2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
21 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/jbd2.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
42 #include "ext4_jbd2.h"
47 #include <trace/events/ext4.h>
49 #define MPAGE_DA_EXTENT_TAIL 0x01
51 static inline int ext4_begin_ordered_truncate(struct inode
*inode
,
54 trace_ext4_begin_ordered_truncate(inode
, new_size
);
56 * If jinode is zero, then we never opened the file for
57 * writing, so there's no need to call
58 * jbd2_journal_begin_ordered_truncate() since there's no
59 * outstanding writes we need to flush.
61 if (!EXT4_I(inode
)->jinode
)
63 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode
),
64 EXT4_I(inode
)->jinode
,
68 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
);
69 static int noalloc_get_block_write(struct inode
*inode
, sector_t iblock
,
70 struct buffer_head
*bh_result
, int create
);
71 static int ext4_set_bh_endio(struct buffer_head
*bh
, struct inode
*inode
);
72 static void ext4_end_io_buffer_write(struct buffer_head
*bh
, int uptodate
);
73 static int __ext4_journalled_writepage(struct page
*page
, unsigned int len
);
74 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
);
77 * Test whether an inode is a fast symlink.
79 static int ext4_inode_is_fast_symlink(struct inode
*inode
)
81 int ea_blocks
= EXT4_I(inode
)->i_file_acl
?
82 (inode
->i_sb
->s_blocksize
>> 9) : 0;
84 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
88 * Restart the transaction associated with *handle. This does a commit,
89 * so before we call here everything must be consistently dirtied against
92 int ext4_truncate_restart_trans(handle_t
*handle
, struct inode
*inode
,
98 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
99 * moment, get_block can be called only for blocks inside i_size since
100 * page cache has been already dropped and writes are blocked by
101 * i_mutex. So we can safely drop the i_data_sem here.
103 BUG_ON(EXT4_JOURNAL(inode
) == NULL
);
104 jbd_debug(2, "restarting handle %p\n", handle
);
105 up_write(&EXT4_I(inode
)->i_data_sem
);
106 ret
= ext4_journal_restart(handle
, nblocks
);
107 down_write(&EXT4_I(inode
)->i_data_sem
);
108 ext4_discard_preallocations(inode
);
114 * Called at the last iput() if i_nlink is zero.
116 void ext4_evict_inode(struct inode
*inode
)
121 trace_ext4_evict_inode(inode
);
123 ext4_ioend_wait(inode
);
125 if (inode
->i_nlink
) {
127 * When journalling data dirty buffers are tracked only in the
128 * journal. So although mm thinks everything is clean and
129 * ready for reaping the inode might still have some pages to
130 * write in the running transaction or waiting to be
131 * checkpointed. Thus calling jbd2_journal_invalidatepage()
132 * (via truncate_inode_pages()) to discard these buffers can
133 * cause data loss. Also even if we did not discard these
134 * buffers, we would have no way to find them after the inode
135 * is reaped and thus user could see stale data if he tries to
136 * read them before the transaction is checkpointed. So be
137 * careful and force everything to disk here... We use
138 * ei->i_datasync_tid to store the newest transaction
139 * containing inode's data.
141 * Note that directories do not have this problem because they
142 * don't use page cache.
144 if (ext4_should_journal_data(inode
) &&
145 (S_ISLNK(inode
->i_mode
) || S_ISREG(inode
->i_mode
))) {
146 journal_t
*journal
= EXT4_SB(inode
->i_sb
)->s_journal
;
147 tid_t commit_tid
= EXT4_I(inode
)->i_datasync_tid
;
149 jbd2_log_start_commit(journal
, commit_tid
);
150 jbd2_log_wait_commit(journal
, commit_tid
);
151 filemap_write_and_wait(&inode
->i_data
);
153 truncate_inode_pages(&inode
->i_data
, 0);
157 if (!is_bad_inode(inode
))
158 dquot_initialize(inode
);
160 if (ext4_should_order_data(inode
))
161 ext4_begin_ordered_truncate(inode
, 0);
162 truncate_inode_pages(&inode
->i_data
, 0);
164 if (is_bad_inode(inode
))
167 handle
= ext4_journal_start(inode
, ext4_blocks_for_truncate(inode
)+3);
168 if (IS_ERR(handle
)) {
169 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
171 * If we're going to skip the normal cleanup, we still need to
172 * make sure that the in-core orphan linked list is properly
175 ext4_orphan_del(NULL
, inode
);
180 ext4_handle_sync(handle
);
182 err
= ext4_mark_inode_dirty(handle
, inode
);
184 ext4_warning(inode
->i_sb
,
185 "couldn't mark inode dirty (err %d)", err
);
189 ext4_truncate(inode
);
192 * ext4_ext_truncate() doesn't reserve any slop when it
193 * restarts journal transactions; therefore there may not be
194 * enough credits left in the handle to remove the inode from
195 * the orphan list and set the dtime field.
197 if (!ext4_handle_has_enough_credits(handle
, 3)) {
198 err
= ext4_journal_extend(handle
, 3);
200 err
= ext4_journal_restart(handle
, 3);
202 ext4_warning(inode
->i_sb
,
203 "couldn't extend journal (err %d)", err
);
205 ext4_journal_stop(handle
);
206 ext4_orphan_del(NULL
, inode
);
212 * Kill off the orphan record which ext4_truncate created.
213 * AKPM: I think this can be inside the above `if'.
214 * Note that ext4_orphan_del() has to be able to cope with the
215 * deletion of a non-existent orphan - this is because we don't
216 * know if ext4_truncate() actually created an orphan record.
217 * (Well, we could do this if we need to, but heck - it works)
219 ext4_orphan_del(handle
, inode
);
220 EXT4_I(inode
)->i_dtime
= get_seconds();
223 * One subtle ordering requirement: if anything has gone wrong
224 * (transaction abort, IO errors, whatever), then we can still
225 * do these next steps (the fs will already have been marked as
226 * having errors), but we can't free the inode if the mark_dirty
229 if (ext4_mark_inode_dirty(handle
, inode
))
230 /* If that failed, just do the required in-core inode clear. */
231 ext4_clear_inode(inode
);
233 ext4_free_inode(handle
, inode
);
234 ext4_journal_stop(handle
);
237 ext4_clear_inode(inode
); /* We must guarantee clearing of inode... */
241 qsize_t
*ext4_get_reserved_space(struct inode
*inode
)
243 return &EXT4_I(inode
)->i_reserved_quota
;
248 * Calculate the number of metadata blocks need to reserve
249 * to allocate a block located at @lblock
251 static int ext4_calc_metadata_amount(struct inode
*inode
, ext4_lblk_t lblock
)
253 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
254 return ext4_ext_calc_metadata_amount(inode
, lblock
);
256 return ext4_ind_calc_metadata_amount(inode
, lblock
);
260 * Called with i_data_sem down, which is important since we can call
261 * ext4_discard_preallocations() from here.
263 void ext4_da_update_reserve_space(struct inode
*inode
,
264 int used
, int quota_claim
)
266 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
267 struct ext4_inode_info
*ei
= EXT4_I(inode
);
269 spin_lock(&ei
->i_block_reservation_lock
);
270 trace_ext4_da_update_reserve_space(inode
, used
, quota_claim
);
271 if (unlikely(used
> ei
->i_reserved_data_blocks
)) {
272 ext4_msg(inode
->i_sb
, KERN_NOTICE
, "%s: ino %lu, used %d "
273 "with only %d reserved data blocks\n",
274 __func__
, inode
->i_ino
, used
,
275 ei
->i_reserved_data_blocks
);
277 used
= ei
->i_reserved_data_blocks
;
280 /* Update per-inode reservations */
281 ei
->i_reserved_data_blocks
-= used
;
282 ei
->i_reserved_meta_blocks
-= ei
->i_allocated_meta_blocks
;
283 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
284 used
+ ei
->i_allocated_meta_blocks
);
285 ei
->i_allocated_meta_blocks
= 0;
287 if (ei
->i_reserved_data_blocks
== 0) {
289 * We can release all of the reserved metadata blocks
290 * only when we have written all of the delayed
293 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
294 ei
->i_reserved_meta_blocks
);
295 ei
->i_reserved_meta_blocks
= 0;
296 ei
->i_da_metadata_calc_len
= 0;
298 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
300 /* Update quota subsystem for data blocks */
302 dquot_claim_block(inode
, EXT4_C2B(sbi
, used
));
305 * We did fallocate with an offset that is already delayed
306 * allocated. So on delayed allocated writeback we should
307 * not re-claim the quota for fallocated blocks.
309 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, used
));
313 * If we have done all the pending block allocations and if
314 * there aren't any writers on the inode, we can discard the
315 * inode's preallocations.
317 if ((ei
->i_reserved_data_blocks
== 0) &&
318 (atomic_read(&inode
->i_writecount
) == 0))
319 ext4_discard_preallocations(inode
);
322 static int __check_block_validity(struct inode
*inode
, const char *func
,
324 struct ext4_map_blocks
*map
)
326 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
), map
->m_pblk
,
328 ext4_error_inode(inode
, func
, line
, map
->m_pblk
,
329 "lblock %lu mapped to illegal pblock "
330 "(length %d)", (unsigned long) map
->m_lblk
,
337 #define check_block_validity(inode, map) \
338 __check_block_validity((inode), __func__, __LINE__, (map))
341 * Return the number of contiguous dirty pages in a given inode
342 * starting at page frame idx.
344 static pgoff_t
ext4_num_dirty_pages(struct inode
*inode
, pgoff_t idx
,
345 unsigned int max_pages
)
347 struct address_space
*mapping
= inode
->i_mapping
;
351 int i
, nr_pages
, done
= 0;
355 pagevec_init(&pvec
, 0);
358 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
360 (pgoff_t
)PAGEVEC_SIZE
);
363 for (i
= 0; i
< nr_pages
; i
++) {
364 struct page
*page
= pvec
.pages
[i
];
365 struct buffer_head
*bh
, *head
;
368 if (unlikely(page
->mapping
!= mapping
) ||
370 PageWriteback(page
) ||
371 page
->index
!= idx
) {
376 if (page_has_buffers(page
)) {
377 bh
= head
= page_buffers(page
);
379 if (!buffer_delay(bh
) &&
380 !buffer_unwritten(bh
))
382 bh
= bh
->b_this_page
;
383 } while (!done
&& (bh
!= head
));
390 if (num
>= max_pages
) {
395 pagevec_release(&pvec
);
401 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
403 static void set_buffers_da_mapped(struct inode
*inode
,
404 struct ext4_map_blocks
*map
)
406 struct address_space
*mapping
= inode
->i_mapping
;
411 index
= map
->m_lblk
>> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
412 end
= (map
->m_lblk
+ map
->m_len
- 1) >>
413 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
415 pagevec_init(&pvec
, 0);
416 while (index
<= end
) {
417 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
,
419 (pgoff_t
)PAGEVEC_SIZE
));
422 for (i
= 0; i
< nr_pages
; i
++) {
423 struct page
*page
= pvec
.pages
[i
];
424 struct buffer_head
*bh
, *head
;
426 if (unlikely(page
->mapping
!= mapping
) ||
430 if (page_has_buffers(page
)) {
431 bh
= head
= page_buffers(page
);
433 set_buffer_da_mapped(bh
);
434 bh
= bh
->b_this_page
;
435 } while (bh
!= head
);
439 pagevec_release(&pvec
);
444 * The ext4_map_blocks() function tries to look up the requested blocks,
445 * and returns if the blocks are already mapped.
447 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
448 * and store the allocated blocks in the result buffer head and mark it
451 * If file type is extents based, it will call ext4_ext_map_blocks(),
452 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
455 * On success, it returns the number of blocks being mapped or allocate.
456 * if create==0 and the blocks are pre-allocated and uninitialized block,
457 * the result buffer head is unmapped. If the create ==1, it will make sure
458 * the buffer head is mapped.
460 * It returns 0 if plain look up failed (blocks have not been allocated), in
461 * that case, buffer head is unmapped
463 * It returns the error in case of allocation failure.
465 int ext4_map_blocks(handle_t
*handle
, struct inode
*inode
,
466 struct ext4_map_blocks
*map
, int flags
)
471 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
472 "logical block %lu\n", inode
->i_ino
, flags
, map
->m_len
,
473 (unsigned long) map
->m_lblk
);
475 * Try to see if we can get the block without requesting a new
478 down_read((&EXT4_I(inode
)->i_data_sem
));
479 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
480 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
&
481 EXT4_GET_BLOCKS_KEEP_SIZE
);
483 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
&
484 EXT4_GET_BLOCKS_KEEP_SIZE
);
486 up_read((&EXT4_I(inode
)->i_data_sem
));
488 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
489 int ret
= check_block_validity(inode
, map
);
494 /* If it is only a block(s) look up */
495 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0)
499 * Returns if the blocks have already allocated
501 * Note that if blocks have been preallocated
502 * ext4_ext_get_block() returns the create = 0
503 * with buffer head unmapped.
505 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
)
509 * When we call get_blocks without the create flag, the
510 * BH_Unwritten flag could have gotten set if the blocks
511 * requested were part of a uninitialized extent. We need to
512 * clear this flag now that we are committed to convert all or
513 * part of the uninitialized extent to be an initialized
514 * extent. This is because we need to avoid the combination
515 * of BH_Unwritten and BH_Mapped flags being simultaneously
516 * set on the buffer_head.
518 map
->m_flags
&= ~EXT4_MAP_UNWRITTEN
;
521 * New blocks allocate and/or writing to uninitialized extent
522 * will possibly result in updating i_data, so we take
523 * the write lock of i_data_sem, and call get_blocks()
524 * with create == 1 flag.
526 down_write((&EXT4_I(inode
)->i_data_sem
));
529 * if the caller is from delayed allocation writeout path
530 * we have already reserved fs blocks for allocation
531 * let the underlying get_block() function know to
532 * avoid double accounting
534 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
535 ext4_set_inode_state(inode
, EXT4_STATE_DELALLOC_RESERVED
);
537 * We need to check for EXT4 here because migrate
538 * could have changed the inode type in between
540 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
541 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
);
543 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
);
545 if (retval
> 0 && map
->m_flags
& EXT4_MAP_NEW
) {
547 * We allocated new blocks which will result in
548 * i_data's format changing. Force the migrate
549 * to fail by clearing migrate flags
551 ext4_clear_inode_state(inode
, EXT4_STATE_EXT_MIGRATE
);
555 * Update reserved blocks/metadata blocks after successful
556 * block allocation which had been deferred till now. We don't
557 * support fallocate for non extent files. So we can update
558 * reserve space here.
561 (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
))
562 ext4_da_update_reserve_space(inode
, retval
, 1);
564 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
) {
565 ext4_clear_inode_state(inode
, EXT4_STATE_DELALLOC_RESERVED
);
567 /* If we have successfully mapped the delayed allocated blocks,
568 * set the BH_Da_Mapped bit on them. Its important to do this
569 * under the protection of i_data_sem.
571 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
)
572 set_buffers_da_mapped(inode
, map
);
575 up_write((&EXT4_I(inode
)->i_data_sem
));
576 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
577 int ret
= check_block_validity(inode
, map
);
584 /* Maximum number of blocks we map for direct IO at once. */
585 #define DIO_MAX_BLOCKS 4096
587 static int _ext4_get_block(struct inode
*inode
, sector_t iblock
,
588 struct buffer_head
*bh
, int flags
)
590 handle_t
*handle
= ext4_journal_current_handle();
591 struct ext4_map_blocks map
;
592 int ret
= 0, started
= 0;
596 map
.m_len
= bh
->b_size
>> inode
->i_blkbits
;
598 if (flags
&& !handle
) {
599 /* Direct IO write... */
600 if (map
.m_len
> DIO_MAX_BLOCKS
)
601 map
.m_len
= DIO_MAX_BLOCKS
;
602 dio_credits
= ext4_chunk_trans_blocks(inode
, map
.m_len
);
603 handle
= ext4_journal_start(inode
, dio_credits
);
604 if (IS_ERR(handle
)) {
605 ret
= PTR_ERR(handle
);
611 ret
= ext4_map_blocks(handle
, inode
, &map
, flags
);
613 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
614 bh
->b_state
= (bh
->b_state
& ~EXT4_MAP_FLAGS
) | map
.m_flags
;
615 bh
->b_size
= inode
->i_sb
->s_blocksize
* map
.m_len
;
619 ext4_journal_stop(handle
);
623 int ext4_get_block(struct inode
*inode
, sector_t iblock
,
624 struct buffer_head
*bh
, int create
)
626 return _ext4_get_block(inode
, iblock
, bh
,
627 create
? EXT4_GET_BLOCKS_CREATE
: 0);
631 * `handle' can be NULL if create is zero
633 struct buffer_head
*ext4_getblk(handle_t
*handle
, struct inode
*inode
,
634 ext4_lblk_t block
, int create
, int *errp
)
636 struct ext4_map_blocks map
;
637 struct buffer_head
*bh
;
640 J_ASSERT(handle
!= NULL
|| create
== 0);
644 err
= ext4_map_blocks(handle
, inode
, &map
,
645 create
? EXT4_GET_BLOCKS_CREATE
: 0);
653 bh
= sb_getblk(inode
->i_sb
, map
.m_pblk
);
658 if (map
.m_flags
& EXT4_MAP_NEW
) {
659 J_ASSERT(create
!= 0);
660 J_ASSERT(handle
!= NULL
);
663 * Now that we do not always journal data, we should
664 * keep in mind whether this should always journal the
665 * new buffer as metadata. For now, regular file
666 * writes use ext4_get_block instead, so it's not a
670 BUFFER_TRACE(bh
, "call get_create_access");
671 fatal
= ext4_journal_get_create_access(handle
, bh
);
672 if (!fatal
&& !buffer_uptodate(bh
)) {
673 memset(bh
->b_data
, 0, inode
->i_sb
->s_blocksize
);
674 set_buffer_uptodate(bh
);
677 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
678 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
682 BUFFER_TRACE(bh
, "not a new buffer");
692 struct buffer_head
*ext4_bread(handle_t
*handle
, struct inode
*inode
,
693 ext4_lblk_t block
, int create
, int *err
)
695 struct buffer_head
*bh
;
697 bh
= ext4_getblk(handle
, inode
, block
, create
, err
);
700 if (buffer_uptodate(bh
))
702 ll_rw_block(READ
| REQ_META
| REQ_PRIO
, 1, &bh
);
704 if (buffer_uptodate(bh
))
711 static int walk_page_buffers(handle_t
*handle
,
712 struct buffer_head
*head
,
716 int (*fn
)(handle_t
*handle
,
717 struct buffer_head
*bh
))
719 struct buffer_head
*bh
;
720 unsigned block_start
, block_end
;
721 unsigned blocksize
= head
->b_size
;
723 struct buffer_head
*next
;
725 for (bh
= head
, block_start
= 0;
726 ret
== 0 && (bh
!= head
|| !block_start
);
727 block_start
= block_end
, bh
= next
) {
728 next
= bh
->b_this_page
;
729 block_end
= block_start
+ blocksize
;
730 if (block_end
<= from
|| block_start
>= to
) {
731 if (partial
&& !buffer_uptodate(bh
))
735 err
= (*fn
)(handle
, bh
);
743 * To preserve ordering, it is essential that the hole instantiation and
744 * the data write be encapsulated in a single transaction. We cannot
745 * close off a transaction and start a new one between the ext4_get_block()
746 * and the commit_write(). So doing the jbd2_journal_start at the start of
747 * prepare_write() is the right place.
