4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/stop_machine.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
77 #include <asm/irq_regs.h>
79 #include "sched_cpupri.h"
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/sched.h>
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
89 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
98 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103 * Helpers for converting nanosecond timing to jiffy resolution
105 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107 #define NICE_0_LOAD SCHED_LOAD_SCALE
108 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
111 * These are the 'tuning knobs' of the scheduler:
113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
114 * Timeslices get refilled after they expire.
116 #define DEF_TIMESLICE (100 * HZ / 1000)
119 * single value that denotes runtime == period, ie unlimited time.
121 #define RUNTIME_INF ((u64)~0ULL)
123 static inline int rt_policy(int policy
)
125 if (unlikely(policy
== SCHED_FIFO
|| policy
== SCHED_RR
))
130 static inline int task_has_rt_policy(struct task_struct
*p
)
132 return rt_policy(p
->policy
);
136 * This is the priority-queue data structure of the RT scheduling class:
138 struct rt_prio_array
{
139 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
140 struct list_head queue
[MAX_RT_PRIO
];
143 struct rt_bandwidth
{
144 /* nests inside the rq lock: */
145 raw_spinlock_t rt_runtime_lock
;
148 struct hrtimer rt_period_timer
;
151 static struct rt_bandwidth def_rt_bandwidth
;
153 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
155 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
157 struct rt_bandwidth
*rt_b
=
158 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
164 now
= hrtimer_cb_get_time(timer
);
165 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
170 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
173 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
177 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
179 rt_b
->rt_period
= ns_to_ktime(period
);
180 rt_b
->rt_runtime
= runtime
;
182 raw_spin_lock_init(&rt_b
->rt_runtime_lock
);
184 hrtimer_init(&rt_b
->rt_period_timer
,
185 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
186 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
189 static inline int rt_bandwidth_enabled(void)
191 return sysctl_sched_rt_runtime
>= 0;
194 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
198 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
201 if (hrtimer_active(&rt_b
->rt_period_timer
))
204 raw_spin_lock(&rt_b
->rt_runtime_lock
);
209 if (hrtimer_active(&rt_b
->rt_period_timer
))
212 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
213 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
215 soft
= hrtimer_get_softexpires(&rt_b
->rt_period_timer
);
216 hard
= hrtimer_get_expires(&rt_b
->rt_period_timer
);
217 delta
= ktime_to_ns(ktime_sub(hard
, soft
));
218 __hrtimer_start_range_ns(&rt_b
->rt_period_timer
, soft
, delta
,
219 HRTIMER_MODE_ABS_PINNED
, 0);
221 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
224 #ifdef CONFIG_RT_GROUP_SCHED
225 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
227 hrtimer_cancel(&rt_b
->rt_period_timer
);
232 * sched_domains_mutex serializes calls to arch_init_sched_domains,
233 * detach_destroy_domains and partition_sched_domains.
235 static DEFINE_MUTEX(sched_domains_mutex
);
237 #ifdef CONFIG_CGROUP_SCHED
239 #include <linux/cgroup.h>
243 static LIST_HEAD(task_groups
);
245 /* task group related information */
247 struct cgroup_subsys_state css
;
249 #ifdef CONFIG_FAIR_GROUP_SCHED
250 /* schedulable entities of this group on each cpu */
251 struct sched_entity
**se
;
252 /* runqueue "owned" by this group on each cpu */
253 struct cfs_rq
**cfs_rq
;
254 unsigned long shares
;
257 #ifdef CONFIG_RT_GROUP_SCHED
258 struct sched_rt_entity
**rt_se
;
259 struct rt_rq
**rt_rq
;
261 struct rt_bandwidth rt_bandwidth
;
265 struct list_head list
;
267 struct task_group
*parent
;
268 struct list_head siblings
;
269 struct list_head children
;
272 #define root_task_group init_task_group
274 /* task_group_lock serializes add/remove of task groups and also changes to
275 * a task group's cpu shares.
277 static DEFINE_SPINLOCK(task_group_lock
);
279 #ifdef CONFIG_FAIR_GROUP_SCHED
282 static int root_task_group_empty(void)
284 return list_empty(&root_task_group
.children
);
288 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
291 * A weight of 0 or 1 can cause arithmetics problems.
292 * A weight of a cfs_rq is the sum of weights of which entities
293 * are queued on this cfs_rq, so a weight of a entity should not be
294 * too large, so as the shares value of a task group.
295 * (The default weight is 1024 - so there's no practical
296 * limitation from this.)
299 #define MAX_SHARES (1UL << 18)
301 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
304 /* Default task group.
305 * Every task in system belong to this group at bootup.
307 struct task_group init_task_group
;
309 /* return group to which a task belongs */
310 static inline struct task_group
*task_group(struct task_struct
*p
)
312 struct task_group
*tg
;
314 #ifdef CONFIG_CGROUP_SCHED
315 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
316 struct task_group
, css
);
318 tg
= &init_task_group
;
323 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
324 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
327 * Strictly speaking this rcu_read_lock() is not needed since the
328 * task_group is tied to the cgroup, which in turn can never go away
329 * as long as there are tasks attached to it.
331 * However since task_group() uses task_subsys_state() which is an
332 * rcu_dereference() user, this quiets CONFIG_PROVE_RCU.
335 #ifdef CONFIG_FAIR_GROUP_SCHED
336 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
337 p
->se
.parent
= task_group(p
)->se
[cpu
];
340 #ifdef CONFIG_RT_GROUP_SCHED
341 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
342 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
349 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
350 static inline struct task_group
*task_group(struct task_struct
*p
)
355 #endif /* CONFIG_CGROUP_SCHED */
357 /* CFS-related fields in a runqueue */
359 struct load_weight load
;
360 unsigned long nr_running
;
365 struct rb_root tasks_timeline
;
366 struct rb_node
*rb_leftmost
;
368 struct list_head tasks
;
369 struct list_head
*balance_iterator
;
372 * 'curr' points to currently running entity on this cfs_rq.
373 * It is set to NULL otherwise (i.e when none are currently running).
375 struct sched_entity
*curr
, *next
, *last
;
377 unsigned int nr_spread_over
;
379 #ifdef CONFIG_FAIR_GROUP_SCHED
380 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
383 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
384 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
385 * (like users, containers etc.)
387 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
388 * list is used during load balance.
390 struct list_head leaf_cfs_rq_list
;
391 struct task_group
*tg
; /* group that "owns" this runqueue */
395 * the part of load.weight contributed by tasks
397 unsigned long task_weight
;
400 * h_load = weight * f(tg)
402 * Where f(tg) is the recursive weight fraction assigned to
405 unsigned long h_load
;
408 * this cpu's part of tg->shares
410 unsigned long shares
;
413 * load.weight at the time we set shares
415 unsigned long rq_weight
;
420 /* Real-Time classes' related field in a runqueue: */
422 struct rt_prio_array active
;
423 unsigned long rt_nr_running
;
424 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
426 int curr
; /* highest queued rt task prio */
428 int next
; /* next highest */
433 unsigned long rt_nr_migratory
;
434 unsigned long rt_nr_total
;
436 struct plist_head pushable_tasks
;
441 /* Nests inside the rq lock: */
442 raw_spinlock_t rt_runtime_lock
;
444 #ifdef CONFIG_RT_GROUP_SCHED
445 unsigned long rt_nr_boosted
;
448 struct list_head leaf_rt_rq_list
;
449 struct task_group
*tg
;
456 * We add the notion of a root-domain which will be used to define per-domain
457 * variables. Each exclusive cpuset essentially defines an island domain by
458 * fully partitioning the member cpus from any other cpuset. Whenever a new
459 * exclusive cpuset is created, we also create and attach a new root-domain
466 cpumask_var_t online
;
469 * The "RT overload" flag: it gets set if a CPU has more than
470 * one runnable RT task.
472 cpumask_var_t rto_mask
;
475 struct cpupri cpupri
;
480 * By default the system creates a single root-domain with all cpus as
481 * members (mimicking the global state we have today).
483 static struct root_domain def_root_domain
;
488 * This is the main, per-CPU runqueue data structure.
490 * Locking rule: those places that want to lock multiple runqueues
491 * (such as the load balancing or the thread migration code), lock
492 * acquire operations must be ordered by ascending &runqueue.
499 * nr_running and cpu_load should be in the same cacheline because
500 * remote CPUs use both these fields when doing load calculation.
502 unsigned long nr_running
;
503 #define CPU_LOAD_IDX_MAX 5
504 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
507 unsigned char in_nohz_recently
;
509 unsigned int skip_clock_update
;
511 /* capture load from *all* tasks on this cpu: */
512 struct load_weight load
;
513 unsigned long nr_load_updates
;
519 #ifdef CONFIG_FAIR_GROUP_SCHED
520 /* list of leaf cfs_rq on this cpu: */
521 struct list_head leaf_cfs_rq_list
;
523 #ifdef CONFIG_RT_GROUP_SCHED
524 struct list_head leaf_rt_rq_list
;
528 * This is part of a global counter where only the total sum
529 * over all CPUs matters. A task can increase this counter on
530 * one CPU and if it got migrated afterwards it may decrease
531 * it on another CPU. Always updated under the runqueue lock:
533 unsigned long nr_uninterruptible
;
535 struct task_struct
*curr
, *idle
;
536 unsigned long next_balance
;
537 struct mm_struct
*prev_mm
;
544 struct root_domain
*rd
;
545 struct sched_domain
*sd
;
547 unsigned char idle_at_tick
;
548 /* For active balancing */
552 struct cpu_stop_work active_balance_work
;
553 /* cpu of this runqueue: */
557 unsigned long avg_load_per_task
;
565 /* calc_load related fields */
566 unsigned long calc_load_update
;
567 long calc_load_active
;
569 #ifdef CONFIG_SCHED_HRTICK
571 int hrtick_csd_pending
;
572 struct call_single_data hrtick_csd
;
574 struct hrtimer hrtick_timer
;
577 #ifdef CONFIG_SCHEDSTATS
579 struct sched_info rq_sched_info
;
580 unsigned long long rq_cpu_time
;
581 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
583 /* sys_sched_yield() stats */
584 unsigned int yld_count
;
586 /* schedule() stats */
587 unsigned int sched_switch
;
588 unsigned int sched_count
;
589 unsigned int sched_goidle
;
591 /* try_to_wake_up() stats */
592 unsigned int ttwu_count
;
593 unsigned int ttwu_local
;
596 unsigned int bkl_count
;
600 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
603 void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
605 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
608 * A queue event has occurred, and we're going to schedule. In
609 * this case, we can save a useless back to back clock update.
