2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 * mballoc.c contains the multiblocks allocation routines
25 #include <linux/debugfs.h>
26 #include <linux/slab.h>
27 #include <trace/events/ext4.h>
31 * - test ext4_ext_search_left() and ext4_ext_search_right()
32 * - search for metadata in few groups
35 * - normalization should take into account whether file is still open
36 * - discard preallocations if no free space left (policy?)
37 * - don't normalize tails
39 * - reservation for superuser
42 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
43 * - track min/max extents in each group for better group selection
44 * - mb_mark_used() may allocate chunk right after splitting buddy
45 * - tree of groups sorted by number of free blocks
50 * The allocation request involve request for multiple number of blocks
51 * near to the goal(block) value specified.
53 * During initialization phase of the allocator we decide to use the
54 * group preallocation or inode preallocation depending on the size of
55 * the file. The size of the file could be the resulting file size we
56 * would have after allocation, or the current file size, which ever
57 * is larger. If the size is less than sbi->s_mb_stream_request we
58 * select to use the group preallocation. The default value of
59 * s_mb_stream_request is 16 blocks. This can also be tuned via
60 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
61 * terms of number of blocks.
63 * The main motivation for having small file use group preallocation is to
64 * ensure that we have small files closer together on the disk.
66 * First stage the allocator looks at the inode prealloc list,
67 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
68 * spaces for this particular inode. The inode prealloc space is
71 * pa_lstart -> the logical start block for this prealloc space
72 * pa_pstart -> the physical start block for this prealloc space
73 * pa_len -> length for this prealloc space (in clusters)
74 * pa_free -> free space available in this prealloc space (in clusters)
76 * The inode preallocation space is used looking at the _logical_ start
77 * block. If only the logical file block falls within the range of prealloc
78 * space we will consume the particular prealloc space. This makes sure that
79 * we have contiguous physical blocks representing the file blocks
81 * The important thing to be noted in case of inode prealloc space is that
82 * we don't modify the values associated to inode prealloc space except
85 * If we are not able to find blocks in the inode prealloc space and if we
86 * have the group allocation flag set then we look at the locality group
87 * prealloc space. These are per CPU prealloc list represented as
89 * ext4_sb_info.s_locality_groups[smp_processor_id()]
91 * The reason for having a per cpu locality group is to reduce the contention
92 * between CPUs. It is possible to get scheduled at this point.
94 * The locality group prealloc space is used looking at whether we have
95 * enough free space (pa_free) within the prealloc space.
97 * If we can't allocate blocks via inode prealloc or/and locality group
98 * prealloc then we look at the buddy cache. The buddy cache is represented
99 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
100 * mapped to the buddy and bitmap information regarding different
101 * groups. The buddy information is attached to buddy cache inode so that
102 * we can access them through the page cache. The information regarding
103 * each group is loaded via ext4_mb_load_buddy. The information involve
104 * block bitmap and buddy information. The information are stored in the
108 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
111 * one block each for bitmap and buddy information. So for each group we
112 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
113 * blocksize) blocks. So it can have information regarding groups_per_page
114 * which is blocks_per_page/2
116 * The buddy cache inode is not stored on disk. The inode is thrown
117 * away when the filesystem is unmounted.
119 * We look for count number of blocks in the buddy cache. If we were able
120 * to locate that many free blocks we return with additional information
121 * regarding rest of the contiguous physical block available
123 * Before allocating blocks via buddy cache we normalize the request
124 * blocks. This ensure we ask for more blocks that we needed. The extra
125 * blocks that we get after allocation is added to the respective prealloc
126 * list. In case of inode preallocation we follow a list of heuristics
127 * based on file size. This can be found in ext4_mb_normalize_request. If
128 * we are doing a group prealloc we try to normalize the request to
129 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
130 * dependent on the cluster size; for non-bigalloc file systems, it is
131 * 512 blocks. This can be tuned via
132 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
133 * terms of number of blocks. If we have mounted the file system with -O
134 * stripe=<value> option the group prealloc request is normalized to the
135 * the smallest multiple of the stripe value (sbi->s_stripe) which is
136 * greater than the default mb_group_prealloc.
138 * The regular allocator (using the buddy cache) supports a few tunables.
140 * /sys/fs/ext4/<partition>/mb_min_to_scan
141 * /sys/fs/ext4/<partition>/mb_max_to_scan
142 * /sys/fs/ext4/<partition>/mb_order2_req
144 * The regular allocator uses buddy scan only if the request len is power of
145 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
146 * value of s_mb_order2_reqs can be tuned via
147 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
148 * stripe size (sbi->s_stripe), we try to search for contiguous block in
149 * stripe size. This should result in better allocation on RAID setups. If
150 * not, we search in the specific group using bitmap for best extents. The
151 * tunable min_to_scan and max_to_scan control the behaviour here.
152 * min_to_scan indicate how long the mballoc __must__ look for a best
153 * extent and max_to_scan indicates how long the mballoc __can__ look for a
154 * best extent in the found extents. Searching for the blocks starts with
155 * the group specified as the goal value in allocation context via
156 * ac_g_ex. Each group is first checked based on the criteria whether it
157 * can be used for allocation. ext4_mb_good_group explains how the groups are
160 * Both the prealloc space are getting populated as above. So for the first
161 * request we will hit the buddy cache which will result in this prealloc
162 * space getting filled. The prealloc space is then later used for the
163 * subsequent request.
167 * mballoc operates on the following data:
169 * - in-core buddy (actually includes buddy and bitmap)
170 * - preallocation descriptors (PAs)
172 * there are two types of preallocations:
174 * assiged to specific inode and can be used for this inode only.
175 * it describes part of inode's space preallocated to specific
176 * physical blocks. any block from that preallocated can be used
177 * independent. the descriptor just tracks number of blocks left
178 * unused. so, before taking some block from descriptor, one must
179 * make sure corresponded logical block isn't allocated yet. this
180 * also means that freeing any block within descriptor's range
181 * must discard all preallocated blocks.
183 * assigned to specific locality group which does not translate to
184 * permanent set of inodes: inode can join and leave group. space
185 * from this type of preallocation can be used for any inode. thus
186 * it's consumed from the beginning to the end.
188 * relation between them can be expressed as:
189 * in-core buddy = on-disk bitmap + preallocation descriptors
191 * this mean blocks mballoc considers used are:
192 * - allocated blocks (persistent)
193 * - preallocated blocks (non-persistent)
195 * consistency in mballoc world means that at any time a block is either
196 * free or used in ALL structures. notice: "any time" should not be read
197 * literally -- time is discrete and delimited by locks.
199 * to keep it simple, we don't use block numbers, instead we count number of
200 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
202 * all operations can be expressed as:
203 * - init buddy: buddy = on-disk + PAs
204 * - new PA: buddy += N; PA = N
205 * - use inode PA: on-disk += N; PA -= N
206 * - discard inode PA buddy -= on-disk - PA; PA = 0
207 * - use locality group PA on-disk += N; PA -= N
208 * - discard locality group PA buddy -= PA; PA = 0
209 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
210 * is used in real operation because we can't know actual used
211 * bits from PA, only from on-disk bitmap
213 * if we follow this strict logic, then all operations above should be atomic.
214 * given some of them can block, we'd have to use something like semaphores
215 * killing performance on high-end SMP hardware. let's try to relax it using
216 * the following knowledge:
217 * 1) if buddy is referenced, it's already initialized
218 * 2) while block is used in buddy and the buddy is referenced,
219 * nobody can re-allocate that block
220 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
221 * bit set and PA claims same block, it's OK. IOW, one can set bit in
222 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
225 * so, now we're building a concurrency table:
228 * blocks for PA are allocated in the buddy, buddy must be referenced
229 * until PA is linked to allocation group to avoid concurrent buddy init
231 * we need to make sure that either on-disk bitmap or PA has uptodate data
232 * given (3) we care that PA-=N operation doesn't interfere with init
234 * the simplest way would be to have buddy initialized by the discard
235 * - use locality group PA
236 * again PA-=N must be serialized with init
237 * - discard locality group PA
238 * the simplest way would be to have buddy initialized by the discard
241 * i_data_sem serializes them
243 * discard process must wait until PA isn't used by another process
244 * - use locality group PA
245 * some mutex should serialize them
246 * - discard locality group PA
247 * discard process must wait until PA isn't used by another process
250 * i_data_sem or another mutex should serializes them
252 * discard process must wait until PA isn't used by another process
253 * - use locality group PA
254 * nothing wrong here -- they're different PAs covering different blocks
255 * - discard locality group PA
256 * discard process must wait until PA isn't used by another process
258 * now we're ready to make few consequences:
259 * - PA is referenced and while it is no discard is possible
260 * - PA is referenced until block isn't marked in on-disk bitmap
261 * - PA changes only after on-disk bitmap
262 * - discard must not compete with init. either init is done before
263 * any discard or they're serialized somehow
264 * - buddy init as sum of on-disk bitmap and PAs is done atomically
266 * a special case when we've used PA to emptiness. no need to modify buddy
267 * in this case, but we should care about concurrent init
272 * Logic in few words:
277 * mark bits in on-disk bitmap
280 * - use preallocation:
281 * find proper PA (per-inode or group)
283 * mark bits in on-disk bitmap
289 * mark bits in on-disk bitmap
292 * - discard preallocations in group:
294 * move them onto local list
295 * load on-disk bitmap
297 * remove PA from object (inode or locality group)
298 * mark free blocks in-core
300 * - discard inode's preallocations:
307 * - bitlock on a group (group)
308 * - object (inode/locality) (object)
319 * - release consumed pa:
324 * - generate in-core bitmap:
328 * - discard all for given object (inode, locality group):
333 * - discard all for given group:
340 static struct kmem_cache
*ext4_pspace_cachep
;
341 static struct kmem_cache
*ext4_ac_cachep
;
342 static struct kmem_cache
*ext4_free_ext_cachep
;
344 /* We create slab caches for groupinfo data structures based on the
345 * superblock block size. There will be one per mounted filesystem for
346 * each unique s_blocksize_bits */
347 #define NR_GRPINFO_CACHES 8
348 static struct kmem_cache
*ext4_groupinfo_caches
[NR_GRPINFO_CACHES
];
350 static const char *ext4_groupinfo_slab_names
[NR_GRPINFO_CACHES
] = {
351 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
352 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
353 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
356 static void ext4_mb_generate_from_pa(struct super_block
*sb
, void *bitmap
,
358 static void ext4_mb_generate_from_freelist(struct super_block
*sb
, void *bitmap
,
360 static void release_blocks_on_commit(journal_t
*journal
, transaction_t
*txn
);
362 static inline void *mb_correct_addr_and_bit(int *bit
, void *addr
)
364 #if BITS_PER_LONG == 64
365 *bit
+= ((unsigned long) addr
& 7UL) << 3;
366 addr
= (void *) ((unsigned long) addr
& ~7UL);
367 #elif BITS_PER_LONG == 32
368 *bit
+= ((unsigned long) addr
& 3UL) << 3;
369 addr
= (void *) ((unsigned long) addr
& ~3UL);
371 #error "how many bits you are?!"
376 static inline int mb_test_bit(int bit
, void *addr
)
379 * ext4_test_bit on architecture like powerpc
380 * needs unsigned long aligned address
382 addr
= mb_correct_addr_and_bit(&bit
, addr
);
383 return ext4_test_bit(bit
, addr
);
386 static inline void mb_set_bit(int bit
, void *addr
)
388 addr
= mb_correct_addr_and_bit(&bit
, addr
);
389 ext4_set_bit(bit
, addr
);
392 static inline void mb_clear_bit(int bit
, void *addr
)
394 addr
= mb_correct_addr_and_bit(&bit
, addr
);
395 ext4_clear_bit(bit
, addr
);
398 static inline int mb_find_next_zero_bit(void *addr
, int max
, int start
)
400 int fix
= 0, ret
, tmpmax
;
401 addr
= mb_correct_addr_and_bit(&fix
, addr
);
405 ret
= ext4_find_next_zero_bit(addr
, tmpmax
, start
) - fix
;
411 static inline int mb_find_next_bit(void *addr
, int max
, int start
)
413 int fix
= 0, ret
, tmpmax
;
414 addr
= mb_correct_addr_and_bit(&fix
, addr
);
418 ret
= ext4_find_next_bit(addr
, tmpmax
, start
) - fix
;
424 static void *mb_find_buddy(struct ext4_buddy
*e4b
, int order
, int *max
)
428 BUG_ON(EXT4_MB_BITMAP(e4b
) == EXT4_MB_BUDDY(e4b
));
431 if (order
> e4b
->bd_blkbits
+ 1) {
436 /* at order 0 we see each particular block */
438 *max
= 1 << (e4b
->bd_blkbits
+ 3);
439 return EXT4_MB_BITMAP(e4b
);
442 bb
= EXT4_MB_BUDDY(e4b
) + EXT4_SB(e4b
->bd_sb
)->s_mb_offsets
[order
];
443 *max
= EXT4_SB(e4b
->bd_sb
)->s_mb_maxs
[order
];
449 static void mb_free_blocks_double(struct inode
*inode
, struct ext4_buddy
*e4b
,
450 int first
, int count
)
453 struct super_block
*sb
= e4b
->bd_sb
;
455 if (unlikely(e4b
->bd_info
->bb_bitmap
== NULL
))
457 assert_spin_locked(ext4_group_lock_ptr(sb
, e4b
->bd_group
));
458 for (i
= 0; i
< count
; i
++) {
459 if (!mb_test_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
)) {
460 ext4_fsblk_t blocknr
;
462 blocknr
= ext4_group_first_block_no(sb
, e4b
->bd_group
);
463 blocknr
+= EXT4_C2B(EXT4_SB(sb
), first
+ i
);
464 ext4_grp_locked_error(sb
, e4b
->bd_group
,
465 inode
? inode
->i_ino
: 0,
467 "freeing block already freed "
471 mb_clear_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
);
475 static void mb_mark_used_double(struct ext4_buddy
*e4b
, int first
, int count
)
479 if (unlikely(e4b
->bd_info
->bb_bitmap
== NULL
))
481 assert_spin_locked(ext4_group_lock_ptr(e4b
->bd_sb
, e4b
->bd_group
));
482 for (i
= 0; i
< count
; i
++) {
483 BUG_ON(mb_test_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
));
484 mb_set_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
);
488 static void mb_cmp_bitmaps(struct ext4_buddy
*e4b
, void *bitmap
)
490 if (memcmp(e4b
->bd_info
->bb_bitmap
, bitmap
, e4b
->bd_sb
->s_blocksize
)) {
491 unsigned char *b1
, *b2
;
493 b1
= (unsigned char *) e4b
->bd_info
->bb_bitmap
;
494 b2
= (unsigned char *) bitmap
;
495 for (i
= 0; i
< e4b
->bd_sb
->s_blocksize
; i
++) {
496 if (b1
[i
] != b2
[i
]) {
497 ext4_msg(e4b
->bd_sb
, KERN_ERR
,
498 "corruption in group %u "
499 "at byte %u(%u): %x in copy != %x "
501 e4b
->bd_group
, i
, i
* 8, b1
[i
], b2
[i
]);
509 static inline void mb_free_blocks_double(struct inode
*inode
,
510 struct ext4_buddy
*e4b
, int first
, int count
)
514 static inline void mb_mark_used_double(struct ext4_buddy
*e4b
,
515 int first
, int count
)
519 static inline void mb_cmp_bitmaps(struct ext4_buddy
*e4b
, void *bitmap
)
525 #ifdef AGGRESSIVE_CHECK
527 #define MB_CHECK_ASSERT(assert) \
531 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
532 function, file, line, # assert); \
537 static int __mb_check_buddy(struct ext4_buddy
*e4b
, char *file
,
538 const char *function
, int line
)
540 struct super_block
*sb
= e4b
->bd_sb
;
541 int order
= e4b
->bd_blkbits
+ 1;
548 struct ext4_group_info
*grp
;
551 struct list_head
*cur
;
556 static int mb_check_counter
;
557 if (mb_check_counter
++ % 100 != 0)
562 buddy
= mb_find_buddy(e4b
, order
, &max
);
563 MB_CHECK_ASSERT(buddy
);
564 buddy2
= mb_find_buddy(e4b
, order
- 1, &max2
);
565 MB_CHECK_ASSERT(buddy2
);
566 MB_CHECK_ASSERT(buddy
!= buddy2
);
567 MB_CHECK_ASSERT(max
* 2 == max2
);
570 for (i
= 0; i
< max
; i
++) {
572 if (mb_test_bit(i
, buddy
)) {
573 /* only single bit in buddy2 may be 1 */
574 if (!mb_test_bit(i
<< 1, buddy2
)) {
576 mb_test_bit((i
<<1)+1, buddy2
));
577 } else if (!mb_test_bit((i
<< 1) + 1, buddy2
)) {
579 mb_test_bit(i
<< 1, buddy2
));
584 /* both bits in buddy2 must be 1 */
585 MB_CHECK_ASSERT(mb_test_bit(i
<< 1, buddy2
));
586 MB_CHECK_ASSERT(mb_test_bit((i
<< 1) + 1, buddy2
));
588 for (j
= 0; j
< (1 << order
); j
++) {
589 k
= (i
* (1 << order
)) + j
;
591 !mb_test_bit(k
, EXT4_MB_BITMAP(e4b
)));
595 MB_CHECK_ASSERT(e4b
->bd_info
->bb_counters
[order
] == count
);
600 buddy
= mb_find_buddy(e4b
, 0, &max
);
601 for (i
= 0; i
< max
; i
++) {
602 if (!mb_test_bit(i
, buddy
)) {
603 MB_CHECK_ASSERT(i
>= e4b
->bd_info
->bb_first_free
);
611 /* check used bits only */
612 for (j
= 0; j
< e4b
->bd_blkbits
+ 1; j
++) {
613 buddy2
= mb_find_buddy(e4b
, j
, &max2
);
615 MB_CHECK_ASSERT(k
< max2
);
616 MB_CHECK_ASSERT(mb_test_bit(k
, buddy2
));
619 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b
->bd_info
));
620 MB_CHECK_ASSERT(e4b
->bd_info
->bb_fragments
== fragments
);
622 grp
= ext4_get_group_info(sb
, e4b
->bd_group
);
623 list_for_each(cur
, &grp
->bb_prealloc_list
) {
624 ext4_group_t groupnr
;
625 struct ext4_prealloc_space
*pa
;
626 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
627 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &groupnr
, &k
);
628 MB_CHECK_ASSERT(groupnr
== e4b
->bd_group
);
629 for (i
= 0; i
< pa
->pa_len
; i
++)
630 MB_CHECK_ASSERT(mb_test_bit(k
+ i
, buddy
));
634 #undef MB_CHECK_ASSERT
635 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
636 __FILE__, __func__, __LINE__)
638 #define mb_check_buddy(e4b)
642 * Divide blocks started from @first with length @len into
643 * smaller chunks with power of 2 blocks.
644 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
645 * then increase bb_counters[] for corresponded chunk size.
647 static void ext4_mb_mark_free_simple(struct super_block
*sb
,
648 void *buddy
, ext4_grpblk_t first
, ext4_grpblk_t len
,
649 struct ext4_group_info
*grp
)
651 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
655 unsigned short border
;
657 BUG_ON(len
> EXT4_CLUSTERS_PER_GROUP(sb
));
659 border
= 2 << sb
->s_blocksize_bits
;
662 /* find how many blocks can be covered since this position */
663 max
= ffs(first
| border
) - 1;
665 /* find how many blocks of power 2 we need to mark */
672 /* mark multiblock chunks only */
673 grp
->bb_counters
[min
]++;
675 mb_clear_bit(first
>> min
,
676 buddy
+ sbi
->s_mb_offsets
[min
]);
684 * Cache the order of the largest free extent we have available in this block
688 mb_set_largest_free_order(struct super_block
*sb
, struct ext4_group_info
*grp
)
693 grp
->bb_largest_free_order
= -1; /* uninit */
695 bits
= sb
->s_blocksize_bits
+ 1;
696 for (i
= bits
; i
>= 0; i
--) {
697 if (grp
->bb_counters
[i
] > 0) {
698 grp
->bb_largest_free_order
= i
;
704 static noinline_for_stack
705 void ext4_mb_generate_buddy(struct super_block
*sb
,
706 void *buddy
, void *bitmap
, ext4_group_t group
)
708 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
709 ext4_grpblk_t max
= EXT4_CLUSTERS_PER_GROUP(sb
);
714 unsigned fragments
= 0;
715 unsigned long long period
= get_cycles();
717 /* initialize buddy from bitmap which is aggregation
718 * of on-disk bitmap and preallocations */
719 i
= mb_find_next_zero_bit(bitmap
, max
, 0);
720 grp
->bb_first_free
= i
;
724 i
= mb_find_next_bit(bitmap
, max
, i
);
728 ext4_mb_mark_free_simple(sb
, buddy
, first
, len
, grp
);
730 grp
->bb_counters
[0]++;
732 i
= mb_find_next_zero_bit(bitmap
, max
, i
);
734 grp
->bb_fragments
= fragments
;
736 if (free
!= grp
->bb_free
) {
737 ext4_grp_locked_error(sb
, group
, 0, 0,
738 "%u clusters in bitmap, %u in gd",
741 * If we intent to continue, we consider group descritor
742 * corrupt and update bb_free using bitmap value
746 mb_set_largest_free_order(sb
, grp
);
748 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT
, &(grp
->bb_state
));
750 period
= get_cycles() - period
;
751 spin_lock(&EXT4_SB(sb
)->s_bal_lock
);
752 EXT4_SB(sb
)->s_mb_buddies_generated
++;
753 EXT4_SB(sb
)->s_mb_generation_time
+= period
;
754 spin_unlock(&EXT4_SB(sb
)->s_bal_lock
);
757 /* The buddy information is attached the buddy cache inode
758 * for convenience. The information regarding each group
759 * is loaded via ext4_mb_load_buddy. The information involve
760 * block bitmap and buddy information. The information are
761 * stored in the inode as
764 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
767 * one block each for bitmap and buddy information.
