);
4988 if (--nr_to_scan <= 0)
4989 break;
4993 spin_lock(&shrink_list_lock);
4994 mutex_unlock(&dev->struct_mutex);
4996 would_deadlock = 0;
4998 if (nr_to_scan <= 0)
4999 break;
5002 /* second pass, evict/count anything still on the inactive list */
5003 list_for_each_entry_safe(dev_priv, next_dev,
5004 &shrink_list, mm.shrink_list) {
5005 struct drm_device *dev = dev_priv->dev;
5007 if (! mutex_trylock(&dev->struct_mutex))
5008 continue;
5010 spin_unlock(&shrink_list_lock);
5012 list_for_each_entry_safe(obj_priv, next_obj,
5013 &dev_priv->mm.inactive_list,
5014 list) {
5015 if (nr_to_scan > 0) {
5016 i915_gem_object_unbind(obj_priv->obj);
5017 nr_to_scan--;
5018 } else
5019 cnt++;
5022 spin_lock(&shrink_list_lock);
5023 mutex_unlock(&dev->struct_mutex);
5025 would_deadlock = 0;
5028 spin_unlock(&shrink_list_lock);
5030 if (would_deadlock)
5031 return -1;
5032 else if (cnt > 0)
5033 return (cnt / 100) * sysctl_vfs_cache_pressure;
5034 else
5035 return 0;
5038 static struct shrinker shrinker = {
5039 .shrink = i915_gem_shrink,
5040 .seeks = DEFAULT_SEEKS,
5043 __init void
5044 i915_gem_shrinker_init(void)
5046 register_shrinker(&shrinker);
5049 __exit void
5050 i915_gem_shrinker_exit(void)
5052 unregister_shrinker(&shrinker);