611 if (test_tsk_need_resched(p
))
612 rq
->skip_clock_update
= 1;
615 static inline int cpu_of(struct rq
*rq
)
624 #define rcu_dereference_check_sched_domain(p) \
625 rcu_dereference_check((p), \
626 rcu_read_lock_sched_held() || \
627 lockdep_is_held(&sched_domains_mutex))
630 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
631 * See detach_destroy_domains: synchronize_sched for details.
633 * The domain tree of any CPU may only be accessed from within
634 * preempt-disabled sections.
636 #define for_each_domain(cpu, __sd) \
637 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
639 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
640 #define this_rq() (&__get_cpu_var(runqueues))
641 #define task_rq(p) cpu_rq(task_cpu(p))
642 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
643 #define raw_rq() (&__raw_get_cpu_var(runqueues))
645 inline void update_rq_clock(struct rq
*rq
)
647 if (!rq
->skip_clock_update
)
648 rq
->clock
= sched_clock_cpu(cpu_of(rq
));
652 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
654 #ifdef CONFIG_SCHED_DEBUG
655 # define const_debug __read_mostly
657 # define const_debug static const
662 * @cpu: the processor in question.
664 * Returns true if the current cpu runqueue is locked.
665 * This interface allows printk to be called with the runqueue lock
666 * held and know whether or not it is OK to wake up the klogd.
668 int runqueue_is_locked(int cpu
)
670 return raw_spin_is_locked(&cpu_rq(cpu
)->lock
);
674 * Debugging: various feature bits
677 #define SCHED_FEAT(name, enabled) \
678 __SCHED_FEAT_##name ,
681 #include "sched_features.h"
686 #define SCHED_FEAT(name, enabled) \
687 (1UL << __SCHED_FEAT_##name) * enabled |
689 const_debug
unsigned int sysctl_sched_features
=
690 #include "sched_features.h"
695 #ifdef CONFIG_SCHED_DEBUG
696 #define SCHED_FEAT(name, enabled) \
699 static __read_mostly
char *sched_feat_names
[] = {
700 #include "sched_features.h"
706 static int sched_feat_show(struct seq_file
*m
, void *v
)
710 for (i
= 0; sched_feat_names
[i
]; i
++) {
711 if (!(sysctl_sched_features
& (1UL << i
)))
713 seq_printf(m
, "%s ", sched_feat_names
[i
]);
721 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
722 size_t cnt
, loff_t
*ppos
)
732 if (copy_from_user(&buf
, ubuf
, cnt
))
737 if (strncmp(buf
, "NO_", 3) == 0) {
742 for (i
= 0; sched_feat_names
[i
]; i
++) {
743 int len
= strlen(sched_feat_names
[i
]);
745 if (strncmp(cmp
, sched_feat_names
[i
], len
) == 0) {
747 sysctl_sched_features
&= ~(1UL << i
);
749 sysctl_sched_features
|= (1UL << i
);
754 if (!sched_feat_names
[i
])
762 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
764 return single_open(filp
, sched_feat_show
, NULL
);
767 static const struct file_operations sched_feat_fops
= {
768 .open
= sched_feat_open
,
769 .write
= sched_feat_write
,
772 .release
= single_release
,
775 static __init
int sched_init_debug(void)
777 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
782 late_initcall(sched_init_debug
);
786 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
789 * Number of tasks to iterate in a single balance run.
790 * Limited because this is done with IRQs disabled.
792 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
795 * ratelimit for updating the group shares.
798 unsigned int sysctl_sched_shares_ratelimit
= 250000;
799 unsigned int normalized_sysctl_sched_shares_ratelimit
= 250000;
802 * Inject some fuzzyness into changing the per-cpu group shares
803 * this avoids remote rq-locks at the expense of fairness.
806 unsigned int sysctl_sched_shares_thresh
= 4;
809 * period over which we average the RT time consumption, measured
814 const_debug
unsigned int sysctl_sched_time_avg
= MSEC_PER_SEC
;
817 * period over which we measure -rt task cpu usage in us.
820 unsigned int sysctl_sched_rt_period
= 1000000;
822 static __read_mostly
int scheduler_running
;
825 * part of the period that we allow rt tasks to run in us.
828 int sysctl_sched_rt_runtime
= 950000;
830 static inline u64
global_rt_period(void)
832 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
835 static inline u64
global_rt_runtime(void)
837 if (sysctl_sched_rt_runtime
< 0)
840 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
843 #ifndef prepare_arch_switch
844 # define prepare_arch_switch(next) do { } while (0)
846 #ifndef finish_arch_switch
847 # define finish_arch_switch(prev) do { } while (0)
850 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
852 return rq
->curr
== p
;
855 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
856 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
858 return task_current(rq
, p
);
861 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
865 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
867 #ifdef CONFIG_DEBUG_SPINLOCK
868 /* this is a valid case when another task releases the spinlock */
869 rq
->lock
.owner
= current
;
872 * If we are tracking spinlock dependencies then we have to
873 * fix up the runqueue lock - which gets 'carried over' from
876 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
878 raw_spin_unlock_irq(&rq
->lock
);
881 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
882 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
887 return task_current(rq
, p
);
891 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
895 * We can optimise this out completely for !SMP, because the
896 * SMP rebalancing from interrupt is the only thing that cares
901 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
902 raw_spin_unlock_irq(&rq
->lock
);
904 raw_spin_unlock(&rq
->lock
);
908 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
912 * After ->oncpu is cleared, the task can be moved to a different CPU.
913 * We must ensure this doesn't happen until the switch is completely
919 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
923 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
926 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
929 static inline int task_is_waking(struct task_struct
*p
)
931 return unlikely(p
->state
== TASK_WAKING
);
935 * __task_rq_lock - lock the runqueue a given task resides on.
936 * Must be called interrupts disabled.
938 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
945 raw_spin_lock(&rq
->lock
);
946 if (likely(rq
== task_rq(p
)))
948 raw_spin_unlock(&rq
->lock
);
953 * task_rq_lock - lock the runqueue a given task resides on and disable
954 * interrupts. Note the ordering: we can safely lookup the task_rq without
955 * explicitly disabling preemption.
957 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
963 local_irq_save(*flags
);
965 raw_spin_lock(&rq
->lock
);
966 if (likely(rq
== task_rq(p
)))
968 raw_spin_unlock_irqrestore(&rq
->lock
, *flags
);
972 static void __task_rq_unlock(struct rq
*rq
)
975 raw_spin_unlock(&rq
->lock
);
978 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
981 raw_spin_unlock_irqrestore(&rq
->lock
, *flags
);
985 * this_rq_lock - lock this runqueue and disable interrupts.
987 static struct rq
*this_rq_lock(void)
994 raw_spin_lock(&rq
->lock
);
999 #ifdef CONFIG_SCHED_HRTICK
1001 * Use HR-timers to deliver accurate preemption points.
1003 * Its all a bit involved since we cannot program an hrt while holding the
1004 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1007 * When we get rescheduled we reprogram the hrtick_timer outside of the
1013 * - enabled by features
1014 * - hrtimer is actually high res
1016 static inline int hrtick_enabled(struct rq
*rq
)
1018 if (!sched_feat(HRTICK
))
1020 if (!cpu_active(cpu_of(rq
)))
1022 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1025 static void hrtick_clear(struct rq
*rq
)
1027 if (hrtimer_active(&rq
->hrtick_timer
))
1028 hrtimer_cancel(&rq
->hrtick_timer
);
1032 * High-resolution timer tick.
1033 * Runs from hardirq context with interrupts disabled.
1035 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1037 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1039 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1041 raw_spin_lock(&rq
->lock
);
1042 update_rq_clock(rq
);
1043 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1044 raw_spin_unlock(&rq
->lock
);
1046 return HRTIMER_NORESTART
;
1051 * called from hardirq (IPI) context
1053 static void __hrtick_start(void *arg
)
1055 struct rq
*rq
= arg
;
1057 raw_spin_lock(&rq
->lock
);
1058 hrtimer_restart(&rq
->hrtick_timer
);
1059 rq
->hrtick_csd_pending
= 0;
1060 raw_spin_unlock(&rq
->lock
);
1064 * Called to set the hrtick timer state.
1066 * called with rq->lock held and irqs disabled
1068 static void hrtick_start(struct rq
*rq
, u64 delay
)
1070 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1071 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1073 hrtimer_set_expires(timer
, time
);
1075 if (rq
== this_rq()) {
1076 hrtimer_restart(timer
);
1077 } else if (!rq
->hrtick_csd_pending
) {
1078 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
, 0);
1079 rq
->hrtick_csd_pending
= 1;
1084 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1086 int cpu
= (int)(long)hcpu
;
1089 case CPU_UP_CANCELED
:
1090 case CPU_UP_CANCELED_FROZEN
:
1091 case CPU_DOWN_PREPARE
:
1092 case CPU_DOWN_PREPARE_FROZEN
:
1094 case CPU_DEAD_FROZEN
:
1095 hrtick_clear(cpu_rq(cpu
));
1102 static __init
void init_hrtick(void)
1104 hotcpu_notifier(hotplug_hrtick
, 0);
1108 * Called to set the hrtick timer state.
1110 * called with rq->lock held and irqs disabled
1112 static void hrtick_start(struct rq
*rq
, u64 delay
)
1114 __hrtimer_start_range_ns(&rq
->hrtick_timer
, ns_to_ktime(delay
), 0,
1115 HRTIMER_MODE_REL_PINNED
, 0);
1118 static inline void init_hrtick(void)
1121 #endif /* CONFIG_SMP */
1123 static void init_rq_hrtick(struct rq
*rq
)
1126 rq
->hrtick_csd_pending
= 0;
1128 rq
->hrtick_csd
.flags
= 0;
1129 rq
->hrtick_csd
.func
= __hrtick_start
;
1130 rq
->hrtick_csd
.info
= rq
;
1133 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1134 rq
->hrtick_timer
.function
= hrtick
;
1136 #else /* CONFIG_SCHED_HRTICK */
1137 static inline void hrtick_clear(struct rq
*rq
)
1141 static inline void init_rq_hrtick(struct rq
*rq
)
1145 static inline void init_hrtick(void)
1148 #endif /* CONFIG_SCHED_HRTICK */
1151 * resched_task - mark a task 'to be rescheduled now'.