768 * So for each group we take up 2 blocks. A page can
769 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
770 * So it can have information regarding groups_per_page which
771 * is blocks_per_page/2
773 * Locking note: This routine takes the block group lock of all groups
774 * for this page; do not hold this lock when calling this routine!
777 static int ext4_mb_init_cache(struct page
*page
, char *incore
)
779 ext4_group_t ngroups
;
785 ext4_group_t first_group
;
787 struct super_block
*sb
;
788 struct buffer_head
*bhs
;
789 struct buffer_head
**bh
;
793 struct ext4_group_info
*grinfo
;
795 mb_debug(1, "init page %lu\n", page
->index
);
797 inode
= page
->mapping
->host
;
799 ngroups
= ext4_get_groups_count(sb
);
800 blocksize
= 1 << inode
->i_blkbits
;
801 blocks_per_page
= PAGE_CACHE_SIZE
/ blocksize
;
803 groups_per_page
= blocks_per_page
>> 1;
804 if (groups_per_page
== 0)
807 /* allocate buffer_heads to read bitmaps */
808 if (groups_per_page
> 1) {
810 i
= sizeof(struct buffer_head
*) * groups_per_page
;
811 bh
= kzalloc(i
, GFP_NOFS
);
817 first_group
= page
->index
* blocks_per_page
/ 2;
819 /* read all groups the page covers into the cache */
820 for (i
= 0; i
< groups_per_page
; i
++) {
821 struct ext4_group_desc
*desc
;
823 if (first_group
+ i
>= ngroups
)
826 grinfo
= ext4_get_group_info(sb
, first_group
+ i
);
828 * If page is uptodate then we came here after online resize
829 * which added some new uninitialized group info structs, so
830 * we must skip all initialized uptodate buddies on the page,
831 * which may be currently in use by an allocating task.
833 if (PageUptodate(page
) && !EXT4_MB_GRP_NEED_INIT(grinfo
)) {
839 desc
= ext4_get_group_desc(sb
, first_group
+ i
, NULL
);
844 bh
[i
] = sb_getblk(sb
, ext4_block_bitmap(sb
, desc
));
848 if (bitmap_uptodate(bh
[i
]))
852 if (bitmap_uptodate(bh
[i
])) {
853 unlock_buffer(bh
[i
]);
856 ext4_lock_group(sb
, first_group
+ i
);
857 if (desc
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
)) {
858 ext4_init_block_bitmap(sb
, bh
[i
],
859 first_group
+ i
, desc
);
860 set_bitmap_uptodate(bh
[i
]);
861 set_buffer_uptodate(bh
[i
]);
862 ext4_unlock_group(sb
, first_group
+ i
);
863 unlock_buffer(bh
[i
]);
866 ext4_unlock_group(sb
, first_group
+ i
);
867 if (buffer_uptodate(bh
[i
])) {
869 * if not uninit if bh is uptodate,
870 * bitmap is also uptodate
872 set_bitmap_uptodate(bh
[i
]);
873 unlock_buffer(bh
[i
]);
878 * submit the buffer_head for read. We can
879 * safely mark the bitmap as uptodate now.
880 * We do it here so the bitmap uptodate bit
881 * get set with buffer lock held.
883 set_bitmap_uptodate(bh
[i
]);
884 bh
[i
]->b_end_io
= end_buffer_read_sync
;
885 submit_bh(READ
, bh
[i
]);
886 mb_debug(1, "read bitmap for group %u\n", first_group
+ i
);
889 /* wait for I/O completion */
890 for (i
= 0; i
< groups_per_page
; i
++)
892 wait_on_buffer(bh
[i
]);
895 for (i
= 0; i
< groups_per_page
; i
++)
896 if (bh
[i
] && !buffer_uptodate(bh
[i
]))
900 first_block
= page
->index
* blocks_per_page
;
901 for (i
= 0; i
< blocks_per_page
; i
++) {
904 group
= (first_block
+ i
) >> 1;
905 if (group
>= ngroups
)
908 if (!bh
[group
- first_group
])
909 /* skip initialized uptodate buddy */
913 * data carry information regarding this
914 * particular group in the format specified
918 data
= page_address(page
) + (i
* blocksize
);
919 bitmap
= bh
[group
- first_group
]->b_data
;
922 * We place the buddy block and bitmap block
925 if ((first_block
+ i
) & 1) {
926 /* this is block of buddy */
927 BUG_ON(incore
== NULL
);
928 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
929 group
, page
->index
, i
* blocksize
);
930 trace_ext4_mb_buddy_bitmap_load(sb
, group
);
931 grinfo
= ext4_get_group_info(sb
, group
);
932 grinfo
->bb_fragments
= 0;
933 memset(grinfo
->bb_counters
, 0,
934 sizeof(*grinfo
->bb_counters
) *
935 (sb
->s_blocksize_bits
+2));
937 * incore got set to the group block bitmap below
939 ext4_lock_group(sb
, group
);
941 memset(data
, 0xff, blocksize
);
942 ext4_mb_generate_buddy(sb
, data
, incore
, group
);
943 ext4_unlock_group(sb
, group
);
946 /* this is block of bitmap */
947 BUG_ON(incore
!= NULL
);
948 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
949 group
, page
->index
, i
* blocksize
);
950 trace_ext4_mb_bitmap_load(sb
, group
);
952 /* see comments in ext4_mb_put_pa() */
953 ext4_lock_group(sb
, group
);
954 memcpy(data
, bitmap
, blocksize
);
956 /* mark all preallocated blks used in in-core bitmap */
957 ext4_mb_generate_from_pa(sb
, data
, group
);
958 ext4_mb_generate_from_freelist(sb
, data
, group
);
959 ext4_unlock_group(sb
, group
);
961 /* set incore so that the buddy information can be
962 * generated using this
967 SetPageUptodate(page
);
971 for (i
= 0; i
< groups_per_page
; i
++)
980 * Lock the buddy and bitmap pages. This make sure other parallel init_group
981 * on the same buddy page doesn't happen whild holding the buddy page lock.
982 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
983 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
985 static int ext4_mb_get_buddy_page_lock(struct super_block
*sb
,
986 ext4_group_t group
, struct ext4_buddy
*e4b
)
988 struct inode
*inode
= EXT4_SB(sb
)->s_buddy_cache
;
989 int block
, pnum
, poff
;
993 e4b
->bd_buddy_page
= NULL
;
994 e4b
->bd_bitmap_page
= NULL
;
996 blocks_per_page
= PAGE_CACHE_SIZE
/ sb
->s_blocksize
;
998 * the buddy cache inode stores the block bitmap
999 * and buddy information in consecutive blocks.
1000 * So for each group we need two blocks.
1003 pnum
= block
/ blocks_per_page
;
1004 poff
= block
% blocks_per_page
;
1005 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
1008 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1009 e4b
->bd_bitmap_page
= page
;
1010 e4b
->bd_bitmap
= page_address(page
) + (poff
* sb
->s_blocksize
);
1012 if (blocks_per_page
>= 2) {
1013 /* buddy and bitmap are on the same page */
1018 pnum
= block
/ blocks_per_page
;
1019 poff
= block
% blocks_per_page
;
1020 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
1023 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1024 e4b
->bd_buddy_page
= page
;
1028 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy
*e4b
)
1030 if (e4b
->bd_bitmap_page
) {
1031 unlock_page(e4b
->bd_bitmap_page
);
1032 page_cache_release(e4b
->bd_bitmap_page
);
1034 if (e4b
->bd_buddy_page
) {
1035 unlock_page(e4b
->bd_buddy_page
);
1036 page_cache_release(e4b
->bd_buddy_page
);
1041 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1042 * block group lock of all groups for this page; do not hold the BG lock when
1043 * calling this routine!
1045 static noinline_for_stack
1046 int ext4_mb_init_group(struct super_block
*sb
, ext4_group_t group
)
1049 struct ext4_group_info
*this_grp
;
1050 struct ext4_buddy e4b
;
1054 mb_debug(1, "init group %u\n", group
);
1055 this_grp
= ext4_get_group_info(sb
, group
);
1057 * This ensures that we don't reinit the buddy cache
1058 * page which map to the group from which we are already
1059 * allocating. If we are looking at the buddy cache we would
1060 * have taken a reference using ext4_mb_load_buddy and that
1061 * would have pinned buddy page to page cache.
1063 ret
= ext4_mb_get_buddy_page_lock(sb
, group
, &e4b
);
1064 if (ret
|| !EXT4_MB_GRP_NEED_INIT(this_grp
)) {
1066 * somebody initialized the group
1067 * return without doing anything
1072 page
= e4b
.bd_bitmap_page
;
1073 ret
= ext4_mb_init_cache(page
, NULL
);
1076 if (!PageUptodate(page
)) {
1080 mark_page_accessed(page
);
1082 if (e4b
.bd_buddy_page
== NULL
) {
1084 * If both the bitmap and buddy are in
1085 * the same page we don't need to force
1091 /* init buddy cache */
1092 page
= e4b
.bd_buddy_page
;
1093 ret
= ext4_mb_init_cache(page
, e4b
.bd_bitmap
);
1096 if (!PageUptodate(page
)) {
1100 mark_page_accessed(page
);
1102 ext4_mb_put_buddy_page_lock(&e4b
);
1107 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1108 * block group lock of all groups for this page; do not hold the BG lock when
1109 * calling this routine!
1111 static noinline_for_stack
int
1112 ext4_mb_load_buddy(struct super_block
*sb
, ext4_group_t group
,
1113 struct ext4_buddy
*e4b
)
1115 int blocks_per_page
;
1121 struct ext4_group_info
*grp
;
1122 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1123 struct inode
*inode
= sbi
->s_buddy_cache
;
1125 mb_debug(1, "load group %u\n", group
);
1127 blocks_per_page
= PAGE_CACHE_SIZE
/ sb
->s_blocksize
;
1128 grp
= ext4_get_group_info(sb
, group
);
1130 e4b
->bd_blkbits
= sb
->s_blocksize_bits
;
1133 e4b
->bd_group
= group
;
1134 e4b
->bd_buddy_page
= NULL
;
1135 e4b
->bd_bitmap_page
= NULL
;
1137 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp
))) {
1139 * we need full data about the group
1140 * to make a good selection
1142 ret
= ext4_mb_init_group(sb
, group
);
1148 * the buddy cache inode stores the block bitmap
1149 * and buddy information in consecutive blocks.
1150 * So for each group we need two blocks.
1153 pnum
= block
/ blocks_per_page
;
1154 poff
= block
% blocks_per_page
;
1156 /* we could use find_or_create_page(), but it locks page
1157 * what we'd like to avoid in fast path ... */
1158 page
= find_get_page(inode
->i_mapping
, pnum
);
1159 if (page
== NULL
|| !PageUptodate(page
)) {
1162 * drop the page reference and try
1163 * to get the page with lock. If we
1164 * are not uptodate that implies
1165 * somebody just created the page but
1166 * is yet to initialize the same. So
1167 * wait for it to initialize.
1169 page_cache_release(page
);
1170 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
1172 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1173 if (!PageUptodate(page
)) {
1174 ret
= ext4_mb_init_cache(page
, NULL
);
1179 mb_cmp_bitmaps(e4b
, page_address(page
) +
1180 (poff
* sb
->s_blocksize
));
1185 if (page
== NULL
|| !PageUptodate(page
)) {
1189 e4b
->bd_bitmap_page
= page
;
1190 e4b
->bd_bitmap
= page_address(page
) + (poff
* sb
->s_blocksize
);
1191 mark_page_accessed(page
);
1194 pnum
= block
/ blocks_per_page
;
1195 poff
= block
% blocks_per_page
;
1197 page
= find_get_page(inode
->i_mapping
, pnum
);
1198 if (page
== NULL
|| !PageUptodate(page
)) {
1200 page_cache_release(page
);
1201 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
1203 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1204 if (!PageUptodate(page
)) {
1205 ret
= ext4_mb_init_cache(page
, e4b
->bd_bitmap
);
1214 if (page
== NULL
|| !PageUptodate(page
)) {
1218 e4b
->bd_buddy_page
= page
;
1219 e4b
->bd_buddy
= page_address(page
) + (poff
* sb
->s_blocksize
);
1220 mark_page_accessed(page
);
1222 BUG_ON(e4b
->bd_bitmap_page
== NULL
);
1223 BUG_ON(e4b
->bd_buddy_page
== NULL
);
1229 page_cache_release(page
);
1230 if (e4b
->bd_bitmap_page
)
1231 page_cache_release(e4b
->bd_bitmap_page
);
1232 if (e4b
->bd_buddy_page
)
1233 page_cache_release(e4b
->bd_buddy_page
);
1234 e4b
->bd_buddy
= NULL
;
1235 e4b
->bd_bitmap
= NULL
;
1239 static void ext4_mb_unload_buddy(struct ext4_buddy
*e4b
)
1241 if (e4b
->bd_bitmap_page
)
1242 page_cache_release(e4b
->bd_bitmap_page
);
1243 if (e4b
->bd_buddy_page
)
1244 page_cache_release(e4b
->bd_buddy_page
);
1248 static int mb_find_order_for_block(struct ext4_buddy
*e4b
, int block
)
1253 BUG_ON(EXT4_MB_BITMAP(e4b
) == EXT4_MB_BUDDY(e4b
));
1254 BUG_ON(block
>= (1 << (e4b
->bd_blkbits
+ 3)));
1256 bb
= EXT4_MB_BUDDY(e4b
);
1257 while (order
<= e4b
->bd_blkbits
+ 1) {
1259 if (!mb_test_bit(block
, bb
)) {
1260 /* this block is part of buddy of order 'order' */
1263 bb
+= 1 << (e4b
->bd_blkbits
- order
);
1269 static void mb_clear_bits(void *bm
, int cur
, int len
)
1275 if ((cur
& 31) == 0 && (len
- cur
) >= 32) {
1276 /* fast path: clear whole word at once */
1277 addr
= bm
+ (cur
>> 3);
1282 mb_clear_bit(cur
, bm
);
1287 void ext4_set_bits(void *bm
, int cur
, int len
)
1293 if ((cur
& 31) == 0 && (len
- cur
) >= 32) {
1294 /* fast path: set whole word at once */
1295 addr
= bm
+ (cur
>> 3);
1300 mb_set_bit(cur
, bm
);
1305 static void mb_free_blocks(struct inode
*inode
, struct ext4_buddy
*e4b
,
1306 int first
, int count
)
1313 struct super_block
*sb
= e4b
->bd_sb
;
1315 BUG_ON(first
+ count
> (sb
->s_blocksize
<< 3));
1316 assert_spin_locked(ext4_group_lock_ptr(sb
, e4b
->bd_group
));
1317 mb_check_buddy(e4b
);
1318 mb_free_blocks_double(inode
, e4b
, first
, count
);
1320 e4b
->bd_info
->bb_free
+= count
;
1321 if (first
< e4b
->bd_info
->bb_first_free
)
1322 e4b
->bd_info
->bb_first_free
= first
;
1324 /* let's maintain fragments counter */
1326 block
= !mb_test_bit(first
- 1, EXT4_MB_BITMAP(e4b
));
1327 if (first
+ count
< EXT4_SB(sb
)->s_mb_maxs
[0])
1328 max
= !mb_test_bit(first
+ count
, EXT4_MB_BITMAP(e4b
));
1330 e4b
->bd_info
->bb_fragments
--;
1331 else if (!block
&& !max
)
1332 e4b
->bd_info
->bb_fragments
++;
1334 /* let's maintain buddy itself */
1335 while (count
-- > 0) {
1339 if (!mb_test_bit(block
, EXT4_MB_BITMAP(e4b
))) {
1340 ext4_fsblk_t blocknr
;
1342 blocknr
= ext4_group_first_block_no(sb
, e4b
->bd_group
);
1343 blocknr
+= EXT4_C2B(EXT4_SB(sb
), block
);
1344 ext4_grp_locked_error(sb
, e4b
->bd_group
,
1345 inode
? inode
->i_ino
: 0,
1347 "freeing already freed block "
1350 mb_clear_bit(block
, EXT4_MB_BITMAP(e4b
));
1351 e4b
->bd_info
->bb_counters
[order
]++;
1353 /* start of the buddy */
1354 buddy
= mb_find_buddy(e4b
, order
, &max
);
1358 if (mb_test_bit(block
, buddy
) ||
1359 mb_test_bit(block
+ 1, buddy
))
1362 /* both the buddies are free, try to coalesce them */
1363 buddy2
= mb_find_buddy(e4b
, order
+ 1, &max
);
1369 /* for special purposes, we don't set
1370 * free bits in bitmap */
1371 mb_set_bit(block
, buddy
);
1372 mb_set_bit(block
+ 1, buddy
);
1374 e4b
->bd_info
->bb_counters
[order
]--;
1375 e4b
->bd_info
->bb_counters
[order
]--;
1379 e4b
->bd_info
->bb_counters
[order
]++;
1381 mb_clear_bit(block
, buddy2
);
1385 mb_set_largest_free_order(sb
, e4b
->bd_info
);
1386 mb_check_buddy(e4b
);
1389 static int mb_find_extent(struct ext4_buddy
*e4b
, int order
, int block
,
1390 int needed
, struct ext4_free_extent
*ex
)
1396 assert_spin_locked(ext4_group_lock_ptr(e4b
->bd_sb
, e4b
->bd_group
));
1399 buddy
= mb_find_buddy(e4b
, order
, &max
);
1400 BUG_ON(buddy
== NULL
);
1401 BUG_ON(block
>= max
);
1402 if (mb_test_bit(block
, buddy
)) {
1409 /* FIXME dorp order completely ? */
1410 if (likely(order
== 0)) {
1411 /* find actual order */
1412 order
= mb_find_order_for_block(e4b
, block
);
1413 block
= block
>> order
;
1416 ex
->fe_len
= 1 << order
;
1417 ex
->fe_start
= block
<< order
;
1418 ex
->fe_group
= e4b
->bd_group
;
1420 /* calc difference from given start */
1421 next
= next
- ex
->fe_start
;
1423 ex
->fe_start
+= next
;
1425 while (needed
> ex
->fe_len
&&
1426 (buddy
= mb_find_buddy(e4b
, order
, &max
))) {
1428 if (block
+ 1 >= max
)
1431 next
= (block
+ 1) * (1 << order
);
1432 if (mb_test_bit(next
, EXT4_MB_BITMAP(e4b
)))
1435 order
= mb_find_order_for_block(e4b
, next
);
1437 block
= next
>> order
;
1438 ex
->fe_len
+= 1 << order
;
1441 BUG_ON(ex
->fe_start
+ ex
->fe_len
> (1 << (e4b
->bd_blkbits
+ 3)));
1445 static int mb_mark_used(struct ext4_buddy
*e4b
, struct ext4_free_extent
*ex
)
1451 int start
= ex
->fe_start
;
1452 int len
= ex
->fe_len
;
1457 BUG_ON(start
+ len
> (e4b
->bd_sb
->s_blocksize
<< 3));
1458 BUG_ON(e4b
->bd_group
!= ex
->fe_group
);
1459 assert_spin_locked(ext4_group_lock_ptr(e4b
->bd_sb
, e4b
->bd_group
));
1460 mb_check_buddy(e4b
);
1461 mb_mark_used_double(e4b
, start
, len
);
1463 e4b
->bd_info
->bb_free
-= len
;
1464 if (e4b
->bd_info
->bb_first_free
== start
)
1465 e4b
->bd_info
->bb_first_free
+= len
;
1467 /* let's maintain fragments counter */
1469 mlen
= !mb_test_bit(start
- 1, EXT4_MB_BITMAP(e4b
));
1470 if (start
+ len
< EXT4_SB(e4b
->bd_sb
)->s_mb_maxs
[0])
1471 max
= !mb_test_bit(start
+ len
, EXT4_MB_BITMAP(e4b
));
1473 e4b
->bd_info
->bb_fragments
++;
1474 else if (!mlen
&& !max
)
1475 e4b
->bd_info
->bb_fragments
--;
1477 /* let's maintain buddy itself */
1479 ord
= mb_find_order_for_block(e4b
, start
);
1481 if (((start
>> ord
) << ord
) == start
&& len
>= (1 << ord
)) {
1482 /* the whole chunk may be allocated at once! */
1484 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1485 BUG_ON((start
>> ord
) >= max
);
1486 mb_set_bit(start
>> ord
, buddy
);
1487 e4b
->bd_info
->bb_counters
[ord
]--;
1494 /* store for history */
1496 ret
= len
| (ord
<< 16);
1498 /* we have to split large buddy */
1500 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1501 mb_set_bit(start
>> ord
, buddy
);
1502 e4b
->bd_info
->bb_counters
[ord
]--;
1505 cur
= (start
>> ord
) & ~1U;
1506 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1507 mb_clear_bit(cur
, buddy
);
1508 mb_clear_bit(cur
+ 1, buddy
);
1509 e4b
->bd_info
->bb_counters
[ord
]++;
1510 e4b
->bd_info
->bb_counters
[ord
]++;
1512 mb_set_largest_free_order(e4b
->bd_sb
, e4b
->bd_info
);
1514 ext4_set_bits(EXT4_MB_BITMAP(e4b
), ex
->fe_start
, len0
);
1515 mb_check_buddy(e4b
);
1521 * Must be called under group lock!