749 * Also, this function can nest inside ext4_writepage() ->
750 * block_write_full_page(). In that case, we *know* that ext4_writepage()
751 * has generated enough buffer credits to do the whole page. So we won't
752 * block on the journal in that case, which is good, because the caller may
755 * By accident, ext4 can be reentered when a transaction is open via
756 * quota file writes. If we were to commit the transaction while thus
757 * reentered, there can be a deadlock - we would be holding a quota
758 * lock, and the commit would never complete if another thread had a
759 * transaction open and was blocking on the quota lock - a ranking
762 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
763 * will _not_ run commit under these circumstances because handle->h_ref
764 * is elevated. We'll still have enough credits for the tiny quotafile
767 static int do_journal_get_write_access(handle_t
*handle
,
768 struct buffer_head
*bh
)
770 int dirty
= buffer_dirty(bh
);
773 if (!buffer_mapped(bh
) || buffer_freed(bh
))
776 * __block_write_begin() could have dirtied some buffers. Clean
777 * the dirty bit as jbd2_journal_get_write_access() could complain
778 * otherwise about fs integrity issues. Setting of the dirty bit
779 * by __block_write_begin() isn't a real problem here as we clear
780 * the bit before releasing a page lock and thus writeback cannot
781 * ever write the buffer.
784 clear_buffer_dirty(bh
);
785 ret
= ext4_journal_get_write_access(handle
, bh
);
787 ret
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
791 static int ext4_get_block_write(struct inode
*inode
, sector_t iblock
,
792 struct buffer_head
*bh_result
, int create
);
793 static int ext4_write_begin(struct file
*file
, struct address_space
*mapping
,
794 loff_t pos
, unsigned len
, unsigned flags
,
795 struct page
**pagep
, void **fsdata
)
797 struct inode
*inode
= mapping
->host
;
798 int ret
, needed_blocks
;
805 trace_ext4_write_begin(inode
, pos
, len
, flags
);
807 * Reserve one block more for addition to orphan list in case
808 * we allocate blocks but write fails for some reason
810 needed_blocks
= ext4_writepage_trans_blocks(inode
) + 1;
811 index
= pos
>> PAGE_CACHE_SHIFT
;
812 from
= pos
& (PAGE_CACHE_SIZE
- 1);
816 handle
= ext4_journal_start(inode
, needed_blocks
);
817 if (IS_ERR(handle
)) {
818 ret
= PTR_ERR(handle
);
822 /* We cannot recurse into the filesystem as the transaction is already
824 flags
|= AOP_FLAG_NOFS
;
826 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
828 ext4_journal_stop(handle
);
834 if (ext4_should_dioread_nolock(inode
))
835 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block_write
);
837 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block
);
839 if (!ret
&& ext4_should_journal_data(inode
)) {
840 ret
= walk_page_buffers(handle
, page_buffers(page
),
841 from
, to
, NULL
, do_journal_get_write_access
);
846 page_cache_release(page
);
848 * __block_write_begin may have instantiated a few blocks
849 * outside i_size. Trim these off again. Don't need
850 * i_size_read because we hold i_mutex.
852 * Add inode to orphan list in case we crash before
855 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
856 ext4_orphan_add(handle
, inode
);
858 ext4_journal_stop(handle
);
859 if (pos
+ len
> inode
->i_size
) {
860 ext4_truncate_failed_write(inode
);
862 * If truncate failed early the inode might
863 * still be on the orphan list; we need to
864 * make sure the inode is removed from the
865 * orphan list in that case.
868 ext4_orphan_del(NULL
, inode
);
872 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
878 /* For write_end() in data=journal mode */
879 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
881 if (!buffer_mapped(bh
) || buffer_freed(bh
))
883 set_buffer_uptodate(bh
);
884 return ext4_handle_dirty_metadata(handle
, NULL
, bh
);
887 static int ext4_generic_write_end(struct file
*file
,
888 struct address_space
*mapping
,
889 loff_t pos
, unsigned len
, unsigned copied
,
890 struct page
*page
, void *fsdata
)
892 int i_size_changed
= 0;
893 struct inode
*inode
= mapping
->host
;
894 handle_t
*handle
= ext4_journal_current_handle();
896 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
899 * No need to use i_size_read() here, the i_size
900 * cannot change under us because we hold i_mutex.
902 * But it's important to update i_size while still holding page lock:
903 * page writeout could otherwise come in and zero beyond i_size.
905 if (pos
+ copied
> inode
->i_size
) {
906 i_size_write(inode
, pos
+ copied
);
910 if (pos
+ copied
> EXT4_I(inode
)->i_disksize
) {
911 /* We need to mark inode dirty even if
912 * new_i_size is less that inode->i_size
913 * bu greater than i_disksize.(hint delalloc)
915 ext4_update_i_disksize(inode
, (pos
+ copied
));
919 page_cache_release(page
);
922 * Don't mark the inode dirty under page lock. First, it unnecessarily
923 * makes the holding time of page lock longer. Second, it forces lock
924 * ordering of page lock and transaction start for journaling
928 ext4_mark_inode_dirty(handle
, inode
);
934 * We need to pick up the new inode size which generic_commit_write gave us
935 * `file' can be NULL - eg, when called from page_symlink().
937 * ext4 never places buffers on inode->i_mapping->private_list. metadata
938 * buffers are managed internally.
940 static int ext4_ordered_write_end(struct file
*file
,
941 struct address_space
*mapping
,
942 loff_t pos
, unsigned len
, unsigned copied
,
943 struct page
*page
, void *fsdata
)
945 handle_t
*handle
= ext4_journal_current_handle();
946 struct inode
*inode
= mapping
->host
;
949 trace_ext4_ordered_write_end(inode
, pos
, len
, copied
);
950 ret
= ext4_jbd2_file_inode(handle
, inode
);
953 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
956 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
957 /* if we have allocated more blocks and copied
958 * less. We will have blocks allocated outside
959 * inode->i_size. So truncate them
961 ext4_orphan_add(handle
, inode
);
966 page_cache_release(page
);
969 ret2
= ext4_journal_stop(handle
);
973 if (pos
+ len
> inode
->i_size
) {
974 ext4_truncate_failed_write(inode
);
976 * If truncate failed early the inode might still be
977 * on the orphan list; we need to make sure the inode
978 * is removed from the orphan list in that case.
981 ext4_orphan_del(NULL
, inode
);
985 return ret
? ret
: copied
;
988 static int ext4_writeback_write_end(struct file
*file
,
989 struct address_space
*mapping
,
990 loff_t pos
, unsigned len
, unsigned copied
,
991 struct page
*page
, void *fsdata
)
993 handle_t
*handle
= ext4_journal_current_handle();
994 struct inode
*inode
= mapping
->host
;
997 trace_ext4_writeback_write_end(inode
, pos
, len
, copied
);
998 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
1001 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1002 /* if we have allocated more blocks and copied
1003 * less. We will have blocks allocated outside
1004 * inode->i_size. So truncate them
1006 ext4_orphan_add(handle
, inode
);
1011 ret2
= ext4_journal_stop(handle
);
1015 if (pos
+ len
> inode
->i_size
) {
1016 ext4_truncate_failed_write(inode
);
1018 * If truncate failed early the inode might still be
1019 * on the orphan list; we need to make sure the inode
1020 * is removed from the orphan list in that case.
1023 ext4_orphan_del(NULL
, inode
);
1026 return ret
? ret
: copied
;
1029 static int ext4_journalled_write_end(struct file
*file
,
1030 struct address_space
*mapping
,
1031 loff_t pos
, unsigned len
, unsigned copied
,
1032 struct page
*page
, void *fsdata
)
1034 handle_t
*handle
= ext4_journal_current_handle();
1035 struct inode
*inode
= mapping
->host
;
1041 trace_ext4_journalled_write_end(inode
, pos
, len
, copied
);
1042 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1045 BUG_ON(!ext4_handle_valid(handle
));
1048 if (!PageUptodate(page
))
1050 page_zero_new_buffers(page
, from
+copied
, to
);
1053 ret
= walk_page_buffers(handle
, page_buffers(page
), from
,
1054 to
, &partial
, write_end_fn
);
1056 SetPageUptodate(page
);
1057 new_i_size
= pos
+ copied
;
1058 if (new_i_size
> inode
->i_size
)
1059 i_size_write(inode
, pos
+copied
);
1060 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1061 EXT4_I(inode
)->i_datasync_tid
= handle
->h_transaction
->t_tid
;
1062 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
1063 ext4_update_i_disksize(inode
, new_i_size
);
1064 ret2
= ext4_mark_inode_dirty(handle
, inode
);
1070 page_cache_release(page
);
1071 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1072 /* if we have allocated more blocks and copied
1073 * less. We will have blocks allocated outside
1074 * inode->i_size. So truncate them
1076 ext4_orphan_add(handle
, inode
);
1078 ret2
= ext4_journal_stop(handle
);
1081 if (pos
+ len
> inode
->i_size
) {
1082 ext4_truncate_failed_write(inode
);
1084 * If truncate failed early the inode might still be
1085 * on the orphan list; we need to make sure the inode
1086 * is removed from the orphan list in that case.
1089 ext4_orphan_del(NULL
, inode
);
1092 return ret
? ret
: copied
;
1096 * Reserve a single cluster located at lblock
1098 static int ext4_da_reserve_space(struct inode
*inode
, ext4_lblk_t lblock
)
1101 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1102 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1103 unsigned int md_needed
;
1107 * recalculate the amount of metadata blocks to reserve
1108 * in order to allocate nrblocks
1109 * worse case is one extent per block
1112 spin_lock(&ei
->i_block_reservation_lock
);
1113 md_needed
= EXT4_NUM_B2C(sbi
,
1114 ext4_calc_metadata_amount(inode
, lblock
));
1115 trace_ext4_da_reserve_space(inode
, md_needed
);
1116 spin_unlock(&ei
->i_block_reservation_lock
);
1119 * We will charge metadata quota at writeout time; this saves
1120 * us from metadata over-estimation, though we may go over by
1121 * a small amount in the end. Here we just reserve for data.
1123 ret
= dquot_reserve_block(inode
, EXT4_C2B(sbi
, 1));
1127 * We do still charge estimated metadata to the sb though;
1128 * we cannot afford to run out of free blocks.
1130 if (ext4_claim_free_clusters(sbi
, md_needed
+ 1, 0)) {
1131 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, 1));
1132 if (ext4_should_retry_alloc(inode
->i_sb
, &retries
)) {
1138 spin_lock(&ei
->i_block_reservation_lock
);
1139 ei
->i_reserved_data_blocks
++;
1140 ei
->i_reserved_meta_blocks
+= md_needed
;
1141 spin_unlock(&ei
->i_block_reservation_lock
);
1143 return 0; /* success */
1146 static void ext4_da_release_space(struct inode
*inode
, int to_free
)
1148 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1149 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1152 return; /* Nothing to release, exit */
1154 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1156 trace_ext4_da_release_space(inode
, to_free
);
1157 if (unlikely(to_free
> ei
->i_reserved_data_blocks
)) {
1159 * if there aren't enough reserved blocks, then the
1160 * counter is messed up somewhere. Since this
1161 * function is called from invalidate page, it's
1162 * harmless to return without any action.
1164 ext4_msg(inode
->i_sb
, KERN_NOTICE
, "ext4_da_release_space: "
1165 "ino %lu, to_free %d with only %d reserved "
1166 "data blocks\n", inode
->i_ino
, to_free
,
1167 ei
->i_reserved_data_blocks
);
1169 to_free
= ei
->i_reserved_data_blocks
;
1171 ei
->i_reserved_data_blocks
-= to_free
;
1173 if (ei
->i_reserved_data_blocks
== 0) {
1175 * We can release all of the reserved metadata blocks
1176 * only when we have written all of the delayed
1177 * allocation blocks.
1178 * Note that in case of bigalloc, i_reserved_meta_blocks,
1179 * i_reserved_data_blocks, etc. refer to number of clusters.
1181 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
1182 ei
->i_reserved_meta_blocks
);
1183 ei
->i_reserved_meta_blocks
= 0;
1184 ei
->i_da_metadata_calc_len
= 0;
1187 /* update fs dirty data blocks counter */
1188 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
, to_free
);
1190 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1192 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, to_free
));
1195 static void ext4_da_page_release_reservation(struct page
*page
,
1196 unsigned long offset
)
1199 struct buffer_head
*head
, *bh
;
1200 unsigned int curr_off
= 0;
1201 struct inode
*inode
= page
->mapping
->host
;
1202 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1205 head
= page_buffers(page
);
1208 unsigned int next_off
= curr_off
+ bh
->b_size
;
1210 if ((offset
<= curr_off
) && (buffer_delay(bh
))) {
1212 clear_buffer_delay(bh
);
1213 clear_buffer_da_mapped(bh
);
1215 curr_off
= next_off
;
1216 } while ((bh
= bh
->b_this_page
) != head
);
1218 /* If we have released all the blocks belonging to a cluster, then we
1219 * need to release the reserved space for that cluster. */
1220 num_clusters
= EXT4_NUM_B2C(sbi
, to_release
);
1221 while (num_clusters
> 0) {
1223 lblk
= (page
->index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
)) +
1224 ((num_clusters
- 1) << sbi
->s_cluster_bits
);
1225 if (sbi
->s_cluster_ratio
== 1 ||
1226 !ext4_find_delalloc_cluster(inode
, lblk
, 1))
1227 ext4_da_release_space(inode
, 1);
1234 * Delayed allocation stuff
1238 * mpage_da_submit_io - walks through extent of pages and try to write
1239 * them with writepage() call back
1241 * @mpd->inode: inode
1242 * @mpd->first_page: first page of the extent
1243 * @mpd->next_page: page after the last page of the extent
1245 * By the time mpage_da_submit_io() is called we expect all blocks
1246 * to be allocated. this may be wrong if allocation failed.
1248 * As pages are already locked by write_cache_pages(), we can't use it
1250 static int mpage_da_submit_io(struct mpage_da_data
*mpd
,
1251 struct ext4_map_blocks
*map
)
1253 struct pagevec pvec
;
1254 unsigned long index
, end
;
1255 int ret
= 0, err
, nr_pages
, i
;
1256 struct inode
*inode
= mpd
->inode
;
1257 struct address_space
*mapping
= inode
->i_mapping
;
1258 loff_t size
= i_size_read(inode
);
1259 unsigned int len
, block_start
;
1260 struct buffer_head
*bh
, *page_bufs
= NULL
;
1261 int journal_data
= ext4_should_journal_data(inode
);
1262 sector_t pblock
= 0, cur_logical
= 0;
1263 struct ext4_io_submit io_submit
;
1265 BUG_ON(mpd
->next_page
<= mpd
->first_page
);
1266 memset(&io_submit
, 0, sizeof(io_submit
));
1268 * We need to start from the first_page to the next_page - 1
1269 * to make sure we also write the mapped dirty buffer_heads.
1270 * If we look at mpd->b_blocknr we would only be looking
1271 * at the currently mapped buffer_heads.
1273 index
= mpd
->first_page
;
1274 end
= mpd
->next_page
- 1;
1276 pagevec_init(&pvec
, 0);
1277 while (index
<= end
) {
1278 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
1281 for (i
= 0; i
< nr_pages
; i
++) {
1282 int commit_write
= 0, skip_page
= 0;
1283 struct page
*page
= pvec
.pages
[i
];
1285 index
= page
->index
;
1289 if (index
== size
>> PAGE_CACHE_SHIFT
)
1290 len
= size
& ~PAGE_CACHE_MASK
;
1292 len
= PAGE_CACHE_SIZE
;
1294 cur_logical
= index
<< (PAGE_CACHE_SHIFT
-
1296 pblock
= map
->m_pblk
+ (cur_logical
-
1301 BUG_ON(!PageLocked(page
));
1302 BUG_ON(PageWriteback(page
));
1305 * If the page does not have buffers (for
1306 * whatever reason), try to create them using
1307 * __block_write_begin. If this fails,
1308 * skip the page and move on.