1153 * On UP this means the setting of the need_resched flag, on SMP it
1154 * might also involve a cross-CPU call to trigger the scheduler on
1159 #ifndef tsk_is_polling
1160 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1163 static void resched_task(struct task_struct
*p
)
1167 assert_raw_spin_locked(&task_rq(p
)->lock
);
1169 if (test_tsk_need_resched(p
))
1172 set_tsk_need_resched(p
);
1175 if (cpu
== smp_processor_id())
1178 /* NEED_RESCHED must be visible before we test polling */
1180 if (!tsk_is_polling(p
))
1181 smp_send_reschedule(cpu
);
1184 static void resched_cpu(int cpu
)
1186 struct rq
*rq
= cpu_rq(cpu
);
1187 unsigned long flags
;
1189 if (!raw_spin_trylock_irqsave(&rq
->lock
, flags
))
1191 resched_task(cpu_curr(cpu
));
1192 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1197 * When add_timer_on() enqueues a timer into the timer wheel of an
1198 * idle CPU then this timer might expire before the next timer event
1199 * which is scheduled to wake up that CPU. In case of a completely
1200 * idle system the next event might even be infinite time into the
1201 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1202 * leaves the inner idle loop so the newly added timer is taken into
1203 * account when the CPU goes back to idle and evaluates the timer
1204 * wheel for the next timer event.
1206 void wake_up_idle_cpu(int cpu
)
1208 struct rq
*rq
= cpu_rq(cpu
);
1210 if (cpu
== smp_processor_id())
1214 * This is safe, as this function is called with the timer
1215 * wheel base lock of (cpu) held. When the CPU is on the way
1216 * to idle and has not yet set rq->curr to idle then it will
1217 * be serialized on the timer wheel base lock and take the new
1218 * timer into account automatically.
1220 if (rq
->curr
!= rq
->idle
)
1224 * We can set TIF_RESCHED on the idle task of the other CPU
1225 * lockless. The worst case is that the other CPU runs the
1226 * idle task through an additional NOOP schedule()
1228 set_tsk_need_resched(rq
->idle
);
1230 /* NEED_RESCHED must be visible before we test polling */
1232 if (!tsk_is_polling(rq
->idle
))
1233 smp_send_reschedule(cpu
);
1236 int nohz_ratelimit(int cpu
)
1238 struct rq
*rq
= cpu_rq(cpu
);
1239 u64 diff
= rq
->clock
- rq
->nohz_stamp
;
1241 rq
->nohz_stamp
= rq
->clock
;
1243 return diff
< (NSEC_PER_SEC
/ HZ
) >> 1;
1246 #endif /* CONFIG_NO_HZ */
1248 static u64
sched_avg_period(void)
1250 return (u64
)sysctl_sched_time_avg
* NSEC_PER_MSEC
/ 2;
1253 static void sched_avg_update(struct rq
*rq
)
1255 s64 period
= sched_avg_period();
1257 while ((s64
)(rq
->clock
- rq
->age_stamp
) > period
) {
1258 rq
->age_stamp
+= period
;
1263 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1265 rq
->rt_avg
+= rt_delta
;
1266 sched_avg_update(rq
);
1269 #else /* !CONFIG_SMP */
1270 static void resched_task(struct task_struct
*p
)
1272 assert_raw_spin_locked(&task_rq(p
)->lock
);
1273 set_tsk_need_resched(p
);
1276 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1279 #endif /* CONFIG_SMP */
1281 #if BITS_PER_LONG == 32
1282 # define WMULT_CONST (~0UL)
1284 # define WMULT_CONST (1UL << 32)
1287 #define WMULT_SHIFT 32
1290 * Shift right and round:
1292 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1295 * delta *= weight / lw
1297 static unsigned long
1298 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1299 struct load_weight
*lw
)
1303 if (!lw
->inv_weight
) {
1304 if (BITS_PER_LONG
> 32 && unlikely(lw
->weight
>= WMULT_CONST
))
1307 lw
->inv_weight
= 1 + (WMULT_CONST
-lw
->weight
/2)
1311 tmp
= (u64
)delta_exec
* weight
;
1313 * Check whether we'd overflow the 64-bit multiplication:
1315 if (unlikely(tmp
> WMULT_CONST
))
1316 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1319 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1321 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1324 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1330 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1337 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1338 * of tasks with abnormal "nice" values across CPUs the contribution that
1339 * each task makes to its run queue's load is weighted according to its
1340 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1341 * scaled version of the new time slice allocation that they receive on time
1345 #define WEIGHT_IDLEPRIO 3
1346 #define WMULT_IDLEPRIO 1431655765
1349 * Nice levels are multiplicative, with a gentle 10% change for every
1350 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1351 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1352 * that remained on nice 0.
1354 * The "10% effect" is relative and cumulative: from _any_ nice level,
1355 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1356 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1357 * If a task goes up by ~10% and another task goes down by ~10% then
1358 * the relative distance between them is ~25%.)
1360 static const int prio_to_weight
[40] = {
1361 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1362 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1363 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1364 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1365 /* 0 */ 1024, 820, 655, 526, 423,
1366 /* 5 */ 335, 272, 215, 172, 137,
1367 /* 10 */ 110, 87, 70, 56, 45,
1368 /* 15 */ 36, 29, 23, 18, 15,
1372 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1374 * In cases where the weight does not change often, we can use the
1375 * precalculated inverse to speed up arithmetics by turning divisions
1376 * into multiplications:
1378 static const u32 prio_to_wmult
[40] = {
1379 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1380 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1381 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1382 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1383 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1384 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1385 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1386 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1389 /* Time spent by the tasks of the cpu accounting group executing in ... */
1390 enum cpuacct_stat_index
{
1391 CPUACCT_STAT_USER
, /* ... user mode */
1392 CPUACCT_STAT_SYSTEM
, /* ... kernel mode */
1394 CPUACCT_STAT_NSTATS
,
1397 #ifdef CONFIG_CGROUP_CPUACCT
1398 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1399 static void cpuacct_update_stats(struct task_struct
*tsk
,
1400 enum cpuacct_stat_index idx
, cputime_t val
);
1402 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1403 static inline void cpuacct_update_stats(struct task_struct
*tsk
,
1404 enum cpuacct_stat_index idx
, cputime_t val
) {}
1407 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1409 update_load_add(&rq
->load
, load
);
1412 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1414 update_load_sub(&rq
->load
, load
);
1417 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1418 typedef int (*tg_visitor
)(struct task_group
*, void *);
1421 * Iterate the full tree, calling @down when first entering a node and @up when
1422 * leaving it for the final time.
1424 static int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
1426 struct task_group
*parent
, *child
;
1430 parent
= &root_task_group
;
1432 ret
= (*down
)(parent
, data
);
1435 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1442 ret
= (*up
)(parent
, data
);
1447 parent
= parent
->parent
;
1456 static int tg_nop(struct task_group
*tg
, void *data
)
1463 /* Used instead of source_load when we know the type == 0 */
1464 static unsigned long weighted_cpuload(const int cpu
)
1466 return cpu_rq(cpu
)->load
.weight
;
1470 * Return a low guess at the load of a migration-source cpu weighted
1471 * according to the scheduling class and "nice" value.
1473 * We want to under-estimate the load of migration sources, to
1474 * balance conservatively.
1476 static unsigned long source_load(int cpu
, int type
)
1478 struct rq
*rq
= cpu_rq(cpu
);
1479 unsigned long total
= weighted_cpuload(cpu
);
1481 if (type
== 0 || !sched_feat(LB_BIAS
))
1484 return min(rq
->cpu_load
[type
-1], total
);
1488 * Return a high guess at the load of a migration-target cpu weighted
1489 * according to the scheduling class and "nice" value.
1491 static unsigned long target_load(int cpu
, int type
)
1493 struct rq
*rq
= cpu_rq(cpu
);
1494 unsigned long total
= weighted_cpuload(cpu
);
1496 if (type
== 0 || !sched_feat(LB_BIAS
))
1499 return max(rq
->cpu_load
[type
-1], total
);
1502 static struct sched_group
*group_of(int cpu
)
1504 struct sched_domain
*sd
= rcu_dereference_sched(cpu_rq(cpu
)->sd
);
1512 static unsigned long power_of(int cpu
)
1514 struct sched_group
*group
= group_of(cpu
);
1517 return SCHED_LOAD_SCALE
;
1519 return group
->cpu_power
;
1522 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1524 static unsigned long cpu_avg_load_per_task(int cpu
)
1526 struct rq
*rq
= cpu_rq(cpu
);
1527 unsigned long nr_running
= ACCESS_ONCE(rq
->nr_running
);
1530 rq
->avg_load_per_task
= rq
->load
.weight
/ nr_running
;
1532 rq
->avg_load_per_task
= 0;
1534 return rq
->avg_load_per_task
;
1537 #ifdef CONFIG_FAIR_GROUP_SCHED
1539 static __read_mostly
unsigned long __percpu
*update_shares_data
;
1541 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
);
1544 * Calculate and set the cpu's group shares.
1546 static void update_group_shares_cpu(struct task_group
*tg
, int cpu
,
1547 unsigned long sd_shares
,
1548 unsigned long sd_rq_weight
,
1549 unsigned long *usd_rq_weight
)
1551 unsigned long shares
, rq_weight
;
1554 rq_weight
= usd_rq_weight
[cpu
];
1557 rq_weight
= NICE_0_LOAD
;
1561 * \Sum_j shares_j * rq_weight_i
1562 * shares_i = -----------------------------
1563 * \Sum_j rq_weight_j
1565 shares
= (sd_shares
* rq_weight
) / sd_rq_weight
;
1566 shares
= clamp_t(unsigned long, shares
, MIN_SHARES
, MAX_SHARES
);
1568 if (abs(shares
- tg
->se
[cpu
]->load
.weight
) >
1569 sysctl_sched_shares_thresh
) {
1570 struct rq
*rq
= cpu_rq(cpu
);
1571 unsigned long flags
;
1573 raw_spin_lock_irqsave(&rq
->lock
, flags
);
1574 tg
->cfs_rq
[cpu
]->rq_weight
= boost
? 0 : rq_weight
;
1575 tg
->cfs_rq
[cpu
]->shares
= boost
? 0 : shares
;
1576 __set_se_shares(tg
->se
[cpu
], shares
);
1577 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1582 * Re-compute the task group their per cpu shares over the given domain.
1583 * This needs to be done in a bottom-up fashion because the rq weight of a
1584 * parent group depends on the shares of its child groups.
1586 static int tg_shares_up(struct task_group
*tg
, void *data
)
1588 unsigned long weight
, rq_weight
= 0, sum_weight
= 0, shares
= 0;
1589 unsigned long *usd_rq_weight
;
1590 struct sched_domain
*sd
= data
;
1591 unsigned long flags
;
1597 local_irq_save(flags
);
1598 usd_rq_weight
= per_cpu_ptr(update_shares_data
, smp_processor_id());
1600 for_each_cpu(i
, sched_domain_span(sd
)) {
1601 weight
= tg
->cfs_rq
[i
]->load
.weight
;
1602 usd_rq_weight
[i
] = weight
;
1604 rq_weight
+= weight
;
1606 * If there are currently no tasks on the cpu pretend there
1607 * is one of average load so that when a new task gets to
1608 * run here it will not get delayed by group starvation.