1523 static void ext4_mb_use_best_found(struct ext4_allocation_context
*ac
,
1524 struct ext4_buddy
*e4b
)
1526 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1529 BUG_ON(ac
->ac_b_ex
.fe_group
!= e4b
->bd_group
);
1530 BUG_ON(ac
->ac_status
== AC_STATUS_FOUND
);
1532 ac
->ac_b_ex
.fe_len
= min(ac
->ac_b_ex
.fe_len
, ac
->ac_g_ex
.fe_len
);
1533 ac
->ac_b_ex
.fe_logical
= ac
->ac_g_ex
.fe_logical
;
1534 ret
= mb_mark_used(e4b
, &ac
->ac_b_ex
);
1536 /* preallocation can change ac_b_ex, thus we store actually
1537 * allocated blocks for history */
1538 ac
->ac_f_ex
= ac
->ac_b_ex
;
1540 ac
->ac_status
= AC_STATUS_FOUND
;
1541 ac
->ac_tail
= ret
& 0xffff;
1542 ac
->ac_buddy
= ret
>> 16;
1545 * take the page reference. We want the page to be pinned
1546 * so that we don't get a ext4_mb_init_cache_call for this
1547 * group until we update the bitmap. That would mean we
1548 * double allocate blocks. The reference is dropped
1549 * in ext4_mb_release_context
1551 ac
->ac_bitmap_page
= e4b
->bd_bitmap_page
;
1552 get_page(ac
->ac_bitmap_page
);
1553 ac
->ac_buddy_page
= e4b
->bd_buddy_page
;
1554 get_page(ac
->ac_buddy_page
);
1555 /* store last allocated for subsequent stream allocation */
1556 if (ac
->ac_flags
& EXT4_MB_STREAM_ALLOC
) {
1557 spin_lock(&sbi
->s_md_lock
);
1558 sbi
->s_mb_last_group
= ac
->ac_f_ex
.fe_group
;
1559 sbi
->s_mb_last_start
= ac
->ac_f_ex
.fe_start
;
1560 spin_unlock(&sbi
->s_md_lock
);
1565 * regular allocator, for general purposes allocation
1568 static void ext4_mb_check_limits(struct ext4_allocation_context
*ac
,
1569 struct ext4_buddy
*e4b
,
1572 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1573 struct ext4_free_extent
*bex
= &ac
->ac_b_ex
;
1574 struct ext4_free_extent
*gex
= &ac
->ac_g_ex
;
1575 struct ext4_free_extent ex
;
1578 if (ac
->ac_status
== AC_STATUS_FOUND
)
1581 * We don't want to scan for a whole year
1583 if (ac
->ac_found
> sbi
->s_mb_max_to_scan
&&
1584 !(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
1585 ac
->ac_status
= AC_STATUS_BREAK
;
1590 * Haven't found good chunk so far, let's continue
1592 if (bex
->fe_len
< gex
->fe_len
)
1595 if ((finish_group
|| ac
->ac_found
> sbi
->s_mb_min_to_scan
)
1596 && bex
->fe_group
== e4b
->bd_group
) {
1597 /* recheck chunk's availability - we don't know
1598 * when it was found (within this lock-unlock
1600 max
= mb_find_extent(e4b
, 0, bex
->fe_start
, gex
->fe_len
, &ex
);
1601 if (max
>= gex
->fe_len
) {
1602 ext4_mb_use_best_found(ac
, e4b
);
1609 * The routine checks whether found extent is good enough. If it is,
1610 * then the extent gets marked used and flag is set to the context
1611 * to stop scanning. Otherwise, the extent is compared with the
1612 * previous found extent and if new one is better, then it's stored
1613 * in the context. Later, the best found extent will be used, if
1614 * mballoc can't find good enough extent.
1616 * FIXME: real allocation policy is to be designed yet!
1618 static void ext4_mb_measure_extent(struct ext4_allocation_context
*ac
,
1619 struct ext4_free_extent
*ex
,
1620 struct ext4_buddy
*e4b
)
1622 struct ext4_free_extent
*bex
= &ac
->ac_b_ex
;
1623 struct ext4_free_extent
*gex
= &ac
->ac_g_ex
;
1625 BUG_ON(ex
->fe_len
<= 0);
1626 BUG_ON(ex
->fe_len
> EXT4_CLUSTERS_PER_GROUP(ac
->ac_sb
));
1627 BUG_ON(ex
->fe_start
>= EXT4_CLUSTERS_PER_GROUP(ac
->ac_sb
));
1628 BUG_ON(ac
->ac_status
!= AC_STATUS_CONTINUE
);
1633 * The special case - take what you catch first
1635 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
1637 ext4_mb_use_best_found(ac
, e4b
);
1642 * Let's check whether the chuck is good enough
1644 if (ex
->fe_len
== gex
->fe_len
) {
1646 ext4_mb_use_best_found(ac
, e4b
);
1651 * If this is first found extent, just store it in the context
1653 if (bex
->fe_len
== 0) {
1659 * If new found extent is better, store it in the context
1661 if (bex
->fe_len
< gex
->fe_len
) {
1662 /* if the request isn't satisfied, any found extent
1663 * larger than previous best one is better */
1664 if (ex
->fe_len
> bex
->fe_len
)
1666 } else if (ex
->fe_len
> gex
->fe_len
) {
1667 /* if the request is satisfied, then we try to find
1668 * an extent that still satisfy the request, but is
1669 * smaller than previous one */
1670 if (ex
->fe_len
< bex
->fe_len
)
1674 ext4_mb_check_limits(ac
, e4b
, 0);
1677 static noinline_for_stack
1678 int ext4_mb_try_best_found(struct ext4_allocation_context
*ac
,
1679 struct ext4_buddy
*e4b
)
1681 struct ext4_free_extent ex
= ac
->ac_b_ex
;
1682 ext4_group_t group
= ex
.fe_group
;
1686 BUG_ON(ex
.fe_len
<= 0);
1687 err
= ext4_mb_load_buddy(ac
->ac_sb
, group
, e4b
);
1691 ext4_lock_group(ac
->ac_sb
, group
);
1692 max
= mb_find_extent(e4b
, 0, ex
.fe_start
, ex
.fe_len
, &ex
);
1696 ext4_mb_use_best_found(ac
, e4b
);
1699 ext4_unlock_group(ac
->ac_sb
, group
);
1700 ext4_mb_unload_buddy(e4b
);
1705 static noinline_for_stack
1706 int ext4_mb_find_by_goal(struct ext4_allocation_context
*ac
,
1707 struct ext4_buddy
*e4b
)
1709 ext4_group_t group
= ac
->ac_g_ex
.fe_group
;
1712 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1713 struct ext4_free_extent ex
;
1715 if (!(ac
->ac_flags
& EXT4_MB_HINT_TRY_GOAL
))
1718 err
= ext4_mb_load_buddy(ac
->ac_sb
, group
, e4b
);
1722 ext4_lock_group(ac
->ac_sb
, group
);
1723 max
= mb_find_extent(e4b
, 0, ac
->ac_g_ex
.fe_start
,
1724 ac
->ac_g_ex
.fe_len
, &ex
);
1726 if (max
>= ac
->ac_g_ex
.fe_len
&& ac
->ac_g_ex
.fe_len
== sbi
->s_stripe
) {
1729 start
= ext4_group_first_block_no(ac
->ac_sb
, e4b
->bd_group
) +
1731 /* use do_div to get remainder (would be 64-bit modulo) */
1732 if (do_div(start
, sbi
->s_stripe
) == 0) {
1735 ext4_mb_use_best_found(ac
, e4b
);
1737 } else if (max
>= ac
->ac_g_ex
.fe_len
) {
1738 BUG_ON(ex
.fe_len
<= 0);
1739 BUG_ON(ex
.fe_group
!= ac
->ac_g_ex
.fe_group
);
1740 BUG_ON(ex
.fe_start
!= ac
->ac_g_ex
.fe_start
);
1743 ext4_mb_use_best_found(ac
, e4b
);
1744 } else if (max
> 0 && (ac
->ac_flags
& EXT4_MB_HINT_MERGE
)) {
1745 /* Sometimes, caller may want to merge even small
1746 * number of blocks to an existing extent */
1747 BUG_ON(ex
.fe_len
<= 0);
1748 BUG_ON(ex
.fe_group
!= ac
->ac_g_ex
.fe_group
);
1749 BUG_ON(ex
.fe_start
!= ac
->ac_g_ex
.fe_start
);
1752 ext4_mb_use_best_found(ac
, e4b
);
1754 ext4_unlock_group(ac
->ac_sb
, group
);
1755 ext4_mb_unload_buddy(e4b
);
1761 * The routine scans buddy structures (not bitmap!) from given order
1762 * to max order and tries to find big enough chunk to satisfy the req
1764 static noinline_for_stack
1765 void ext4_mb_simple_scan_group(struct ext4_allocation_context
*ac
,
1766 struct ext4_buddy
*e4b
)
1768 struct super_block
*sb
= ac
->ac_sb
;
1769 struct ext4_group_info
*grp
= e4b
->bd_info
;
1775 BUG_ON(ac
->ac_2order
<= 0);
1776 for (i
= ac
->ac_2order
; i
<= sb
->s_blocksize_bits
+ 1; i
++) {
1777 if (grp
->bb_counters
[i
] == 0)
1780 buddy
= mb_find_buddy(e4b
, i
, &max
);
1781 BUG_ON(buddy
== NULL
);
1783 k
= mb_find_next_zero_bit(buddy
, max
, 0);
1788 ac
->ac_b_ex
.fe_len
= 1 << i
;
1789 ac
->ac_b_ex
.fe_start
= k
<< i
;
1790 ac
->ac_b_ex
.fe_group
= e4b
->bd_group
;
1792 ext4_mb_use_best_found(ac
, e4b
);
1794 BUG_ON(ac
->ac_b_ex
.fe_len
!= ac
->ac_g_ex
.fe_len
);
1796 if (EXT4_SB(sb
)->s_mb_stats
)
1797 atomic_inc(&EXT4_SB(sb
)->s_bal_2orders
);
1804 * The routine scans the group and measures all found extents.
1805 * In order to optimize scanning, caller must pass number of
1806 * free blocks in the group, so the routine can know upper limit.
1808 static noinline_for_stack
1809 void ext4_mb_complex_scan_group(struct ext4_allocation_context
*ac
,
1810 struct ext4_buddy
*e4b
)
1812 struct super_block
*sb
= ac
->ac_sb
;
1813 void *bitmap
= EXT4_MB_BITMAP(e4b
);
1814 struct ext4_free_extent ex
;
1818 free
= e4b
->bd_info
->bb_free
;
1821 i
= e4b
->bd_info
->bb_first_free
;
1823 while (free
&& ac
->ac_status
== AC_STATUS_CONTINUE
) {
1824 i
= mb_find_next_zero_bit(bitmap
,
1825 EXT4_CLUSTERS_PER_GROUP(sb
), i
);
1826 if (i
>= EXT4_CLUSTERS_PER_GROUP(sb
)) {
1828 * IF we have corrupt bitmap, we won't find any
1829 * free blocks even though group info says we
1830 * we have free blocks
1832 ext4_grp_locked_error(sb
, e4b
->bd_group
, 0, 0,
1833 "%d free clusters as per "
1834 "group info. But bitmap says 0",
1839 mb_find_extent(e4b
, 0, i
, ac
->ac_g_ex
.fe_len
, &ex
);
1840 BUG_ON(ex
.fe_len
<= 0);
1841 if (free
< ex
.fe_len
) {
1842 ext4_grp_locked_error(sb
, e4b
->bd_group
, 0, 0,
1843 "%d free clusters as per "
1844 "group info. But got %d blocks",
1847 * The number of free blocks differs. This mostly
1848 * indicate that the bitmap is corrupt. So exit
1849 * without claiming the space.
1854 ext4_mb_measure_extent(ac
, &ex
, e4b
);
1860 ext4_mb_check_limits(ac
, e4b
, 1);
1864 * This is a special case for storages like raid5
1865 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1867 static noinline_for_stack
1868 void ext4_mb_scan_aligned(struct ext4_allocation_context
*ac
,
1869 struct ext4_buddy
*e4b
)
1871 struct super_block
*sb
= ac
->ac_sb
;
1872 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1873 void *bitmap
= EXT4_MB_BITMAP(e4b
);
1874 struct ext4_free_extent ex
;
1875 ext4_fsblk_t first_group_block
;
1880 BUG_ON(sbi
->s_stripe
== 0);
1882 /* find first stripe-aligned block in group */
1883 first_group_block
= ext4_group_first_block_no(sb
, e4b
->bd_group
);
1885 a
= first_group_block
+ sbi
->s_stripe
- 1;
1886 do_div(a
, sbi
->s_stripe
);
1887 i
= (a
* sbi
->s_stripe
) - first_group_block
;
1889 while (i
< EXT4_CLUSTERS_PER_GROUP(sb
)) {
1890 if (!mb_test_bit(i
, bitmap
)) {
1891 max
= mb_find_extent(e4b
, 0, i
, sbi
->s_stripe
, &ex
);
1892 if (max
>= sbi
->s_stripe
) {
1895 ext4_mb_use_best_found(ac
, e4b
);
1903 /* This is now called BEFORE we load the buddy bitmap. */
1904 static int ext4_mb_good_group(struct ext4_allocation_context
*ac
,
1905 ext4_group_t group
, int cr
)
1907 unsigned free
, fragments
;
1908 int flex_size
= ext4_flex_bg_size(EXT4_SB(ac
->ac_sb
));
1909 struct ext4_group_info
*grp
= ext4_get_group_info(ac
->ac_sb
, group
);
1911 BUG_ON(cr
< 0 || cr
>= 4);
1913 /* We only do this if the grp has never been initialized */
1914 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp
))) {
1915 int ret
= ext4_mb_init_group(ac
->ac_sb
, group
);
1920 free
= grp
->bb_free
;
1921 fragments
= grp
->bb_fragments
;
1929 BUG_ON(ac
->ac_2order
== 0);
1931 if (grp
->bb_largest_free_order
< ac
->ac_2order
)
1934 /* Avoid using the first bg of a flexgroup for data files */
1935 if ((ac
->ac_flags
& EXT4_MB_HINT_DATA
) &&
1936 (flex_size
>= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
) &&
1937 ((group
% flex_size
) == 0))
1942 if ((free
/ fragments
) >= ac
->ac_g_ex
.fe_len
)
1946 if (free
>= ac
->ac_g_ex
.fe_len
)
1958 static noinline_for_stack
int
1959 ext4_mb_regular_allocator(struct ext4_allocation_context
*ac
)
1961 ext4_group_t ngroups
, group
, i
;
1964 struct ext4_sb_info
*sbi
;
1965 struct super_block
*sb
;
1966 struct ext4_buddy e4b
;
1970 ngroups
= ext4_get_groups_count(sb
);
1971 /* non-extent files are limited to low blocks/groups */
1972 if (!(ext4_test_inode_flag(ac
->ac_inode
, EXT4_INODE_EXTENTS
)))
1973 ngroups
= sbi
->s_blockfile_groups
;
1975 BUG_ON(ac
->ac_status
== AC_STATUS_FOUND
);
1977 /* first, try the goal */
1978 err
= ext4_mb_find_by_goal(ac
, &e4b
);
1979 if (err
|| ac
->ac_status
== AC_STATUS_FOUND
)
1982 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
1986 * ac->ac2_order is set only if the fe_len is a power of 2
1987 * if ac2_order is set we also set criteria to 0 so that we
1988 * try exact allocation using buddy.
1990 i
= fls(ac
->ac_g_ex
.fe_len
);
1993 * We search using buddy data only if the order of the request
1994 * is greater than equal to the sbi_s_mb_order2_reqs
1995 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
1997 if (i
>= sbi
->s_mb_order2_reqs
) {
1999 * This should tell if fe_len is exactly power of 2
2001 if ((ac
->ac_g_ex
.fe_len
& (~(1 << (i
- 1)))) == 0)
2002 ac
->ac_2order
= i
- 1;
2005 /* if stream allocation is enabled, use global goal */
2006 if (ac
->ac_flags
& EXT4_MB_STREAM_ALLOC
) {
2007 /* TBD: may be hot point */
2008 spin_lock(&sbi
->s_md_lock
);
2009 ac
->ac_g_ex
.fe_group
= sbi
->s_mb_last_group
;
2010 ac
->ac_g_ex
.fe_start
= sbi
->s_mb_last_start
;
2011 spin_unlock(&sbi
->s_md_lock
);
2014 /* Let's just scan groups to find more-less suitable blocks */
2015 cr
= ac
->ac_2order
? 0 : 1;
2017 * cr == 0 try to get exact allocation,
2018 * cr == 3 try to get anything
2021 for (; cr
< 4 && ac
->ac_status
== AC_STATUS_CONTINUE
; cr
++) {
2022 ac
->ac_criteria
= cr
;
2024 * searching for the right group start
2025 * from the goal value specified
2027 group
= ac
->ac_g_ex
.fe_group
;
2029 for (i
= 0; i
< ngroups
; group
++, i
++) {
2030 if (group
== ngroups
)
2033 /* This now checks without needing the buddy page */
2034 if (!ext4_mb_good_group(ac
, group
, cr
))
2037 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
2041 ext4_lock_group(sb
, group
);
2044 * We need to check again after locking the
2047 if (!ext4_mb_good_group(ac
, group
, cr
)) {
2048 ext4_unlock_group(sb
, group
);
2049 ext4_mb_unload_buddy(&e4b
);
2053 ac
->ac_groups_scanned
++;
2055 ext4_mb_simple_scan_group(ac
, &e4b
);
2056 else if (cr
== 1 && sbi
->s_stripe
&&
2057 !(ac
->ac_g_ex
.fe_len
% sbi
->s_stripe
))
2058 ext4_mb_scan_aligned(ac
, &e4b
);
2060 ext4_mb_complex_scan_group(ac
, &e4b
);
2062 ext4_unlock_group(sb
, group
);
2063 ext4_mb_unload_buddy(&e4b
);
2065 if (ac
->ac_status
!= AC_STATUS_CONTINUE
)
2070 if (ac
->ac_b_ex
.fe_len
> 0 && ac
->ac_status
!= AC_STATUS_FOUND
&&
2071 !(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
2073 * We've been searching too long. Let's try to allocate
2074 * the best chunk we've found so far
2077 ext4_mb_try_best_found(ac
, &e4b
);
2078 if (ac
->ac_status
!= AC_STATUS_FOUND
) {
2080 * Someone more lucky has already allocated it.
2081 * The only thing we can do is just take first
2083 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2085 ac
->ac_b_ex
.fe_group
= 0;
2086 ac
->ac_b_ex
.fe_start
= 0;
2087 ac
->ac_b_ex
.fe_len
= 0;
2088 ac
->ac_status
= AC_STATUS_CONTINUE
;
2089 ac
->ac_flags
|= EXT4_MB_HINT_FIRST
;
2091 atomic_inc(&sbi
->s_mb_lost_chunks
);
2099 static void *ext4_mb_seq_groups_start(struct seq_file
*seq
, loff_t
*pos
)
2101 struct super_block
*sb
= seq
->private;
2104 if (*pos
< 0 || *pos
>= ext4_get_groups_count(sb
))
2107 return (void *) ((unsigned long) group
);
2110 static void *ext4_mb_seq_groups_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2112 struct super_block
*sb
= seq
->private;
2116 if (*pos
< 0 || *pos
>= ext4_get_groups_count(sb
))
2119 return (void *) ((unsigned long) group
);
2122 static int ext4_mb_seq_groups_show(struct seq_file
*seq
, void *v
)
2124 struct super_block
*sb
= seq
->private;
2125 ext4_group_t group
= (ext4_group_t
) ((unsigned long) v
);
2128 struct ext4_buddy e4b
;
2130 struct ext4_group_info info
;
2131 ext4_grpblk_t counters
[16];
2136 seq_printf(seq
, "#%-5s: %-5s %-5s %-5s "
2137 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2138 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2139 "group", "free", "frags", "first",
2140 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2141 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2143 i
= (sb
->s_blocksize_bits
+ 2) * sizeof(sg
.info
.bb_counters
[0]) +
2144 sizeof(struct ext4_group_info
);
2145 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
2147 seq_printf(seq
, "#%-5u: I/O error\n", group
);
2150 ext4_lock_group(sb
, group
);
2151 memcpy(&sg
, ext4_get_group_info(sb
, group
), i
);
2152 ext4_unlock_group(sb
, group
);
2153 ext4_mb_unload_buddy(&e4b
);
2155 seq_printf(seq
, "#%-5u: %-5u %-5u %-5u [", group
, sg
.info
.bb_free
,
2156 sg
.info
.bb_fragments
, sg
.info
.bb_first_free
);
2157 for (i
= 0; i
<= 13; i
++)
2158 seq_printf(seq
, " %-5u", i
<= sb
->s_blocksize_bits
+ 1 ?