1310 if (!page_has_buffers(page
)) {
1311 if (__block_write_begin(page
, 0, len
,
1312 noalloc_get_block_write
)) {
1320 bh
= page_bufs
= page_buffers(page
);
1325 if (map
&& (cur_logical
>= map
->m_lblk
) &&
1326 (cur_logical
<= (map
->m_lblk
+
1327 (map
->m_len
- 1)))) {
1328 if (buffer_delay(bh
)) {
1329 clear_buffer_delay(bh
);
1330 bh
->b_blocknr
= pblock
;
1332 if (buffer_da_mapped(bh
))
1333 clear_buffer_da_mapped(bh
);
1334 if (buffer_unwritten(bh
) ||
1336 BUG_ON(bh
->b_blocknr
!= pblock
);
1337 if (map
->m_flags
& EXT4_MAP_UNINIT
)
1338 set_buffer_uninit(bh
);
1339 clear_buffer_unwritten(bh
);
1343 * skip page if block allocation undone and
1346 if (ext4_bh_delay_or_unwritten(NULL
, bh
))
1348 bh
= bh
->b_this_page
;
1349 block_start
+= bh
->b_size
;
1352 } while (bh
!= page_bufs
);
1358 /* mark the buffer_heads as dirty & uptodate */
1359 block_commit_write(page
, 0, len
);
1361 clear_page_dirty_for_io(page
);
1363 * Delalloc doesn't support data journalling,
1364 * but eventually maybe we'll lift this
1367 if (unlikely(journal_data
&& PageChecked(page
)))
1368 err
= __ext4_journalled_writepage(page
, len
);
1369 else if (test_opt(inode
->i_sb
, MBLK_IO_SUBMIT
))
1370 err
= ext4_bio_write_page(&io_submit
, page
,
1372 else if (buffer_uninit(page_bufs
)) {
1373 ext4_set_bh_endio(page_bufs
, inode
);
1374 err
= block_write_full_page_endio(page
,
1375 noalloc_get_block_write
,
1376 mpd
->wbc
, ext4_end_io_buffer_write
);
1378 err
= block_write_full_page(page
,
1379 noalloc_get_block_write
, mpd
->wbc
);
1382 mpd
->pages_written
++;
1384 * In error case, we have to continue because
1385 * remaining pages are still locked
1390 pagevec_release(&pvec
);
1392 ext4_io_submit(&io_submit
);
1396 static void ext4_da_block_invalidatepages(struct mpage_da_data
*mpd
)
1400 struct pagevec pvec
;
1401 struct inode
*inode
= mpd
->inode
;
1402 struct address_space
*mapping
= inode
->i_mapping
;
1404 index
= mpd
->first_page
;
1405 end
= mpd
->next_page
- 1;
1406 while (index
<= end
) {
1407 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
1410 for (i
= 0; i
< nr_pages
; i
++) {
1411 struct page
*page
= pvec
.pages
[i
];
1412 if (page
->index
> end
)
1414 BUG_ON(!PageLocked(page
));
1415 BUG_ON(PageWriteback(page
));
1416 block_invalidatepage(page
, 0);
1417 ClearPageUptodate(page
);
1420 index
= pvec
.pages
[nr_pages
- 1]->index
+ 1;
1421 pagevec_release(&pvec
);
1426 static void ext4_print_free_blocks(struct inode
*inode
)
1428 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1429 printk(KERN_CRIT
"Total free blocks count %lld\n",
1430 EXT4_C2B(EXT4_SB(inode
->i_sb
),
1431 ext4_count_free_clusters(inode
->i_sb
)));
1432 printk(KERN_CRIT
"Free/Dirty block details\n");
1433 printk(KERN_CRIT
"free_blocks=%lld\n",
1434 (long long) EXT4_C2B(EXT4_SB(inode
->i_sb
),
1435 percpu_counter_sum(&sbi
->s_freeclusters_counter
)));
1436 printk(KERN_CRIT
"dirty_blocks=%lld\n",
1437 (long long) EXT4_C2B(EXT4_SB(inode
->i_sb
),
1438 percpu_counter_sum(&sbi
->s_dirtyclusters_counter
)));
1439 printk(KERN_CRIT
"Block reservation details\n");
1440 printk(KERN_CRIT
"i_reserved_data_blocks=%u\n",
1441 EXT4_I(inode
)->i_reserved_data_blocks
);
1442 printk(KERN_CRIT
"i_reserved_meta_blocks=%u\n",
1443 EXT4_I(inode
)->i_reserved_meta_blocks
);
1448 * mpage_da_map_and_submit - go through given space, map them
1449 * if necessary, and then submit them for I/O
1451 * @mpd - bh describing space
1453 * The function skips space we know is already mapped to disk blocks.
1456 static void mpage_da_map_and_submit(struct mpage_da_data
*mpd
)
1458 int err
, blks
, get_blocks_flags
;
1459 struct ext4_map_blocks map
, *mapp
= NULL
;
1460 sector_t next
= mpd
->b_blocknr
;
1461 unsigned max_blocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
1462 loff_t disksize
= EXT4_I(mpd
->inode
)->i_disksize
;
1463 handle_t
*handle
= NULL
;
1466 * If the blocks are mapped already, or we couldn't accumulate
1467 * any blocks, then proceed immediately to the submission stage.
1469 if ((mpd
->b_size
== 0) ||
1470 ((mpd
->b_state
& (1 << BH_Mapped
)) &&
1471 !(mpd
->b_state
& (1 << BH_Delay
)) &&
1472 !(mpd
->b_state
& (1 << BH_Unwritten
))))
1475 handle
= ext4_journal_current_handle();
1479 * Call ext4_map_blocks() to allocate any delayed allocation
1480 * blocks, or to convert an uninitialized extent to be
1481 * initialized (in the case where we have written into
1482 * one or more preallocated blocks).
1484 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1485 * indicate that we are on the delayed allocation path. This
1486 * affects functions in many different parts of the allocation
1487 * call path. This flag exists primarily because we don't
1488 * want to change *many* call functions, so ext4_map_blocks()
1489 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1490 * inode's allocation semaphore is taken.
1492 * If the blocks in questions were delalloc blocks, set
1493 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1494 * variables are updated after the blocks have been allocated.
1497 map
.m_len
= max_blocks
;
1498 get_blocks_flags
= EXT4_GET_BLOCKS_CREATE
;
1499 if (ext4_should_dioread_nolock(mpd
->inode
))
1500 get_blocks_flags
|= EXT4_GET_BLOCKS_IO_CREATE_EXT
;
1501 if (mpd
->b_state
& (1 << BH_Delay
))
1502 get_blocks_flags
|= EXT4_GET_BLOCKS_DELALLOC_RESERVE
;
1504 blks
= ext4_map_blocks(handle
, mpd
->inode
, &map
, get_blocks_flags
);
1506 struct super_block
*sb
= mpd
->inode
->i_sb
;
1510 * If get block returns EAGAIN or ENOSPC and there
1511 * appears to be free blocks we will just let
1512 * mpage_da_submit_io() unlock all of the pages.
1517 if (err
== -ENOSPC
&& ext4_count_free_clusters(sb
)) {
1523 * get block failure will cause us to loop in
1524 * writepages, because a_ops->writepage won't be able
1525 * to make progress. The page will be redirtied by
1526 * writepage and writepages will again try to write
1529 if (!(EXT4_SB(sb
)->s_mount_flags
& EXT4_MF_FS_ABORTED
)) {
1530 ext4_msg(sb
, KERN_CRIT
,
1531 "delayed block allocation failed for inode %lu "
1532 "at logical offset %llu with max blocks %zd "
1533 "with error %d", mpd
->inode
->i_ino
,
1534 (unsigned long long) next
,
1535 mpd
->b_size
>> mpd
->inode
->i_blkbits
, err
);
1536 ext4_msg(sb
, KERN_CRIT
,
1537 "This should not happen!! Data will be lost\n");
1539 ext4_print_free_blocks(mpd
->inode
);
1541 /* invalidate all the pages */
1542 ext4_da_block_invalidatepages(mpd
);
1544 /* Mark this page range as having been completed */
1551 if (map
.m_flags
& EXT4_MAP_NEW
) {
1552 struct block_device
*bdev
= mpd
->inode
->i_sb
->s_bdev
;
1555 for (i
= 0; i
< map
.m_len
; i
++)
1556 unmap_underlying_metadata(bdev
, map
.m_pblk
+ i
);
1558 if (ext4_should_order_data(mpd
->inode
)) {
1559 err
= ext4_jbd2_file_inode(handle
, mpd
->inode
);
1561 /* Only if the journal is aborted */
1569 * Update on-disk size along with block allocation.
1571 disksize
= ((loff_t
) next
+ blks
) << mpd
->inode
->i_blkbits
;
1572 if (disksize
> i_size_read(mpd
->inode
))
1573 disksize
= i_size_read(mpd
->inode
);
1574 if (disksize
> EXT4_I(mpd
->inode
)->i_disksize
) {
1575 ext4_update_i_disksize(mpd
->inode
, disksize
);
1576 err
= ext4_mark_inode_dirty(handle
, mpd
->inode
);
1578 ext4_error(mpd
->inode
->i_sb
,
1579 "Failed to mark inode %lu dirty",
1584 mpage_da_submit_io(mpd
, mapp
);
1588 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1589 (1 << BH_Delay) | (1 << BH_Unwritten))
1592 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1594 * @mpd->lbh - extent of blocks
1595 * @logical - logical number of the block in the file
1596 * @bh - bh of the block (used to access block's state)
1598 * the function is used to collect contig. blocks in same state
1600 static void mpage_add_bh_to_extent(struct mpage_da_data
*mpd
,
1601 sector_t logical
, size_t b_size
,
1602 unsigned long b_state
)
1605 int nrblocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
1608 * XXX Don't go larger than mballoc is willing to allocate
1609 * This is a stopgap solution. We eventually need to fold
1610 * mpage_da_submit_io() into this function and then call
1611 * ext4_map_blocks() multiple times in a loop
1613 if (nrblocks
>= 8*1024*1024/mpd
->inode
->i_sb
->s_blocksize
)
1616 /* check if thereserved journal credits might overflow */
1617 if (!(ext4_test_inode_flag(mpd
->inode
, EXT4_INODE_EXTENTS
))) {
1618 if (nrblocks
>= EXT4_MAX_TRANS_DATA
) {
1620 * With non-extent format we are limited by the journal
1621 * credit available. Total credit needed to insert
1622 * nrblocks contiguous blocks is dependent on the
1623 * nrblocks. So limit nrblocks.
1626 } else if ((nrblocks
+ (b_size
>> mpd
->inode
->i_blkbits
)) >
1627 EXT4_MAX_TRANS_DATA
) {
1629 * Adding the new buffer_head would make it cross the
1630 * allowed limit for which we have journal credit
1631 * reserved. So limit the new bh->b_size
1633 b_size
= (EXT4_MAX_TRANS_DATA
- nrblocks
) <<
1634 mpd
->inode
->i_blkbits
;
1635 /* we will do mpage_da_submit_io in the next loop */
1639 * First block in the extent
1641 if (mpd
->b_size
== 0) {
1642 mpd
->b_blocknr
= logical
;
1643 mpd
->b_size
= b_size
;
1644 mpd
->b_state
= b_state
& BH_FLAGS
;
1648 next
= mpd
->b_blocknr
+ nrblocks
;
1650 * Can we merge the block to our big extent?
1652 if (logical
== next
&& (b_state
& BH_FLAGS
) == mpd
->b_state
) {
1653 mpd
->b_size
+= b_size
;
1659 * We couldn't merge the block to our extent, so we
1660 * need to flush current extent and start new one
1662 mpage_da_map_and_submit(mpd
);
1666 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
)
1668 return (buffer_delay(bh
) || buffer_unwritten(bh
)) && buffer_dirty(bh
);
1672 * This function is grabs code from the very beginning of
1673 * ext4_map_blocks, but assumes that the caller is from delayed write
1674 * time. This function looks up the requested blocks and sets the
1675 * buffer delay bit under the protection of i_data_sem.
1677 static int ext4_da_map_blocks(struct inode
*inode
, sector_t iblock
,
1678 struct ext4_map_blocks
*map
,
1679 struct buffer_head
*bh
)
1682 sector_t invalid_block
= ~((sector_t
) 0xffff);
1684 if (invalid_block
< ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
))
1688 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1689 "logical block %lu\n", inode
->i_ino
, map
->m_len
,
1690 (unsigned long) map
->m_lblk
);
1692 * Try to see if we can get the block without requesting a new
1693 * file system block.
1695 down_read((&EXT4_I(inode
)->i_data_sem
));
1696 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
1697 retval
= ext4_ext_map_blocks(NULL
, inode
, map
, 0);
1699 retval
= ext4_ind_map_blocks(NULL
, inode
, map
, 0);
1703 * XXX: __block_prepare_write() unmaps passed block,
1706 /* If the block was allocated from previously allocated cluster,
1707 * then we dont need to reserve it again. */
1708 if (!(map
->m_flags
& EXT4_MAP_FROM_CLUSTER
)) {
1709 retval
= ext4_da_reserve_space(inode
, iblock
);
1711 /* not enough space to reserve */
1715 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1716 * and it should not appear on the bh->b_state.
1718 map
->m_flags
&= ~EXT4_MAP_FROM_CLUSTER
;
1720 map_bh(bh
, inode
->i_sb
, invalid_block
);
1722 set_buffer_delay(bh
);
1726 up_read((&EXT4_I(inode
)->i_data_sem
));
1732 * This is a special get_blocks_t callback which is used by
1733 * ext4_da_write_begin(). It will either return mapped block or
1734 * reserve space for a single block.
1736 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1737 * We also have b_blocknr = -1 and b_bdev initialized properly
1739 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1740 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1741 * initialized properly.
1743 static int ext4_da_get_block_prep(struct inode
*inode
, sector_t iblock
,
1744 struct buffer_head
*bh
, int create
)
1746 struct ext4_map_blocks map
;
1749 BUG_ON(create
== 0);
1750 BUG_ON(bh
->b_size
!= inode
->i_sb
->s_blocksize
);
1752 map
.m_lblk
= iblock
;
1756 * first, we need to know whether the block is allocated already
1757 * preallocated blocks are unmapped but should treated
1758 * the same as allocated blocks.
1760 ret
= ext4_da_map_blocks(inode
, iblock
, &map
, bh
);
1764 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
1765 bh
->b_state
= (bh
->b_state
& ~EXT4_MAP_FLAGS
) | map
.m_flags
;
1767 if (buffer_unwritten(bh
)) {
1768 /* A delayed write to unwritten bh should be marked
1769 * new and mapped. Mapped ensures that we don't do
1770 * get_block multiple times when we write to the same
1771 * offset and new ensures that we do proper zero out
1772 * for partial write.
1775 set_buffer_mapped(bh
);
1781 * This function is used as a standard get_block_t calback function
1782 * when there is no desire to allocate any blocks. It is used as a
1783 * callback function for block_write_begin() and block_write_full_page().
1784 * These functions should only try to map a single block at a time.
1786 * Since this function doesn't do block allocations even if the caller
1787 * requests it by passing in create=1, it is critically important that
1788 * any caller checks to make sure that any buffer heads are returned
1789 * by this function are either all already mapped or marked for
1790 * delayed allocation before calling block_write_full_page(). Otherwise,
1791 * b_blocknr could be left unitialized, and the page write functions will
1792 * be taken by surprise.
1794 static int noalloc_get_block_write(struct inode
*inode
, sector_t iblock
,
1795 struct buffer_head
*bh_result
, int create
)
1797 BUG_ON(bh_result
->b_size
!= inode
->i_sb
->s_blocksize
);
1798 return _ext4_get_block(inode
, iblock
, bh_result
, 0);
1801 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
1807 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
1813 static int __ext4_journalled_writepage(struct page
*page
,
1816 struct address_space
*mapping
= page
->mapping
;
1817 struct inode
*inode
= mapping
->host
;
1818 struct buffer_head
*page_bufs
;
1819 handle_t
*handle
= NULL
;
1823 ClearPageChecked(page
);
1824 page_bufs
= page_buffers(page
);
1826 walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
, bget_one
);
1827 /* As soon as we unlock the page, it can go away, but we have
1828 * references to buffers so we are safe */
1831 handle
= ext4_journal_start(inode
, ext4_writepage_trans_blocks(inode
));
1832 if (IS_ERR(handle
)) {
1833 ret
= PTR_ERR(handle
);
1837 BUG_ON(!ext4_handle_valid(handle
));
1839 ret
= walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
1840 do_journal_get_write_access
);
1842 err
= walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
1846 EXT4_I(inode
)->i_datasync_tid
= handle
->h_transaction
->t_tid
;
1847 err
= ext4_journal_stop(handle
);
1851 walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
, bput_one
);
1852 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1857 static int ext4_set_bh_endio(struct buffer_head
*bh
, struct inode
*inode
);
1858 static void ext4_end_io_buffer_write(struct buffer_head
*bh
, int uptodate
);
1861 * Note that we don't need to start a transaction unless we're journaling data
1862 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1863 * need to file the inode to the transaction's list in ordered mode because if
1864 * we are writing back data added by write(), the inode is already there and if
1865 * we are writing back data modified via mmap(), no one guarantees in which
1866 * transaction the data will hit the disk. In case we are journaling data, we
1867 * cannot start transaction directly because transaction start ranks above page
1868 * lock so we have to do some magic.
1870 * This function can get called via...
1871 * - ext4_da_writepages after taking page lock (have journal handle)
1872 * - journal_submit_inode_data_buffers (no journal handle)
1873 * - shrink_page_list via pdflush (no journal handle)
1874 * - grab_page_cache when doing write_begin (have journal handle)
1876 * We don't do any block allocation in this function. If we have page with
1877 * multiple blocks we need to write those buffer_heads that are mapped. This
1878 * is important for mmaped based write. So if we do with blocksize 1K
1879 * truncate(f, 1024);
1880 * a = mmap(f, 0, 4096);
1882 * truncate(f, 4096);
1883 * we have in the page first buffer_head mapped via page_mkwrite call back
1884 * but other bufer_heads would be unmapped but dirty(dirty done via the
1885 * do_wp_page). So writepage should write the first block. If we modify
1886 * the mmap area beyond 1024 we will again get a page_fault and the
1887 * page_mkwrite callback will do the block allocation and mark the
1888 * buffer_heads mapped.
1890 * We redirty the page if we have any buffer_heads that is either delay or
1891 * unwritten in the page.
1893 * We can get recursively called as show below.
1895 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1898 * But since we don't do any block allocation we should not deadlock.
1899 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1901 static int ext4_writepage(struct page
*page
,
1902 struct writeback_control
*wbc
)
1904 int ret
= 0, commit_write
= 0;
1907 struct buffer_head
*page_bufs
= NULL
;
1908 struct inode
*inode
= page
->mapping
->host
;
1910 trace_ext4_writepage(page
);
1911 size
= i_size_read(inode
);
1912 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
1913 len
= size
& ~PAGE_CACHE_MASK
;
1915 len
= PAGE_CACHE_SIZE
;
1918 * If the page does not have buffers (for whatever reason),
1919 * try to create them using __block_write_begin. If this
1920 * fails, redirty the page and move on.