1611 weight
= NICE_0_LOAD
;
1613 sum_weight
+= weight
;
1614 shares
+= tg
->cfs_rq
[i
]->shares
;
1618 rq_weight
= sum_weight
;
1620 if ((!shares
&& rq_weight
) || shares
> tg
->shares
)
1621 shares
= tg
->shares
;
1623 if (!sd
->parent
|| !(sd
->parent
->flags
& SD_LOAD_BALANCE
))
1624 shares
= tg
->shares
;
1626 for_each_cpu(i
, sched_domain_span(sd
))
1627 update_group_shares_cpu(tg
, i
, shares
, rq_weight
, usd_rq_weight
);
1629 local_irq_restore(flags
);
1635 * Compute the cpu's hierarchical load factor for each task group.
1636 * This needs to be done in a top-down fashion because the load of a child
1637 * group is a fraction of its parents load.
1639 static int tg_load_down(struct task_group
*tg
, void *data
)
1642 long cpu
= (long)data
;
1645 load
= cpu_rq(cpu
)->load
.weight
;
1647 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
1648 load
*= tg
->cfs_rq
[cpu
]->shares
;
1649 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
1652 tg
->cfs_rq
[cpu
]->h_load
= load
;
1657 static void update_shares(struct sched_domain
*sd
)
1662 if (root_task_group_empty())
1665 now
= cpu_clock(raw_smp_processor_id());
1666 elapsed
= now
- sd
->last_update
;
1668 if (elapsed
>= (s64
)(u64
)sysctl_sched_shares_ratelimit
) {
1669 sd
->last_update
= now
;
1670 walk_tg_tree(tg_nop
, tg_shares_up
, sd
);
1674 static void update_h_load(long cpu
)
1676 if (root_task_group_empty())
1679 walk_tg_tree(tg_load_down
, tg_nop
, (void *)cpu
);
1684 static inline void update_shares(struct sched_domain
*sd
)
1690 #ifdef CONFIG_PREEMPT
1692 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
1695 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1696 * way at the expense of forcing extra atomic operations in all
1697 * invocations. This assures that the double_lock is acquired using the
1698 * same underlying policy as the spinlock_t on this architecture, which
1699 * reduces latency compared to the unfair variant below. However, it
1700 * also adds more overhead and therefore may reduce throughput.
1702 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1703 __releases(this_rq
->lock
)
1704 __acquires(busiest
->lock
)
1705 __acquires(this_rq
->lock
)
1707 raw_spin_unlock(&this_rq
->lock
);
1708 double_rq_lock(this_rq
, busiest
);
1715 * Unfair double_lock_balance: Optimizes throughput at the expense of
1716 * latency by eliminating extra atomic operations when the locks are
1717 * already in proper order on entry. This favors lower cpu-ids and will
1718 * grant the double lock to lower cpus over higher ids under contention,
1719 * regardless of entry order into the function.
1721 static int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1722 __releases(this_rq
->lock
)
1723 __acquires(busiest
->lock
)
1724 __acquires(this_rq
->lock
)
1728 if (unlikely(!raw_spin_trylock(&busiest
->lock
))) {
1729 if (busiest
< this_rq
) {
1730 raw_spin_unlock(&this_rq
->lock
);
1731 raw_spin_lock(&busiest
->lock
);
1732 raw_spin_lock_nested(&this_rq
->lock
,
1733 SINGLE_DEPTH_NESTING
);
1736 raw_spin_lock_nested(&busiest
->lock
,
1737 SINGLE_DEPTH_NESTING
);
1742 #endif /* CONFIG_PREEMPT */
1745 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1747 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1749 if (unlikely(!irqs_disabled())) {
1750 /* printk() doesn't work good under rq->lock */
1751 raw_spin_unlock(&this_rq
->lock
);
1755 return _double_lock_balance(this_rq
, busiest
);
1758 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1759 __releases(busiest
->lock
)
1761 raw_spin_unlock(&busiest
->lock
);
1762 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1766 * double_rq_lock - safely lock two runqueues
1768 * Note this does not disable interrupts like task_rq_lock,
1769 * you need to do so manually before calling.
1771 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1772 __acquires(rq1
->lock
)
1773 __acquires(rq2
->lock
)
1775 BUG_ON(!irqs_disabled());
1777 raw_spin_lock(&rq1
->lock
);
1778 __acquire(rq2
->lock
); /* Fake it out ;) */
1781 raw_spin_lock(&rq1
->lock
);
1782 raw_spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
1784 raw_spin_lock(&rq2
->lock
);
1785 raw_spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
1791 * double_rq_unlock - safely unlock two runqueues
1793 * Note this does not restore interrupts like task_rq_unlock,
1794 * you need to do so manually after calling.
1796 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1797 __releases(rq1
->lock
)
1798 __releases(rq2
->lock
)
1800 raw_spin_unlock(&rq1
->lock
);
1802 raw_spin_unlock(&rq2
->lock
);
1804 __release(rq2
->lock
);
1809 #ifdef CONFIG_FAIR_GROUP_SCHED
1810 static void cfs_rq_set_shares(struct cfs_rq
*cfs_rq
, unsigned long shares
)
1813 cfs_rq
->shares
= shares
;
1818 static void calc_load_account_idle(struct rq
*this_rq
);
1819 static void update_sysctl(void);
1820 static int get_update_sysctl_factor(void);
1822 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1824 set_task_rq(p
, cpu
);
1827 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1828 * successfuly executed on another CPU. We must ensure that updates of
1829 * per-task data have been completed by this moment.
1832 task_thread_info(p
)->cpu
= cpu
;
1836 static const struct sched_class rt_sched_class
;
1838 #define sched_class_highest (&rt_sched_class)
1839 #define for_each_class(class) \
1840 for (class = sched_class_highest; class; class = class->next)
1842 #include "sched_stats.h"
1844 static void inc_nr_running(struct rq
*rq
)
1849 static void dec_nr_running(struct rq
*rq
)
1854 static void set_load_weight(struct task_struct
*p
)
1856 if (task_has_rt_policy(p
)) {
1857 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
1858 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
1863 * SCHED_IDLE tasks get minimal weight:
1865 if (p
->policy
== SCHED_IDLE
) {
1866 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1867 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1871 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1872 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1875 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1877 update_rq_clock(rq
);
1878 sched_info_queued(p
);
1879 p
->sched_class
->enqueue_task(rq
, p
, flags
);
1883 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1885 update_rq_clock(rq
);
1886 sched_info_dequeued(p
);
1887 p
->sched_class
->dequeue_task(rq
, p
, flags
);
1892 * activate_task - move a task to the runqueue.
1894 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1896 if (task_contributes_to_load(p
))
1897 rq
->nr_uninterruptible
--;
1899 enqueue_task(rq
, p
, flags
);
1904 * deactivate_task - remove a task from the runqueue.
1906 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1908 if (task_contributes_to_load(p
))
1909 rq
->nr_uninterruptible
++;
1911 dequeue_task(rq
, p
, flags
);
1915 #include "sched_idletask.c"
1916 #include "sched_fair.c"
1917 #include "sched_rt.c"
1918 #ifdef CONFIG_SCHED_DEBUG
1919 # include "sched_debug.c"
1923 * __normal_prio - return the priority that is based on the static prio
1925 static inline int __normal_prio(struct task_struct
*p
)
1927 return p
->static_prio
;
1931 * Calculate the expected normal priority: i.e. priority
1932 * without taking RT-inheritance into account. Might be
1933 * boosted by interactivity modifiers. Changes upon fork,
1934 * setprio syscalls, and whenever the interactivity
1935 * estimator recalculates.
1937 static inline int normal_prio(struct task_struct
*p
)
1941 if (task_has_rt_policy(p
))
1942 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1944 prio
= __normal_prio(p
);
1949 * Calculate the current priority, i.e. the priority
1950 * taken into account by the scheduler. This value might
1951 * be boosted by RT tasks, or might be boosted by
1952 * interactivity modifiers. Will be RT if the task got
1953 * RT-boosted. If not then it returns p->normal_prio.
1955 static int effective_prio(struct task_struct
*p
)
1957 p
->normal_prio
= normal_prio(p
);
1959 * If we are RT tasks or we were boosted to RT priority,
1960 * keep the priority unchanged. Otherwise, update priority
1961 * to the normal priority:
1963 if (!rt_prio(p
->prio
))
1964 return p
->normal_prio
;
1969 * task_curr - is this task currently executing on a CPU?
1970 * @p: the task in question.
1972 inline int task_curr(const struct task_struct
*p
)
1974 return cpu_curr(task_cpu(p
)) == p
;
1977 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1978 const struct sched_class
*prev_class
,
1979 int oldprio
, int running
)
1981 if (prev_class
!= p
->sched_class
) {
1982 if (prev_class
->switched_from
)
1983 prev_class
->switched_from(rq
, p
, running
);
1984 p
->sched_class
->switched_to(rq
, p
, running
);
1986 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
1991 * Is this task likely cache-hot:
1994 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
1998 if (p
->sched_class
!= &fair_sched_class
)
2002 * Buddy candidates are cache hot:
2004 if (sched_feat(CACHE_HOT_BUDDY
) && this_rq()->nr_running
&&
2005 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
2006 &p
->se
== cfs_rq_of(&p
->se
)->last
))
2009 if (sysctl_sched_migration_cost
== -1)
2011 if (sysctl_sched_migration_cost
== 0)
2014 delta
= now
- p
->se
.exec_start
;
2016 return delta
< (s64
)sysctl_sched_migration_cost
;
2019 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
2021 #ifdef CONFIG_SCHED_DEBUG
2023 * We should never call set_task_cpu() on a blocked task,
2024 * ttwu() will sort out the placement.
2026 WARN_ON_ONCE(p
->state
!= TASK_RUNNING
&& p
->state
!= TASK_WAKING
&&
2027 !(task_thread_info(p
)->preempt_count
& PREEMPT_ACTIVE
));
2030 trace_sched_migrate_task(p
, new_cpu
);
2032 if (task_cpu(p
) != new_cpu
) {
2033 p
->se
.nr_migrations
++;
2034 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS
, 1, 1, NULL
, 0);
2037 __set_task_cpu(p
, new_cpu
);
2040 struct migration_arg
{
2041 struct task_struct
*task
;
2045 static int migration_cpu_stop(void *data
);
2048 * The task's runqueue lock must be held.
2049 * Returns true if you have to wait for migration thread.
2051 static bool migrate_task(struct task_struct
*p
, int dest_cpu
)
2053 struct rq
*rq
= task_rq(p
);
2056 * If the task is not on a runqueue (and not running), then
2057 * the next wake-up will properly place the task.
2059 return p
->se
.on_rq
|| task_running(rq
, p
);
2063 * wait_task_inactive - wait for a thread to unschedule.