2159 sg
.info
.bb_counters
[i
] : 0);
2160 seq_printf(seq
, " ]\n");
2165 static void ext4_mb_seq_groups_stop(struct seq_file
*seq
, void *v
)
2169 static const struct seq_operations ext4_mb_seq_groups_ops
= {
2170 .start
= ext4_mb_seq_groups_start
,
2171 .next
= ext4_mb_seq_groups_next
,
2172 .stop
= ext4_mb_seq_groups_stop
,
2173 .show
= ext4_mb_seq_groups_show
,
2176 static int ext4_mb_seq_groups_open(struct inode
*inode
, struct file
*file
)
2178 struct super_block
*sb
= PDE(inode
)->data
;
2181 rc
= seq_open(file
, &ext4_mb_seq_groups_ops
);
2183 struct seq_file
*m
= file
->private_data
;
2190 static const struct file_operations ext4_mb_seq_groups_fops
= {
2191 .owner
= THIS_MODULE
,
2192 .open
= ext4_mb_seq_groups_open
,
2194 .llseek
= seq_lseek
,
2195 .release
= seq_release
,
2198 static struct kmem_cache
*get_groupinfo_cache(int blocksize_bits
)
2200 int cache_index
= blocksize_bits
- EXT4_MIN_BLOCK_LOG_SIZE
;
2201 struct kmem_cache
*cachep
= ext4_groupinfo_caches
[cache_index
];
2207 /* Create and initialize ext4_group_info data for the given group. */
2208 int ext4_mb_add_groupinfo(struct super_block
*sb
, ext4_group_t group
,
2209 struct ext4_group_desc
*desc
)
2213 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2214 struct ext4_group_info
**meta_group_info
;
2215 struct kmem_cache
*cachep
= get_groupinfo_cache(sb
->s_blocksize_bits
);
2218 * First check if this group is the first of a reserved block.
2219 * If it's true, we have to allocate a new table of pointers
2220 * to ext4_group_info structures
2222 if (group
% EXT4_DESC_PER_BLOCK(sb
) == 0) {
2223 metalen
= sizeof(*meta_group_info
) <<
2224 EXT4_DESC_PER_BLOCK_BITS(sb
);
2225 meta_group_info
= kmalloc(metalen
, GFP_KERNEL
);
2226 if (meta_group_info
== NULL
) {
2227 ext4_msg(sb
, KERN_ERR
, "EXT4-fs: can't allocate mem "
2228 "for a buddy group");
2229 goto exit_meta_group_info
;
2231 sbi
->s_group_info
[group
>> EXT4_DESC_PER_BLOCK_BITS(sb
)] =
2236 sbi
->s_group_info
[group
>> EXT4_DESC_PER_BLOCK_BITS(sb
)];
2237 i
= group
& (EXT4_DESC_PER_BLOCK(sb
) - 1);
2239 meta_group_info
[i
] = kmem_cache_alloc(cachep
, GFP_KERNEL
);
2240 if (meta_group_info
[i
] == NULL
) {
2241 ext4_msg(sb
, KERN_ERR
, "EXT4-fs: can't allocate buddy mem");
2242 goto exit_group_info
;
2244 memset(meta_group_info
[i
], 0, kmem_cache_size(cachep
));
2245 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT
,
2246 &(meta_group_info
[i
]->bb_state
));
2249 * initialize bb_free to be able to skip
2250 * empty groups without initialization
2252 if (desc
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
)) {
2253 meta_group_info
[i
]->bb_free
=
2254 ext4_free_clusters_after_init(sb
, group
, desc
);
2256 meta_group_info
[i
]->bb_free
=
2257 ext4_free_group_clusters(sb
, desc
);
2260 INIT_LIST_HEAD(&meta_group_info
[i
]->bb_prealloc_list
);
2261 init_rwsem(&meta_group_info
[i
]->alloc_sem
);
2262 meta_group_info
[i
]->bb_free_root
= RB_ROOT
;
2263 meta_group_info
[i
]->bb_largest_free_order
= -1; /* uninit */
2267 struct buffer_head
*bh
;
2268 meta_group_info
[i
]->bb_bitmap
=
2269 kmalloc(sb
->s_blocksize
, GFP_KERNEL
);
2270 BUG_ON(meta_group_info
[i
]->bb_bitmap
== NULL
);
2271 bh
= ext4_read_block_bitmap(sb
, group
);
2273 memcpy(meta_group_info
[i
]->bb_bitmap
, bh
->b_data
,
2282 /* If a meta_group_info table has been allocated, release it now */
2283 if (group
% EXT4_DESC_PER_BLOCK(sb
) == 0) {
2284 kfree(sbi
->s_group_info
[group
>> EXT4_DESC_PER_BLOCK_BITS(sb
)]);
2285 sbi
->s_group_info
[group
>> EXT4_DESC_PER_BLOCK_BITS(sb
)] = NULL
;
2287 exit_meta_group_info
:
2289 } /* ext4_mb_add_groupinfo */
2291 static int ext4_mb_init_backend(struct super_block
*sb
)
2293 ext4_group_t ngroups
= ext4_get_groups_count(sb
);
2295 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2296 struct ext4_super_block
*es
= sbi
->s_es
;
2297 int num_meta_group_infos
;
2298 int num_meta_group_infos_max
;
2300 struct ext4_group_desc
*desc
;
2301 struct kmem_cache
*cachep
;
2303 /* This is the number of blocks used by GDT */
2304 num_meta_group_infos
= (ngroups
+ EXT4_DESC_PER_BLOCK(sb
) -
2305 1) >> EXT4_DESC_PER_BLOCK_BITS(sb
);
2308 * This is the total number of blocks used by GDT including
2309 * the number of reserved blocks for GDT.
2310 * The s_group_info array is allocated with this value
2311 * to allow a clean online resize without a complex
2312 * manipulation of pointer.
2313 * The drawback is the unused memory when no resize
2314 * occurs but it's very low in terms of pages
2315 * (see comments below)
2316 * Need to handle this properly when META_BG resizing is allowed
2318 num_meta_group_infos_max
= num_meta_group_infos
+
2319 le16_to_cpu(es
->s_reserved_gdt_blocks
);
2322 * array_size is the size of s_group_info array. We round it
2323 * to the next power of two because this approximation is done
2324 * internally by kmalloc so we can have some more memory
2325 * for free here (e.g. may be used for META_BG resize).
2328 while (array_size
< sizeof(*sbi
->s_group_info
) *
2329 num_meta_group_infos_max
)
2330 array_size
= array_size
<< 1;
2331 /* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2332 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2333 * So a two level scheme suffices for now. */
2334 sbi
->s_group_info
= ext4_kvzalloc(array_size
, GFP_KERNEL
);
2335 if (sbi
->s_group_info
== NULL
) {
2336 ext4_msg(sb
, KERN_ERR
, "can't allocate buddy meta group");
2339 sbi
->s_buddy_cache
= new_inode(sb
);
2340 if (sbi
->s_buddy_cache
== NULL
) {
2341 ext4_msg(sb
, KERN_ERR
, "can't get new inode");
2344 /* To avoid potentially colliding with an valid on-disk inode number,
2345 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2346 * not in the inode hash, so it should never be found by iget(), but
2347 * this will avoid confusion if it ever shows up during debugging. */
2348 sbi
->s_buddy_cache
->i_ino
= EXT4_BAD_INO
;
2349 EXT4_I(sbi
->s_buddy_cache
)->i_disksize
= 0;
2350 for (i
= 0; i
< ngroups
; i
++) {
2351 desc
= ext4_get_group_desc(sb
, i
, NULL
);
2353 ext4_msg(sb
, KERN_ERR
, "can't read descriptor %u", i
);
2356 if (ext4_mb_add_groupinfo(sb
, i
, desc
) != 0)
2363 cachep
= get_groupinfo_cache(sb
->s_blocksize_bits
);
2365 kmem_cache_free(cachep
, ext4_get_group_info(sb
, i
));
2366 i
= num_meta_group_infos
;
2368 kfree(sbi
->s_group_info
[i
]);
2369 iput(sbi
->s_buddy_cache
);
2371 ext4_kvfree(sbi
->s_group_info
);
2375 static void ext4_groupinfo_destroy_slabs(void)
2379 for (i
= 0; i
< NR_GRPINFO_CACHES
; i
++) {
2380 if (ext4_groupinfo_caches
[i
])
2381 kmem_cache_destroy(ext4_groupinfo_caches
[i
]);
2382 ext4_groupinfo_caches
[i
] = NULL
;
2386 static int ext4_groupinfo_create_slab(size_t size
)
2388 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex
);
2390 int blocksize_bits
= order_base_2(size
);
2391 int cache_index
= blocksize_bits
- EXT4_MIN_BLOCK_LOG_SIZE
;
2392 struct kmem_cache
*cachep
;
2394 if (cache_index
>= NR_GRPINFO_CACHES
)
2397 if (unlikely(cache_index
< 0))
2400 mutex_lock(&ext4_grpinfo_slab_create_mutex
);
2401 if (ext4_groupinfo_caches
[cache_index
]) {
2402 mutex_unlock(&ext4_grpinfo_slab_create_mutex
);
2403 return 0; /* Already created */
2406 slab_size
= offsetof(struct ext4_group_info
,
2407 bb_counters
[blocksize_bits
+ 2]);
2409 cachep
= kmem_cache_create(ext4_groupinfo_slab_names
[cache_index
],
2410 slab_size
, 0, SLAB_RECLAIM_ACCOUNT
,
2413 ext4_groupinfo_caches
[cache_index
] = cachep
;
2415 mutex_unlock(&ext4_grpinfo_slab_create_mutex
);
2418 "EXT4-fs: no memory for groupinfo slab cache\n");
2425 int ext4_mb_init(struct super_block
*sb
, int needs_recovery
)
2427 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2433 i
= (sb
->s_blocksize_bits
+ 2) * sizeof(*sbi
->s_mb_offsets
);
2435 sbi
->s_mb_offsets
= kmalloc(i
, GFP_KERNEL
);
2436 if (sbi
->s_mb_offsets
== NULL
) {
2441 i
= (sb
->s_blocksize_bits
+ 2) * sizeof(*sbi
->s_mb_maxs
);
2442 sbi
->s_mb_maxs
= kmalloc(i
, GFP_KERNEL
);
2443 if (sbi
->s_mb_maxs
== NULL
) {
2448 ret
= ext4_groupinfo_create_slab(sb
->s_blocksize
);
2452 /* order 0 is regular bitmap */
2453 sbi
->s_mb_maxs
[0] = sb
->s_blocksize
<< 3;
2454 sbi
->s_mb_offsets
[0] = 0;
2458 max
= sb
->s_blocksize
<< 2;
2460 sbi
->s_mb_offsets
[i
] = offset
;
2461 sbi
->s_mb_maxs
[i
] = max
;
2462 offset
+= 1 << (sb
->s_blocksize_bits
- i
);
2465 } while (i
<= sb
->s_blocksize_bits
+ 1);
2467 spin_lock_init(&sbi
->s_md_lock
);
2468 spin_lock_init(&sbi
->s_bal_lock
);
2470 sbi
->s_mb_max_to_scan
= MB_DEFAULT_MAX_TO_SCAN
;
2471 sbi
->s_mb_min_to_scan
= MB_DEFAULT_MIN_TO_SCAN
;
2472 sbi
->s_mb_stats
= MB_DEFAULT_STATS
;
2473 sbi
->s_mb_stream_request
= MB_DEFAULT_STREAM_THRESHOLD
;
2474 sbi
->s_mb_order2_reqs
= MB_DEFAULT_ORDER2_REQS
;
2476 * The default group preallocation is 512, which for 4k block
2477 * sizes translates to 2 megabytes. However for bigalloc file
2478 * systems, this is probably too big (i.e, if the cluster size
2479 * is 1 megabyte, then group preallocation size becomes half a
2480 * gigabyte!). As a default, we will keep a two megabyte
2481 * group pralloc size for cluster sizes up to 64k, and after
2482 * that, we will force a minimum group preallocation size of
2483 * 32 clusters. This translates to 8 megs when the cluster
2484 * size is 256k, and 32 megs when the cluster size is 1 meg,
2485 * which seems reasonable as a default.
2487 sbi
->s_mb_group_prealloc
= max(MB_DEFAULT_GROUP_PREALLOC
>>
2488 sbi
->s_cluster_bits
, 32);
2490 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2491 * to the lowest multiple of s_stripe which is bigger than
2492 * the s_mb_group_prealloc as determined above. We want
2493 * the preallocation size to be an exact multiple of the
2494 * RAID stripe size so that preallocations don't fragment
2497 if (sbi
->s_stripe
> 1) {
2498 sbi
->s_mb_group_prealloc
= roundup(
2499 sbi
->s_mb_group_prealloc
, sbi
->s_stripe
);
2502 sbi
->s_locality_groups
= alloc_percpu(struct ext4_locality_group
);
2503 if (sbi
->s_locality_groups
== NULL
) {
2505 goto out_free_groupinfo_slab
;
2507 for_each_possible_cpu(i
) {
2508 struct ext4_locality_group
*lg
;
2509 lg
= per_cpu_ptr(sbi
->s_locality_groups
, i
);
2510 mutex_init(&lg
->lg_mutex
);
2511 for (j
= 0; j
< PREALLOC_TB_SIZE
; j
++)
2512 INIT_LIST_HEAD(&lg
->lg_prealloc_list
[j
]);
2513 spin_lock_init(&lg
->lg_prealloc_lock
);
2516 /* init file for buddy data */
2517 ret
= ext4_mb_init_backend(sb
);
2519 goto out_free_locality_groups
;
2522 proc_create_data("mb_groups", S_IRUGO
, sbi
->s_proc
,
2523 &ext4_mb_seq_groups_fops
, sb
);
2526 sbi
->s_journal
->j_commit_callback
= release_blocks_on_commit
;
2530 out_free_locality_groups
:
2531 free_percpu(sbi
->s_locality_groups
);
2532 sbi
->s_locality_groups
= NULL
;
2533 out_free_groupinfo_slab
:
2534 ext4_groupinfo_destroy_slabs();
2536 kfree(sbi
->s_mb_offsets
);
2537 sbi
->s_mb_offsets
= NULL
;
2538 kfree(sbi
->s_mb_maxs
);
2539 sbi
->s_mb_maxs
= NULL
;
2543 /* need to called with the ext4 group lock held */
2544 static void ext4_mb_cleanup_pa(struct ext4_group_info
*grp
)
2546 struct ext4_prealloc_space
*pa
;
2547 struct list_head
*cur
, *tmp
;
2550 list_for_each_safe(cur
, tmp
, &grp
->bb_prealloc_list
) {
2551 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
2552 list_del(&pa
->pa_group_list
);
2554 kmem_cache_free(ext4_pspace_cachep
, pa
);
2557 mb_debug(1, "mballoc: %u PAs left\n", count
);
2561 int ext4_mb_release(struct super_block
*sb
)
2563 ext4_group_t ngroups
= ext4_get_groups_count(sb
);
2565 int num_meta_group_infos
;
2566 struct ext4_group_info
*grinfo
;
2567 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2568 struct kmem_cache
*cachep
= get_groupinfo_cache(sb
->s_blocksize_bits
);
2570 if (sbi
->s_group_info
) {
2571 for (i
= 0; i
< ngroups
; i
++) {
2572 grinfo
= ext4_get_group_info(sb
, i
);
2574 kfree(grinfo
->bb_bitmap
);
2576 ext4_lock_group(sb
, i
);
2577 ext4_mb_cleanup_pa(grinfo
);
2578 ext4_unlock_group(sb
, i
);
2579 kmem_cache_free(cachep
, grinfo
);
2581 num_meta_group_infos
= (ngroups
+
2582 EXT4_DESC_PER_BLOCK(sb
) - 1) >>
2583 EXT4_DESC_PER_BLOCK_BITS(sb
);
2584 for (i
= 0; i
< num_meta_group_infos
; i
++)
2585 kfree(sbi
->s_group_info
[i
]);
2586 ext4_kvfree(sbi
->s_group_info
);
2588 kfree(sbi
->s_mb_offsets
);
2589 kfree(sbi
->s_mb_maxs
);
2590 if (sbi
->s_buddy_cache
)
2591 iput(sbi
->s_buddy_cache
);
2592 if (sbi
->s_mb_stats
) {
2593 ext4_msg(sb
, KERN_INFO
,
2594 "mballoc: %u blocks %u reqs (%u success)",
2595 atomic_read(&sbi
->s_bal_allocated
),
2596 atomic_read(&sbi
->s_bal_reqs
),
2597 atomic_read(&sbi
->s_bal_success
));
2598 ext4_msg(sb
, KERN_INFO
,
2599 "mballoc: %u extents scanned, %u goal hits, "
2600 "%u 2^N hits, %u breaks, %u lost",
2601 atomic_read(&sbi
->s_bal_ex_scanned
),
2602 atomic_read(&sbi
->s_bal_goals
),
2603 atomic_read(&sbi
->s_bal_2orders
),
2604 atomic_read(&sbi
->s_bal_breaks
),
2605 atomic_read(&sbi
->s_mb_lost_chunks
));
2606 ext4_msg(sb
, KERN_INFO
,
2607 "mballoc: %lu generated and it took %Lu",
2608 sbi
->s_mb_buddies_generated
,
2609 sbi
->s_mb_generation_time
);
2610 ext4_msg(sb
, KERN_INFO
,
2611 "mballoc: %u preallocated, %u discarded",
2612 atomic_read(&sbi
->s_mb_preallocated
),
2613 atomic_read(&sbi
->s_mb_discarded
));
2616 free_percpu(sbi
->s_locality_groups
);
2618 remove_proc_entry("mb_groups", sbi
->s_proc
);
2623 static inline int ext4_issue_discard(struct super_block
*sb
,
2624 ext4_group_t block_group
, ext4_grpblk_t cluster
, int count
)
2626 ext4_fsblk_t discard_block
;
2628 discard_block
= (EXT4_C2B(EXT4_SB(sb
), cluster
) +
2629 ext4_group_first_block_no(sb
, block_group
));
2630 count
= EXT4_C2B(EXT4_SB(sb
), count
);
2631 trace_ext4_discard_blocks(sb
,
2632 (unsigned long long) discard_block
, count
);
2633 return sb_issue_discard(sb
, discard_block
, count
, GFP_NOFS
, 0);
2637 * This function is called by the jbd2 layer once the commit has finished,
2638 * so we know we can free the blocks that were released with that commit.
2640 static void release_blocks_on_commit(journal_t
*journal
, transaction_t
*txn
)
2642 struct super_block
*sb
= journal
->j_private
;
2643 struct ext4_buddy e4b
;
2644 struct ext4_group_info
*db
;
2645 int err
, count
= 0, count2
= 0;
2646 struct ext4_free_data
*entry
;
2647 struct list_head
*l
, *ltmp
;
2649 list_for_each_safe(l
, ltmp
, &txn
->t_private_list
) {
2650 entry
= list_entry(l
, struct ext4_free_data
, list
);
2652 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2653 entry
->count
, entry
->group
, entry
);
2655 if (test_opt(sb
, DISCARD
))
2656 ext4_issue_discard(sb
, entry
->group
,
2657 entry
->start_cluster
, entry
->count
);
2659 err
= ext4_mb_load_buddy(sb
, entry
->group
, &e4b
);
2660 /* we expect to find existing buddy because it's pinned */
2664 /* there are blocks to put in buddy to make them really free */
2665 count
+= entry
->count
;
2667 ext4_lock_group(sb
, entry
->group
);
2668 /* Take it out of per group rb tree */
2669 rb_erase(&entry
->node
, &(db
->bb_free_root
));
2670 mb_free_blocks(NULL
, &e4b
, entry
->start_cluster
, entry
->count
);
2673 * Clear the trimmed flag for the group so that the next
2674 * ext4_trim_fs can trim it.
2675 * If the volume is mounted with -o discard, online discard
2676 * is supported and the free blocks will be trimmed online.