1922 if (!page_has_buffers(page
)) {
1923 if (__block_write_begin(page
, 0, len
,
1924 noalloc_get_block_write
)) {
1926 redirty_page_for_writepage(wbc
, page
);
1932 page_bufs
= page_buffers(page
);
1933 if (walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
1934 ext4_bh_delay_or_unwritten
)) {
1936 * We don't want to do block allocation, so redirty
1937 * the page and return. We may reach here when we do
1938 * a journal commit via journal_submit_inode_data_buffers.
1939 * We can also reach here via shrink_page_list but it
1940 * should never be for direct reclaim so warn if that
1943 WARN_ON_ONCE((current
->flags
& (PF_MEMALLOC
|PF_KSWAPD
)) ==
1948 /* now mark the buffer_heads as dirty and uptodate */
1949 block_commit_write(page
, 0, len
);
1951 if (PageChecked(page
) && ext4_should_journal_data(inode
))
1953 * It's mmapped pagecache. Add buffers and journal it. There
1954 * doesn't seem much point in redirtying the page here.
1956 return __ext4_journalled_writepage(page
, len
);
1958 if (buffer_uninit(page_bufs
)) {
1959 ext4_set_bh_endio(page_bufs
, inode
);
1960 ret
= block_write_full_page_endio(page
, noalloc_get_block_write
,
1961 wbc
, ext4_end_io_buffer_write
);
1963 ret
= block_write_full_page(page
, noalloc_get_block_write
,
1970 * This is called via ext4_da_writepages() to
1971 * calculate the total number of credits to reserve to fit
1972 * a single extent allocation into a single transaction,
1973 * ext4_da_writpeages() will loop calling this before
1974 * the block allocation.
1977 static int ext4_da_writepages_trans_blocks(struct inode
*inode
)
1979 int max_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
1982 * With non-extent format the journal credit needed to
1983 * insert nrblocks contiguous block is dependent on
1984 * number of contiguous block. So we will limit
1985 * number of contiguous block to a sane value
1987 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) &&
1988 (max_blocks
> EXT4_MAX_TRANS_DATA
))
1989 max_blocks
= EXT4_MAX_TRANS_DATA
;
1991 return ext4_chunk_trans_blocks(inode
, max_blocks
);
1995 * write_cache_pages_da - walk the list of dirty pages of the given
1996 * address space and accumulate pages that need writing, and call
1997 * mpage_da_map_and_submit to map a single contiguous memory region
1998 * and then write them.
2000 static int write_cache_pages_da(struct address_space
*mapping
,
2001 struct writeback_control
*wbc
,
2002 struct mpage_da_data
*mpd
,
2003 pgoff_t
*done_index
)
2005 struct buffer_head
*bh
, *head
;
2006 struct inode
*inode
= mapping
->host
;
2007 struct pagevec pvec
;
2008 unsigned int nr_pages
;
2011 long nr_to_write
= wbc
->nr_to_write
;
2012 int i
, tag
, ret
= 0;
2014 memset(mpd
, 0, sizeof(struct mpage_da_data
));
2017 pagevec_init(&pvec
, 0);
2018 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2019 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
2021 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
2022 tag
= PAGECACHE_TAG_TOWRITE
;
2024 tag
= PAGECACHE_TAG_DIRTY
;
2026 *done_index
= index
;
2027 while (index
<= end
) {
2028 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
2029 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
2033 for (i
= 0; i
< nr_pages
; i
++) {
2034 struct page
*page
= pvec
.pages
[i
];
2037 * At this point, the page may be truncated or
2038 * invalidated (changing page->mapping to NULL), or
2039 * even swizzled back from swapper_space to tmpfs file
2040 * mapping. However, page->index will not change
2041 * because we have a reference on the page.
2043 if (page
->index
> end
)
2046 *done_index
= page
->index
+ 1;
2049 * If we can't merge this page, and we have
2050 * accumulated an contiguous region, write it
2052 if ((mpd
->next_page
!= page
->index
) &&
2053 (mpd
->next_page
!= mpd
->first_page
)) {
2054 mpage_da_map_and_submit(mpd
);
2055 goto ret_extent_tail
;
2061 * If the page is no longer dirty, or its
2062 * mapping no longer corresponds to inode we
2063 * are writing (which means it has been
2064 * truncated or invalidated), or the page is
2065 * already under writeback and we are not
2066 * doing a data integrity writeback, skip the page
2068 if (!PageDirty(page
) ||
2069 (PageWriteback(page
) &&
2070 (wbc
->sync_mode
== WB_SYNC_NONE
)) ||
2071 unlikely(page
->mapping
!= mapping
)) {
2076 wait_on_page_writeback(page
);
2077 BUG_ON(PageWriteback(page
));
2079 if (mpd
->next_page
!= page
->index
)
2080 mpd
->first_page
= page
->index
;
2081 mpd
->next_page
= page
->index
+ 1;
2082 logical
= (sector_t
) page
->index
<<
2083 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2085 if (!page_has_buffers(page
)) {
2086 mpage_add_bh_to_extent(mpd
, logical
,
2088 (1 << BH_Dirty
) | (1 << BH_Uptodate
));
2090 goto ret_extent_tail
;
2093 * Page with regular buffer heads,
2094 * just add all dirty ones
2096 head
= page_buffers(page
);
2099 BUG_ON(buffer_locked(bh
));
2101 * We need to try to allocate
2102 * unmapped blocks in the same page.
2103 * Otherwise we won't make progress
2104 * with the page in ext4_writepage
2106 if (ext4_bh_delay_or_unwritten(NULL
, bh
)) {
2107 mpage_add_bh_to_extent(mpd
, logical
,
2111 goto ret_extent_tail
;
2112 } else if (buffer_dirty(bh
) && (buffer_mapped(bh
))) {
2114 * mapped dirty buffer. We need
2115 * to update the b_state
2116 * because we look at b_state
2117 * in mpage_da_map_blocks. We
2118 * don't update b_size because
2119 * if we find an unmapped
2120 * buffer_head later we need to
2121 * use the b_state flag of that
2124 if (mpd
->b_size
== 0)
2125 mpd
->b_state
= bh
->b_state
& BH_FLAGS
;
2128 } while ((bh
= bh
->b_this_page
) != head
);
2131 if (nr_to_write
> 0) {
2133 if (nr_to_write
== 0 &&
2134 wbc
->sync_mode
== WB_SYNC_NONE
)
2136 * We stop writing back only if we are
2137 * not doing integrity sync. In case of
2138 * integrity sync we have to keep going
2139 * because someone may be concurrently
2140 * dirtying pages, and we might have
2141 * synced a lot of newly appeared dirty
2142 * pages, but have not synced all of the
2148 pagevec_release(&pvec
);
2153 ret
= MPAGE_DA_EXTENT_TAIL
;
2155 pagevec_release(&pvec
);
2161 static int ext4_da_writepages(struct address_space
*mapping
,
2162 struct writeback_control
*wbc
)
2165 int range_whole
= 0;
2166 handle_t
*handle
= NULL
;
2167 struct mpage_da_data mpd
;
2168 struct inode
*inode
= mapping
->host
;
2169 int pages_written
= 0;
2170 unsigned int max_pages
;
2171 int range_cyclic
, cycled
= 1, io_done
= 0;
2172 int needed_blocks
, ret
= 0;
2173 long desired_nr_to_write
, nr_to_writebump
= 0;
2174 loff_t range_start
= wbc
->range_start
;
2175 struct ext4_sb_info
*sbi
= EXT4_SB(mapping
->host
->i_sb
);
2176 pgoff_t done_index
= 0;
2178 struct blk_plug plug
;
2180 trace_ext4_da_writepages(inode
, wbc
);
2183 * No pages to write? This is mainly a kludge to avoid starting
2184 * a transaction for special inodes like journal inode on last iput()
2185 * because that could violate lock ordering on umount
2187 if (!mapping
->nrpages
|| !mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
2191 * If the filesystem has aborted, it is read-only, so return
2192 * right away instead of dumping stack traces later on that
2193 * will obscure the real source of the problem. We test
2194 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2195 * the latter could be true if the filesystem is mounted
2196 * read-only, and in that case, ext4_da_writepages should
2197 * *never* be called, so if that ever happens, we would want
2200 if (unlikely(sbi
->s_mount_flags
& EXT4_MF_FS_ABORTED
))
2203 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
2206 range_cyclic
= wbc
->range_cyclic
;
2207 if (wbc
->range_cyclic
) {
2208 index
= mapping
->writeback_index
;
2211 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
2212 wbc
->range_end
= LLONG_MAX
;
2213 wbc
->range_cyclic
= 0;
2216 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2217 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
2221 * This works around two forms of stupidity. The first is in
2222 * the writeback code, which caps the maximum number of pages
2223 * written to be 1024 pages. This is wrong on multiple
2224 * levels; different architectues have a different page size,
2225 * which changes the maximum amount of data which gets
2226 * written. Secondly, 4 megabytes is way too small. XFS
2227 * forces this value to be 16 megabytes by multiplying
2228 * nr_to_write parameter by four, and then relies on its
2229 * allocator to allocate larger extents to make them
2230 * contiguous. Unfortunately this brings us to the second
2231 * stupidity, which is that ext4's mballoc code only allocates
2232 * at most 2048 blocks. So we force contiguous writes up to
2233 * the number of dirty blocks in the inode, or
2234 * sbi->max_writeback_mb_bump whichever is smaller.
2236 max_pages
= sbi
->s_max_writeback_mb_bump
<< (20 - PAGE_CACHE_SHIFT
);
2237 if (!range_cyclic
&& range_whole
) {
2238 if (wbc
->nr_to_write
== LONG_MAX
)
2239 desired_nr_to_write
= wbc
->nr_to_write
;
2241 desired_nr_to_write
= wbc
->nr_to_write
* 8;
2243 desired_nr_to_write
= ext4_num_dirty_pages(inode
, index
,
2245 if (desired_nr_to_write
> max_pages
)
2246 desired_nr_to_write
= max_pages
;
2248 if (wbc
->nr_to_write
< desired_nr_to_write
) {
2249 nr_to_writebump
= desired_nr_to_write
- wbc
->nr_to_write
;
2250 wbc
->nr_to_write
= desired_nr_to_write
;
2254 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
2255 tag_pages_for_writeback(mapping
, index
, end
);
2257 blk_start_plug(&plug
);
2258 while (!ret
&& wbc
->nr_to_write
> 0) {
2261 * we insert one extent at a time. So we need
2262 * credit needed for single extent allocation.
2263 * journalled mode is currently not supported
2266 BUG_ON(ext4_should_journal_data(inode
));
2267 needed_blocks
= ext4_da_writepages_trans_blocks(inode
);
2269 /* start a new transaction*/
2270 handle
= ext4_journal_start(inode
, needed_blocks
);
2271 if (IS_ERR(handle
)) {
2272 ret
= PTR_ERR(handle
);
2273 ext4_msg(inode
->i_sb
, KERN_CRIT
, "%s: jbd2_start: "
2274 "%ld pages, ino %lu; err %d", __func__
,
2275 wbc
->nr_to_write
, inode
->i_ino
, ret
);
2276 blk_finish_plug(&plug
);
2277 goto out_writepages
;
2281 * Now call write_cache_pages_da() to find the next
2282 * contiguous region of logical blocks that need
2283 * blocks to be allocated by ext4 and submit them.
2285 ret
= write_cache_pages_da(mapping
, wbc
, &mpd
, &done_index
);
2287 * If we have a contiguous extent of pages and we
2288 * haven't done the I/O yet, map the blocks and submit
2291 if (!mpd
.io_done
&& mpd
.next_page
!= mpd
.first_page
) {
2292 mpage_da_map_and_submit(&mpd
);
2293 ret
= MPAGE_DA_EXTENT_TAIL
;
2295 trace_ext4_da_write_pages(inode
, &mpd
);
2296 wbc
->nr_to_write
-= mpd
.pages_written
;
2298 ext4_journal_stop(handle
);
2300 if ((mpd
.retval
== -ENOSPC
) && sbi
->s_journal
) {
2301 /* commit the transaction which would
2302 * free blocks released in the transaction
2305 jbd2_journal_force_commit_nested(sbi
->s_journal
);
2307 } else if (ret
== MPAGE_DA_EXTENT_TAIL
) {
2309 * Got one extent now try with rest of the pages.
2310 * If mpd.retval is set -EIO, journal is aborted.
2311 * So we don't need to write any more.
2313 pages_written
+= mpd
.pages_written
;
2316 } else if (wbc
->nr_to_write
)
2318 * There is no more writeout needed
2319 * or we requested for a noblocking writeout
2320 * and we found the device congested
2324 blk_finish_plug(&plug
);
2325 if (!io_done
&& !cycled
) {
2328 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
2329 wbc
->range_end
= mapping
->writeback_index
- 1;
2334 wbc
->range_cyclic
= range_cyclic
;
2335 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
2337 * set the writeback_index so that range_cyclic
2338 * mode will write it back later
2340 mapping
->writeback_index
= done_index
;
2343 wbc
->nr_to_write
-= nr_to_writebump
;
2344 wbc
->range_start
= range_start
;
2345 trace_ext4_da_writepages_result(inode
, wbc
, ret
, pages_written
);
2349 #define FALL_BACK_TO_NONDELALLOC 1
2350 static int ext4_nonda_switch(struct super_block
*sb
)
2352 s64 free_blocks
, dirty_blocks
;
2353 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2356 * switch to non delalloc mode if we are running low
2357 * on free block. The free block accounting via percpu
2358 * counters can get slightly wrong with percpu_counter_batch getting
2359 * accumulated on each CPU without updating global counters
2360 * Delalloc need an accurate free block accounting. So switch
2361 * to non delalloc when we are near to error range.
2363 free_blocks
= EXT4_C2B(sbi
,
2364 percpu_counter_read_positive(&sbi
->s_freeclusters_counter
));
2365 dirty_blocks
= percpu_counter_read_positive(&sbi
->s_dirtyclusters_counter
);
2366 if (2 * free_blocks
< 3 * dirty_blocks
||
2367 free_blocks
< (dirty_blocks
+ EXT4_FREECLUSTERS_WATERMARK
)) {
2369 * free block count is less than 150% of dirty blocks
2370 * or free blocks is less than watermark
2375 * Even if we don't switch but are nearing capacity,
2376 * start pushing delalloc when 1/2 of free blocks are dirty.
2378 if (free_blocks
< 2 * dirty_blocks
)
2379 writeback_inodes_sb_if_idle(sb
, WB_REASON_FS_FREE_SPACE
);
2384 static int ext4_da_write_begin(struct file
*file
, struct address_space
*mapping
,
2385 loff_t pos
, unsigned len
, unsigned flags
,
2386 struct page
**pagep
, void **fsdata
)
2388 int ret
, retries
= 0;
2391 struct inode
*inode
= mapping
->host
;
2394 index
= pos
>> PAGE_CACHE_SHIFT
;
2396 if (ext4_nonda_switch(inode
->i_sb
)) {
2397 *fsdata
= (void *)FALL_BACK_TO_NONDELALLOC
;
2398 return ext4_write_begin(file
, mapping
, pos
,
2399 len
, flags
, pagep
, fsdata
);
2401 *fsdata
= (void *)0;
2402 trace_ext4_da_write_begin(inode
, pos
, len
, flags
);
2405 * With delayed allocation, we don't log the i_disksize update
2406 * if there is delayed block allocation. But we still need
2407 * to journalling the i_disksize update if writes to the end
2408 * of file which has an already mapped buffer.
2410 handle
= ext4_journal_start(inode
, 1);
2411 if (IS_ERR(handle
)) {
2412 ret
= PTR_ERR(handle
);
2415 /* We cannot recurse into the filesystem as the transaction is already
2417 flags
|= AOP_FLAG_NOFS
;
2419 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2421 ext4_journal_stop(handle
);
2427 ret
= __block_write_begin(page
, pos
, len
, ext4_da_get_block_prep
);
2430 ext4_journal_stop(handle
);
2431 page_cache_release(page
);
2433 * block_write_begin may have instantiated a few blocks
2434 * outside i_size. Trim these off again. Don't need
2435 * i_size_read because we hold i_mutex.
2437 if (pos
+ len
> inode
->i_size
)
2438 ext4_truncate_failed_write(inode
);
2441 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
2448 * Check if we should update i_disksize
2449 * when write to the end of file but not require block allocation
2451 static int ext4_da_should_update_i_disksize(struct page
*page
,
2452 unsigned long offset
)
2454 struct buffer_head
*bh
;
2455 struct inode
*inode
= page
->mapping
->host
;
2459 bh
= page_buffers(page
);
2460 idx
= offset
>> inode
->i_blkbits
;
2462 for (i
= 0; i
< idx
; i
++)
2463 bh
= bh
->b_this_page
;
2465 if (!buffer_mapped(bh
) || (buffer_delay(bh
)) || buffer_unwritten(bh
))
2470 static int ext4_da_write_end(struct file
*file
,
2471 struct address_space
*mapping
,
2472 loff_t pos
, unsigned len
, unsigned copied
,
2473 struct page
*page
, void *fsdata
)
2475 struct inode
*inode
= mapping
->host
;
2477 handle_t
*handle
= ext4_journal_current_handle();
2479 unsigned long start
, end
;
2480 int write_mode
= (int)(unsigned long)fsdata
;
2482 if (write_mode
== FALL_BACK_TO_NONDELALLOC
) {
2483 if (ext4_should_order_data(inode
)) {
2484 return ext4_ordered_write_end(file
, mapping
, pos
,
2485 len
, copied
, page
, fsdata
);
2486 } else if (ext4_should_writeback_data(inode
)) {
2487 return ext4_writeback_write_end(file
, mapping
, pos
,
2488 len
, copied
, page
, fsdata
);
2494 trace_ext4_da_write_end(inode
, pos
, len
, copied
);
2495 start
= pos
& (PAGE_CACHE_SIZE
- 1);
2496 end
= start
+ copied
- 1;
2499 * generic_write_end() will run mark_inode_dirty() if i_size
2500 * changes. So let's piggyback the i_disksize mark_inode_dirty
2504 new_i_size
= pos
+ copied
;
2505 if (copied
&& new_i_size
> EXT4_I(inode
)->i_disksize
) {
2506 if (ext4_da_should_update_i_disksize(page
, end
)) {
2507 down_write(&EXT4_I(inode
)->i_data_sem
);
2508 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
2510 * Updating i_disksize when extending file
2511 * without needing block allocation
2513 if (ext4_should_order_data(inode
))
2514 ret
= ext4_jbd2_file_inode(handle
,
2517 EXT4_I(inode
)->i_disksize
= new_i_size
;
2519 up_write(&EXT4_I(inode
)->i_data_sem
);
2520 /* We need to mark inode dirty even if
2521 * new_i_size is less that inode->i_size
2522 * bu greater than i_disksize.(hint delalloc)
2524 ext4_mark_inode_dirty(handle
, inode
);
2527 ret2
= generic_write_end(file
, mapping
, pos
, len
, copied
,
2532 ret2
= ext4_journal_stop(handle
);
2536 return ret
? ret
: copied
;
2539 static void ext4_da_invalidatepage(struct page
*page
, unsigned long offset
)
2542 * Drop reserved blocks
2544 BUG_ON(!PageLocked(page
));
2545 if (!page_has_buffers(page
))
2548 ext4_da_page_release_reservation(page
, offset
);
2551 ext4_invalidatepage(page
, offset
);
2557 * Force all delayed allocation blocks to be allocated for a given inode.