2065 * If @match_state is nonzero, it's the @p->state value just checked and
2066 * not expected to change. If it changes, i.e. @p might have woken up,
2067 * then return zero. When we succeed in waiting for @p to be off its CPU,
2068 * we return a positive number (its total switch count). If a second call
2069 * a short while later returns the same number, the caller can be sure that
2070 * @p has remained unscheduled the whole time.
2072 * The caller must ensure that the task *will* unschedule sometime soon,
2073 * else this function might spin for a *long* time. This function can't
2074 * be called with interrupts off, or it may introduce deadlock with
2075 * smp_call_function() if an IPI is sent by the same process we are
2076 * waiting to become inactive.
2078 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
2080 unsigned long flags
;
2087 * We do the initial early heuristics without holding
2088 * any task-queue locks at all. We'll only try to get
2089 * the runqueue lock when things look like they will
2095 * If the task is actively running on another CPU
2096 * still, just relax and busy-wait without holding
2099 * NOTE! Since we don't hold any locks, it's not
2100 * even sure that "rq" stays as the right runqueue!
2101 * But we don't care, since "task_running()" will
2102 * return false if the runqueue has changed and p
2103 * is actually now running somewhere else!
2105 while (task_running(rq
, p
)) {
2106 if (match_state
&& unlikely(p
->state
!= match_state
))
2112 * Ok, time to look more closely! We need the rq
2113 * lock now, to be *sure*. If we're wrong, we'll
2114 * just go back and repeat.
2116 rq
= task_rq_lock(p
, &flags
);
2117 trace_sched_wait_task(p
);
2118 running
= task_running(rq
, p
);
2119 on_rq
= p
->se
.on_rq
;
2121 if (!match_state
|| p
->state
== match_state
)
2122 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
2123 task_rq_unlock(rq
, &flags
);
2126 * If it changed from the expected state, bail out now.
2128 if (unlikely(!ncsw
))
2132 * Was it really running after all now that we
2133 * checked with the proper locks actually held?
2135 * Oops. Go back and try again..
2137 if (unlikely(running
)) {
2143 * It's not enough that it's not actively running,
2144 * it must be off the runqueue _entirely_, and not
2147 * So if it was still runnable (but just not actively
2148 * running right now), it's preempted, and we should
2149 * yield - it could be a while.
2151 if (unlikely(on_rq
)) {
2152 schedule_timeout_uninterruptible(1);
2157 * Ahh, all good. It wasn't running, and it wasn't
2158 * runnable, which means that it will never become
2159 * running in the future either. We're all done!
2168 * kick_process - kick a running thread to enter/exit the kernel
2169 * @p: the to-be-kicked thread
2171 * Cause a process which is running on another CPU to enter
2172 * kernel-mode, without any delay. (to get signals handled.)
2174 * NOTE: this function doesnt have to take the runqueue lock,
2175 * because all it wants to ensure is that the remote task enters
2176 * the kernel. If the IPI races and the task has been migrated
2177 * to another CPU then no harm is done and the purpose has been
2180 void kick_process(struct task_struct
*p
)
2186 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2187 smp_send_reschedule(cpu
);
2190 EXPORT_SYMBOL_GPL(kick_process
);
2191 #endif /* CONFIG_SMP */
2194 * task_oncpu_function_call - call a function on the cpu on which a task runs
2195 * @p: the task to evaluate
2196 * @func: the function to be called
2197 * @info: the function call argument
2199 * Calls the function @func when the task is currently running. This might
2200 * be on the current CPU, which just calls the function directly
2202 void task_oncpu_function_call(struct task_struct
*p
,
2203 void (*func
) (void *info
), void *info
)
2210 smp_call_function_single(cpu
, func
, info
, 1);
2216 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2218 static int select_fallback_rq(int cpu
, struct task_struct
*p
)
2221 const struct cpumask
*nodemask
= cpumask_of_node(cpu_to_node(cpu
));
2223 /* Look for allowed, online CPU in same node. */
2224 for_each_cpu_and(dest_cpu
, nodemask
, cpu_active_mask
)
2225 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
2228 /* Any allowed, online CPU? */
2229 dest_cpu
= cpumask_any_and(&p
->cpus_allowed
, cpu_active_mask
);
2230 if (dest_cpu
< nr_cpu_ids
)
2233 /* No more Mr. Nice Guy. */
2234 if (unlikely(dest_cpu
>= nr_cpu_ids
)) {
2235 dest_cpu
= cpuset_cpus_allowed_fallback(p
);
2237 * Don't tell them about moving exiting tasks or
2238 * kernel threads (both mm NULL), since they never
2241 if (p
->mm
&& printk_ratelimit()) {
2242 printk(KERN_INFO
"process %d (%s) no "
2243 "longer affine to cpu%d\n",
2244 task_pid_nr(p
), p
->comm
, cpu
);
2252 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2255 int select_task_rq(struct rq
*rq
, struct task_struct
*p
, int sd_flags
, int wake_flags
)
2257 int cpu
= p
->sched_class
->select_task_rq(rq
, p
, sd_flags
, wake_flags
);
2260 * In order not to call set_task_cpu() on a blocking task we need
2261 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2264 * Since this is common to all placement strategies, this lives here.
2266 * [ this allows ->select_task() to simply return task_cpu(p) and
2267 * not worry about this generic constraint ]
2269 if (unlikely(!cpumask_test_cpu(cpu
, &p
->cpus_allowed
) ||
2271 cpu
= select_fallback_rq(task_cpu(p
), p
);
2276 static void update_avg(u64
*avg
, u64 sample
)
2278 s64 diff
= sample
- *avg
;
2284 * try_to_wake_up - wake up a thread
2285 * @p: the to-be-woken-up thread
2286 * @state: the mask of task states that can be woken
2287 * @sync: do a synchronous wakeup?
2289 * Put it on the run-queue if it's not already there. The "current"
2290 * thread is always on the run-queue (except when the actual
2291 * re-schedule is in progress), and as such you're allowed to do
2292 * the simpler "current->state = TASK_RUNNING" to mark yourself
2293 * runnable without the overhead of this.
2295 * returns failure only if the task is already active.
2297 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
,
2300 int cpu
, orig_cpu
, this_cpu
, success
= 0;
2301 unsigned long flags
;
2302 unsigned long en_flags
= ENQUEUE_WAKEUP
;
2305 this_cpu
= get_cpu();
2308 rq
= task_rq_lock(p
, &flags
);
2309 if (!(p
->state
& state
))
2319 if (unlikely(task_running(rq
, p
)))
2323 * In order to handle concurrent wakeups and release the rq->lock
2324 * we put the task in TASK_WAKING state.
2326 * First fix up the nr_uninterruptible count:
2328 if (task_contributes_to_load(p
)) {
2329 if (likely(cpu_online(orig_cpu
)))
2330 rq
->nr_uninterruptible
--;
2332 this_rq()->nr_uninterruptible
--;
2334 p
->state
= TASK_WAKING
;
2336 if (p
->sched_class
->task_waking
) {
2337 p
->sched_class
->task_waking(rq
, p
);
2338 en_flags
|= ENQUEUE_WAKING
;
2341 cpu
= select_task_rq(rq
, p
, SD_BALANCE_WAKE
, wake_flags
);
2342 if (cpu
!= orig_cpu
)
2343 set_task_cpu(p
, cpu
);
2344 __task_rq_unlock(rq
);
2347 raw_spin_lock(&rq
->lock
);
2350 * We migrated the task without holding either rq->lock, however
2351 * since the task is not on the task list itself, nobody else
2352 * will try and migrate the task, hence the rq should match the
2353 * cpu we just moved it to.
2355 WARN_ON(task_cpu(p
) != cpu
);
2356 WARN_ON(p
->state
!= TASK_WAKING
);
2358 #ifdef CONFIG_SCHEDSTATS
2359 schedstat_inc(rq
, ttwu_count
);
2360 if (cpu
== this_cpu
)
2361 schedstat_inc(rq
, ttwu_local
);
2363 struct sched_domain
*sd
;
2364 for_each_domain(this_cpu
, sd
) {
2365 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2366 schedstat_inc(sd
, ttwu_wake_remote
);
2371 #endif /* CONFIG_SCHEDSTATS */
2374 #endif /* CONFIG_SMP */
2375 schedstat_inc(p
, se
.statistics
.nr_wakeups
);
2376 if (wake_flags
& WF_SYNC
)
2377 schedstat_inc(p
, se
.statistics
.nr_wakeups_sync
);
2378 if (orig_cpu
!= cpu
)
2379 schedstat_inc(p
, se
.statistics
.nr_wakeups_migrate
);
2380 if (cpu
== this_cpu
)
2381 schedstat_inc(p
, se
.statistics
.nr_wakeups_local
);
2383 schedstat_inc(p
, se
.statistics
.nr_wakeups_remote
);
2384 activate_task(rq
, p
, en_flags
);
2388 trace_sched_wakeup(p
, success
);
2389 check_preempt_curr(rq
, p
, wake_flags
);
2391 p
->state
= TASK_RUNNING
;
2393 if (p
->sched_class
->task_woken
)
2394 p
->sched_class
->task_woken(rq
, p
);
2396 if (unlikely(rq
->idle_stamp
)) {
2397 u64 delta
= rq
->clock
- rq
->idle_stamp
;
2398 u64 max
= 2*sysctl_sched_migration_cost
;
2403 update_avg(&rq
->avg_idle
, delta
);
2408 task_rq_unlock(rq
, &flags
);
2415 * wake_up_process - Wake up a specific process
2416 * @p: The process to be woken up.
2418 * Attempt to wake up the nominated process and move it to the set of runnable
2419 * processes. Returns 1 if the process was woken up, 0 if it was already
2422 * It may be assumed that this function implies a write memory barrier before
2423 * changing the task state if and only if any tasks are woken up.
2425 int wake_up_process(struct task_struct
*p
)
2427 return try_to_wake_up(p
, TASK_ALL
, 0);
2429 EXPORT_SYMBOL(wake_up_process
);
2431 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2433 return try_to_wake_up(p
, state
, 0);
2437 * Perform scheduler related setup for a newly forked process p.
2438 * p is forked by current.
2440 * __sched_fork() is basic setup used by init_idle() too:
2442 static void __sched_fork(struct task_struct
*p
)
2444 p
->se
.exec_start
= 0;
2445 p
->se
.sum_exec_runtime
= 0;
2446 p
->se
.prev_sum_exec_runtime
= 0;
2447 p
->se
.nr_migrations
= 0;
2449 #ifdef CONFIG_SCHEDSTATS
2450 memset(&p
->se
.statistics
, 0, sizeof(p
->se
.statistics
));
2453 INIT_LIST_HEAD(&p
->rt
.run_list
);
2455 INIT_LIST_HEAD(&p
->se
.group_node
);
2457 #ifdef CONFIG_PREEMPT_NOTIFIERS
2458 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2463 * fork()/clone()-time setup:
2465 void sched_fork(struct task_struct
*p
, int clone_flags
)
2467 int cpu
= get_cpu();
2471 * We mark the process as running here. This guarantees that
2472 * nobody will actually run it, and a signal or other external
2473 * event cannot wake it up and insert it on the runqueue either.