2678 if (!test_opt(sb
, DISCARD
))
2679 EXT4_MB_GRP_CLEAR_TRIMMED(db
);
2681 if (!db
->bb_free_root
.rb_node
) {
2682 /* No more items in the per group rb tree
2683 * balance refcounts from ext4_mb_free_metadata()
2685 page_cache_release(e4b
.bd_buddy_page
);
2686 page_cache_release(e4b
.bd_bitmap_page
);
2688 ext4_unlock_group(sb
, entry
->group
);
2689 kmem_cache_free(ext4_free_ext_cachep
, entry
);
2690 ext4_mb_unload_buddy(&e4b
);
2693 mb_debug(1, "freed %u blocks in %u structures\n", count
, count2
);
2696 #ifdef CONFIG_EXT4_DEBUG
2697 u8 mb_enable_debug __read_mostly
;
2699 static struct dentry
*debugfs_dir
;
2700 static struct dentry
*debugfs_debug
;
2702 static void __init
ext4_create_debugfs_entry(void)
2704 debugfs_dir
= debugfs_create_dir("ext4", NULL
);
2706 debugfs_debug
= debugfs_create_u8("mballoc-debug",
2712 static void ext4_remove_debugfs_entry(void)
2714 debugfs_remove(debugfs_debug
);
2715 debugfs_remove(debugfs_dir
);
2720 static void __init
ext4_create_debugfs_entry(void)
2724 static void ext4_remove_debugfs_entry(void)
2730 int __init
ext4_init_mballoc(void)
2732 ext4_pspace_cachep
= KMEM_CACHE(ext4_prealloc_space
,
2733 SLAB_RECLAIM_ACCOUNT
);
2734 if (ext4_pspace_cachep
== NULL
)
2737 ext4_ac_cachep
= KMEM_CACHE(ext4_allocation_context
,
2738 SLAB_RECLAIM_ACCOUNT
);
2739 if (ext4_ac_cachep
== NULL
) {
2740 kmem_cache_destroy(ext4_pspace_cachep
);
2744 ext4_free_ext_cachep
= KMEM_CACHE(ext4_free_data
,
2745 SLAB_RECLAIM_ACCOUNT
);
2746 if (ext4_free_ext_cachep
== NULL
) {
2747 kmem_cache_destroy(ext4_pspace_cachep
);
2748 kmem_cache_destroy(ext4_ac_cachep
);
2751 ext4_create_debugfs_entry();
2755 void ext4_exit_mballoc(void)
2758 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2759 * before destroying the slab cache.
2762 kmem_cache_destroy(ext4_pspace_cachep
);
2763 kmem_cache_destroy(ext4_ac_cachep
);
2764 kmem_cache_destroy(ext4_free_ext_cachep
);
2765 ext4_groupinfo_destroy_slabs();
2766 ext4_remove_debugfs_entry();
2771 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2772 * Returns 0 if success or error code
2774 static noinline_for_stack
int
2775 ext4_mb_mark_diskspace_used(struct ext4_allocation_context
*ac
,
2776 handle_t
*handle
, unsigned int reserv_clstrs
)
2778 struct buffer_head
*bitmap_bh
= NULL
;
2779 struct ext4_group_desc
*gdp
;
2780 struct buffer_head
*gdp_bh
;
2781 struct ext4_sb_info
*sbi
;
2782 struct super_block
*sb
;
2786 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
2787 BUG_ON(ac
->ac_b_ex
.fe_len
<= 0);
2793 bitmap_bh
= ext4_read_block_bitmap(sb
, ac
->ac_b_ex
.fe_group
);
2797 err
= ext4_journal_get_write_access(handle
, bitmap_bh
);
2802 gdp
= ext4_get_group_desc(sb
, ac
->ac_b_ex
.fe_group
, &gdp_bh
);
2806 ext4_debug("using block group %u(%d)\n", ac
->ac_b_ex
.fe_group
,
2807 ext4_free_group_clusters(sb
, gdp
));
2809 err
= ext4_journal_get_write_access(handle
, gdp_bh
);
2813 block
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
2815 len
= EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
);
2816 if (!ext4_data_block_valid(sbi
, block
, len
)) {
2817 ext4_error(sb
, "Allocating blocks %llu-%llu which overlap "
2818 "fs metadata\n", block
, block
+len
);
2819 /* File system mounted not to panic on error
2820 * Fix the bitmap and repeat the block allocation
2821 * We leak some of the blocks here.
2823 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
2824 ext4_set_bits(bitmap_bh
->b_data
, ac
->ac_b_ex
.fe_start
,
2825 ac
->ac_b_ex
.fe_len
);
2826 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
2827 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
2833 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
2834 #ifdef AGGRESSIVE_CHECK
2837 for (i
= 0; i
< ac
->ac_b_ex
.fe_len
; i
++) {
2838 BUG_ON(mb_test_bit(ac
->ac_b_ex
.fe_start
+ i
,
2839 bitmap_bh
->b_data
));
2843 ext4_set_bits(bitmap_bh
->b_data
, ac
->ac_b_ex
.fe_start
,
2844 ac
->ac_b_ex
.fe_len
);
2845 if (gdp
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
)) {
2846 gdp
->bg_flags
&= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT
);
2847 ext4_free_group_clusters_set(sb
, gdp
,
2848 ext4_free_clusters_after_init(sb
,
2849 ac
->ac_b_ex
.fe_group
, gdp
));
2851 len
= ext4_free_group_clusters(sb
, gdp
) - ac
->ac_b_ex
.fe_len
;
2852 ext4_free_group_clusters_set(sb
, gdp
, len
);
2853 gdp
->bg_checksum
= ext4_group_desc_csum(sbi
, ac
->ac_b_ex
.fe_group
, gdp
);
2855 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
2856 percpu_counter_sub(&sbi
->s_freeclusters_counter
, ac
->ac_b_ex
.fe_len
);
2858 * Now reduce the dirty block count also. Should not go negative
2860 if (!(ac
->ac_flags
& EXT4_MB_DELALLOC_RESERVED
))
2861 /* release all the reserved blocks if non delalloc */
2862 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
2865 if (sbi
->s_log_groups_per_flex
) {
2866 ext4_group_t flex_group
= ext4_flex_group(sbi
,
2867 ac
->ac_b_ex
.fe_group
);
2868 atomic_sub(ac
->ac_b_ex
.fe_len
,
2869 &sbi
->s_flex_groups
[flex_group
].free_clusters
);
2872 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
2875 err
= ext4_handle_dirty_metadata(handle
, NULL
, gdp_bh
);
2878 ext4_mark_super_dirty(sb
);
2884 * here we normalize request for locality group
2885 * Group request are normalized to s_mb_group_prealloc, which goes to
2886 * s_strip if we set the same via mount option.
2887 * s_mb_group_prealloc can be configured via
2888 * /sys/fs/ext4/<partition>/mb_group_prealloc
2890 * XXX: should we try to preallocate more than the group has now?
2892 static void ext4_mb_normalize_group_request(struct ext4_allocation_context
*ac
)
2894 struct super_block
*sb
= ac
->ac_sb
;
2895 struct ext4_locality_group
*lg
= ac
->ac_lg
;
2898 ac
->ac_g_ex
.fe_len
= EXT4_SB(sb
)->s_mb_group_prealloc
;
2899 mb_debug(1, "#%u: goal %u blocks for locality group\n",
2900 current
->pid
, ac
->ac_g_ex
.fe_len
);
2904 * Normalization means making request better in terms of
2905 * size and alignment
2907 static noinline_for_stack
void
2908 ext4_mb_normalize_request(struct ext4_allocation_context
*ac
,
2909 struct ext4_allocation_request
*ar
)
2911 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
2914 loff_t size
, orig_size
, start_off
;
2916 struct ext4_inode_info
*ei
= EXT4_I(ac
->ac_inode
);
2917 struct ext4_prealloc_space
*pa
;
2919 /* do normalize only data requests, metadata requests
2920 do not need preallocation */
2921 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
2924 /* sometime caller may want exact blocks */
2925 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
2928 /* caller may indicate that preallocation isn't
2929 * required (it's a tail, for example) */
2930 if (ac
->ac_flags
& EXT4_MB_HINT_NOPREALLOC
)
2933 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
) {
2934 ext4_mb_normalize_group_request(ac
);
2938 bsbits
= ac
->ac_sb
->s_blocksize_bits
;
2940 /* first, let's learn actual file size
2941 * given current request is allocated */
2942 size
= ac
->ac_o_ex
.fe_logical
+ EXT4_C2B(sbi
, ac
->ac_o_ex
.fe_len
);
2943 size
= size
<< bsbits
;
2944 if (size
< i_size_read(ac
->ac_inode
))
2945 size
= i_size_read(ac
->ac_inode
);
2948 /* max size of free chunks */
2951 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
2952 (req <= (size) || max <= (chunk_size))
2954 /* first, try to predict filesize */
2955 /* XXX: should this table be tunable? */
2957 if (size
<= 16 * 1024) {
2959 } else if (size
<= 32 * 1024) {
2961 } else if (size
<= 64 * 1024) {
2963 } else if (size
<= 128 * 1024) {
2965 } else if (size
<= 256 * 1024) {
2967 } else if (size
<= 512 * 1024) {
2969 } else if (size
<= 1024 * 1024) {
2971 } else if (NRL_CHECK_SIZE(size
, 4 * 1024 * 1024, max
, 2 * 1024)) {
2972 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
2973 (21 - bsbits
)) << 21;
2974 size
= 2 * 1024 * 1024;
2975 } else if (NRL_CHECK_SIZE(size
, 8 * 1024 * 1024, max
, 4 * 1024)) {
2976 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
2977 (22 - bsbits
)) << 22;
2978 size
= 4 * 1024 * 1024;
2979 } else if (NRL_CHECK_SIZE(ac
->ac_o_ex
.fe_len
,
2980 (8<<20)>>bsbits
, max
, 8 * 1024)) {
2981 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
2982 (23 - bsbits
)) << 23;
2983 size
= 8 * 1024 * 1024;
2985 start_off
= (loff_t
)ac
->ac_o_ex
.fe_logical
<< bsbits
;
2986 size
= ac
->ac_o_ex
.fe_len
<< bsbits
;
2988 size
= size
>> bsbits
;
2989 start
= start_off
>> bsbits
;
2991 /* don't cover already allocated blocks in selected range */
2992 if (ar
->pleft
&& start
<= ar
->lleft
) {
2993 size
-= ar
->lleft
+ 1 - start
;
2994 start
= ar
->lleft
+ 1;
2996 if (ar
->pright
&& start
+ size
- 1 >= ar
->lright
)
2997 size
-= start
+ size
- ar
->lright
;
3001 /* check we don't cross already preallocated blocks */
3003 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
3008 spin_lock(&pa
->pa_lock
);
3009 if (pa
->pa_deleted
) {
3010 spin_unlock(&pa
->pa_lock
);
3014 pa_end
= pa
->pa_lstart
+ EXT4_C2B(EXT4_SB(ac
->ac_sb
),
3017 /* PA must not overlap original request */
3018 BUG_ON(!(ac
->ac_o_ex
.fe_logical
>= pa_end
||
3019 ac
->ac_o_ex
.fe_logical
< pa
->pa_lstart
));
3021 /* skip PAs this normalized request doesn't overlap with */
3022 if (pa
->pa_lstart
>= end
|| pa_end
<= start
) {
3023 spin_unlock(&pa
->pa_lock
);
3026 BUG_ON(pa
->pa_lstart
<= start
&& pa_end
>= end
);
3028 /* adjust start or end to be adjacent to this pa */
3029 if (pa_end
<= ac
->ac_o_ex
.fe_logical
) {
3030 BUG_ON(pa_end
< start
);
3032 } else if (pa
->pa_lstart
> ac
->ac_o_ex
.fe_logical
) {
3033 BUG_ON(pa
->pa_lstart
> end
);
3034 end
= pa
->pa_lstart
;
3036 spin_unlock(&pa
->pa_lock
);
3041 /* XXX: extra loop to check we really don't overlap preallocations */
3043 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
3046 spin_lock(&pa
->pa_lock
);
3047 if (pa
->pa_deleted
== 0) {
3048 pa_end
= pa
->pa_lstart
+ EXT4_C2B(EXT4_SB(ac
->ac_sb
),
3050 BUG_ON(!(start
>= pa_end
|| end
<= pa
->pa_lstart
));
3052 spin_unlock(&pa
->pa_lock
);
3056 if (start
+ size
<= ac
->ac_o_ex
.fe_logical
&&
3057 start
> ac
->ac_o_ex
.fe_logical
) {
3058 ext4_msg(ac
->ac_sb
, KERN_ERR
,
3059 "start %lu, size %lu, fe_logical %lu",
3060 (unsigned long) start
, (unsigned long) size
,
3061 (unsigned long) ac
->ac_o_ex
.fe_logical
);
3063 BUG_ON(start
+ size
<= ac
->ac_o_ex
.fe_logical
&&
3064 start
> ac
->ac_o_ex
.fe_logical
);
3065 BUG_ON(size
<= 0 || size
> EXT4_CLUSTERS_PER_GROUP(ac
->ac_sb
));
3067 /* now prepare goal request */
3069 /* XXX: is it better to align blocks WRT to logical
3070 * placement or satisfy big request as is */
3071 ac
->ac_g_ex
.fe_logical
= start
;
3072 ac
->ac_g_ex
.fe_len
= EXT4_NUM_B2C(sbi
, size
);
3074 /* define goal start in order to merge */
3075 if (ar
->pright
&& (ar
->lright
== (start
+ size
))) {
3076 /* merge to the right */
3077 ext4_get_group_no_and_offset(ac
->ac_sb
, ar
->pright
- size
,
3078 &ac
->ac_f_ex
.fe_group
,
3079 &ac
->ac_f_ex
.fe_start
);
3080 ac
->ac_flags
|= EXT4_MB_HINT_TRY_GOAL
;
3082 if (ar
->pleft
&& (ar
->lleft
+ 1 == start
)) {
3083 /* merge to the left */
3084 ext4_get_group_no_and_offset(ac
->ac_sb
, ar
->pleft
+ 1,
3085 &ac
->ac_f_ex
.fe_group
,
3086 &ac
->ac_f_ex
.fe_start
);
3087 ac
->ac_flags
|= EXT4_MB_HINT_TRY_GOAL
;
3090 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size
,
3091 (unsigned) orig_size
, (unsigned) start
);
3094 static void ext4_mb_collect_stats(struct ext4_allocation_context
*ac
)
3096 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
3098 if (sbi
->s_mb_stats
&& ac
->ac_g_ex
.fe_len
> 1) {
3099 atomic_inc(&sbi
->s_bal_reqs
);
3100 atomic_add(ac
->ac_b_ex
.fe_len
, &sbi
->s_bal_allocated
);
3101 if (ac
->ac_b_ex
.fe_len
>= ac
->ac_o_ex
.fe_len
)
3102 atomic_inc(&sbi
->s_bal_success
);
3103 atomic_add(ac
->ac_found
, &sbi
->s_bal_ex_scanned
);
3104 if (ac
->ac_g_ex
.fe_start
== ac
->ac_b_ex
.fe_start
&&
3105 ac
->ac_g_ex
.fe_group
== ac
->ac_b_ex
.fe_group
)
3106 atomic_inc(&sbi
->s_bal_goals
);
3107 if (ac
->ac_found
> sbi
->s_mb_max_to_scan
)
3108 atomic_inc(&sbi
->s_bal_breaks
);
3111 if (ac
->ac_op
== EXT4_MB_HISTORY_ALLOC
)
3112 trace_ext4_mballoc_alloc(ac
);
3114 trace_ext4_mballoc_prealloc(ac
);
3118 * Called on failure; free up any blocks from the inode PA for this
3119 * context. We don't need this for MB_GROUP_PA because we only change
3120 * pa_free in ext4_mb_release_context(), but on failure, we've already
3121 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3123 static void ext4_discard_allocated_blocks(struct ext4_allocation_context
*ac
)
3125 struct ext4_prealloc_space
*pa
= ac
->ac_pa
;
3128 if (pa
&& pa
->pa_type
== MB_INODE_PA
) {
3129 len
= ac
->ac_b_ex
.fe_len
;
3136 * use blocks preallocated to inode
3138 static void ext4_mb_use_inode_pa(struct ext4_allocation_context
*ac
,
3139 struct ext4_prealloc_space
*pa
)
3141 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
3146 /* found preallocated blocks, use them */
3147 start
= pa
->pa_pstart
+ (ac
->ac_o_ex
.fe_logical
- pa
->pa_lstart
);
3148 end
= min(pa
->pa_pstart
+ EXT4_C2B(sbi
, pa
->pa_len
),
3149 start
+ EXT4_C2B(sbi
, ac
->ac_o_ex
.fe_len
));
3150 len
= EXT4_NUM_B2C(sbi
, end
- start
);
3151 ext4_get_group_no_and_offset(ac
->ac_sb
, start
, &ac
->ac_b_ex
.fe_group
,
3152 &ac
->ac_b_ex
.fe_start
);
3153 ac
->ac_b_ex
.fe_len
= len
;
3154 ac
->ac_status
= AC_STATUS_FOUND
;
3157 BUG_ON(start
< pa
->pa_pstart
);
3158 BUG_ON(end
> pa
->pa_pstart
+ EXT4_C2B(sbi
, pa
->pa_len
));
3159 BUG_ON(pa
->pa_free
< len
);
3162 mb_debug(1, "use %llu/%u from inode pa %p\n", start
, len
, pa
);
3166 * use blocks preallocated to locality group
3168 static void ext4_mb_use_group_pa(struct ext4_allocation_context
*ac
,
3169 struct ext4_prealloc_space
*pa
)
3171 unsigned int len
= ac
->ac_o_ex
.fe_len
;
3173 ext4_get_group_no_and_offset(ac
->ac_sb
, pa
->pa_pstart
,
3174 &ac
->ac_b_ex
.fe_group
,
3175 &ac
->ac_b_ex
.fe_start
);
3176 ac
->ac_b_ex
.fe_len
= len
;
3177 ac
->ac_status
= AC_STATUS_FOUND
;
3180 /* we don't correct pa_pstart or pa_plen here to avoid
3181 * possible race when the group is being loaded concurrently
3182 * instead we correct pa later, after blocks are marked
3183 * in on-disk bitmap -- see ext4_mb_release_context()
3184 * Other CPUs are prevented from allocating from this pa by lg_mutex
3186 mb_debug(1, "use %u/%u from group pa %p\n", pa
->pa_lstart
-len
, len
, pa
);
3190 * Return the prealloc space that have minimal distance
3191 * from the goal block. @cpa is the prealloc
3192 * space that is having currently known minimal distance
3193 * from the goal block.
3195 static struct ext4_prealloc_space
*
3196 ext4_mb_check_group_pa(ext4_fsblk_t goal_block
,
3197 struct ext4_prealloc_space
*pa
,
3198 struct ext4_prealloc_space
*cpa
)
3200 ext4_fsblk_t cur_distance
, new_distance
;
3203 atomic_inc(&pa
->pa_count
);
3206 cur_distance
= abs(goal_block
- cpa
->pa_pstart
);
3207 new_distance
= abs(goal_block
- pa
->pa_pstart
);
3209 if (cur_distance
<= new_distance
)
3212 /* drop the previous reference */
3213 atomic_dec(&cpa
->pa_count
);
3214 atomic_inc(&pa
->pa_count
);
3219 * search goal blocks in preallocated space
3221 static noinline_for_stack
int
3222 ext4_mb_use_preallocated(struct ext4_allocation_context
*ac
)
3224 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
3226 struct ext4_inode_info
*ei
= EXT4_I(ac
->ac_inode
);
3227 struct ext4_locality_group
*lg
;
3228 struct ext4_prealloc_space
*pa
, *cpa
= NULL
;
3229 ext4_fsblk_t goal_block
;
3231 /* only data can be preallocated */
3232 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
3235 /* first, try per-file preallocation */
3237 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
3239 /* all fields in this condition don't change,
3240 * so we can skip locking for them */
3241 if (ac
->ac_o_ex
.fe_logical
< pa
->pa_lstart
||
3242 ac
->ac_o_ex
.fe_logical
>= (pa
->pa_lstart
+
3243 EXT4_C2B(sbi
, pa
->pa_len
)))
3246 /* non-extent files can't have physical blocks past 2^32 */
3247 if (!(ext4_test_inode_flag(ac
->ac_inode
, EXT4_INODE_EXTENTS
)) &&
3248 (pa
->pa_pstart
+ EXT4_C2B(sbi
, pa
->pa_len
) >
3249 EXT4_MAX_BLOCK_FILE_PHYS
))
3252 /* found preallocated blocks, use them */
3253 spin_lock(&pa
->pa_lock
);
3254 if (pa
->pa_deleted
== 0 && pa
->pa_free
) {
3255 atomic_inc(&pa
->pa_count
);
3256 ext4_mb_use_inode_pa(ac
, pa
);
3257 spin_unlock(&pa
->pa_lock
);
3258 ac
->ac_criteria
= 10;
3262 spin_unlock(&pa
->pa_lock
);
3266 /* can we use group allocation? */
3267 if (!(ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
))
3270 /* inode may have no locality group for some reason */
3274 order
= fls(ac
->ac_o_ex
.fe_len
) - 1;
3275 if (order
> PREALLOC_TB_SIZE
- 1)
3276 /* The max size of hash table is PREALLOC_TB_SIZE */
3277 order
= PREALLOC_TB_SIZE
- 1;
3279 goal_block
= ext4_grp_offs_to_block(ac
->ac_sb
, &ac
->ac_g_ex
);
3281 * search for the prealloc space that is having
3282 * minimal distance from the goal block.