2559 int ext4_alloc_da_blocks(struct inode
*inode
)
2561 trace_ext4_alloc_da_blocks(inode
);
2563 if (!EXT4_I(inode
)->i_reserved_data_blocks
&&
2564 !EXT4_I(inode
)->i_reserved_meta_blocks
)
2568 * We do something simple for now. The filemap_flush() will
2569 * also start triggering a write of the data blocks, which is
2570 * not strictly speaking necessary (and for users of
2571 * laptop_mode, not even desirable). However, to do otherwise
2572 * would require replicating code paths in:
2574 * ext4_da_writepages() ->
2575 * write_cache_pages() ---> (via passed in callback function)
2576 * __mpage_da_writepage() -->
2577 * mpage_add_bh_to_extent()
2578 * mpage_da_map_blocks()
2580 * The problem is that write_cache_pages(), located in
2581 * mm/page-writeback.c, marks pages clean in preparation for
2582 * doing I/O, which is not desirable if we're not planning on
2585 * We could call write_cache_pages(), and then redirty all of
2586 * the pages by calling redirty_page_for_writepage() but that
2587 * would be ugly in the extreme. So instead we would need to
2588 * replicate parts of the code in the above functions,
2589 * simplifying them because we wouldn't actually intend to
2590 * write out the pages, but rather only collect contiguous
2591 * logical block extents, call the multi-block allocator, and
2592 * then update the buffer heads with the block allocations.
2594 * For now, though, we'll cheat by calling filemap_flush(),
2595 * which will map the blocks, and start the I/O, but not
2596 * actually wait for the I/O to complete.
2598 return filemap_flush(inode
->i_mapping
);
2602 * bmap() is special. It gets used by applications such as lilo and by
2603 * the swapper to find the on-disk block of a specific piece of data.
2605 * Naturally, this is dangerous if the block concerned is still in the
2606 * journal. If somebody makes a swapfile on an ext4 data-journaling
2607 * filesystem and enables swap, then they may get a nasty shock when the
2608 * data getting swapped to that swapfile suddenly gets overwritten by
2609 * the original zero's written out previously to the journal and
2610 * awaiting writeback in the kernel's buffer cache.
2612 * So, if we see any bmap calls here on a modified, data-journaled file,
2613 * take extra steps to flush any blocks which might be in the cache.
2615 static sector_t
ext4_bmap(struct address_space
*mapping
, sector_t block
)
2617 struct inode
*inode
= mapping
->host
;
2621 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
) &&
2622 test_opt(inode
->i_sb
, DELALLOC
)) {
2624 * With delalloc we want to sync the file
2625 * so that we can make sure we allocate
2628 filemap_write_and_wait(mapping
);
2631 if (EXT4_JOURNAL(inode
) &&
2632 ext4_test_inode_state(inode
, EXT4_STATE_JDATA
)) {
2634 * This is a REALLY heavyweight approach, but the use of
2635 * bmap on dirty files is expected to be extremely rare:
2636 * only if we run lilo or swapon on a freshly made file
2637 * do we expect this to happen.
2639 * (bmap requires CAP_SYS_RAWIO so this does not
2640 * represent an unprivileged user DOS attack --- we'd be
2641 * in trouble if mortal users could trigger this path at
2644 * NB. EXT4_STATE_JDATA is not set on files other than
2645 * regular files. If somebody wants to bmap a directory
2646 * or symlink and gets confused because the buffer
2647 * hasn't yet been flushed to disk, they deserve
2648 * everything they get.
2651 ext4_clear_inode_state(inode
, EXT4_STATE_JDATA
);
2652 journal
= EXT4_JOURNAL(inode
);
2653 jbd2_journal_lock_updates(journal
);
2654 err
= jbd2_journal_flush(journal
);
2655 jbd2_journal_unlock_updates(journal
);
2661 return generic_block_bmap(mapping
, block
, ext4_get_block
);
2664 static int ext4_readpage(struct file
*file
, struct page
*page
)
2666 trace_ext4_readpage(page
);
2667 return mpage_readpage(page
, ext4_get_block
);
2671 ext4_readpages(struct file
*file
, struct address_space
*mapping
,
2672 struct list_head
*pages
, unsigned nr_pages
)
2674 return mpage_readpages(mapping
, pages
, nr_pages
, ext4_get_block
);
2677 static void ext4_invalidatepage_free_endio(struct page
*page
, unsigned long offset
)
2679 struct buffer_head
*head
, *bh
;
2680 unsigned int curr_off
= 0;
2682 if (!page_has_buffers(page
))
2684 head
= bh
= page_buffers(page
);
2686 if (offset
<= curr_off
&& test_clear_buffer_uninit(bh
)
2688 ext4_free_io_end(bh
->b_private
);
2689 bh
->b_private
= NULL
;
2690 bh
->b_end_io
= NULL
;
2692 curr_off
= curr_off
+ bh
->b_size
;
2693 bh
= bh
->b_this_page
;
2694 } while (bh
!= head
);
2697 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
)
2699 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
2701 trace_ext4_invalidatepage(page
, offset
);
2704 * free any io_end structure allocated for buffers to be discarded
2706 if (ext4_should_dioread_nolock(page
->mapping
->host
))
2707 ext4_invalidatepage_free_endio(page
, offset
);
2709 * If it's a full truncate we just forget about the pending dirtying
2712 ClearPageChecked(page
);
2715 jbd2_journal_invalidatepage(journal
, page
, offset
);
2717 block_invalidatepage(page
, offset
);
2720 static int ext4_releasepage(struct page
*page
, gfp_t wait
)
2722 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
2724 trace_ext4_releasepage(page
);
2726 WARN_ON(PageChecked(page
));
2727 if (!page_has_buffers(page
))
2730 return jbd2_journal_try_to_free_buffers(journal
, page
, wait
);
2732 return try_to_free_buffers(page
);
2736 * ext4_get_block used when preparing for a DIO write or buffer write.
2737 * We allocate an uinitialized extent if blocks haven't been allocated.
2738 * The extent will be converted to initialized after the IO is complete.
2740 static int ext4_get_block_write(struct inode
*inode
, sector_t iblock
,
2741 struct buffer_head
*bh_result
, int create
)
2743 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2744 inode
->i_ino
, create
);
2745 return _ext4_get_block(inode
, iblock
, bh_result
,
2746 EXT4_GET_BLOCKS_IO_CREATE_EXT
);
2749 static void ext4_end_io_dio(struct kiocb
*iocb
, loff_t offset
,
2750 ssize_t size
, void *private, int ret
,
2753 struct inode
*inode
= iocb
->ki_filp
->f_path
.dentry
->d_inode
;
2754 ext4_io_end_t
*io_end
= iocb
->private;
2755 struct workqueue_struct
*wq
;
2756 unsigned long flags
;
2757 struct ext4_inode_info
*ei
;
2759 /* if not async direct IO or dio with 0 bytes write, just return */
2760 if (!io_end
|| !size
)
2763 ext_debug("ext4_end_io_dio(): io_end 0x%p"
2764 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
2765 iocb
->private, io_end
->inode
->i_ino
, iocb
, offset
,
2768 iocb
->private = NULL
;
2770 /* if not aio dio with unwritten extents, just free io and return */
2771 if (!(io_end
->flag
& EXT4_IO_END_UNWRITTEN
)) {
2772 ext4_free_io_end(io_end
);
2775 aio_complete(iocb
, ret
, 0);
2776 inode_dio_done(inode
);
2780 io_end
->offset
= offset
;
2781 io_end
->size
= size
;
2783 io_end
->iocb
= iocb
;
2784 io_end
->result
= ret
;
2786 wq
= EXT4_SB(io_end
->inode
->i_sb
)->dio_unwritten_wq
;
2788 /* Add the io_end to per-inode completed aio dio list*/
2789 ei
= EXT4_I(io_end
->inode
);
2790 spin_lock_irqsave(&ei
->i_completed_io_lock
, flags
);
2791 list_add_tail(&io_end
->list
, &ei
->i_completed_io_list
);
2792 spin_unlock_irqrestore(&ei
->i_completed_io_lock
, flags
);
2794 /* queue the work to convert unwritten extents to written */
2795 queue_work(wq
, &io_end
->work
);
2797 /* XXX: probably should move into the real I/O completion handler */
2798 inode_dio_done(inode
);
2801 static void ext4_end_io_buffer_write(struct buffer_head
*bh
, int uptodate
)
2803 ext4_io_end_t
*io_end
= bh
->b_private
;
2804 struct workqueue_struct
*wq
;
2805 struct inode
*inode
;
2806 unsigned long flags
;
2808 if (!test_clear_buffer_uninit(bh
) || !io_end
)
2811 if (!(io_end
->inode
->i_sb
->s_flags
& MS_ACTIVE
)) {
2812 printk("sb umounted, discard end_io request for inode %lu\n",
2813 io_end
->inode
->i_ino
);
2814 ext4_free_io_end(io_end
);
2819 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2820 * but being more careful is always safe for the future change.
2822 inode
= io_end
->inode
;
2823 ext4_set_io_unwritten_flag(inode
, io_end
);
2825 /* Add the io_end to per-inode completed io list*/
2826 spin_lock_irqsave(&EXT4_I(inode
)->i_completed_io_lock
, flags
);
2827 list_add_tail(&io_end
->list
, &EXT4_I(inode
)->i_completed_io_list
);
2828 spin_unlock_irqrestore(&EXT4_I(inode
)->i_completed_io_lock
, flags
);
2830 wq
= EXT4_SB(inode
->i_sb
)->dio_unwritten_wq
;
2831 /* queue the work to convert unwritten extents to written */
2832 queue_work(wq
, &io_end
->work
);
2834 bh
->b_private
= NULL
;
2835 bh
->b_end_io
= NULL
;
2836 clear_buffer_uninit(bh
);
2837 end_buffer_async_write(bh
, uptodate
);
2840 static int ext4_set_bh_endio(struct buffer_head
*bh
, struct inode
*inode
)
2842 ext4_io_end_t
*io_end
;
2843 struct page
*page
= bh
->b_page
;
2844 loff_t offset
= (sector_t
)page
->index
<< PAGE_CACHE_SHIFT
;
2845 size_t size
= bh
->b_size
;
2848 io_end
= ext4_init_io_end(inode
, GFP_ATOMIC
);
2850 pr_warn_ratelimited("%s: allocation fail\n", __func__
);
2854 io_end
->offset
= offset
;
2855 io_end
->size
= size
;
2857 * We need to hold a reference to the page to make sure it
2858 * doesn't get evicted before ext4_end_io_work() has a chance
2859 * to convert the extent from written to unwritten.
2861 io_end
->page
= page
;
2862 get_page(io_end
->page
);
2864 bh
->b_private
= io_end
;
2865 bh
->b_end_io
= ext4_end_io_buffer_write
;
2870 * For ext4 extent files, ext4 will do direct-io write to holes,
2871 * preallocated extents, and those write extend the file, no need to
2872 * fall back to buffered IO.
2874 * For holes, we fallocate those blocks, mark them as uninitialized
2875 * If those blocks were preallocated, we mark sure they are splited, but
2876 * still keep the range to write as uninitialized.
2878 * The unwrritten extents will be converted to written when DIO is completed.
2879 * For async direct IO, since the IO may still pending when return, we
2880 * set up an end_io call back function, which will do the conversion
2881 * when async direct IO completed.
2883 * If the O_DIRECT write will extend the file then add this inode to the
2884 * orphan list. So recovery will truncate it back to the original size
2885 * if the machine crashes during the write.
2888 static ssize_t
ext4_ext_direct_IO(int rw
, struct kiocb
*iocb
,
2889 const struct iovec
*iov
, loff_t offset
,
2890 unsigned long nr_segs
)
2892 struct file
*file
= iocb
->ki_filp
;
2893 struct inode
*inode
= file
->f_mapping
->host
;
2895 size_t count
= iov_length(iov
, nr_segs
);
2897 loff_t final_size
= offset
+ count
;
2898 if (rw
== WRITE
&& final_size
<= inode
->i_size
) {
2900 * We could direct write to holes and fallocate.
2902 * Allocated blocks to fill the hole are marked as uninitialized
2903 * to prevent parallel buffered read to expose the stale data
2904 * before DIO complete the data IO.
2906 * As to previously fallocated extents, ext4 get_block
2907 * will just simply mark the buffer mapped but still
2908 * keep the extents uninitialized.
2910 * for non AIO case, we will convert those unwritten extents
2911 * to written after return back from blockdev_direct_IO.
2913 * for async DIO, the conversion needs to be defered when
2914 * the IO is completed. The ext4 end_io callback function
2915 * will be called to take care of the conversion work.
2916 * Here for async case, we allocate an io_end structure to
2919 iocb
->private = NULL
;
2920 EXT4_I(inode
)->cur_aio_dio
= NULL
;
2921 if (!is_sync_kiocb(iocb
)) {
2922 iocb
->private = ext4_init_io_end(inode
, GFP_NOFS
);
2926 * we save the io structure for current async
2927 * direct IO, so that later ext4_map_blocks()
2928 * could flag the io structure whether there
2929 * is a unwritten extents needs to be converted
2930 * when IO is completed.
2932 EXT4_I(inode
)->cur_aio_dio
= iocb
->private;
2935 ret
= __blockdev_direct_IO(rw
, iocb
, inode
,
2936 inode
->i_sb
->s_bdev
, iov
,
2938 ext4_get_block_write
,
2941 DIO_LOCKING
| DIO_SKIP_HOLES
);
2943 EXT4_I(inode
)->cur_aio_dio
= NULL
;
2945 * The io_end structure takes a reference to the inode,
2946 * that structure needs to be destroyed and the
2947 * reference to the inode need to be dropped, when IO is
2948 * complete, even with 0 byte write, or failed.
2950 * In the successful AIO DIO case, the io_end structure will be
2951 * desctroyed and the reference to the inode will be dropped
2952 * after the end_io call back function is called.
2954 * In the case there is 0 byte write, or error case, since
2955 * VFS direct IO won't invoke the end_io call back function,
2956 * we need to free the end_io structure here.
2958 if (ret
!= -EIOCBQUEUED
&& ret
<= 0 && iocb
->private) {
2959 ext4_free_io_end(iocb
->private);
2960 iocb
->private = NULL
;
2961 } else if (ret
> 0 && ext4_test_inode_state(inode
,
2962 EXT4_STATE_DIO_UNWRITTEN
)) {
2965 * for non AIO case, since the IO is already
2966 * completed, we could do the conversion right here
2968 err
= ext4_convert_unwritten_extents(inode
,
2972 ext4_clear_inode_state(inode
, EXT4_STATE_DIO_UNWRITTEN
);
2977 /* for write the the end of file case, we fall back to old way */
2978 return ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
2981 static ssize_t
ext4_direct_IO(int rw
, struct kiocb
*iocb
,
2982 const struct iovec
*iov
, loff_t offset
,
2983 unsigned long nr_segs
)
2985 struct file
*file
= iocb
->ki_filp
;
2986 struct inode
*inode
= file
->f_mapping
->host
;
2990 * If we are doing data journalling we don't support O_DIRECT
2992 if (ext4_should_journal_data(inode
))
2995 trace_ext4_direct_IO_enter(inode
, offset
, iov_length(iov
, nr_segs
), rw
);
2996 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
2997 ret
= ext4_ext_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
2999 ret
= ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3000 trace_ext4_direct_IO_exit(inode
, offset
,
3001 iov_length(iov
, nr_segs
), rw
, ret
);
3006 * Pages can be marked dirty completely asynchronously from ext4's journalling
3007 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3008 * much here because ->set_page_dirty is called under VFS locks. The page is
3009 * not necessarily locked.
3011 * We cannot just dirty the page and leave attached buffers clean, because the
3012 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3013 * or jbddirty because all the journalling code will explode.
3015 * So what we do is to mark the page "pending dirty" and next time writepage
3016 * is called, propagate that into the buffers appropriately.