2475 p
->state
= TASK_RUNNING
;
2478 * Revert to default priority/policy on fork if requested.
2480 if (unlikely(p
->sched_reset_on_fork
)) {
2481 if (p
->policy
== SCHED_FIFO
|| p
->policy
== SCHED_RR
) {
2482 p
->policy
= SCHED_NORMAL
;
2483 p
->normal_prio
= p
->static_prio
;
2486 if (PRIO_TO_NICE(p
->static_prio
) < 0) {
2487 p
->static_prio
= NICE_TO_PRIO(0);
2488 p
->normal_prio
= p
->static_prio
;
2493 * We don't need the reset flag anymore after the fork. It has
2494 * fulfilled its duty:
2496 p
->sched_reset_on_fork
= 0;
2500 * Make sure we do not leak PI boosting priority to the child.
2502 p
->prio
= current
->normal_prio
;
2504 if (!rt_prio(p
->prio
))
2505 p
->sched_class
= &fair_sched_class
;
2507 if (p
->sched_class
->task_fork
)
2508 p
->sched_class
->task_fork(p
);
2510 set_task_cpu(p
, cpu
);
2512 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2513 if (likely(sched_info_on()))
2514 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2516 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2519 #ifdef CONFIG_PREEMPT
2520 /* Want to start with kernel preemption disabled. */
2521 task_thread_info(p
)->preempt_count
= 1;
2523 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
2529 * wake_up_new_task - wake up a newly created task for the first time.
2531 * This function will do some initial scheduler statistics housekeeping
2532 * that must be done for every newly created context, then puts the task
2533 * on the runqueue and wakes it.
2535 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2537 unsigned long flags
;
2539 int cpu __maybe_unused
= get_cpu();
2542 rq
= task_rq_lock(p
, &flags
);
2543 p
->state
= TASK_WAKING
;
2546 * Fork balancing, do it here and not earlier because:
2547 * - cpus_allowed can change in the fork path
2548 * - any previously selected cpu might disappear through hotplug
2550 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2551 * without people poking at ->cpus_allowed.
2553 cpu
= select_task_rq(rq
, p
, SD_BALANCE_FORK
, 0);
2554 set_task_cpu(p
, cpu
);
2556 p
->state
= TASK_RUNNING
;
2557 task_rq_unlock(rq
, &flags
);
2560 rq
= task_rq_lock(p
, &flags
);
2561 activate_task(rq
, p
, 0);
2562 trace_sched_wakeup_new(p
, 1);
2563 check_preempt_curr(rq
, p
, WF_FORK
);
2565 if (p
->sched_class
->task_woken
)
2566 p
->sched_class
->task_woken(rq
, p
);
2568 task_rq_unlock(rq
, &flags
);
2572 #ifdef CONFIG_PREEMPT_NOTIFIERS
2575 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2576 * @notifier: notifier struct to register
2578 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2580 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2582 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2585 * preempt_notifier_unregister - no longer interested in preemption notifications
2586 * @notifier: notifier struct to unregister
2588 * This is safe to call from within a preemption notifier.
2590 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2592 hlist_del(¬ifier
->link
);
2594 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2596 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2598 struct preempt_notifier
*notifier
;
2599 struct hlist_node
*node
;
2601 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2602 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2606 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2607 struct task_struct
*next
)
2609 struct preempt_notifier
*notifier
;
2610 struct hlist_node
*node
;
2612 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2613 notifier
->ops
->sched_out(notifier
, next
);
2616 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2618 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2623 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2624 struct task_struct
*next
)
2628 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2631 * prepare_task_switch - prepare to switch tasks
2632 * @rq: the runqueue preparing to switch
2633 * @prev: the current task that is being switched out
2634 * @next: the task we are going to switch to.
2636 * This is called with the rq lock held and interrupts off. It must
2637 * be paired with a subsequent finish_task_switch after the context
2640 * prepare_task_switch sets up locking and calls architecture specific
2644 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2645 struct task_struct
*next
)
2647 fire_sched_out_preempt_notifiers(prev
, next
);
2648 prepare_lock_switch(rq
, next
);
2649 prepare_arch_switch(next
);
2653 * finish_task_switch - clean up after a task-switch
2654 * @rq: runqueue associated with task-switch
2655 * @prev: the thread we just switched away from.
2657 * finish_task_switch must be called after the context switch, paired
2658 * with a prepare_task_switch call before the context switch.
2659 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2660 * and do any other architecture-specific cleanup actions.
2662 * Note that we may have delayed dropping an mm in context_switch(). If
2663 * so, we finish that here outside of the runqueue lock. (Doing it
2664 * with the lock held can cause deadlocks; see schedule() for
2667 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2668 __releases(rq
->lock
)
2670 struct mm_struct
*mm
= rq
->prev_mm
;
2676 * A task struct has one reference for the use as "current".
2677 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2678 * schedule one last time. The schedule call will never return, and
2679 * the scheduled task must drop that reference.
2680 * The test for TASK_DEAD must occur while the runqueue locks are
2681 * still held, otherwise prev could be scheduled on another cpu, die
2682 * there before we look at prev->state, and then the reference would
2684 * Manfred Spraul <manfred@colorfullife.com>
2686 prev_state
= prev
->state
;
2687 finish_arch_switch(prev
);
2688 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2689 local_irq_disable();
2690 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2691 perf_event_task_sched_in(current
);
2692 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2694 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2695 finish_lock_switch(rq
, prev
);
2697 fire_sched_in_preempt_notifiers(current
);
2700 if (unlikely(prev_state
== TASK_DEAD
)) {
2702 * Remove function-return probe instances associated with this
2703 * task and put them back on the free list.
2705 kprobe_flush_task(prev
);
2706 put_task_struct(prev
);
2712 /* assumes rq->lock is held */
2713 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*prev
)
2715 if (prev
->sched_class
->pre_schedule
)
2716 prev
->sched_class
->pre_schedule(rq
, prev
);
2719 /* rq->lock is NOT held, but preemption is disabled */
2720 static inline void post_schedule(struct rq
*rq
)
2722 if (rq
->post_schedule
) {
2723 unsigned long flags
;
2725 raw_spin_lock_irqsave(&rq
->lock
, flags
);
2726 if (rq
->curr
->sched_class
->post_schedule
)
2727 rq
->curr
->sched_class
->post_schedule(rq
);
2728 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
2730 rq
->post_schedule
= 0;
2736 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*p
)
2740 static inline void post_schedule(struct rq
*rq
)
2747 * schedule_tail - first thing a freshly forked thread must call.
2748 * @prev: the thread we just switched away from.
2750 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2751 __releases(rq
->lock
)
2753 struct rq
*rq
= this_rq();
2755 finish_task_switch(rq
, prev
);
2758 * FIXME: do we need to worry about rq being invalidated by the
2763 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2764 /* In this case, finish_task_switch does not reenable preemption */
2767 if (current
->set_child_tid
)
2768 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2772 * context_switch - switch to the new MM and the new
2773 * thread's register state.
2776 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2777 struct task_struct
*next
)
2779 struct mm_struct
*mm
, *oldmm
;
2781 prepare_task_switch(rq
, prev
, next
);
2782 trace_sched_switch(prev
, next
);
2784 oldmm
= prev
->active_mm
;
2786 * For paravirt, this is coupled with an exit in switch_to to
2787 * combine the page table reload and the switch backend into
2790 arch_start_context_switch(prev
);
2793 next
->active_mm
= oldmm
;
2794 atomic_inc(&oldmm
->mm_count
);
2795 enter_lazy_tlb(oldmm
, next
);
2797 switch_mm(oldmm
, mm
, next
);
2799 if (likely(!prev
->mm
)) {
2800 prev
->active_mm
= NULL
;
2801 rq
->prev_mm
= oldmm
;
2804 * Since the runqueue lock will be released by the next
2805 * task (which is an invalid locking op but in the case
2806 * of the scheduler it's an obvious special-case), so we
2807 * do an early lockdep release here:
2809 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2810 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2813 /* Here we just switch the register state and the stack. */
2814 switch_to(prev
, next
, prev
);
2818 * this_rq must be evaluated again because prev may have moved
2819 * CPUs since it called schedule(), thus the 'rq' on its stack
2820 * frame will be invalid.
2822 finish_task_switch(this_rq(), prev
);
2826 * nr_running, nr_uninterruptible and nr_context_switches:
2828 * externally visible scheduler statistics: current number of runnable
2829 * threads, current number of uninterruptible-sleeping threads, total
2830 * number of context switches performed since bootup.
2832 unsigned long nr_running(void)
2834 unsigned long i
, sum
= 0;
2836 for_each_online_cpu(i
)
2837 sum
+= cpu_rq(i
)->nr_running
;
2842 unsigned long nr_uninterruptible(void)
2844 unsigned long i
, sum
= 0;
2846 for_each_possible_cpu(i
)
2847 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2850 * Since we read the counters lockless, it might be slightly
2851 * inaccurate. Do not allow it to go below zero though:
2853 if (unlikely((long)sum
< 0))
2859 unsigned long long nr_context_switches(void)
2862 unsigned long long sum
= 0;
2864 for_each_possible_cpu(i
)
2865 sum
+= cpu_rq(i
)->nr_switches
;
2870 unsigned long nr_iowait(void)
2872 unsigned long i
, sum
= 0;
2874 for_each_possible_cpu(i
)
2875 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2880 unsigned long nr_iowait_cpu(void)
2882 struct rq
*this = this_rq();
2883 return atomic_read(&this->nr_iowait
);
2886 unsigned long this_cpu_load(void)
2888 struct rq
*this = this_rq();
2889 return this->cpu_load
[0];
2893 /* Variables and functions for calc_load */
2894 static atomic_long_t calc_load_tasks
;
2895 static unsigned long calc_load_update
;
2896 unsigned long avenrun
[3];
2897 EXPORT_SYMBOL(avenrun
);
2899 static long calc_load_fold_active(struct rq
*this_rq
)
2901 long nr_active
, delta
= 0;
2903 nr_active
= this_rq
->nr_running
;
2904 nr_active
+= (long) this_rq
->nr_uninterruptible
;
2906 if (nr_active
!= this_rq
->calc_load_active
) {
2907 delta
= nr_active
- this_rq
->calc_load_active
;
2908 this_rq
->calc_load_active
= nr_active
;
2916 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2918 * When making the ILB scale, we should try to pull this in as well.