3284 for (i
= order
; i
< PREALLOC_TB_SIZE
; i
++) {
3286 list_for_each_entry_rcu(pa
, &lg
->lg_prealloc_list
[i
],
3288 spin_lock(&pa
->pa_lock
);
3289 if (pa
->pa_deleted
== 0 &&
3290 pa
->pa_free
>= ac
->ac_o_ex
.fe_len
) {
3292 cpa
= ext4_mb_check_group_pa(goal_block
,
3295 spin_unlock(&pa
->pa_lock
);
3300 ext4_mb_use_group_pa(ac
, cpa
);
3301 ac
->ac_criteria
= 20;
3308 * the function goes through all block freed in the group
3309 * but not yet committed and marks them used in in-core bitmap.
3310 * buddy must be generated from this bitmap
3311 * Need to be called with the ext4 group lock held
3313 static void ext4_mb_generate_from_freelist(struct super_block
*sb
, void *bitmap
,
3317 struct ext4_group_info
*grp
;
3318 struct ext4_free_data
*entry
;
3320 grp
= ext4_get_group_info(sb
, group
);
3321 n
= rb_first(&(grp
->bb_free_root
));
3324 entry
= rb_entry(n
, struct ext4_free_data
, node
);
3325 ext4_set_bits(bitmap
, entry
->start_cluster
, entry
->count
);
3332 * the function goes through all preallocation in this group and marks them
3333 * used in in-core bitmap. buddy must be generated from this bitmap
3334 * Need to be called with ext4 group lock held
3336 static noinline_for_stack
3337 void ext4_mb_generate_from_pa(struct super_block
*sb
, void *bitmap
,
3340 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
3341 struct ext4_prealloc_space
*pa
;
3342 struct list_head
*cur
;
3343 ext4_group_t groupnr
;
3344 ext4_grpblk_t start
;
3345 int preallocated
= 0;
3348 /* all form of preallocation discards first load group,
3349 * so the only competing code is preallocation use.
3350 * we don't need any locking here
3351 * notice we do NOT ignore preallocations with pa_deleted
3352 * otherwise we could leave used blocks available for
3353 * allocation in buddy when concurrent ext4_mb_put_pa()
3354 * is dropping preallocation
3356 list_for_each(cur
, &grp
->bb_prealloc_list
) {
3357 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
3358 spin_lock(&pa
->pa_lock
);
3359 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
,
3362 spin_unlock(&pa
->pa_lock
);
3363 if (unlikely(len
== 0))
3365 BUG_ON(groupnr
!= group
);
3366 ext4_set_bits(bitmap
, start
, len
);
3367 preallocated
+= len
;
3369 mb_debug(1, "prellocated %u for group %u\n", preallocated
, group
);
3372 static void ext4_mb_pa_callback(struct rcu_head
*head
)
3374 struct ext4_prealloc_space
*pa
;
3375 pa
= container_of(head
, struct ext4_prealloc_space
, u
.pa_rcu
);
3376 kmem_cache_free(ext4_pspace_cachep
, pa
);
3380 * drops a reference to preallocated space descriptor
3381 * if this was the last reference and the space is consumed
3383 static void ext4_mb_put_pa(struct ext4_allocation_context
*ac
,
3384 struct super_block
*sb
, struct ext4_prealloc_space
*pa
)
3387 ext4_fsblk_t grp_blk
;
3389 if (!atomic_dec_and_test(&pa
->pa_count
) || pa
->pa_free
!= 0)
3392 /* in this short window concurrent discard can set pa_deleted */
3393 spin_lock(&pa
->pa_lock
);
3394 if (pa
->pa_deleted
== 1) {
3395 spin_unlock(&pa
->pa_lock
);
3400 spin_unlock(&pa
->pa_lock
);
3402 grp_blk
= pa
->pa_pstart
;
3404 * If doing group-based preallocation, pa_pstart may be in the
3405 * next group when pa is used up
3407 if (pa
->pa_type
== MB_GROUP_PA
)
3410 ext4_get_group_no_and_offset(sb
, grp_blk
, &grp
, NULL
);
3415 * P1 (buddy init) P2 (regular allocation)
3416 * find block B in PA
3417 * copy on-disk bitmap to buddy
3418 * mark B in on-disk bitmap
3419 * drop PA from group
3420 * mark all PAs in buddy
3422 * thus, P1 initializes buddy with B available. to prevent this
3423 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3426 ext4_lock_group(sb
, grp
);
3427 list_del(&pa
->pa_group_list
);
3428 ext4_unlock_group(sb
, grp
);
3430 spin_lock(pa
->pa_obj_lock
);
3431 list_del_rcu(&pa
->pa_inode_list
);
3432 spin_unlock(pa
->pa_obj_lock
);
3434 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
3438 * creates new preallocated space for given inode
3440 static noinline_for_stack
int
3441 ext4_mb_new_inode_pa(struct ext4_allocation_context
*ac
)
3443 struct super_block
*sb
= ac
->ac_sb
;
3444 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3445 struct ext4_prealloc_space
*pa
;
3446 struct ext4_group_info
*grp
;
3447 struct ext4_inode_info
*ei
;
3449 /* preallocate only when found space is larger then requested */
3450 BUG_ON(ac
->ac_o_ex
.fe_len
>= ac
->ac_b_ex
.fe_len
);
3451 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
3452 BUG_ON(!S_ISREG(ac
->ac_inode
->i_mode
));
3454 pa
= kmem_cache_alloc(ext4_pspace_cachep
, GFP_NOFS
);
3458 if (ac
->ac_b_ex
.fe_len
< ac
->ac_g_ex
.fe_len
) {
3464 /* we can't allocate as much as normalizer wants.
3465 * so, found space must get proper lstart
3466 * to cover original request */
3467 BUG_ON(ac
->ac_g_ex
.fe_logical
> ac
->ac_o_ex
.fe_logical
);
3468 BUG_ON(ac
->ac_g_ex
.fe_len
< ac
->ac_o_ex
.fe_len
);
3470 /* we're limited by original request in that
3471 * logical block must be covered any way
3472 * winl is window we can move our chunk within */
3473 winl
= ac
->ac_o_ex
.fe_logical
- ac
->ac_g_ex
.fe_logical
;
3475 /* also, we should cover whole original request */
3476 wins
= EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
- ac
->ac_o_ex
.fe_len
);
3478 /* the smallest one defines real window */
3479 win
= min(winl
, wins
);
3481 offs
= ac
->ac_o_ex
.fe_logical
%
3482 EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
);
3483 if (offs
&& offs
< win
)
3486 ac
->ac_b_ex
.fe_logical
= ac
->ac_o_ex
.fe_logical
-
3488 BUG_ON(ac
->ac_o_ex
.fe_logical
< ac
->ac_b_ex
.fe_logical
);
3489 BUG_ON(ac
->ac_o_ex
.fe_len
> ac
->ac_b_ex
.fe_len
);
3492 /* preallocation can change ac_b_ex, thus we store actually
3493 * allocated blocks for history */
3494 ac
->ac_f_ex
= ac
->ac_b_ex
;
3496 pa
->pa_lstart
= ac
->ac_b_ex
.fe_logical
;
3497 pa
->pa_pstart
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
3498 pa
->pa_len
= ac
->ac_b_ex
.fe_len
;
3499 pa
->pa_free
= pa
->pa_len
;
3500 atomic_set(&pa
->pa_count
, 1);
3501 spin_lock_init(&pa
->pa_lock
);
3502 INIT_LIST_HEAD(&pa
->pa_inode_list
);
3503 INIT_LIST_HEAD(&pa
->pa_group_list
);
3505 pa
->pa_type
= MB_INODE_PA
;
3507 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa
,
3508 pa
->pa_pstart
, pa
->pa_len
, pa
->pa_lstart
);
3509 trace_ext4_mb_new_inode_pa(ac
, pa
);
3511 ext4_mb_use_inode_pa(ac
, pa
);
3512 atomic_add(pa
->pa_free
, &sbi
->s_mb_preallocated
);
3514 ei
= EXT4_I(ac
->ac_inode
);
3515 grp
= ext4_get_group_info(sb
, ac
->ac_b_ex
.fe_group
);
3517 pa
->pa_obj_lock
= &ei
->i_prealloc_lock
;
3518 pa
->pa_inode
= ac
->ac_inode
;
3520 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
3521 list_add(&pa
->pa_group_list
, &grp
->bb_prealloc_list
);
3522 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
3524 spin_lock(pa
->pa_obj_lock
);
3525 list_add_rcu(&pa
->pa_inode_list
, &ei
->i_prealloc_list
);
3526 spin_unlock(pa
->pa_obj_lock
);
3532 * creates new preallocated space for locality group inodes belongs to
3534 static noinline_for_stack
int
3535 ext4_mb_new_group_pa(struct ext4_allocation_context
*ac
)
3537 struct super_block
*sb
= ac
->ac_sb
;
3538 struct ext4_locality_group
*lg
;
3539 struct ext4_prealloc_space
*pa
;
3540 struct ext4_group_info
*grp
;
3542 /* preallocate only when found space is larger then requested */
3543 BUG_ON(ac
->ac_o_ex
.fe_len
>= ac
->ac_b_ex
.fe_len
);
3544 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
3545 BUG_ON(!S_ISREG(ac
->ac_inode
->i_mode
));
3547 BUG_ON(ext4_pspace_cachep
== NULL
);
3548 pa
= kmem_cache_alloc(ext4_pspace_cachep
, GFP_NOFS
);
3552 /* preallocation can change ac_b_ex, thus we store actually
3553 * allocated blocks for history */
3554 ac
->ac_f_ex
= ac
->ac_b_ex
;
3556 pa
->pa_pstart
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
3557 pa
->pa_lstart
= pa
->pa_pstart
;
3558 pa
->pa_len
= ac
->ac_b_ex
.fe_len
;
3559 pa
->pa_free
= pa
->pa_len
;
3560 atomic_set(&pa
->pa_count
, 1);
3561 spin_lock_init(&pa
->pa_lock
);
3562 INIT_LIST_HEAD(&pa
->pa_inode_list
);
3563 INIT_LIST_HEAD(&pa
->pa_group_list
);
3565 pa
->pa_type
= MB_GROUP_PA
;
3567 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa
,
3568 pa
->pa_pstart
, pa
->pa_len
, pa
->pa_lstart
);
3569 trace_ext4_mb_new_group_pa(ac
, pa
);
3571 ext4_mb_use_group_pa(ac
, pa
);
3572 atomic_add(pa
->pa_free
, &EXT4_SB(sb
)->s_mb_preallocated
);
3574 grp
= ext4_get_group_info(sb
, ac
->ac_b_ex
.fe_group
);
3578 pa
->pa_obj_lock
= &lg
->lg_prealloc_lock
;
3579 pa
->pa_inode
= NULL
;
3581 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
3582 list_add(&pa
->pa_group_list
, &grp
->bb_prealloc_list
);
3583 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
3586 * We will later add the new pa to the right bucket
3587 * after updating the pa_free in ext4_mb_release_context
3592 static int ext4_mb_new_preallocation(struct ext4_allocation_context
*ac
)
3596 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
)
3597 err
= ext4_mb_new_group_pa(ac
);
3599 err
= ext4_mb_new_inode_pa(ac
);
3604 * finds all unused blocks in on-disk bitmap, frees them in
3605 * in-core bitmap and buddy.
3606 * @pa must be unlinked from inode and group lists, so that
3607 * nobody else can find/use it.
3608 * the caller MUST hold group/inode locks.
3609 * TODO: optimize the case when there are no in-core structures yet
3611 static noinline_for_stack
int
3612 ext4_mb_release_inode_pa(struct ext4_buddy
*e4b
, struct buffer_head
*bitmap_bh
,
3613 struct ext4_prealloc_space
*pa
)
3615 struct super_block
*sb
= e4b
->bd_sb
;
3616 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3621 unsigned long long grp_blk_start
;
3625 BUG_ON(pa
->pa_deleted
== 0);
3626 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, &bit
);
3627 grp_blk_start
= pa
->pa_pstart
- EXT4_C2B(sbi
, bit
);
3628 BUG_ON(group
!= e4b
->bd_group
&& pa
->pa_len
!= 0);
3629 end
= bit
+ pa
->pa_len
;
3632 bit
= mb_find_next_zero_bit(bitmap_bh
->b_data
, end
, bit
);
3635 next
= mb_find_next_bit(bitmap_bh
->b_data
, end
, bit
);
3636 mb_debug(1, " free preallocated %u/%u in group %u\n",
3637 (unsigned) ext4_group_first_block_no(sb
, group
) + bit
,
3638 (unsigned) next
- bit
, (unsigned) group
);
3641 trace_ext4_mballoc_discard(sb
, NULL
, group
, bit
, next
- bit
);
3642 trace_ext4_mb_release_inode_pa(pa
, (grp_blk_start
+
3643 EXT4_C2B(sbi
, bit
)),
3645 mb_free_blocks(pa
->pa_inode
, e4b
, bit
, next
- bit
);
3648 if (free
!= pa
->pa_free
) {
3649 ext4_msg(e4b
->bd_sb
, KERN_CRIT
,
3650 "pa %p: logic %lu, phys. %lu, len %lu",
3651 pa
, (unsigned long) pa
->pa_lstart
,
3652 (unsigned long) pa
->pa_pstart
,
3653 (unsigned long) pa
->pa_len
);
3654 ext4_grp_locked_error(sb
, group
, 0, 0, "free %u, pa_free %u",
3657 * pa is already deleted so we use the value obtained
3658 * from the bitmap and continue.
3661 atomic_add(free
, &sbi
->s_mb_discarded
);
3666 static noinline_for_stack
int
3667 ext4_mb_release_group_pa(struct ext4_buddy
*e4b
,
3668 struct ext4_prealloc_space
*pa
)
3670 struct super_block
*sb
= e4b
->bd_sb
;
3674 trace_ext4_mb_release_group_pa(pa
);
3675 BUG_ON(pa
->pa_deleted
== 0);
3676 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, &bit
);
3677 BUG_ON(group
!= e4b
->bd_group
&& pa
->pa_len
!= 0);
3678 mb_free_blocks(pa
->pa_inode
, e4b
, bit
, pa
->pa_len
);
3679 atomic_add(pa
->pa_len
, &EXT4_SB(sb
)->s_mb_discarded
);
3680 trace_ext4_mballoc_discard(sb
, NULL
, group
, bit
, pa
->pa_len
);
3686 * releases all preallocations in given group
3688 * first, we need to decide discard policy:
3689 * - when do we discard
3691 * - how many do we discard
3692 * 1) how many requested
3694 static noinline_for_stack
int
3695 ext4_mb_discard_group_preallocations(struct super_block
*sb
,
3696 ext4_group_t group
, int needed
)
3698 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
3699 struct buffer_head
*bitmap_bh
= NULL
;
3700 struct ext4_prealloc_space
*pa
, *tmp
;
3701 struct list_head list
;
3702 struct ext4_buddy e4b
;
3707 mb_debug(1, "discard preallocation for group %u\n", group
);
3709 if (list_empty(&grp
->bb_prealloc_list
))
3712 bitmap_bh
= ext4_read_block_bitmap(sb
, group
);
3713 if (bitmap_bh
== NULL
) {
3714 ext4_error(sb
, "Error reading block bitmap for %u", group
);
3718 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
3720 ext4_error(sb
, "Error loading buddy information for %u", group
);
3726 needed
= EXT4_CLUSTERS_PER_GROUP(sb
) + 1;
3728 INIT_LIST_HEAD(&list
);
3730 ext4_lock_group(sb
, group
);
3731 list_for_each_entry_safe(pa
, tmp
,
3732 &grp
->bb_prealloc_list
, pa_group_list
) {
3733 spin_lock(&pa
->pa_lock
);
3734 if (atomic_read(&pa
->pa_count
)) {
3735 spin_unlock(&pa
->pa_lock
);
3739 if (pa
->pa_deleted
) {
3740 spin_unlock(&pa
->pa_lock
);
3744 /* seems this one can be freed ... */
3747 /* we can trust pa_free ... */
3748 free
+= pa
->pa_free
;
3750 spin_unlock(&pa
->pa_lock
);
3752 list_del(&pa
->pa_group_list
);
3753 list_add(&pa
->u
.pa_tmp_list
, &list
);
3756 /* if we still need more blocks and some PAs were used, try again */
3757 if (free
< needed
&& busy
) {
3759 ext4_unlock_group(sb
, group
);
3761 * Yield the CPU here so that we don't get soft lockup
3762 * in non preempt case.
3768 /* found anything to free? */
3769 if (list_empty(&list
)) {
3774 /* now free all selected PAs */
3775 list_for_each_entry_safe(pa
, tmp
, &list
, u
.pa_tmp_list
) {
3777 /* remove from object (inode or locality group) */
3778 spin_lock(pa
->pa_obj_lock
);
3779 list_del_rcu(&pa
->pa_inode_list
);
3780 spin_unlock(pa
->pa_obj_lock
);
3782 if (pa
->pa_type
== MB_GROUP_PA
)
3783 ext4_mb_release_group_pa(&e4b
, pa
);
3785 ext4_mb_release_inode_pa(&e4b
, bitmap_bh
, pa
);
3787 list_del(&pa
->u
.pa_tmp_list
);
3788 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
3792 ext4_unlock_group(sb
, group
);
3793 ext4_mb_unload_buddy(&e4b
);
3799 * releases all non-used preallocated blocks for given inode
3801 * It's important to discard preallocations under i_data_sem
3802 * We don't want another block to be served from the prealloc
3803 * space when we are discarding the inode prealloc space.