3018 static int ext4_journalled_set_page_dirty(struct page
*page
)
3020 SetPageChecked(page
);
3021 return __set_page_dirty_nobuffers(page
);
3024 static const struct address_space_operations ext4_ordered_aops
= {
3025 .readpage
= ext4_readpage
,
3026 .readpages
= ext4_readpages
,
3027 .writepage
= ext4_writepage
,
3028 .write_begin
= ext4_write_begin
,
3029 .write_end
= ext4_ordered_write_end
,
3031 .invalidatepage
= ext4_invalidatepage
,
3032 .releasepage
= ext4_releasepage
,
3033 .direct_IO
= ext4_direct_IO
,
3034 .migratepage
= buffer_migrate_page
,
3035 .is_partially_uptodate
= block_is_partially_uptodate
,
3036 .error_remove_page
= generic_error_remove_page
,
3039 static const struct address_space_operations ext4_writeback_aops
= {
3040 .readpage
= ext4_readpage
,
3041 .readpages
= ext4_readpages
,
3042 .writepage
= ext4_writepage
,
3043 .write_begin
= ext4_write_begin
,
3044 .write_end
= ext4_writeback_write_end
,
3046 .invalidatepage
= ext4_invalidatepage
,
3047 .releasepage
= ext4_releasepage
,
3048 .direct_IO
= ext4_direct_IO
,
3049 .migratepage
= buffer_migrate_page
,
3050 .is_partially_uptodate
= block_is_partially_uptodate
,
3051 .error_remove_page
= generic_error_remove_page
,
3054 static const struct address_space_operations ext4_journalled_aops
= {
3055 .readpage
= ext4_readpage
,
3056 .readpages
= ext4_readpages
,
3057 .writepage
= ext4_writepage
,
3058 .write_begin
= ext4_write_begin
,
3059 .write_end
= ext4_journalled_write_end
,
3060 .set_page_dirty
= ext4_journalled_set_page_dirty
,
3062 .invalidatepage
= ext4_invalidatepage
,
3063 .releasepage
= ext4_releasepage
,
3064 .direct_IO
= ext4_direct_IO
,
3065 .is_partially_uptodate
= block_is_partially_uptodate
,
3066 .error_remove_page
= generic_error_remove_page
,
3069 static const struct address_space_operations ext4_da_aops
= {
3070 .readpage
= ext4_readpage
,
3071 .readpages
= ext4_readpages
,
3072 .writepage
= ext4_writepage
,
3073 .writepages
= ext4_da_writepages
,
3074 .write_begin
= ext4_da_write_begin
,
3075 .write_end
= ext4_da_write_end
,
3077 .invalidatepage
= ext4_da_invalidatepage
,
3078 .releasepage
= ext4_releasepage
,
3079 .direct_IO
= ext4_direct_IO
,
3080 .migratepage
= buffer_migrate_page
,
3081 .is_partially_uptodate
= block_is_partially_uptodate
,
3082 .error_remove_page
= generic_error_remove_page
,
3085 void ext4_set_aops(struct inode
*inode
)
3087 if (ext4_should_order_data(inode
) &&
3088 test_opt(inode
->i_sb
, DELALLOC
))
3089 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3090 else if (ext4_should_order_data(inode
))
3091 inode
->i_mapping
->a_ops
= &ext4_ordered_aops
;
3092 else if (ext4_should_writeback_data(inode
) &&
3093 test_opt(inode
->i_sb
, DELALLOC
))
3094 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3095 else if (ext4_should_writeback_data(inode
))
3096 inode
->i_mapping
->a_ops
= &ext4_writeback_aops
;
3098 inode
->i_mapping
->a_ops
= &ext4_journalled_aops
;
3103 * ext4_discard_partial_page_buffers()
3104 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3105 * This function finds and locks the page containing the offset
3106 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3107 * Calling functions that already have the page locked should call
3108 * ext4_discard_partial_page_buffers_no_lock directly.
3110 int ext4_discard_partial_page_buffers(handle_t
*handle
,
3111 struct address_space
*mapping
, loff_t from
,
3112 loff_t length
, int flags
)
3114 struct inode
*inode
= mapping
->host
;
3118 page
= find_or_create_page(mapping
, from
>> PAGE_CACHE_SHIFT
,
3119 mapping_gfp_mask(mapping
) & ~__GFP_FS
);
3123 err
= ext4_discard_partial_page_buffers_no_lock(handle
, inode
, page
,
3124 from
, length
, flags
);
3127 page_cache_release(page
);
3132 * ext4_discard_partial_page_buffers_no_lock()
3133 * Zeros a page range of length 'length' starting from offset 'from'.
3134 * Buffer heads that correspond to the block aligned regions of the
3135 * zeroed range will be unmapped. Unblock aligned regions
3136 * will have the corresponding buffer head mapped if needed so that
3137 * that region of the page can be updated with the partial zero out.
3139 * This function assumes that the page has already been locked. The
3140 * The range to be discarded must be contained with in the given page.
3141 * If the specified range exceeds the end of the page it will be shortened
3142 * to the end of the page that corresponds to 'from'. This function is
3143 * appropriate for updating a page and it buffer heads to be unmapped and
3144 * zeroed for blocks that have been either released, or are going to be
3147 * handle: The journal handle
3148 * inode: The files inode
3149 * page: A locked page that contains the offset "from"
3150 * from: The starting byte offset (from the begining of the file)
3151 * to begin discarding
3152 * len: The length of bytes to discard
3153 * flags: Optional flags that may be used:
3155 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3156 * Only zero the regions of the page whose buffer heads
3157 * have already been unmapped. This flag is appropriate
3158 * for updateing the contents of a page whose blocks may
3159 * have already been released, and we only want to zero
3160 * out the regions that correspond to those released blocks.
3162 * Returns zero on sucess or negative on failure.
3164 int ext4_discard_partial_page_buffers_no_lock(handle_t
*handle
,
3165 struct inode
*inode
, struct page
*page
, loff_t from
,
3166 loff_t length
, int flags
)
3168 ext4_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
3169 unsigned int offset
= from
& (PAGE_CACHE_SIZE
-1);
3170 unsigned int blocksize
, max
, pos
;
3172 struct buffer_head
*bh
;
3175 blocksize
= inode
->i_sb
->s_blocksize
;
3176 max
= PAGE_CACHE_SIZE
- offset
;
3178 if (index
!= page
->index
)
3182 * correct length if it does not fall between
3183 * 'from' and the end of the page
3185 if (length
> max
|| length
< 0)
3188 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
3190 if (!page_has_buffers(page
))
3191 create_empty_buffers(page
, blocksize
, 0);
3193 /* Find the buffer that contains "offset" */
3194 bh
= page_buffers(page
);
3196 while (offset
>= pos
) {
3197 bh
= bh
->b_this_page
;
3203 while (pos
< offset
+ length
) {
3204 unsigned int end_of_block
, range_to_discard
;
3208 /* The length of space left to zero and unmap */
3209 range_to_discard
= offset
+ length
- pos
;
3211 /* The length of space until the end of the block */
3212 end_of_block
= blocksize
- (pos
& (blocksize
-1));
3215 * Do not unmap or zero past end of block
3216 * for this buffer head
3218 if (range_to_discard
> end_of_block
)
3219 range_to_discard
= end_of_block
;
3223 * Skip this buffer head if we are only zeroing unampped
3224 * regions of the page
3226 if (flags
& EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
&&
3230 /* If the range is block aligned, unmap */
3231 if (range_to_discard
== blocksize
) {
3232 clear_buffer_dirty(bh
);
3234 clear_buffer_mapped(bh
);
3235 clear_buffer_req(bh
);
3236 clear_buffer_new(bh
);
3237 clear_buffer_delay(bh
);
3238 clear_buffer_unwritten(bh
);
3239 clear_buffer_uptodate(bh
);
3240 zero_user(page
, pos
, range_to_discard
);
3241 BUFFER_TRACE(bh
, "Buffer discarded");
3246 * If this block is not completely contained in the range
3247 * to be discarded, then it is not going to be released. Because
3248 * we need to keep this block, we need to make sure this part
3249 * of the page is uptodate before we modify it by writeing
3250 * partial zeros on it.
3252 if (!buffer_mapped(bh
)) {
3254 * Buffer head must be mapped before we can read
3257 BUFFER_TRACE(bh
, "unmapped");
3258 ext4_get_block(inode
, iblock
, bh
, 0);
3259 /* unmapped? It's a hole - nothing to do */
3260 if (!buffer_mapped(bh
)) {
3261 BUFFER_TRACE(bh
, "still unmapped");
3266 /* Ok, it's mapped. Make sure it's up-to-date */
3267 if (PageUptodate(page
))
3268 set_buffer_uptodate(bh
);
3270 if (!buffer_uptodate(bh
)) {
3272 ll_rw_block(READ
, 1, &bh
);
3274 /* Uhhuh. Read error. Complain and punt.*/
3275 if (!buffer_uptodate(bh
))
3279 if (ext4_should_journal_data(inode
)) {
3280 BUFFER_TRACE(bh
, "get write access");
3281 err
= ext4_journal_get_write_access(handle
, bh
);
3286 zero_user(page
, pos
, range_to_discard
);
3289 if (ext4_should_journal_data(inode
)) {
3290 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
3292 mark_buffer_dirty(bh
);
3294 BUFFER_TRACE(bh
, "Partial buffer zeroed");
3296 bh
= bh
->b_this_page
;
3298 pos
+= range_to_discard
;
3305 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3306 * up to the end of the block which corresponds to `from'.
3307 * This required during truncate. We need to physically zero the tail end
3308 * of that block so it doesn't yield old data if the file is later grown.
3310 int ext4_block_truncate_page(handle_t
*handle
,
3311 struct address_space
*mapping
, loff_t from
)
3313 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3316 struct inode
*inode
= mapping
->host
;
3318 blocksize
= inode
->i_sb
->s_blocksize
;
3319 length
= blocksize
- (offset
& (blocksize
- 1));
3321 return ext4_block_zero_page_range(handle
, mapping
, from
, length
);
3325 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3326 * starting from file offset 'from'. The range to be zero'd must
3327 * be contained with in one block. If the specified range exceeds
3328 * the end of the block it will be shortened to end of the block
3329 * that cooresponds to 'from'
3331 int ext4_block_zero_page_range(handle_t
*handle
,
3332 struct address_space
*mapping
, loff_t from
, loff_t length
)
3334 ext4_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
3335 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3336 unsigned blocksize
, max
, pos
;
3338 struct inode
*inode
= mapping
->host
;
3339 struct buffer_head
*bh
;
3343 page
= find_or_create_page(mapping
, from
>> PAGE_CACHE_SHIFT
,
3344 mapping_gfp_mask(mapping
) & ~__GFP_FS
);
3348 blocksize
= inode
->i_sb
->s_blocksize
;
3349 max
= blocksize
- (offset
& (blocksize
- 1));
3352 * correct length if it does not fall between
3353 * 'from' and the end of the block
3355 if (length
> max
|| length
< 0)
3358 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
3360 if (!page_has_buffers(page
))
3361 create_empty_buffers(page
, blocksize
, 0);
3363 /* Find the buffer that contains "offset" */
3364 bh
= page_buffers(page
);
3366 while (offset
>= pos
) {
3367 bh
= bh
->b_this_page
;
3373 if (buffer_freed(bh
)) {
3374 BUFFER_TRACE(bh
, "freed: skip");
3378 if (!buffer_mapped(bh
)) {
3379 BUFFER_TRACE(bh
, "unmapped");
3380 ext4_get_block(inode
, iblock
, bh
, 0);
3381 /* unmapped? It's a hole - nothing to do */
3382 if (!buffer_mapped(bh
)) {
3383 BUFFER_TRACE(bh
, "still unmapped");
3388 /* Ok, it's mapped. Make sure it's up-to-date */
3389 if (PageUptodate(page
))
3390 set_buffer_uptodate(bh
);
3392 if (!buffer_uptodate(bh
)) {
3394 ll_rw_block(READ
, 1, &bh
);
3396 /* Uhhuh. Read error. Complain and punt. */
3397 if (!buffer_uptodate(bh
))
3401 if (ext4_should_journal_data(inode
)) {
3402 BUFFER_TRACE(bh
, "get write access");
3403 err
= ext4_journal_get_write_access(handle
, bh
);
3408 zero_user(page
, offset
, length
);
3410 BUFFER_TRACE(bh
, "zeroed end of block");
3413 if (ext4_should_journal_data(inode
)) {
3414 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
3416 mark_buffer_dirty(bh
);
3420 page_cache_release(page
);
3424 int ext4_can_truncate(struct inode
*inode
)
3426 if (S_ISREG(inode
->i_mode
))
3428 if (S_ISDIR(inode
->i_mode
))
3430 if (S_ISLNK(inode
->i_mode
))
3431 return !ext4_inode_is_fast_symlink(inode
);
3436 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3437 * associated with the given offset and length
3439 * @inode: File inode
3440 * @offset: The offset where the hole will begin
3441 * @len: The length of the hole
3443 * Returns: 0 on sucess or negative on failure
3446 int ext4_punch_hole(struct file
*file
, loff_t offset
, loff_t length
)
3448 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
3449 if (!S_ISREG(inode
->i_mode
))
3452 if (!ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
3453 /* TODO: Add support for non extent hole punching */
3457 if (EXT4_SB(inode
->i_sb
)->s_cluster_ratio
> 1) {
3458 /* TODO: Add support for bigalloc file systems */
3462 return ext4_ext_punch_hole(file
, offset
, length
);
3468 * We block out ext4_get_block() block instantiations across the entire
3469 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3470 * simultaneously on behalf of the same inode.
3472 * As we work through the truncate and commmit bits of it to the journal there
3473 * is one core, guiding principle: the file's tree must always be consistent on
3474 * disk. We must be able to restart the truncate after a crash.
3476 * The file's tree may be transiently inconsistent in memory (although it
3477 * probably isn't), but whenever we close off and commit a journal transaction,
3478 * the contents of (the filesystem + the journal) must be consistent and
3479 * restartable. It's pretty simple, really: bottom up, right to left (although
3480 * left-to-right works OK too).
3482 * Note that at recovery time, journal replay occurs *before* the restart of
3483 * truncate against the orphan inode list.
3485 * The committed inode has the new, desired i_size (which is the same as
3486 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3487 * that this inode's truncate did not complete and it will again call
3488 * ext4_truncate() to have another go. So there will be instantiated blocks
3489 * to the right of the truncation point in a crashed ext4 filesystem. But
3490 * that's fine - as long as they are linked from the inode, the post-crash
3491 * ext4_truncate() run will find them and release them.
3493 void ext4_truncate(struct inode
*inode
)
3495 trace_ext4_truncate_enter(inode
);
3497 if (!ext4_can_truncate(inode
))
3500 ext4_clear_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
);
3502 if (inode
->i_size
== 0 && !test_opt(inode
->i_sb
, NO_AUTO_DA_ALLOC
))
3503 ext4_set_inode_state(inode
, EXT4_STATE_DA_ALLOC_CLOSE
);
3505 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3506 ext4_ext_truncate(inode
);
3508 ext4_ind_truncate(inode
);
3510 trace_ext4_truncate_exit(inode
);
3514 * ext4_get_inode_loc returns with an extra refcount against the inode's
3515 * underlying buffer_head on success. If 'in_mem' is true, we have all
3516 * data in memory that is needed to recreate the on-disk version of this
3519 static int __ext4_get_inode_loc(struct inode
*inode
,
3520 struct ext4_iloc
*iloc
, int in_mem
)
3522 struct ext4_group_desc
*gdp
;
3523 struct buffer_head
*bh
;
3524 struct super_block
*sb
= inode
->i_sb
;
3526 int inodes_per_block
, inode_offset
;
3529 if (!ext4_valid_inum(sb
, inode
->i_ino
))
3532 iloc
->block_group
= (inode
->i_ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
3533 gdp
= ext4_get_group_desc(sb
, iloc
->block_group
, NULL
);
3538 * Figure out the offset within the block group inode table
3540 inodes_per_block
= EXT4_SB(sb
)->s_inodes_per_block
;
3541 inode_offset
= ((inode
->i_ino
- 1) %
3542 EXT4_INODES_PER_GROUP(sb
));
3543 block
= ext4_inode_table(sb
, gdp
) + (inode_offset
/ inodes_per_block
);
3544 iloc
->offset
= (inode_offset
% inodes_per_block
) * EXT4_INODE_SIZE(sb
);
3546 bh
= sb_getblk(sb
, block
);
3548 EXT4_ERROR_INODE_BLOCK(inode
, block
,
3549 "unable to read itable block");
3552 if (!buffer_uptodate(bh
)) {
3556 * If the buffer has the write error flag, we have failed
3557 * to write out another inode in the same block. In this
3558 * case, we don't have to read the block because we may
3559 * read the old inode data successfully.
3561 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
))
3562 set_buffer_uptodate(bh
);
3564 if (buffer_uptodate(bh
)) {
3565 /* someone brought it uptodate while we waited */
3571 * If we have all information of the inode in memory and this
3572 * is the only valid inode in the block, we need not read the
3576 struct buffer_head
*bitmap_bh
;
3579 start
= inode_offset
& ~(inodes_per_block
- 1);
3581 /* Is the inode bitmap in cache? */
3582 bitmap_bh
= sb_getblk(sb
, ext4_inode_bitmap(sb
, gdp
));
3587 * If the inode bitmap isn't in cache then the
3588 * optimisation may end up performing two reads instead
3589 * of one, so skip it.
3591 if (!buffer_uptodate(bitmap_bh
)) {
3595 for (i
= start
; i
< start
+ inodes_per_block
; i
++) {
3596 if (i
== inode_offset
)
3598 if (ext4_test_bit(i
, bitmap_bh
->b_data
))
3602 if (i
== start
+ inodes_per_block
) {
3603 /* all other inodes are free, so skip I/O */
3604 memset(bh
->b_data
, 0, bh
->b_size
);
3605 set_buffer_uptodate(bh
);
3613 * If we need to do any I/O, try to pre-readahead extra
3614 * blocks from the inode table.
3616 if (EXT4_SB(sb
)->s_inode_readahead_blks
) {
3617 ext4_fsblk_t b
, end
, table
;
3620 table
= ext4_inode_table(sb
, gdp
);
3621 /* s_inode_readahead_blks is always a power of 2 */
3622 b
= block
& ~(EXT4_SB(sb
)->s_inode_readahead_blks
-1);
3625 end
= b
+ EXT4_SB(sb
)->s_inode_readahead_blks
;
3626 num
= EXT4_INODES_PER_GROUP(sb
);
3627 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
3628 EXT4_FEATURE_RO_COMPAT_GDT_CSUM
))
3629 num
-= ext4_itable_unused_count(sb
, gdp
);
3630 table
+= num
/ inodes_per_block
;
3634 sb_breadahead(sb
, b
++);
3638 * There are other valid inodes in the buffer, this inode
3639 * has in-inode xattrs, or we don't have this inode in memory.