2920 static atomic_long_t calc_load_tasks_idle
;
2922 static void calc_load_account_idle(struct rq
*this_rq
)
2926 delta
= calc_load_fold_active(this_rq
);
2928 atomic_long_add(delta
, &calc_load_tasks_idle
);
2931 static long calc_load_fold_idle(void)
2936 * Its got a race, we don't care...
2938 if (atomic_long_read(&calc_load_tasks_idle
))
2939 delta
= atomic_long_xchg(&calc_load_tasks_idle
, 0);
2944 static void calc_load_account_idle(struct rq
*this_rq
)
2948 static inline long calc_load_fold_idle(void)
2955 * get_avenrun - get the load average array
2956 * @loads: pointer to dest load array
2957 * @offset: offset to add
2958 * @shift: shift count to shift the result left
2960 * These values are estimates at best, so no need for locking.
2962 void get_avenrun(unsigned long *loads
, unsigned long offset
, int shift
)
2964 loads
[0] = (avenrun
[0] + offset
) << shift
;
2965 loads
[1] = (avenrun
[1] + offset
) << shift
;
2966 loads
[2] = (avenrun
[2] + offset
) << shift
;
2969 static unsigned long
2970 calc_load(unsigned long load
, unsigned long exp
, unsigned long active
)
2973 load
+= active
* (FIXED_1
- exp
);
2974 return load
>> FSHIFT
;
2978 * calc_load - update the avenrun load estimates 10 ticks after the
2979 * CPUs have updated calc_load_tasks.
2981 void calc_global_load(void)
2983 unsigned long upd
= calc_load_update
+ 10;
2986 if (time_before(jiffies
, upd
))
2989 active
= atomic_long_read(&calc_load_tasks
);
2990 active
= active
> 0 ? active
* FIXED_1
: 0;
2992 avenrun
[0] = calc_load(avenrun
[0], EXP_1
, active
);
2993 avenrun
[1] = calc_load(avenrun
[1], EXP_5
, active
);
2994 avenrun
[2] = calc_load(avenrun
[2], EXP_15
, active
);
2996 calc_load_update
+= LOAD_FREQ
;
3000 * Called from update_cpu_load() to periodically update this CPU's
3003 static void calc_load_account_active(struct rq
*this_rq
)
3007 if (time_before(jiffies
, this_rq
->calc_load_update
))
3010 delta
= calc_load_fold_active(this_rq
);
3011 delta
+= calc_load_fold_idle();
3013 atomic_long_add(delta
, &calc_load_tasks
);
3015 this_rq
->calc_load_update
+= LOAD_FREQ
;
3019 * Update rq->cpu_load[] statistics. This function is usually called every
3020 * scheduler tick (TICK_NSEC).
3022 static void update_cpu_load(struct rq
*this_rq
)
3024 unsigned long this_load
= this_rq
->load
.weight
;
3027 this_rq
->nr_load_updates
++;
3029 /* Update our load: */
3030 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
3031 unsigned long old_load
, new_load
;
3033 /* scale is effectively 1 << i now, and >> i divides by scale */
3035 old_load
= this_rq
->cpu_load
[i
];
3036 new_load
= this_load
;
3038 * Round up the averaging division if load is increasing. This
3039 * prevents us from getting stuck on 9 if the load is 10, for
3042 if (new_load
> old_load
)
3043 new_load
+= scale
-1;
3044 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
3047 calc_load_account_active(this_rq
);
3053 * sched_exec - execve() is a valuable balancing opportunity, because at
3054 * this point the task has the smallest effective memory and cache footprint.
3056 void sched_exec(void)
3058 struct task_struct
*p
= current
;
3059 unsigned long flags
;
3063 rq
= task_rq_lock(p
, &flags
);
3064 dest_cpu
= p
->sched_class
->select_task_rq(rq
, p
, SD_BALANCE_EXEC
, 0);
3065 if (dest_cpu
== smp_processor_id())
3069 * select_task_rq() can race against ->cpus_allowed
3071 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
) &&
3072 likely(cpu_active(dest_cpu
)) && migrate_task(p
, dest_cpu
)) {
3073 struct migration_arg arg
= { p
, dest_cpu
};
3075 task_rq_unlock(rq
, &flags
);
3076 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
3080 task_rq_unlock(rq
, &flags
);
3085 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3087 EXPORT_PER_CPU_SYMBOL(kstat
);
3090 * Return any ns on the sched_clock that have not yet been accounted in
3091 * @p in case that task is currently running.
3093 * Called with task_rq_lock() held on @rq.
3095 static u64
do_task_delta_exec(struct task_struct
*p
, struct rq
*rq
)
3099 if (task_current(rq
, p
)) {
3100 update_rq_clock(rq
);
3101 ns
= rq
->clock
- p
->se
.exec_start
;
3109 unsigned long long task_delta_exec(struct task_struct
*p
)
3111 unsigned long flags
;
3115 rq
= task_rq_lock(p
, &flags
);
3116 ns
= do_task_delta_exec(p
, rq
);
3117 task_rq_unlock(rq
, &flags
);
3123 * Return accounted runtime for the task.
3124 * In case the task is currently running, return the runtime plus current's
3125 * pending runtime that have not been accounted yet.
3127 unsigned long long task_sched_runtime(struct task_struct
*p
)
3129 unsigned long flags
;
3133 rq
= task_rq_lock(p
, &flags
);
3134 ns
= p
->se
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
3135 task_rq_unlock(rq
, &flags
);
3141 * Return sum_exec_runtime for the thread group.
3142 * In case the task is currently running, return the sum plus current's
3143 * pending runtime that have not been accounted yet.
3145 * Note that the thread group might have other running tasks as well,
3146 * so the return value not includes other pending runtime that other
3147 * running tasks might have.
3149 unsigned long long thread_group_sched_runtime(struct task_struct
*p
)
3151 struct task_cputime totals
;
3152 unsigned long flags
;
3156 rq
= task_rq_lock(p
, &flags
);
3157 thread_group_cputime(p
, &totals
);
3158 ns
= totals
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
3159 task_rq_unlock(rq
, &flags
);
3165 * Account user cpu time to a process.
3166 * @p: the process that the cpu time gets accounted to
3167 * @cputime: the cpu time spent in user space since the last update
3168 * @cputime_scaled: cputime scaled by cpu frequency
3170 void account_user_time(struct task_struct
*p
, cputime_t cputime
,
3171 cputime_t cputime_scaled
)
3173 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3176 /* Add user time to process. */
3177 p
->utime
= cputime_add(p
->utime
, cputime
);
3178 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
3179 account_group_user_time(p
, cputime
);
3181 /* Add user time to cpustat. */
3182 tmp
= cputime_to_cputime64(cputime
);
3183 if (TASK_NICE(p
) > 0)
3184 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3186 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3188 cpuacct_update_stats(p
, CPUACCT_STAT_USER
, cputime
);
3189 /* Account for user time used */
3190 acct_update_integrals(p
);
3194 * Account guest cpu time to a process.
3195 * @p: the process that the cpu time gets accounted to
3196 * @cputime: the cpu time spent in virtual machine since the last update
3197 * @cputime_scaled: cputime scaled by cpu frequency
3199 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
,
3200 cputime_t cputime_scaled
)
3203 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3205 tmp
= cputime_to_cputime64(cputime
);
3207 /* Add guest time to process. */
3208 p
->utime
= cputime_add(p
->utime
, cputime
);
3209 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
3210 account_group_user_time(p
, cputime
);
3211 p
->gtime
= cputime_add(p
->gtime
, cputime
);
3213 /* Add guest time to cpustat. */
3214 if (TASK_NICE(p
) > 0) {
3215 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3216 cpustat
->guest_nice
= cputime64_add(cpustat
->guest_nice
, tmp
);
3218 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3219 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
3224 * Account system cpu time to a process.
3225 * @p: the process that the cpu time gets accounted to
3226 * @hardirq_offset: the offset to subtract from hardirq_count()
3227 * @cputime: the cpu time spent in kernel space since the last update
3228 * @cputime_scaled: cputime scaled by cpu frequency
3230 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3231 cputime_t cputime
, cputime_t cputime_scaled
)
3233 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3236 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
3237 account_guest_time(p
, cputime
, cputime_scaled
);
3241 /* Add system time to process. */
3242 p
->stime
= cputime_add(p
->stime
, cputime
);
3243 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime_scaled
);
3244 account_group_system_time(p
, cputime
);
3246 /* Add system time to cpustat. */
3247 tmp
= cputime_to_cputime64(cputime
);
3248 if (hardirq_count() - hardirq_offset
)
3249 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3250 else if (softirq_count())
3251 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3253 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
3255 cpuacct_update_stats(p
, CPUACCT_STAT_SYSTEM
, cputime
);
3257 /* Account for system time used */
3258 acct_update_integrals(p
);
3262 * Account for involuntary wait time.
3263 * @steal: the cpu time spent in involuntary wait
3265 void account_steal_time(cputime_t cputime
)
3267 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3268 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
3270 cpustat
->steal
= cputime64_add(cpustat
->steal
, cputime64
);
3274 * Account for idle time.
3275 * @cputime: the cpu time spent in idle wait
3277 void account_idle_time(cputime_t cputime
)
3279 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3280 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
3281 struct rq
*rq
= this_rq();
3283 if (atomic_read(&rq
->nr_iowait
) > 0)
3284 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, cputime64
);
3286 cpustat
->idle
= cputime64_add(cpustat
->idle
, cputime64
);
3289 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3292 * Account a single tick of cpu time.
3293 * @p: the process that the cpu time gets accounted to
3294 * @user_tick: indicates if the tick is a user or a system tick
3296 void account_process_tick(struct task_struct
*p
, int user_tick
)
3298 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
3299 struct rq
*rq
= this_rq();
3302 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
3303 else if ((p
!= rq
->idle
) || (irq_count() != HARDIRQ_OFFSET
))
3304 account_system_time(p
, HARDIRQ_OFFSET
, cputime_one_jiffy
,
3307 account_idle_time(cputime_one_jiffy
);
3311 * Account multiple ticks of steal time.
3312 * @p: the process from which the cpu time has been stolen
3313 * @ticks: number of stolen ticks
3315 void account_steal_ticks(unsigned long ticks
)
3317 account_steal_time(jiffies_to_cputime(ticks
));
3321 * Account multiple ticks of idle time.