3805 * FIXME!! Make sure it is valid at all the call sites
3807 void ext4_discard_preallocations(struct inode
*inode
)
3809 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3810 struct super_block
*sb
= inode
->i_sb
;
3811 struct buffer_head
*bitmap_bh
= NULL
;
3812 struct ext4_prealloc_space
*pa
, *tmp
;
3813 ext4_group_t group
= 0;
3814 struct list_head list
;
3815 struct ext4_buddy e4b
;
3818 if (!S_ISREG(inode
->i_mode
)) {
3819 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3823 mb_debug(1, "discard preallocation for inode %lu\n", inode
->i_ino
);
3824 trace_ext4_discard_preallocations(inode
);
3826 INIT_LIST_HEAD(&list
);
3829 /* first, collect all pa's in the inode */
3830 spin_lock(&ei
->i_prealloc_lock
);
3831 while (!list_empty(&ei
->i_prealloc_list
)) {
3832 pa
= list_entry(ei
->i_prealloc_list
.next
,
3833 struct ext4_prealloc_space
, pa_inode_list
);
3834 BUG_ON(pa
->pa_obj_lock
!= &ei
->i_prealloc_lock
);
3835 spin_lock(&pa
->pa_lock
);
3836 if (atomic_read(&pa
->pa_count
)) {
3837 /* this shouldn't happen often - nobody should
3838 * use preallocation while we're discarding it */
3839 spin_unlock(&pa
->pa_lock
);
3840 spin_unlock(&ei
->i_prealloc_lock
);
3841 ext4_msg(sb
, KERN_ERR
,
3842 "uh-oh! used pa while discarding");
3844 schedule_timeout_uninterruptible(HZ
);
3848 if (pa
->pa_deleted
== 0) {
3850 spin_unlock(&pa
->pa_lock
);
3851 list_del_rcu(&pa
->pa_inode_list
);
3852 list_add(&pa
->u
.pa_tmp_list
, &list
);
3856 /* someone is deleting pa right now */
3857 spin_unlock(&pa
->pa_lock
);
3858 spin_unlock(&ei
->i_prealloc_lock
);
3860 /* we have to wait here because pa_deleted
3861 * doesn't mean pa is already unlinked from
3862 * the list. as we might be called from
3863 * ->clear_inode() the inode will get freed
3864 * and concurrent thread which is unlinking
3865 * pa from inode's list may access already
3866 * freed memory, bad-bad-bad */
3868 /* XXX: if this happens too often, we can
3869 * add a flag to force wait only in case
3870 * of ->clear_inode(), but not in case of
3871 * regular truncate */
3872 schedule_timeout_uninterruptible(HZ
);
3875 spin_unlock(&ei
->i_prealloc_lock
);
3877 list_for_each_entry_safe(pa
, tmp
, &list
, u
.pa_tmp_list
) {
3878 BUG_ON(pa
->pa_type
!= MB_INODE_PA
);
3879 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, NULL
);
3881 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
3883 ext4_error(sb
, "Error loading buddy information for %u",
3888 bitmap_bh
= ext4_read_block_bitmap(sb
, group
);
3889 if (bitmap_bh
== NULL
) {
3890 ext4_error(sb
, "Error reading block bitmap for %u",
3892 ext4_mb_unload_buddy(&e4b
);
3896 ext4_lock_group(sb
, group
);
3897 list_del(&pa
->pa_group_list
);
3898 ext4_mb_release_inode_pa(&e4b
, bitmap_bh
, pa
);
3899 ext4_unlock_group(sb
, group
);
3901 ext4_mb_unload_buddy(&e4b
);
3904 list_del(&pa
->u
.pa_tmp_list
);
3905 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
3909 #ifdef CONFIG_EXT4_DEBUG
3910 static void ext4_mb_show_ac(struct ext4_allocation_context
*ac
)
3912 struct super_block
*sb
= ac
->ac_sb
;
3913 ext4_group_t ngroups
, i
;
3915 if (!mb_enable_debug
||
3916 (EXT4_SB(sb
)->s_mount_flags
& EXT4_MF_FS_ABORTED
))
3919 ext4_msg(ac
->ac_sb
, KERN_ERR
, "EXT4-fs: Can't allocate:"
3920 " Allocation context details:");
3921 ext4_msg(ac
->ac_sb
, KERN_ERR
, "EXT4-fs: status %d flags %d",
3922 ac
->ac_status
, ac
->ac_flags
);
3923 ext4_msg(ac
->ac_sb
, KERN_ERR
, "EXT4-fs: orig %lu/%lu/%lu@%lu, "
3924 "goal %lu/%lu/%lu@%lu, "
3925 "best %lu/%lu/%lu@%lu cr %d",
3926 (unsigned long)ac
->ac_o_ex
.fe_group
,
3927 (unsigned long)ac
->ac_o_ex
.fe_start
,
3928 (unsigned long)ac
->ac_o_ex
.fe_len
,
3929 (unsigned long)ac
->ac_o_ex
.fe_logical
,
3930 (unsigned long)ac
->ac_g_ex
.fe_group
,
3931 (unsigned long)ac
->ac_g_ex
.fe_start
,
3932 (unsigned long)ac
->ac_g_ex
.fe_len
,
3933 (unsigned long)ac
->ac_g_ex
.fe_logical
,
3934 (unsigned long)ac
->ac_b_ex
.fe_group
,
3935 (unsigned long)ac
->ac_b_ex
.fe_start
,
3936 (unsigned long)ac
->ac_b_ex
.fe_len
,
3937 (unsigned long)ac
->ac_b_ex
.fe_logical
,
3938 (int)ac
->ac_criteria
);
3939 ext4_msg(ac
->ac_sb
, KERN_ERR
, "EXT4-fs: %lu scanned, %d found",
3940 ac
->ac_ex_scanned
, ac
->ac_found
);
3941 ext4_msg(ac
->ac_sb
, KERN_ERR
, "EXT4-fs: groups: ");
3942 ngroups
= ext4_get_groups_count(sb
);
3943 for (i
= 0; i
< ngroups
; i
++) {
3944 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, i
);
3945 struct ext4_prealloc_space
*pa
;
3946 ext4_grpblk_t start
;
3947 struct list_head
*cur
;
3948 ext4_lock_group(sb
, i
);
3949 list_for_each(cur
, &grp
->bb_prealloc_list
) {
3950 pa
= list_entry(cur
, struct ext4_prealloc_space
,
3952 spin_lock(&pa
->pa_lock
);
3953 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
,
3955 spin_unlock(&pa
->pa_lock
);
3956 printk(KERN_ERR
"PA:%u:%d:%u \n", i
,
3959 ext4_unlock_group(sb
, i
);
3961 if (grp
->bb_free
== 0)
3963 printk(KERN_ERR
"%u: %d/%d \n",
3964 i
, grp
->bb_free
, grp
->bb_fragments
);
3966 printk(KERN_ERR
"\n");
3969 static inline void ext4_mb_show_ac(struct ext4_allocation_context
*ac
)
3976 * We use locality group preallocation for small size file. The size of the
3977 * file is determined by the current size or the resulting size after
3978 * allocation which ever is larger
3980 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
3982 static void ext4_mb_group_or_file(struct ext4_allocation_context
*ac
)
3984 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
3985 int bsbits
= ac
->ac_sb
->s_blocksize_bits
;
3988 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
3991 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
3994 size
= ac
->ac_o_ex
.fe_logical
+ EXT4_C2B(sbi
, ac
->ac_o_ex
.fe_len
);
3995 isize
= (i_size_read(ac
->ac_inode
) + ac
->ac_sb
->s_blocksize
- 1)
3998 if ((size
== isize
) &&
3999 !ext4_fs_is_busy(sbi
) &&
4000 (atomic_read(&ac
->ac_inode
->i_writecount
) == 0)) {
4001 ac
->ac_flags
|= EXT4_MB_HINT_NOPREALLOC
;
4005 if (sbi
->s_mb_group_prealloc
<= 0) {
4006 ac
->ac_flags
|= EXT4_MB_STREAM_ALLOC
;
4010 /* don't use group allocation for large files */
4011 size
= max(size
, isize
);
4012 if (size
> sbi
->s_mb_stream_request
) {
4013 ac
->ac_flags
|= EXT4_MB_STREAM_ALLOC
;
4017 BUG_ON(ac
->ac_lg
!= NULL
);
4019 * locality group prealloc space are per cpu. The reason for having
4020 * per cpu locality group is to reduce the contention between block
4021 * request from multiple CPUs.
4023 ac
->ac_lg
= __this_cpu_ptr(sbi
->s_locality_groups
);
4025 /* we're going to use group allocation */
4026 ac
->ac_flags
|= EXT4_MB_HINT_GROUP_ALLOC
;
4028 /* serialize all allocations in the group */
4029 mutex_lock(&ac
->ac_lg
->lg_mutex
);
4032 static noinline_for_stack
int
4033 ext4_mb_initialize_context(struct ext4_allocation_context
*ac
,
4034 struct ext4_allocation_request
*ar
)
4036 struct super_block
*sb
= ar
->inode
->i_sb
;
4037 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
4038 struct ext4_super_block
*es
= sbi
->s_es
;
4042 ext4_grpblk_t block
;
4044 /* we can't allocate > group size */
4047 /* just a dirty hack to filter too big requests */
4048 if (len
>= EXT4_CLUSTERS_PER_GROUP(sb
) - 10)
4049 len
= EXT4_CLUSTERS_PER_GROUP(sb
) - 10;
4051 /* start searching from the goal */
4053 if (goal
< le32_to_cpu(es
->s_first_data_block
) ||
4054 goal
>= ext4_blocks_count(es
))
4055 goal
= le32_to_cpu(es
->s_first_data_block
);
4056 ext4_get_group_no_and_offset(sb
, goal
, &group
, &block
);
4058 /* set up allocation goals */
4059 memset(ac
, 0, sizeof(struct ext4_allocation_context
));
4060 ac
->ac_b_ex
.fe_logical
= ar
->logical
& ~(sbi
->s_cluster_ratio
- 1);
4061 ac
->ac_status
= AC_STATUS_CONTINUE
;
4063 ac
->ac_inode
= ar
->inode
;
4064 ac
->ac_o_ex
.fe_logical
= ac
->ac_b_ex
.fe_logical
;
4065 ac
->ac_o_ex
.fe_group
= group
;
4066 ac
->ac_o_ex
.fe_start
= block
;
4067 ac
->ac_o_ex
.fe_len
= len
;
4068 ac
->ac_g_ex
= ac
->ac_o_ex
;
4069 ac
->ac_flags
= ar
->flags
;
4071 /* we have to define context: we'll we work with a file or
4072 * locality group. this is a policy, actually */
4073 ext4_mb_group_or_file(ac
);
4075 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4076 "left: %u/%u, right %u/%u to %swritable\n",
4077 (unsigned) ar
->len
, (unsigned) ar
->logical
,
4078 (unsigned) ar
->goal
, ac
->ac_flags
, ac
->ac_2order
,
4079 (unsigned) ar
->lleft
, (unsigned) ar
->pleft
,
4080 (unsigned) ar
->lright
, (unsigned) ar
->pright
,
4081 atomic_read(&ar
->inode
->i_writecount
) ? "" : "non-");
4086 static noinline_for_stack
void
4087 ext4_mb_discard_lg_preallocations(struct super_block
*sb
,
4088 struct ext4_locality_group
*lg
,
4089 int order
, int total_entries
)
4091 ext4_group_t group
= 0;
4092 struct ext4_buddy e4b
;
4093 struct list_head discard_list
;
4094 struct ext4_prealloc_space
*pa
, *tmp
;
4096 mb_debug(1, "discard locality group preallocation\n");
4098 INIT_LIST_HEAD(&discard_list
);
4100 spin_lock(&lg
->lg_prealloc_lock
);
4101 list_for_each_entry_rcu(pa
, &lg
->lg_prealloc_list
[order
],
4103 spin_lock(&pa
->pa_lock
);
4104 if (atomic_read(&pa
->pa_count
)) {
4106 * This is the pa that we just used
4107 * for block allocation. So don't
4110 spin_unlock(&pa
->pa_lock
);
4113 if (pa
->pa_deleted
) {
4114 spin_unlock(&pa
->pa_lock
);
4117 /* only lg prealloc space */
4118 BUG_ON(pa
->pa_type
!= MB_GROUP_PA
);
4120 /* seems this one can be freed ... */
4122 spin_unlock(&pa
->pa_lock
);
4124 list_del_rcu(&pa
->pa_inode_list
);
4125 list_add(&pa
->u
.pa_tmp_list
, &discard_list
);
4128 if (total_entries
<= 5) {
4130 * we want to keep only 5 entries
4131 * allowing it to grow to 8. This
4132 * mak sure we don't call discard
4133 * soon for this list.
4138 spin_unlock(&lg
->lg_prealloc_lock
);
4140 list_for_each_entry_safe(pa
, tmp
, &discard_list
, u
.pa_tmp_list
) {
4142 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, NULL
);
4143 if (ext4_mb_load_buddy(sb
, group
, &e4b
)) {
4144 ext4_error(sb
, "Error loading buddy information for %u",
4148 ext4_lock_group(sb
, group
);
4149 list_del(&pa
->pa_group_list
);
4150 ext4_mb_release_group_pa(&e4b
, pa
);
4151 ext4_unlock_group(sb
, group
);
4153 ext4_mb_unload_buddy(&e4b
);
4154 list_del(&pa
->u
.pa_tmp_list
);
4155 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
4160 * We have incremented pa_count. So it cannot be freed at this
4161 * point. Also we hold lg_mutex. So no parallel allocation is
4162 * possible from this lg. That means pa_free cannot be updated.
4164 * A parallel ext4_mb_discard_group_preallocations is possible.
4165 * which can cause the lg_prealloc_list to be updated.
4168 static void ext4_mb_add_n_trim(struct ext4_allocation_context
*ac
)
4170 int order
, added
= 0, lg_prealloc_count
= 1;
4171 struct super_block
*sb
= ac
->ac_sb
;
4172 struct ext4_locality_group
*lg
= ac
->ac_lg
;
4173 struct ext4_prealloc_space
*tmp_pa
, *pa
= ac
->ac_pa
;
4175 order
= fls(pa
->pa_free
) - 1;
4176 if (order
> PREALLOC_TB_SIZE
- 1)
4177 /* The max size of hash table is PREALLOC_TB_SIZE */
4178 order
= PREALLOC_TB_SIZE
- 1;
4179 /* Add the prealloc space to lg */
4181 list_for_each_entry_rcu(tmp_pa
, &lg
->lg_prealloc_list
[order
],
4183 spin_lock(&tmp_pa
->pa_lock
);
4184 if (tmp_pa
->pa_deleted
) {
4185 spin_unlock(&tmp_pa
->pa_lock
);
4188 if (!added
&& pa
->pa_free
< tmp_pa
->pa_free
) {
4189 /* Add to the tail of the previous entry */
4190 list_add_tail_rcu(&pa
->pa_inode_list
,
4191 &tmp_pa
->pa_inode_list
);
4194 * we want to count the total
4195 * number of entries in the list
4198 spin_unlock(&tmp_pa
->pa_lock
);
4199 lg_prealloc_count
++;
4202 list_add_tail_rcu(&pa
->pa_inode_list
,
4203 &lg
->lg_prealloc_list
[order
]);
4206 /* Now trim the list to be not more than 8 elements */
4207 if (lg_prealloc_count
> 8) {
4208 ext4_mb_discard_lg_preallocations(sb
, lg
,
4209 order
, lg_prealloc_count
);
4216 * release all resource we used in allocation
4218 static int ext4_mb_release_context(struct ext4_allocation_context
*ac
)
4220 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
4221 struct ext4_prealloc_space
*pa
= ac
->ac_pa
;
4223 if (pa
->pa_type
== MB_GROUP_PA
) {
4224 /* see comment in ext4_mb_use_group_pa() */
4225 spin_lock(&pa
->pa_lock
);
4226 pa
->pa_pstart
+= EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
);
4227 pa
->pa_lstart
+= EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
);
4228 pa
->pa_free
-= ac
->ac_b_ex
.fe_len
;
4229 pa
->pa_len
-= ac
->ac_b_ex
.fe_len
;
4230 spin_unlock(&pa
->pa_lock
);
4235 * We want to add the pa to the right bucket.
4236 * Remove it from the list and while adding
4237 * make sure the list to which we are adding
4240 if ((pa
->pa_type
== MB_GROUP_PA
) && likely(pa
->pa_free
)) {
4241 spin_lock(pa
->pa_obj_lock
);
4242 list_del_rcu(&pa
->pa_inode_list
);
4243 spin_unlock(pa
->pa_obj_lock
);
4244 ext4_mb_add_n_trim(ac
);
4246 ext4_mb_put_pa(ac
, ac
->ac_sb
, pa
);
4248 if (ac
->ac_bitmap_page
)
4249 page_cache_release(ac
->ac_bitmap_page
);
4250 if (ac
->ac_buddy_page
)
4251 page_cache_release(ac
->ac_buddy_page
);
4252 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
)
4253 mutex_unlock(&ac
->ac_lg
->lg_mutex
);
4254 ext4_mb_collect_stats(ac
);
4258 static int ext4_mb_discard_preallocations(struct super_block
*sb
, int needed
)
4260 ext4_group_t i
, ngroups
= ext4_get_groups_count(sb
);
4264 trace_ext4_mb_discard_preallocations(sb
, needed
);
4265 for (i
= 0; i
< ngroups
&& needed
> 0; i
++) {
4266 ret
= ext4_mb_discard_group_preallocations(sb
, i
, needed
);
4275 * Main entry point into mballoc to allocate blocks
4276 * it tries to use preallocation first, then falls back
4277 * to usual allocation
4279 ext4_fsblk_t
ext4_mb_new_blocks(handle_t
*handle
,
4280 struct ext4_allocation_request
*ar
, int *errp
)
4283 struct ext4_allocation_context
*ac
= NULL
;
4284 struct ext4_sb_info
*sbi
;
4285 struct super_block
*sb
;
4286 ext4_fsblk_t block
= 0;
4287 unsigned int inquota
= 0;
4288 unsigned int reserv_clstrs
= 0;
4290 sb
= ar
->inode
->i_sb
;
4293 trace_ext4_request_blocks(ar
);
4295 /* Allow to use superuser reservation for quota file */
4296 if (IS_NOQUOTA(ar
->inode
))
4297 ar
->flags
|= EXT4_MB_USE_ROOT_BLOCKS
;
4300 * For delayed allocation, we could skip the ENOSPC and
4301 * EDQUOT check, as blocks and quotas have been already
4302 * reserved when data being copied into pagecache.
4304 if (ext4_test_inode_state(ar
->inode
, EXT4_STATE_DELALLOC_RESERVED
))
4305 ar
->flags
|= EXT4_MB_DELALLOC_RESERVED
;
4307 /* Without delayed allocation we need to verify
4308 * there is enough free blocks to do block allocation
4309 * and verify allocation doesn't exceed the quota limits.
4312 ext4_claim_free_clusters(sbi
, ar
->len
, ar
->flags
)) {
4314 /* let others to free the space */
4316 ar
->len
= ar
->len
>> 1;
4322 reserv_clstrs
= ar
->len
;
4323 if (ar
->flags
& EXT4_MB_USE_ROOT_BLOCKS
) {
4324 dquot_alloc_block_nofail(ar
->inode
,
4325 EXT4_C2B(sbi
, ar
->len
));
4328 dquot_alloc_block(ar
->inode
,
4329 EXT4_C2B(sbi
, ar
->len
))) {
4331 ar
->flags
|= EXT4_MB_HINT_NOPREALLOC
;
4342 ac
= kmem_cache_alloc(ext4_ac_cachep
, GFP_NOFS
);
4349 *errp
= ext4_mb_initialize_context(ac
, ar
);
4355 ac
->ac_op
= EXT4_MB_HISTORY_PREALLOC
;
4356 if (!ext4_mb_use_preallocated(ac
)) {
4357 ac
->ac_op
= EXT4_MB_HISTORY_ALLOC
;
4358 ext4_mb_normalize_request(ac
, ar
);
4360 /* allocate space in core */
4361 *errp
= ext4_mb_regular_allocator(ac
);
4365 /* as we've just preallocated more space than
4366 * user requested orinally, we store allocated
4367 * space in a special descriptor */
4368 if (ac
->ac_status
== AC_STATUS_FOUND
&&
4369 ac
->ac_o_ex
.fe_len
< ac
->ac_b_ex
.fe_len
)
4370 ext4_mb_new_preallocation(ac
);
4372 if (likely(ac
->ac_status
== AC_STATUS_FOUND
)) {
4373 *errp
= ext4_mb_mark_diskspace_used(ac
, handle
, reserv_clstrs
);
4374 if (*errp
== -EAGAIN
) {
4376 * drop the reference that we took
4377 * in ext4_mb_use_best_found
4379 ext4_mb_release_context(ac
);
4380 ac
->ac_b_ex
.fe_group
= 0;
4381 ac
->ac_b_ex
.fe_start
= 0;
4382 ac
->ac_b_ex
.fe_len
= 0;
4383 ac
->ac_status
= AC_STATUS_CONTINUE
;
4387 ext4_discard_allocated_blocks(ac
);
4389 block
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
4390 ar
->len
= ac
->ac_b_ex
.fe_len
;
4393 freed
= ext4_mb_discard_preallocations(sb
, ac
->ac_o_ex
.fe_len
);
4400 ac
->ac_b_ex
.fe_len
= 0;
4402 ext4_mb_show_ac(ac
);
4404 ext4_mb_release_context(ac
);
4407 kmem_cache_free(ext4_ac_cachep
, ac
);
4408 if (inquota
&& ar
->len
< inquota
)
4409 dquot_free_block(ar
->inode
, EXT4_C2B(sbi
, inquota
- ar
->len
));
4411 if (!ext4_test_inode_state(ar
->inode
,
4412 EXT4_STATE_DELALLOC_RESERVED
))
4413 /* release all the reserved blocks if non delalloc */
4414 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
4418 trace_ext4_allocate_blocks(ar
, (unsigned long long)block
);
4424 * We can merge two free data extents only if the physical blocks
4425 * are contiguous, AND the extents were freed by the same transaction,
4426 * AND the blocks are associated with the same group.