3640 * Read the block from disk.
3642 trace_ext4_load_inode(inode
);
3644 bh
->b_end_io
= end_buffer_read_sync
;
3645 submit_bh(READ
| REQ_META
| REQ_PRIO
, bh
);
3647 if (!buffer_uptodate(bh
)) {
3648 EXT4_ERROR_INODE_BLOCK(inode
, block
,
3649 "unable to read itable block");
3659 int ext4_get_inode_loc(struct inode
*inode
, struct ext4_iloc
*iloc
)
3661 /* We have all inode data except xattrs in memory here. */
3662 return __ext4_get_inode_loc(inode
, iloc
,
3663 !ext4_test_inode_state(inode
, EXT4_STATE_XATTR
));
3666 void ext4_set_inode_flags(struct inode
*inode
)
3668 unsigned int flags
= EXT4_I(inode
)->i_flags
;
3670 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
3671 if (flags
& EXT4_SYNC_FL
)
3672 inode
->i_flags
|= S_SYNC
;
3673 if (flags
& EXT4_APPEND_FL
)
3674 inode
->i_flags
|= S_APPEND
;
3675 if (flags
& EXT4_IMMUTABLE_FL
)
3676 inode
->i_flags
|= S_IMMUTABLE
;
3677 if (flags
& EXT4_NOATIME_FL
)
3678 inode
->i_flags
|= S_NOATIME
;
3679 if (flags
& EXT4_DIRSYNC_FL
)
3680 inode
->i_flags
|= S_DIRSYNC
;
3683 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3684 void ext4_get_inode_flags(struct ext4_inode_info
*ei
)
3686 unsigned int vfs_fl
;
3687 unsigned long old_fl
, new_fl
;
3690 vfs_fl
= ei
->vfs_inode
.i_flags
;
3691 old_fl
= ei
->i_flags
;
3692 new_fl
= old_fl
& ~(EXT4_SYNC_FL
|EXT4_APPEND_FL
|
3693 EXT4_IMMUTABLE_FL
|EXT4_NOATIME_FL
|
3695 if (vfs_fl
& S_SYNC
)
3696 new_fl
|= EXT4_SYNC_FL
;
3697 if (vfs_fl
& S_APPEND
)
3698 new_fl
|= EXT4_APPEND_FL
;
3699 if (vfs_fl
& S_IMMUTABLE
)
3700 new_fl
|= EXT4_IMMUTABLE_FL
;
3701 if (vfs_fl
& S_NOATIME
)
3702 new_fl
|= EXT4_NOATIME_FL
;
3703 if (vfs_fl
& S_DIRSYNC
)
3704 new_fl
|= EXT4_DIRSYNC_FL
;
3705 } while (cmpxchg(&ei
->i_flags
, old_fl
, new_fl
) != old_fl
);
3708 static blkcnt_t
ext4_inode_blocks(struct ext4_inode
*raw_inode
,
3709 struct ext4_inode_info
*ei
)
3712 struct inode
*inode
= &(ei
->vfs_inode
);
3713 struct super_block
*sb
= inode
->i_sb
;
3715 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
3716 EXT4_FEATURE_RO_COMPAT_HUGE_FILE
)) {
3717 /* we are using combined 48 bit field */
3718 i_blocks
= ((u64
)le16_to_cpu(raw_inode
->i_blocks_high
)) << 32 |
3719 le32_to_cpu(raw_inode
->i_blocks_lo
);
3720 if (ext4_test_inode_flag(inode
, EXT4_INODE_HUGE_FILE
)) {
3721 /* i_blocks represent file system block size */
3722 return i_blocks
<< (inode
->i_blkbits
- 9);
3727 return le32_to_cpu(raw_inode
->i_blocks_lo
);
3731 struct inode
*ext4_iget(struct super_block
*sb
, unsigned long ino
)
3733 struct ext4_iloc iloc
;
3734 struct ext4_inode
*raw_inode
;
3735 struct ext4_inode_info
*ei
;
3736 struct inode
*inode
;
3737 journal_t
*journal
= EXT4_SB(sb
)->s_journal
;
3741 inode
= iget_locked(sb
, ino
);
3743 return ERR_PTR(-ENOMEM
);
3744 if (!(inode
->i_state
& I_NEW
))
3750 ret
= __ext4_get_inode_loc(inode
, &iloc
, 0);
3753 raw_inode
= ext4_raw_inode(&iloc
);
3754 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
3755 inode
->i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
3756 inode
->i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
3757 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
3758 inode
->i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
3759 inode
->i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
3761 set_nlink(inode
, le16_to_cpu(raw_inode
->i_links_count
));
3763 ext4_clear_state_flags(ei
); /* Only relevant on 32-bit archs */
3764 ei
->i_dir_start_lookup
= 0;
3765 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
3766 /* We now have enough fields to check if the inode was active or not.
3767 * This is needed because nfsd might try to access dead inodes
3768 * the test is that same one that e2fsck uses
3769 * NeilBrown 1999oct15
3771 if (inode
->i_nlink
== 0) {
3772 if (inode
->i_mode
== 0 ||
3773 !(EXT4_SB(inode
->i_sb
)->s_mount_state
& EXT4_ORPHAN_FS
)) {
3774 /* this inode is deleted */
3778 /* The only unlinked inodes we let through here have
3779 * valid i_mode and are being read by the orphan
3780 * recovery code: that's fine, we're about to complete
3781 * the process of deleting those. */
3783 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
3784 inode
->i_blocks
= ext4_inode_blocks(raw_inode
, ei
);
3785 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl_lo
);
3786 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_64BIT
))
3788 ((__u64
)le16_to_cpu(raw_inode
->i_file_acl_high
)) << 32;
3789 inode
->i_size
= ext4_isize(raw_inode
);
3790 ei
->i_disksize
= inode
->i_size
;
3792 ei
->i_reserved_quota
= 0;
3794 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
3795 ei
->i_block_group
= iloc
.block_group
;
3796 ei
->i_last_alloc_group
= ~0;
3798 * NOTE! The in-memory inode i_data array is in little-endian order
3799 * even on big-endian machines: we do NOT byteswap the block numbers!
3801 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
3802 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
3803 INIT_LIST_HEAD(&ei
->i_orphan
);
3806 * Set transaction id's of transactions that have to be committed
3807 * to finish f[data]sync. We set them to currently running transaction
3808 * as we cannot be sure that the inode or some of its metadata isn't
3809 * part of the transaction - the inode could have been reclaimed and
3810 * now it is reread from disk.
3813 transaction_t
*transaction
;
3816 read_lock(&journal
->j_state_lock
);
3817 if (journal
->j_running_transaction
)
3818 transaction
= journal
->j_running_transaction
;
3820 transaction
= journal
->j_committing_transaction
;
3822 tid
= transaction
->t_tid
;
3824 tid
= journal
->j_commit_sequence
;
3825 read_unlock(&journal
->j_state_lock
);
3826 ei
->i_sync_tid
= tid
;
3827 ei
->i_datasync_tid
= tid
;
3830 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
3831 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
3832 if (EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
3833 EXT4_INODE_SIZE(inode
->i_sb
)) {
3837 if (ei
->i_extra_isize
== 0) {
3838 /* The extra space is currently unused. Use it. */
3839 ei
->i_extra_isize
= sizeof(struct ext4_inode
) -
3840 EXT4_GOOD_OLD_INODE_SIZE
;
3842 __le32
*magic
= (void *)raw_inode
+
3843 EXT4_GOOD_OLD_INODE_SIZE
+
3845 if (*magic
== cpu_to_le32(EXT4_XATTR_MAGIC
))
3846 ext4_set_inode_state(inode
, EXT4_STATE_XATTR
);
3849 ei
->i_extra_isize
= 0;
3851 EXT4_INODE_GET_XTIME(i_ctime
, inode
, raw_inode
);
3852 EXT4_INODE_GET_XTIME(i_mtime
, inode
, raw_inode
);
3853 EXT4_INODE_GET_XTIME(i_atime
, inode
, raw_inode
);
3854 EXT4_EINODE_GET_XTIME(i_crtime
, ei
, raw_inode
);
3856 inode
->i_version
= le32_to_cpu(raw_inode
->i_disk_version
);
3857 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
3858 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
3860 (__u64
)(le32_to_cpu(raw_inode
->i_version_hi
)) << 32;
3864 if (ei
->i_file_acl
&&
3865 !ext4_data_block_valid(EXT4_SB(sb
), ei
->i_file_acl
, 1)) {
3866 EXT4_ERROR_INODE(inode
, "bad extended attribute block %llu",
3870 } else if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
3871 if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
3872 (S_ISLNK(inode
->i_mode
) &&
3873 !ext4_inode_is_fast_symlink(inode
)))
3874 /* Validate extent which is part of inode */
3875 ret
= ext4_ext_check_inode(inode
);
3876 } else if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
3877 (S_ISLNK(inode
->i_mode
) &&
3878 !ext4_inode_is_fast_symlink(inode
))) {
3879 /* Validate block references which are part of inode */
3880 ret
= ext4_ind_check_inode(inode
);
3885 if (S_ISREG(inode
->i_mode
)) {
3886 inode
->i_op
= &ext4_file_inode_operations
;
3887 inode
->i_fop
= &ext4_file_operations
;
3888 ext4_set_aops(inode
);
3889 } else if (S_ISDIR(inode
->i_mode
)) {
3890 inode
->i_op
= &ext4_dir_inode_operations
;
3891 inode
->i_fop
= &ext4_dir_operations
;
3892 } else if (S_ISLNK(inode
->i_mode
)) {
3893 if (ext4_inode_is_fast_symlink(inode
)) {
3894 inode
->i_op
= &ext4_fast_symlink_inode_operations
;
3895 nd_terminate_link(ei
->i_data
, inode
->i_size
,
3896 sizeof(ei
->i_data
) - 1);
3898 inode
->i_op
= &ext4_symlink_inode_operations
;
3899 ext4_set_aops(inode
);
3901 } else if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
) ||
3902 S_ISFIFO(inode
->i_mode
) || S_ISSOCK(inode
->i_mode
)) {
3903 inode
->i_op
= &ext4_special_inode_operations
;
3904 if (raw_inode
->i_block
[0])
3905 init_special_inode(inode
, inode
->i_mode
,
3906 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
3908 init_special_inode(inode
, inode
->i_mode
,
3909 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
3912 EXT4_ERROR_INODE(inode
, "bogus i_mode (%o)", inode
->i_mode
);
3916 ext4_set_inode_flags(inode
);
3917 unlock_new_inode(inode
);
3923 return ERR_PTR(ret
);
3926 static int ext4_inode_blocks_set(handle_t
*handle
,
3927 struct ext4_inode
*raw_inode
,
3928 struct ext4_inode_info
*ei
)
3930 struct inode
*inode
= &(ei
->vfs_inode
);
3931 u64 i_blocks
= inode
->i_blocks
;
3932 struct super_block
*sb
= inode
->i_sb
;
3934 if (i_blocks
<= ~0U) {
3936 * i_blocks can be represnted in a 32 bit variable
3937 * as multiple of 512 bytes
3939 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
3940 raw_inode
->i_blocks_high
= 0;
3941 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
3944 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
, EXT4_FEATURE_RO_COMPAT_HUGE_FILE
))
3947 if (i_blocks
<= 0xffffffffffffULL
) {
3949 * i_blocks can be represented in a 48 bit variable
3950 * as multiple of 512 bytes
3952 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
3953 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
3954 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
3956 ext4_set_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
3957 /* i_block is stored in file system block size */
3958 i_blocks
= i_blocks
>> (inode
->i_blkbits
- 9);
3959 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
3960 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
3966 * Post the struct inode info into an on-disk inode location in the
3967 * buffer-cache. This gobbles the caller's reference to the
3968 * buffer_head in the inode location struct.
3970 * The caller must have write access to iloc->bh.
3972 static int ext4_do_update_inode(handle_t
*handle
,
3973 struct inode
*inode
,
3974 struct ext4_iloc
*iloc
)
3976 struct ext4_inode
*raw_inode
= ext4_raw_inode(iloc
);
3977 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3978 struct buffer_head
*bh
= iloc
->bh
;
3979 int err
= 0, rc
, block
;
3981 /* For fields not not tracking in the in-memory inode,
3982 * initialise them to zero for new inodes. */
3983 if (ext4_test_inode_state(inode
, EXT4_STATE_NEW
))
3984 memset(raw_inode
, 0, EXT4_SB(inode
->i_sb
)->s_inode_size
);
3986 ext4_get_inode_flags(ei
);
3987 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
3988 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
3989 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(inode
->i_uid
));
3990 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(inode
->i_gid
));
3992 * Fix up interoperability with old kernels. Otherwise, old inodes get
3993 * re-used with the upper 16 bits of the uid/gid intact
3996 raw_inode
->i_uid_high
=
3997 cpu_to_le16(high_16_bits(inode
->i_uid
));
3998 raw_inode
->i_gid_high
=
3999 cpu_to_le16(high_16_bits(inode
->i_gid
));
4001 raw_inode
->i_uid_high
= 0;
4002 raw_inode
->i_gid_high
= 0;
4005 raw_inode
->i_uid_low
=
4006 cpu_to_le16(fs_high2lowuid(inode
->i_uid
));
4007 raw_inode
->i_gid_low
=
4008 cpu_to_le16(fs_high2lowgid(inode
->i_gid
));
4009 raw_inode
->i_uid_high
= 0;
4010 raw_inode
->i_gid_high
= 0;
4012 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
4014 EXT4_INODE_SET_XTIME(i_ctime
, inode
, raw_inode
);
4015 EXT4_INODE_SET_XTIME(i_mtime
, inode
, raw_inode
);
4016 EXT4_INODE_SET_XTIME(i_atime
, inode
, raw_inode
);
4017 EXT4_EINODE_SET_XTIME(i_crtime
, ei
, raw_inode
);
4019 if (ext4_inode_blocks_set(handle
, raw_inode
, ei
))
4021 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
4022 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
& 0xFFFFFFFF);
4023 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
4024 cpu_to_le32(EXT4_OS_HURD
))
4025 raw_inode
->i_file_acl_high
=
4026 cpu_to_le16(ei
->i_file_acl
>> 32);
4027 raw_inode
->i_file_acl_lo
= cpu_to_le32(ei
->i_file_acl
);
4028 ext4_isize_set(raw_inode
, ei
->i_disksize
);
4029 if (ei
->i_disksize
> 0x7fffffffULL
) {
4030 struct super_block
*sb
= inode
->i_sb
;
4031 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4032 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
) ||
4033 EXT4_SB(sb
)->s_es
->s_rev_level
==
4034 cpu_to_le32(EXT4_GOOD_OLD_REV
)) {
4035 /* If this is the first large file
4036 * created, add a flag to the superblock.
4038 err
= ext4_journal_get_write_access(handle
,
4039 EXT4_SB(sb
)->s_sbh
);
4042 ext4_update_dynamic_rev(sb
);
4043 EXT4_SET_RO_COMPAT_FEATURE(sb
,
4044 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
);
4046 ext4_handle_sync(handle
);
4047 err
= ext4_handle_dirty_metadata(handle
, NULL
,
4048 EXT4_SB(sb
)->s_sbh
);
4051 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
4052 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
4053 if (old_valid_dev(inode
->i_rdev
)) {
4054 raw_inode
->i_block
[0] =
4055 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
4056 raw_inode
->i_block
[1] = 0;
4058 raw_inode
->i_block
[0] = 0;
4059 raw_inode
->i_block
[1] =
4060 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
4061 raw_inode
->i_block
[2] = 0;
4064 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4065 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
4067 raw_inode
->i_disk_version
= cpu_to_le32(inode
->i_version
);
4068 if (ei
->i_extra_isize
) {
4069 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4070 raw_inode
->i_version_hi
=
4071 cpu_to_le32(inode
->i_version
>> 32);
4072 raw_inode
->i_extra_isize
= cpu_to_le16(ei
->i_extra_isize
);
4075 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
4076 rc
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
4079 ext4_clear_inode_state(inode
, EXT4_STATE_NEW
);
4081 ext4_update_inode_fsync_trans(handle
, inode
, 0);
4084 ext4_std_error(inode
->i_sb
, err
);
4089 * ext4_write_inode()
4091 * We are called from a few places:
4093 * - Within generic_file_write() for O_SYNC files.
4094 * Here, there will be no transaction running. We wait for any running
4095 * trasnaction to commit.
4097 * - Within sys_sync(), kupdate and such.
4098 * We wait on commit, if tol to.
4100 * - Within prune_icache() (PF_MEMALLOC == true)
4101 * Here we simply return. We can't afford to block kswapd on the
4104 * In all cases it is actually safe for us to return without doing anything,
4105 * because the inode has been copied into a raw inode buffer in
4106 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4109 * Note that we are absolutely dependent upon all inode dirtiers doing the
4110 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4111 * which we are interested.
4113 * It would be a bug for them to not do this. The code:
4115 * mark_inode_dirty(inode)
4117 * inode->i_size = expr;
4119 * is in error because a kswapd-driven write_inode() could occur while
4120 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4121 * will no longer be on the superblock's dirty inode list.
4123 int ext4_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
4127 if (current
->flags
& PF_MEMALLOC
)
4130 if (EXT4_SB(inode
->i_sb
)->s_journal
) {
4131 if (ext4_journal_current_handle()) {
4132 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4137 if (wbc
->sync_mode
!= WB_SYNC_ALL
)
4140 err
= ext4_force_commit(inode
->i_sb
);
4142 struct ext4_iloc iloc
;
4144 err
= __ext4_get_inode_loc(inode
, &iloc
, 0);
4147 if (wbc
->sync_mode
== WB_SYNC_ALL
)
4148 sync_dirty_buffer(iloc
.bh
);
4149 if (buffer_req(iloc
.bh
) && !buffer_uptodate(iloc
.bh
)) {
4150 EXT4_ERROR_INODE_BLOCK(inode
, iloc
.bh
->b_blocknr
,
4151 "IO error syncing inode");
4162 * Called from notify_change.
4164 * We want to trap VFS attempts to truncate the file as soon as
4165 * possible. In particular, we want to make sure that when the VFS
4166 * shrinks i_size, we put the inode on the orphan list and modify
4167 * i_disksize immediately, so that during the subsequent flushing of
4168 * dirty pages and freeing of disk blocks, we can guarantee that any
4169 * commit will leave the blocks being flushed in an unused state on
4170 * disk. (On recovery, the inode will get truncated and the blocks will
4171 * be freed, so we have a strong guarantee that no future commit will
4172 * leave these blocks visible to the user.)
4174 * Another thing we have to assure is that if we are in ordered mode
4175 * and inode is still attached to the committing transaction, we must
4176 * we start writeout of all the dirty pages which are being truncated.
4177 * This way we are sure that all the data written in the previous
4178 * transaction are already on disk (truncate waits for pages under
4181 * Called with inode->i_mutex down.
4183 int ext4_setattr(struct dentry
*dentry
, struct iattr
*attr
)
4185 struct inode
*inode
= dentry
->d_inode
;
4188 const unsigned int ia_valid
= attr
->ia_valid
;
4190 error
= inode_change_ok(inode
, attr
);
4194 if (is_quota_modification(inode
, attr
))
4195 dquot_initialize(inode
);
4196 if ((ia_valid
& ATTR_UID
&& attr
->ia_uid
!= inode
->i_uid
) ||
4197 (ia_valid
& ATTR_GID
&& attr
->ia_gid
!= inode
->i_gid
)) {
4200 /* (user+group)*(old+new) structure, inode write (sb,
4201 * inode block, ? - but truncate inode update has it) */
4202 handle
= ext4_journal_start(inode
, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode
->i_sb
)+
4203 EXT4_MAXQUOTAS_DEL_BLOCKS(inode
->i_sb
))+3);
4204 if (IS_ERR(handle
)) {
4205 error
= PTR_ERR(handle
);
4208 error
= dquot_transfer(inode
, attr
);
4210 ext4_journal_stop(handle
);
4213 /* Update corresponding info in inode so that everything is in
4214 * one transaction */
4215 if (attr
->ia_valid
& ATTR_UID
)
4216 inode
->i_uid
= attr
->ia_uid
;
4217 if (attr
->ia_valid
& ATTR_GID
)
4218 inode
->i_gid
= attr
->ia_gid
;
4219 error
= ext4_mark_inode_dirty(handle
, inode
);
4220 ext4_journal_stop(handle
);
4223 if (attr
->ia_valid
& ATTR_SIZE
) {
4224 inode_dio_wait(inode
);
4226 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))) {
4227 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4229 if (attr
->ia_size
> sbi
->s_bitmap_maxbytes
)
4234 if (S_ISREG(inode
->i_mode
) &&
4235 attr
->ia_valid
& ATTR_SIZE
&&
4236 (attr
->ia_size
< inode
->i_size
)) {
4239 handle
= ext4_journal_start(inode
, 3);
4240 if (IS_ERR(handle
)) {
4241 error
= PTR_ERR(handle
);
4244 if (ext4_handle_valid(handle
)) {
4245 error
= ext4_orphan_add(handle
, inode
);
4248 EXT4_I(inode
)->i_disksize
= attr
->ia_size
;
4249 rc
= ext4_mark_inode_dirty(handle
, inode
);
4252 ext4_journal_stop(handle
);
4254 if (ext4_should_order_data(inode
)) {
4255 error
= ext4_begin_ordered_truncate(inode
,
4258 /* Do as much error cleanup as possible */
4259 handle
= ext4_journal_start(inode
, 3);
4260 if (IS_ERR(handle
)) {
4261 ext4_orphan_del(NULL
, inode
);
4264 ext4_orphan_del(handle
, inode
);
4266 ext4_journal_stop(handle
);
4272 if (attr
->ia_valid
& ATTR_SIZE
) {
4273 if (attr
->ia_size
!= i_size_read(inode
)) {
4274 truncate_setsize(inode
, attr
->ia_size
);
4275 ext4_truncate(inode
);
4276 } else if (ext4_test_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
))
4277 ext4_truncate(inode
);
4281 setattr_copy(inode
, attr
);
4282 mark_inode_dirty(inode
);
4286 * If the call to ext4_truncate failed to get a transaction handle at
4287 * all, we need to clean up the in-core orphan list manually.
4289 if (orphan
&& inode
->i_nlink
)
4290 ext4_orphan_del(NULL
, inode
);
4292 if (!rc
&& (ia_valid
& ATTR_MODE
))
4293 rc
= ext4_acl_chmod(inode
);
4296 ext4_std_error(inode
->i_sb
, error
);
4302 int ext4_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
4305 struct inode
*inode
;
4306 unsigned long delalloc_blocks
;
4308 inode
= dentry
->d_inode
;
4309 generic_fillattr(inode
, stat
);
4312 * We can't update i_blocks if the block allocation is delayed
4313 * otherwise in the case of system crash before the real block
4314 * allocation is done, we will have i_blocks inconsistent with
4315 * on-disk file blocks.
4316 * We always keep i_blocks updated together with real
4317 * allocation. But to not confuse with user, stat
4318 * will return the blocks that include the delayed allocation
4319 * blocks for this file.
4321 delalloc_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
4323 stat
->blocks
+= (delalloc_blocks
<< inode
->i_sb
->s_blocksize_bits
)>>9;
4327 static int ext4_index_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
4329 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)))
4330 return ext4_ind_trans_blocks(inode
, nrblocks
, chunk
);
4331 return ext4_ext_index_trans_blocks(inode
, nrblocks
, chunk
);
4335 * Account for index blocks, block groups bitmaps and block group
4336 * descriptor blocks if modify datablocks and index blocks
4337 * worse case, the indexs blocks spread over different block groups
4339 * If datablocks are discontiguous, they are possible to spread over
4340 * different block groups too. If they are contiuguous, with flexbg,
4341 * they could still across block group boundary.
4343 * Also account for superblock, inode, quota and xattr blocks
4345 static int ext4_meta_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
4347 ext4_group_t groups
, ngroups
= ext4_get_groups_count(inode
->i_sb
);
4353 * How many index blocks need to touch to modify nrblocks?
4354 * The "Chunk" flag indicating whether the nrblocks is
4355 * physically contiguous on disk
4357 * For Direct IO and fallocate, they calls get_block to allocate
4358 * one single extent at a time, so they could set the "Chunk" flag
4360 idxblocks
= ext4_index_trans_blocks(inode
, nrblocks
, chunk
);
4365 * Now let's see how many group bitmaps and group descriptors need
4375 if (groups
> ngroups
)
4377 if (groups
> EXT4_SB(inode
->i_sb
)->s_gdb_count
)
4378 gdpblocks
= EXT4_SB(inode
->i_sb
)->s_gdb_count
;
4380 /* bitmaps and block group descriptor blocks */
4381 ret
+= groups
+ gdpblocks
;
4383 /* Blocks for super block, inode, quota and xattr blocks */
4384 ret
+= EXT4_META_TRANS_BLOCKS(inode
->i_sb
);
4390 * Calculate the total number of credits to reserve to fit
4391 * the modification of a single pages into a single transaction,
4392 * which may include multiple chunks of block allocations.
4394 * This could be called via ext4_write_begin()
4396 * We need to consider the worse case, when
4397 * one new block per extent.
4399 int ext4_writepage_trans_blocks(struct inode
*inode
)
4401 int bpp
= ext4_journal_blocks_per_page(inode
);
4404 ret
= ext4_meta_trans_blocks(inode
, bpp
, 0);
4406 /* Account for data blocks for journalled mode */
4407 if (ext4_should_journal_data(inode
))
4413 * Calculate the journal credits for a chunk of data modification.
4415 * This is called from DIO, fallocate or whoever calling
4416 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4418 * journal buffers for data blocks are not included here, as DIO
4419 * and fallocate do no need to journal data buffers.
4421 int ext4_chunk_trans_blocks(struct inode
*inode
, int nrblocks
)
4423 return ext4_meta_trans_blocks(inode
, nrblocks
, 1);
4427 * The caller must have previously called ext4_reserve_inode_write().
4428 * Give this, we know that the caller already has write access to iloc->bh.
4430 int ext4_mark_iloc_dirty(handle_t
*handle
,
4431 struct inode
*inode
, struct ext4_iloc
*iloc
)
4435 if (test_opt(inode
->i_sb
, I_VERSION
))
4436 inode_inc_iversion(inode
);
4438 /* the do_update_inode consumes one bh->b_count */
4441 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4442 err
= ext4_do_update_inode(handle
, inode
, iloc
);
4448 * On success, We end up with an outstanding reference count against
4449 * iloc->bh. This _must_ be cleaned up later.
4453 ext4_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
4454 struct ext4_iloc
*iloc
)
4458 err
= ext4_get_inode_loc(inode
, iloc
);
4460 BUFFER_TRACE(iloc
->bh
, "get_write_access");
4461 err
= ext4_journal_get_write_access(handle
, iloc
->bh
);
4467 ext4_std_error(inode
->i_sb
, err
);
4472 * Expand an inode by new_extra_isize bytes.
4473 * Returns 0 on success or negative error number on failure.
4475 static int ext4_expand_extra_isize(struct inode
*inode
,
4476 unsigned int new_extra_isize
,
4477 struct ext4_iloc iloc
,
4480 struct ext4_inode
*raw_inode
;
4481 struct ext4_xattr_ibody_header
*header
;
4483 if (EXT4_I(inode
)->i_extra_isize
>= new_extra_isize
)
4486 raw_inode
= ext4_raw_inode(&iloc
);
4488 header
= IHDR(inode
, raw_inode
);
4490 /* No extended attributes present */
4491 if (!ext4_test_inode_state(inode
, EXT4_STATE_XATTR
) ||
4492 header
->h_magic
!= cpu_to_le32(EXT4_XATTR_MAGIC
)) {
4493 memset((void *)raw_inode
+ EXT4_GOOD_OLD_INODE_SIZE
, 0,
4495 EXT4_I(inode
)->i_extra_isize
= new_extra_isize
;
4499 /* try to expand with EAs present */
4500 return ext4_expand_extra_isize_ea(inode
, new_extra_isize
,
4505 * What we do here is to mark the in-core inode as clean with respect to inode
4506 * dirtiness (it may still be data-dirty).
4507 * This means that the in-core inode may be reaped by prune_icache
4508 * without having to perform any I/O. This is a very good thing,
4509 * because *any* task may call prune_icache - even ones which
4510 * have a transaction open against a different journal.
4512 * Is this cheating? Not really. Sure, we haven't written the
4513 * inode out, but prune_icache isn't a user-visible syncing function.
4514 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4515 * we start and wait on commits.
4517 * Is this efficient/effective? Well, we're being nice to the system
4518 * by cleaning up our inodes proactively so they can be reaped
4519 * without I/O. But we are potentially leaving up to five seconds'
4520 * worth of inodes floating about which prune_icache wants us to
4521 * write out. One way to fix that would be to get prune_icache()
4522 * to do a write_super() to free up some memory. It has the desired
4525 int ext4_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
4527 struct ext4_iloc iloc
;
4528 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4529 static unsigned int mnt_count
;
4533 trace_ext4_mark_inode_dirty(inode
, _RET_IP_
);
4534 err
= ext4_reserve_inode_write(handle
, inode
, &iloc
);
4535 if (ext4_handle_valid(handle
) &&
4536 EXT4_I(inode
)->i_extra_isize
< sbi
->s_want_extra_isize
&&
4537 !ext4_test_inode_state(inode
, EXT4_STATE_NO_EXPAND
)) {
4539 * We need extra buffer credits since we may write into EA block
4540 * with this same handle. If journal_extend fails, then it will
4541 * only result in a minor loss of functionality for that inode.
4542 * If this is felt to be critical, then e2fsck should be run to
4543 * force a large enough s_min_extra_isize.
4545 if ((jbd2_journal_extend(handle
,
4546 EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
))) == 0) {
4547 ret
= ext4_expand_extra_isize(inode
,
4548 sbi
->s_want_extra_isize
,
4551 ext4_set_inode_state(inode
,
4552 EXT4_STATE_NO_EXPAND
);
4554 le16_to_cpu(sbi
->s_es
->s_mnt_count
)) {
4555 ext4_warning(inode
->i_sb
,
4556 "Unable to expand inode %lu. Delete"
4557 " some EAs or run e2fsck.",
4560 le16_to_cpu(sbi
->s_es
->s_mnt_count
);
4566 err
= ext4_mark_iloc_dirty(handle
, inode
, &iloc
);
4571 * ext4_dirty_inode() is called from __mark_inode_dirty()
4573 * We're really interested in the case where a file is being extended.
4574 * i_size has been changed by generic_commit_write() and we thus need
4575 * to include the updated inode in the current transaction.
4577 * Also, dquot_alloc_block() will always dirty the inode when blocks
4578 * are allocated to the file.
4580 * If the inode is marked synchronous, we don't honour that here - doing
4581 * so would cause a commit on atime updates, which we don't bother doing.
4582 * We handle synchronous inodes at the highest possible level.
4584 void ext4_dirty_inode(struct inode
*inode
, int flags
)
4588 handle
= ext4_journal_start(inode
, 2);
4592 ext4_mark_inode_dirty(handle
, inode
);
4594 ext4_journal_stop(handle
);
4601 * Bind an inode's backing buffer_head into this transaction, to prevent
4602 * it from being flushed to disk early. Unlike
4603 * ext4_reserve_inode_write, this leaves behind no bh reference and
4604 * returns no iloc structure, so the caller needs to repeat the iloc
4605 * lookup to mark the inode dirty later.
4607 static int ext4_pin_inode(handle_t
*handle
, struct inode
*inode
)
4609 struct ext4_iloc iloc
;
4613 err
= ext4_get_inode_loc(inode
, &iloc
);
4615 BUFFER_TRACE(iloc
.bh
, "get_write_access");
4616 err
= jbd2_journal_get_write_access(handle
, iloc
.bh
);
4618 err
= ext4_handle_dirty_metadata(handle
,
4624 ext4_std_error(inode
->i_sb
, err
);
4629 int ext4_change_inode_journal_flag(struct inode
*inode
, int val
)
4636 * We have to be very careful here: changing a data block's
4637 * journaling status dynamically is dangerous. If we write a
4638 * data block to the journal, change the status and then delete
4639 * that block, we risk forgetting to revoke the old log record
4640 * from the journal and so a subsequent replay can corrupt data.
4641 * So, first we make sure that the journal is empty and that
4642 * nobody is changing anything.
4645 journal
= EXT4_JOURNAL(inode
);
4648 if (is_journal_aborted(journal
))
4651 jbd2_journal_lock_updates(journal
);
4652 jbd2_journal_flush(journal
);
4655 * OK, there are no updates running now, and all cached data is
4656 * synced to disk. We are now in a completely consistent state
4657 * which doesn't have anything in the journal, and we know that
4658 * no filesystem updates are running, so it is safe to modify
4659 * the inode's in-core data-journaling state flag now.
4663 ext4_set_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
4665 ext4_clear_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
4666 ext4_set_aops(inode
);
4668 jbd2_journal_unlock_updates(journal
);
4670 /* Finally we can mark the inode as dirty. */
4672 handle
= ext4_journal_start(inode
, 1);
4674 return PTR_ERR(handle
);
4676 err
= ext4_mark_inode_dirty(handle
, inode
);
4677 ext4_handle_sync(handle
);
4678 ext4_journal_stop(handle
);
4679 ext4_std_error(inode
->i_sb
, err
);
4684 static int ext4_bh_unmapped(handle_t
*handle
, struct buffer_head
*bh
)
4686 return !buffer_mapped(bh
);
4689 int ext4_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
4691 struct page
*page
= vmf
->page
;
4695 struct file
*file
= vma
->vm_file
;
4696 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
4697 struct address_space
*mapping
= inode
->i_mapping
;
4699 get_block_t
*get_block
;
4703 * This check is racy but catches the common case. We rely on
4704 * __block_page_mkwrite() to do a reliable check.
4706 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
4707 /* Delalloc case is easy... */
4708 if (test_opt(inode
->i_sb
, DELALLOC
) &&
4709 !ext4_should_journal_data(inode
) &&
4710 !ext4_nonda_switch(inode
->i_sb
)) {
4712 ret
= __block_page_mkwrite(vma
, vmf
,
4713 ext4_da_get_block_prep
);
4714 } while (ret
== -ENOSPC
&&
4715 ext4_should_retry_alloc(inode
->i_sb
, &retries
));
4720 size
= i_size_read(inode
);
4721 /* Page got truncated from under us? */
4722 if (page
->mapping
!= mapping
|| page_offset(page
) > size
) {
4724 ret
= VM_FAULT_NOPAGE
;
4728 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
4729 len
= size
& ~PAGE_CACHE_MASK
;
4731 len
= PAGE_CACHE_SIZE
;
4733 * Return if we have all the buffers mapped. This avoids the need to do
4734 * journal_start/journal_stop which can block and take a long time
4736 if (page_has_buffers(page
)) {
4737 if (!walk_page_buffers(NULL
, page_buffers(page
), 0, len
, NULL
,
4738 ext4_bh_unmapped
)) {
4739 /* Wait so that we don't change page under IO */
4740 wait_on_page_writeback(page
);
4741 ret
= VM_FAULT_LOCKED
;
4746 /* OK, we need to fill the hole... */
4747 if (ext4_should_dioread_nolock(inode
))
4748 get_block
= ext4_get_block_write
;
4750 get_block
= ext4_get_block
;
4752 handle
= ext4_journal_start(inode
, ext4_writepage_trans_blocks(inode
));
4753 if (IS_ERR(handle
)) {
4754 ret
= VM_FAULT_SIGBUS
;
4757 ret
= __block_page_mkwrite(vma
, vmf
, get_block
);
4758 if (!ret
&& ext4_should_journal_data(inode
)) {
4759 if (walk_page_buffers(handle
, page_buffers(page
), 0,
4760 PAGE_CACHE_SIZE
, NULL
, do_journal_get_write_access
)) {
4762 ret
= VM_FAULT_SIGBUS
;
4763 ext4_journal_stop(handle
);
4766 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
4768 ext4_journal_stop(handle
);
4769 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
4772 ret
= block_page_mkwrite_return(ret
);