4428 static int can_merge(struct ext4_free_data
*entry1
,
4429 struct ext4_free_data
*entry2
)
4431 if ((entry1
->t_tid
== entry2
->t_tid
) &&
4432 (entry1
->group
== entry2
->group
) &&
4433 ((entry1
->start_cluster
+ entry1
->count
) == entry2
->start_cluster
))
4438 static noinline_for_stack
int
4439 ext4_mb_free_metadata(handle_t
*handle
, struct ext4_buddy
*e4b
,
4440 struct ext4_free_data
*new_entry
)
4442 ext4_group_t group
= e4b
->bd_group
;
4443 ext4_grpblk_t cluster
;
4444 struct ext4_free_data
*entry
;
4445 struct ext4_group_info
*db
= e4b
->bd_info
;
4446 struct super_block
*sb
= e4b
->bd_sb
;
4447 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
4448 struct rb_node
**n
= &db
->bb_free_root
.rb_node
, *node
;
4449 struct rb_node
*parent
= NULL
, *new_node
;
4451 BUG_ON(!ext4_handle_valid(handle
));
4452 BUG_ON(e4b
->bd_bitmap_page
== NULL
);
4453 BUG_ON(e4b
->bd_buddy_page
== NULL
);
4455 new_node
= &new_entry
->node
;
4456 cluster
= new_entry
->start_cluster
;
4459 /* first free block exent. We need to
4460 protect buddy cache from being freed,
4461 * otherwise we'll refresh it from
4462 * on-disk bitmap and lose not-yet-available
4464 page_cache_get(e4b
->bd_buddy_page
);
4465 page_cache_get(e4b
->bd_bitmap_page
);
4469 entry
= rb_entry(parent
, struct ext4_free_data
, node
);
4470 if (cluster
< entry
->start_cluster
)
4472 else if (cluster
>= (entry
->start_cluster
+ entry
->count
))
4473 n
= &(*n
)->rb_right
;
4475 ext4_grp_locked_error(sb
, group
, 0,
4476 ext4_group_first_block_no(sb
, group
) +
4477 EXT4_C2B(sbi
, cluster
),
4478 "Block already on to-be-freed list");
4483 rb_link_node(new_node
, parent
, n
);
4484 rb_insert_color(new_node
, &db
->bb_free_root
);
4486 /* Now try to see the extent can be merged to left and right */
4487 node
= rb_prev(new_node
);
4489 entry
= rb_entry(node
, struct ext4_free_data
, node
);
4490 if (can_merge(entry
, new_entry
)) {
4491 new_entry
->start_cluster
= entry
->start_cluster
;
4492 new_entry
->count
+= entry
->count
;
4493 rb_erase(node
, &(db
->bb_free_root
));
4494 spin_lock(&sbi
->s_md_lock
);
4495 list_del(&entry
->list
);
4496 spin_unlock(&sbi
->s_md_lock
);
4497 kmem_cache_free(ext4_free_ext_cachep
, entry
);
4501 node
= rb_next(new_node
);
4503 entry
= rb_entry(node
, struct ext4_free_data
, node
);
4504 if (can_merge(new_entry
, entry
)) {
4505 new_entry
->count
+= entry
->count
;
4506 rb_erase(node
, &(db
->bb_free_root
));
4507 spin_lock(&sbi
->s_md_lock
);
4508 list_del(&entry
->list
);
4509 spin_unlock(&sbi
->s_md_lock
);
4510 kmem_cache_free(ext4_free_ext_cachep
, entry
);
4513 /* Add the extent to transaction's private list */
4514 spin_lock(&sbi
->s_md_lock
);
4515 list_add(&new_entry
->list
, &handle
->h_transaction
->t_private_list
);
4516 spin_unlock(&sbi
->s_md_lock
);
4521 * ext4_free_blocks() -- Free given blocks and update quota
4522 * @handle: handle for this transaction
4524 * @block: start physical block to free
4525 * @count: number of blocks to count
4526 * @flags: flags used by ext4_free_blocks
4528 void ext4_free_blocks(handle_t
*handle
, struct inode
*inode
,
4529 struct buffer_head
*bh
, ext4_fsblk_t block
,
4530 unsigned long count
, int flags
)
4532 struct buffer_head
*bitmap_bh
= NULL
;
4533 struct super_block
*sb
= inode
->i_sb
;
4534 struct ext4_group_desc
*gdp
;
4535 unsigned long freed
= 0;
4536 unsigned int overflow
;
4538 struct buffer_head
*gd_bh
;
4539 ext4_group_t block_group
;
4540 struct ext4_sb_info
*sbi
;
4541 struct ext4_buddy e4b
;
4542 unsigned int count_clusters
;
4548 BUG_ON(block
!= bh
->b_blocknr
);
4550 block
= bh
->b_blocknr
;
4554 if (!(flags
& EXT4_FREE_BLOCKS_VALIDATED
) &&
4555 !ext4_data_block_valid(sbi
, block
, count
)) {
4556 ext4_error(sb
, "Freeing blocks not in datazone - "
4557 "block = %llu, count = %lu", block
, count
);
4561 ext4_debug("freeing block %llu\n", block
);
4562 trace_ext4_free_blocks(inode
, block
, count
, flags
);
4564 if (flags
& EXT4_FREE_BLOCKS_FORGET
) {
4565 struct buffer_head
*tbh
= bh
;
4568 BUG_ON(bh
&& (count
> 1));
4570 for (i
= 0; i
< count
; i
++) {
4572 tbh
= sb_find_get_block(inode
->i_sb
,
4576 ext4_forget(handle
, flags
& EXT4_FREE_BLOCKS_METADATA
,
4577 inode
, tbh
, block
+ i
);
4582 * We need to make sure we don't reuse the freed block until
4583 * after the transaction is committed, which we can do by
4584 * treating the block as metadata, below. We make an
4585 * exception if the inode is to be written in writeback mode
4586 * since writeback mode has weak data consistency guarantees.
4588 if (!ext4_should_writeback_data(inode
))
4589 flags
|= EXT4_FREE_BLOCKS_METADATA
;
4592 * If the extent to be freed does not begin on a cluster
4593 * boundary, we need to deal with partial clusters at the
4594 * beginning and end of the extent. Normally we will free
4595 * blocks at the beginning or the end unless we are explicitly
4596 * requested to avoid doing so.
4598 overflow
= block
& (sbi
->s_cluster_ratio
- 1);
4600 if (flags
& EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER
) {
4601 overflow
= sbi
->s_cluster_ratio
- overflow
;
4603 if (count
> overflow
)
4612 overflow
= count
& (sbi
->s_cluster_ratio
- 1);
4614 if (flags
& EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER
) {
4615 if (count
> overflow
)
4620 count
+= sbi
->s_cluster_ratio
- overflow
;
4625 ext4_get_group_no_and_offset(sb
, block
, &block_group
, &bit
);
4628 * Check to see if we are freeing blocks across a group
4631 if (EXT4_C2B(sbi
, bit
) + count
> EXT4_BLOCKS_PER_GROUP(sb
)) {
4632 overflow
= EXT4_C2B(sbi
, bit
) + count
-
4633 EXT4_BLOCKS_PER_GROUP(sb
);
4636 count_clusters
= EXT4_B2C(sbi
, count
);
4637 bitmap_bh
= ext4_read_block_bitmap(sb
, block_group
);
4642 gdp
= ext4_get_group_desc(sb
, block_group
, &gd_bh
);
4648 if (in_range(ext4_block_bitmap(sb
, gdp
), block
, count
) ||
4649 in_range(ext4_inode_bitmap(sb
, gdp
), block
, count
) ||
4650 in_range(block
, ext4_inode_table(sb
, gdp
),
4651 EXT4_SB(sb
)->s_itb_per_group
) ||
4652 in_range(block
+ count
- 1, ext4_inode_table(sb
, gdp
),
4653 EXT4_SB(sb
)->s_itb_per_group
)) {
4655 ext4_error(sb
, "Freeing blocks in system zone - "
4656 "Block = %llu, count = %lu", block
, count
);
4657 /* err = 0. ext4_std_error should be a no op */
4661 BUFFER_TRACE(bitmap_bh
, "getting write access");
4662 err
= ext4_journal_get_write_access(handle
, bitmap_bh
);
4667 * We are about to modify some metadata. Call the journal APIs
4668 * to unshare ->b_data if a currently-committing transaction is
4671 BUFFER_TRACE(gd_bh
, "get_write_access");
4672 err
= ext4_journal_get_write_access(handle
, gd_bh
);
4675 #ifdef AGGRESSIVE_CHECK
4678 for (i
= 0; i
< count_clusters
; i
++)
4679 BUG_ON(!mb_test_bit(bit
+ i
, bitmap_bh
->b_data
));
4682 trace_ext4_mballoc_free(sb
, inode
, block_group
, bit
, count_clusters
);
4684 err
= ext4_mb_load_buddy(sb
, block_group
, &e4b
);
4688 if ((flags
& EXT4_FREE_BLOCKS_METADATA
) && ext4_handle_valid(handle
)) {
4689 struct ext4_free_data
*new_entry
;
4691 * blocks being freed are metadata. these blocks shouldn't
4692 * be used until this transaction is committed
4694 new_entry
= kmem_cache_alloc(ext4_free_ext_cachep
, GFP_NOFS
);
4699 new_entry
->start_cluster
= bit
;
4700 new_entry
->group
= block_group
;
4701 new_entry
->count
= count_clusters
;
4702 new_entry
->t_tid
= handle
->h_transaction
->t_tid
;
4704 ext4_lock_group(sb
, block_group
);
4705 mb_clear_bits(bitmap_bh
->b_data
, bit
, count_clusters
);
4706 ext4_mb_free_metadata(handle
, &e4b
, new_entry
);
4708 /* need to update group_info->bb_free and bitmap
4709 * with group lock held. generate_buddy look at
4710 * them with group lock_held
4712 ext4_lock_group(sb
, block_group
);
4713 mb_clear_bits(bitmap_bh
->b_data
, bit
, count_clusters
);
4714 mb_free_blocks(inode
, &e4b
, bit
, count_clusters
);
4717 ret
= ext4_free_group_clusters(sb
, gdp
) + count_clusters
;
4718 ext4_free_group_clusters_set(sb
, gdp
, ret
);
4719 gdp
->bg_checksum
= ext4_group_desc_csum(sbi
, block_group
, gdp
);
4720 ext4_unlock_group(sb
, block_group
);
4721 percpu_counter_add(&sbi
->s_freeclusters_counter
, count_clusters
);
4723 if (sbi
->s_log_groups_per_flex
) {
4724 ext4_group_t flex_group
= ext4_flex_group(sbi
, block_group
);
4725 atomic_add(count_clusters
,
4726 &sbi
->s_flex_groups
[flex_group
].free_clusters
);
4729 ext4_mb_unload_buddy(&e4b
);
4733 if (!(flags
& EXT4_FREE_BLOCKS_NO_QUOT_UPDATE
))
4734 dquot_free_block(inode
, EXT4_C2B(sbi
, count_clusters
));
4736 /* We dirtied the bitmap block */
4737 BUFFER_TRACE(bitmap_bh
, "dirtied bitmap block");
4738 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
4740 /* And the group descriptor block */
4741 BUFFER_TRACE(gd_bh
, "dirtied group descriptor block");
4742 ret
= ext4_handle_dirty_metadata(handle
, NULL
, gd_bh
);
4746 if (overflow
&& !err
) {
4752 ext4_mark_super_dirty(sb
);
4755 ext4_std_error(sb
, err
);
4760 * ext4_group_add_blocks() -- Add given blocks to an existing group
4761 * @handle: handle to this transaction
4763 * @block: start physcial block to add to the block group
4764 * @count: number of blocks to free
4766 * This marks the blocks as free in the bitmap and buddy.
4768 int ext4_group_add_blocks(handle_t
*handle
, struct super_block
*sb
,
4769 ext4_fsblk_t block
, unsigned long count
)
4771 struct buffer_head
*bitmap_bh
= NULL
;
4772 struct buffer_head
*gd_bh
;
4773 ext4_group_t block_group
;
4776 struct ext4_group_desc
*desc
;
4777 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
4778 struct ext4_buddy e4b
;
4779 int err
= 0, ret
, blk_free_count
;
4780 ext4_grpblk_t blocks_freed
;
4782 ext4_debug("Adding block(s) %llu-%llu\n", block
, block
+ count
- 1);
4787 ext4_get_group_no_and_offset(sb
, block
, &block_group
, &bit
);
4789 * Check to see if we are freeing blocks across a group
4792 if (bit
+ count
> EXT4_BLOCKS_PER_GROUP(sb
)) {
4793 ext4_warning(sb
, "too much blocks added to group %u\n",
4799 bitmap_bh
= ext4_read_block_bitmap(sb
, block_group
);
4805 desc
= ext4_get_group_desc(sb
, block_group
, &gd_bh
);
4811 if (in_range(ext4_block_bitmap(sb
, desc
), block
, count
) ||
4812 in_range(ext4_inode_bitmap(sb
, desc
), block
, count
) ||
4813 in_range(block
, ext4_inode_table(sb
, desc
), sbi
->s_itb_per_group
) ||
4814 in_range(block
+ count
- 1, ext4_inode_table(sb
, desc
),
4815 sbi
->s_itb_per_group
)) {
4816 ext4_error(sb
, "Adding blocks in system zones - "
4817 "Block = %llu, count = %lu",
4823 BUFFER_TRACE(bitmap_bh
, "getting write access");
4824 err
= ext4_journal_get_write_access(handle
, bitmap_bh
);
4829 * We are about to modify some metadata. Call the journal APIs
4830 * to unshare ->b_data if a currently-committing transaction is
4833 BUFFER_TRACE(gd_bh
, "get_write_access");
4834 err
= ext4_journal_get_write_access(handle
, gd_bh
);
4838 for (i
= 0, blocks_freed
= 0; i
< count
; i
++) {
4839 BUFFER_TRACE(bitmap_bh
, "clear bit");
4840 if (!mb_test_bit(bit
+ i
, bitmap_bh
->b_data
)) {
4841 ext4_error(sb
, "bit already cleared for block %llu",
4842 (ext4_fsblk_t
)(block
+ i
));
4843 BUFFER_TRACE(bitmap_bh
, "bit already cleared");
4849 err
= ext4_mb_load_buddy(sb
, block_group
, &e4b
);
4854 * need to update group_info->bb_free and bitmap
4855 * with group lock held. generate_buddy look at
4856 * them with group lock_held
4858 ext4_lock_group(sb
, block_group
);
4859 mb_clear_bits(bitmap_bh
->b_data
, bit
, count
);
4860 mb_free_blocks(NULL
, &e4b
, bit
, count
);
4861 blk_free_count
= blocks_freed
+ ext4_free_group_clusters(sb
, desc
);
4862 ext4_free_group_clusters_set(sb
, desc
, blk_free_count
);
4863 desc
->bg_checksum
= ext4_group_desc_csum(sbi
, block_group
, desc
);
4864 ext4_unlock_group(sb
, block_group
);
4865 percpu_counter_add(&sbi
->s_freeclusters_counter
,
4866 EXT4_B2C(sbi
, blocks_freed
));
4868 if (sbi
->s_log_groups_per_flex
) {
4869 ext4_group_t flex_group
= ext4_flex_group(sbi
, block_group
);
4870 atomic_add(EXT4_B2C(sbi
, blocks_freed
),
4871 &sbi
->s_flex_groups
[flex_group
].free_clusters
);
4874 ext4_mb_unload_buddy(&e4b
);
4876 /* We dirtied the bitmap block */
4877 BUFFER_TRACE(bitmap_bh
, "dirtied bitmap block");
4878 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
4880 /* And the group descriptor block */
4881 BUFFER_TRACE(gd_bh
, "dirtied group descriptor block");
4882 ret
= ext4_handle_dirty_metadata(handle
, NULL
, gd_bh
);
4888 ext4_std_error(sb
, err
);
4893 * ext4_trim_extent -- function to TRIM one single free extent in the group
4894 * @sb: super block for the file system
4895 * @start: starting block of the free extent in the alloc. group
4896 * @count: number of blocks to TRIM
4897 * @group: alloc. group we are working with
4898 * @e4b: ext4 buddy for the group
4900 * Trim "count" blocks starting at "start" in the "group". To assure that no
4901 * one will allocate those blocks, mark it as used in buddy bitmap. This must
4902 * be called with under the group lock.
4904 static void ext4_trim_extent(struct super_block
*sb
, int start
, int count
,
4905 ext4_group_t group
, struct ext4_buddy
*e4b
)
4907 struct ext4_free_extent ex
;
4909 trace_ext4_trim_extent(sb
, group
, start
, count
);
4911 assert_spin_locked(ext4_group_lock_ptr(sb
, group
));
4913 ex
.fe_start
= start
;
4914 ex
.fe_group
= group
;
4918 * Mark blocks used, so no one can reuse them while
4921 mb_mark_used(e4b
, &ex
);
4922 ext4_unlock_group(sb
, group
);
4923 ext4_issue_discard(sb
, group
, start
, count
);
4924 ext4_lock_group(sb
, group
);
4925 mb_free_blocks(NULL
, e4b
, start
, ex
.fe_len
);
4929 * ext4_trim_all_free -- function to trim all free space in alloc. group
4930 * @sb: super block for file system
4931 * @group: group to be trimmed
4932 * @start: first group block to examine
4933 * @max: last group block to examine
4934 * @minblocks: minimum extent block count
4936 * ext4_trim_all_free walks through group's buddy bitmap searching for free
4937 * extents. When the free block is found, ext4_trim_extent is called to TRIM
4941 * ext4_trim_all_free walks through group's block bitmap searching for free
4942 * extents. When the free extent is found, mark it as used in group buddy
4943 * bitmap. Then issue a TRIM command on this extent and free the extent in
4944 * the group buddy bitmap. This is done until whole group is scanned.
4946 static ext4_grpblk_t
4947 ext4_trim_all_free(struct super_block
*sb
, ext4_group_t group
,
4948 ext4_grpblk_t start
, ext4_grpblk_t max
,
4949 ext4_grpblk_t minblocks
)
4952 ext4_grpblk_t next
, count
= 0, free_count
= 0;
4953 struct ext4_buddy e4b
;
4956 trace_ext4_trim_all_free(sb
, group
, start
, max
);
4958 ret
= ext4_mb_load_buddy(sb
, group
, &e4b
);
4960 ext4_error(sb
, "Error in loading buddy "
4961 "information for %u", group
);
4964 bitmap
= e4b
.bd_bitmap
;
4966 ext4_lock_group(sb
, group
);
4967 if (EXT4_MB_GRP_WAS_TRIMMED(e4b
.bd_info
) &&
4968 minblocks
>= atomic_read(&EXT4_SB(sb
)->s_last_trim_minblks
))
4971 start
= (e4b
.bd_info
->bb_first_free
> start
) ?
4972 e4b
.bd_info
->bb_first_free
: start
;
4974 while (start
< max
) {
4975 start
= mb_find_next_zero_bit(bitmap
, max
, start
);
4978 next
= mb_find_next_bit(bitmap
, max
, start
);
4980 if ((next
- start
) >= minblocks
) {
4981 ext4_trim_extent(sb
, start
,
4982 next
- start
, group
, &e4b
);
4983 count
+= next
- start
;
4985 free_count
+= next
- start
;
4988 if (fatal_signal_pending(current
)) {
4989 count
= -ERESTARTSYS
;
4993 if (need_resched()) {
4994 ext4_unlock_group(sb
, group
);
4996 ext4_lock_group(sb
, group
);
4999 if ((e4b
.bd_info
->bb_free
- free_count
) < minblocks
)
5004 EXT4_MB_GRP_SET_TRIMMED(e4b
.bd_info
);
5006 ext4_unlock_group(sb
, group
);
5007 ext4_mb_unload_buddy(&e4b
);
5009 ext4_debug("trimmed %d blocks in the group %d\n",
5016 * ext4_trim_fs() -- trim ioctl handle function
5017 * @sb: superblock for filesystem
5018 * @range: fstrim_range structure
5020 * start: First Byte to trim
5021 * len: number of Bytes to trim from start
5022 * minlen: minimum extent length in Bytes
5023 * ext4_trim_fs goes through all allocation groups containing Bytes from
5024 * start to start+len. For each such a group ext4_trim_all_free function
5025 * is invoked to trim all free space.
5027 int ext4_trim_fs(struct super_block
*sb
, struct fstrim_range
*range
)
5029 struct ext4_group_info
*grp
;
5030 ext4_group_t first_group
, last_group
;
5031 ext4_group_t group
, ngroups
= ext4_get_groups_count(sb
);
5032 ext4_grpblk_t cnt
= 0, first_cluster
, last_cluster
;
5033 uint64_t start
, len
, minlen
, trimmed
= 0;
5034 ext4_fsblk_t first_data_blk
=
5035 le32_to_cpu(EXT4_SB(sb
)->s_es
->s_first_data_block
);
5038 start
= range
->start
>> sb
->s_blocksize_bits
;
5039 len
= range
->len
>> sb
->s_blocksize_bits
;
5040 minlen
= range
->minlen
>> sb
->s_blocksize_bits
;
5042 if (unlikely(minlen
> EXT4_CLUSTERS_PER_GROUP(sb
)))
5044 if (start
+ len
<= first_data_blk
)
5046 if (start
< first_data_blk
) {
5047 len
-= first_data_blk
- start
;
5048 start
= first_data_blk
;
5051 /* Determine first and last group to examine based on start and len */
5052 ext4_get_group_no_and_offset(sb
, (ext4_fsblk_t
) start
,
5053 &first_group
, &first_cluster
);
5054 ext4_get_group_no_and_offset(sb
, (ext4_fsblk_t
) (start
+ len
),
5055 &last_group
, &last_cluster
);
5056 last_group
= (last_group
> ngroups
- 1) ? ngroups
- 1 : last_group
;
5057 last_cluster
= EXT4_CLUSTERS_PER_GROUP(sb
);
5059 if (first_group
> last_group
)
5062 for (group
= first_group
; group
<= last_group
; group
++) {
5063 grp
= ext4_get_group_info(sb
, group
);
5064 /* We only do this if the grp has never been initialized */
5065 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp
))) {
5066 ret
= ext4_mb_init_group(sb
, group
);
5072 * For all the groups except the last one, last block will
5073 * always be EXT4_BLOCKS_PER_GROUP(sb), so we only need to
5074 * change it for the last group in which case start +
5075 * len < EXT4_BLOCKS_PER_GROUP(sb).
5077 if (first_cluster
+ len
< EXT4_CLUSTERS_PER_GROUP(sb
))
5078 last_cluster
= first_cluster
+ len
;
5079 len
-= last_cluster
- first_cluster
;
5081 if (grp
->bb_free
>= minlen
) {
5082 cnt
= ext4_trim_all_free(sb
, group
, first_cluster
,
5083 last_cluster
, minlen
);
5092 range
->len
= trimmed
* sb
->s_blocksize
;
5095 atomic_set(&EXT4_SB(sb
)->s_last_trim_minblks
, minlen
);