3322 * @ticks: number of stolen ticks
3324 void account_idle_ticks(unsigned long ticks
)
3326 account_idle_time(jiffies_to_cputime(ticks
));
3332 * Use precise platform statistics if available:
3334 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3335 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3341 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3343 struct task_cputime cputime
;
3345 thread_group_cputime(p
, &cputime
);
3347 *ut
= cputime
.utime
;
3348 *st
= cputime
.stime
;
3352 #ifndef nsecs_to_cputime
3353 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3356 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3358 cputime_t rtime
, utime
= p
->utime
, total
= cputime_add(utime
, p
->stime
);
3361 * Use CFS's precise accounting:
3363 rtime
= nsecs_to_cputime(p
->se
.sum_exec_runtime
);
3368 temp
= (u64
)(rtime
* utime
);
3369 do_div(temp
, total
);
3370 utime
= (cputime_t
)temp
;
3375 * Compare with previous values, to keep monotonicity:
3377 p
->prev_utime
= max(p
->prev_utime
, utime
);
3378 p
->prev_stime
= max(p
->prev_stime
, cputime_sub(rtime
, p
->prev_utime
));
3380 *ut
= p
->prev_utime
;
3381 *st
= p
->prev_stime
;
3385 * Must be called with siglock held.
3387 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3389 struct signal_struct
*sig
= p
->signal
;
3390 struct task_cputime cputime
;
3391 cputime_t rtime
, utime
, total
;
3393 thread_group_cputime(p
, &cputime
);
3395 total
= cputime_add(cputime
.utime
, cputime
.stime
);
3396 rtime
= nsecs_to_cputime(cputime
.sum_exec_runtime
);
3401 temp
= (u64
)(rtime
* cputime
.utime
);
3402 do_div(temp
, total
);
3403 utime
= (cputime_t
)temp
;
3407 sig
->prev_utime
= max(sig
->prev_utime
, utime
);
3408 sig
->prev_stime
= max(sig
->prev_stime
,
3409 cputime_sub(rtime
, sig
->prev_utime
));
3411 *ut
= sig
->prev_utime
;
3412 *st
= sig
->prev_stime
;
3417 * This function gets called by the timer code, with HZ frequency.
3418 * We call it with interrupts disabled.
3420 * It also gets called by the fork code, when changing the parent's
3423 void scheduler_tick(void)
3425 int cpu
= smp_processor_id();
3426 struct rq
*rq
= cpu_rq(cpu
);
3427 struct task_struct
*curr
= rq
->curr
;
3431 raw_spin_lock(&rq
->lock
);
3432 update_rq_clock(rq
);
3433 update_cpu_load(rq
);
3434 curr
->sched_class
->task_tick(rq
, curr
, 0);
3435 raw_spin_unlock(&rq
->lock
);
3437 perf_event_task_tick(curr
);
3440 rq
->idle_at_tick
= idle_cpu(cpu
);
3441 trigger_load_balance(rq
, cpu
);
3445 notrace
unsigned long get_parent_ip(unsigned long addr
)
3447 if (in_lock_functions(addr
)) {
3448 addr
= CALLER_ADDR2
;
3449 if (in_lock_functions(addr
))
3450 addr
= CALLER_ADDR3
;
3455 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3456 defined(CONFIG_PREEMPT_TRACER))
3458 void __kprobes
add_preempt_count(int val
)
3460 #ifdef CONFIG_DEBUG_PREEMPT
3464 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3467 preempt_count() += val
;
3468 #ifdef CONFIG_DEBUG_PREEMPT
3470 * Spinlock count overflowing soon?
3472 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3475 if (preempt_count() == val
)
3476 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
3478 EXPORT_SYMBOL(add_preempt_count
);
3480 void __kprobes
sub_preempt_count(int val
)
3482 #ifdef CONFIG_DEBUG_PREEMPT
3486 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3489 * Is the spinlock portion underflowing?
3491 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3492 !(preempt_count() & PREEMPT_MASK
)))
3496 if (preempt_count() == val
)
3497 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
3498 preempt_count() -= val
;
3500 EXPORT_SYMBOL(sub_preempt_count
);
3505 * Print scheduling while atomic bug:
3507 static noinline
void __schedule_bug(struct task_struct
*prev
)
3509 struct pt_regs
*regs
= get_irq_regs();
3511 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
3512 prev
->comm
, prev
->pid
, preempt_count());
3514 debug_show_held_locks(prev
);
3516 if (irqs_disabled())
3517 print_irqtrace_events(prev
);
3526 * Various schedule()-time debugging checks and statistics:
3528 static inline void schedule_debug(struct task_struct
*prev
)
3531 * Test if we are atomic. Since do_exit() needs to call into
3532 * schedule() atomically, we ignore that path for now.
3533 * Otherwise, whine if we are scheduling when we should not be.
3535 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
3536 __schedule_bug(prev
);
3538 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3540 schedstat_inc(this_rq(), sched_count
);
3541 #ifdef CONFIG_SCHEDSTATS
3542 if (unlikely(prev
->lock_depth
>= 0)) {
3543 schedstat_inc(this_rq(), bkl_count
);
3544 schedstat_inc(prev
, sched_info
.bkl_count
);
3549 static void put_prev_task(struct rq
*rq
, struct task_struct
*prev
)
3552 update_rq_clock(rq
);
3553 rq
->skip_clock_update
= 0;
3554 prev
->sched_class
->put_prev_task(rq
, prev
);
3558 * Pick up the highest-prio task:
3560 static inline struct task_struct
*
3561 pick_next_task(struct rq
*rq
)
3563 const struct sched_class
*class;
3564 struct task_struct
*p
;
3567 * Optimization: we know that if all tasks are in
3568 * the fair class we can call that function directly:
3570 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
3571 p
= fair_sched_class
.pick_next_task(rq
);
3576 class = sched_class_highest
;
3578 p
= class->pick_next_task(rq
);
3582 * Will never be NULL as the idle class always
3583 * returns a non-NULL p:
3585 class = class->next
;
3590 * schedule() is the main scheduler function.
3592 asmlinkage
void __sched
schedule(void)
3594 struct task_struct
*prev
, *next
;
3595 unsigned long *switch_count
;
3601 cpu
= smp_processor_id();
3603 rcu_note_context_switch(cpu
);
3605 switch_count
= &prev
->nivcsw
;
3607 release_kernel_lock(prev
);
3608 need_resched_nonpreemptible
:
3610 schedule_debug(prev
);
3612 if (sched_feat(HRTICK
))
3615 raw_spin_lock_irq(&rq
->lock
);
3616 clear_tsk_need_resched(prev
);
3618 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
3619 if (unlikely(signal_pending_state(prev
->state
, prev
)))
3620 prev
->state
= TASK_RUNNING
;
3622 deactivate_task(rq
, prev
, DEQUEUE_SLEEP
);
3623 switch_count
= &prev
->nvcsw
;
3626 pre_schedule(rq
, prev
);
3628 if (unlikely(!rq
->nr_running
))
3629 idle_balance(cpu
, rq
);
3631 put_prev_task(rq
, prev
);
3632 next
= pick_next_task(rq
);
3634 if (likely(prev
!= next
)) {
3635 sched_info_switch(prev
, next
);
3636 perf_event_task_sched_out(prev
, next
);
3642 context_switch(rq
, prev
, next
); /* unlocks the rq */
3644 * the context switch might have flipped the stack from under
3645 * us, hence refresh the local variables.
3647 cpu
= smp_processor_id();
3650 raw_spin_unlock_irq(&rq
->lock
);
3654 if (unlikely(reacquire_kernel_lock(current
) < 0)) {
3656 switch_count
= &prev
->nivcsw
;
3657 goto need_resched_nonpreemptible
;
3660 preempt_enable_no_resched();
3664 EXPORT_SYMBOL(schedule
);
3666 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3668 * Look out! "owner" is an entirely speculative pointer
3669 * access and not reliable.
3671 int mutex_spin_on_owner(struct mutex
*lock
, struct thread_info
*owner
)
3676 if (!sched_feat(OWNER_SPIN
))
3679 #ifdef CONFIG_DEBUG_PAGEALLOC
3681 * Need to access the cpu field knowing that
3682 * DEBUG_PAGEALLOC could have unmapped it if
3683 * the mutex owner just released it and exited.
3685 if (probe_kernel_address(&owner
->cpu
, cpu
))
3692 * Even if the access succeeded (likely case),
3693 * the cpu field may no longer be valid.
3695 if (cpu
>= nr_cpumask_bits
)
3699 * We need to validate that we can do a
3700 * get_cpu() and that we have the percpu area.
3702 if (!cpu_online(cpu
))
3709 * Owner changed, break to re-assess state.
3711 if (lock
->owner
!= owner
)
3715 * Is that owner really running on that cpu?
3717 if (task_thread_info(rq
->curr
) != owner
|| need_resched())
3727 #ifdef CONFIG_PREEMPT
3729 * this is the entry point to schedule() from in-kernel preemption
3730 * off of preempt_enable. Kernel preemptions off return from interrupt
3731 * occur there and call schedule directly.
3733 asmlinkage
void __sched
preempt_schedule(void)
3735 struct thread_info
*ti
= current_thread_info();
3738 * If there is a non-zero preempt_count or interrupts are disabled,
3739 * we do not want to preempt the current task. Just return..
3741 if (likely(ti
->preempt_count
|| irqs_disabled()))
3745 add_preempt_count(PREEMPT_ACTIVE
);
3747 sub_preempt_count(PREEMPT_ACTIVE
);
3750 * Check again in case we missed a preemption opportunity
3751 * between schedule and now.
3754 } while (need_resched());
3756 EXPORT_SYMBOL(preempt_schedule
);
3759 * this is the entry point to schedule() from kernel preemption
3760 * off of irq context.
3761 * Note, that this is called and return with irqs disabled. This will
3762 * protect us against recursive calling from irq.
3764 asmlinkage
void __sched
preempt_schedule_irq(void)
3766 struct thread_info
*ti
= current_thread_info();
3768 /* Catch callers which need to be fixed */
3769 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
3772 add_preempt_count(PREEMPT_ACTIVE
);
3775 local_irq_disable();
3776 sub_preempt_count(PREEMPT_ACTIVE
);
3779 * Check again in case we missed a preemption opportunity
3780 * between schedule and now.
3783 } while (need_resched());
3786 #endif /* CONFIG_PREEMPT */
3788 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int wake_flags
,
3791 return try_to_wake_up(curr
->private, mode
, wake_flags
);
3793 EXPORT_SYMBOL(default_wake_function
);
3796 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3797 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3798 * number) then we wake all the non-exclusive tasks and one exclusive task.
3800 * There are circumstances in which we can try to wake a task which has already
3801 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3802 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3804 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
3805 int nr_exclusive
, int wake_flags
, void *key
)
3807 wait_queue_t
*curr
, *next
;
3809 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
3810 unsigned flags
= curr
->flags
;
3812 if (curr
->func(curr
, mode
, wake_flags
, key
) &&
3813 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
3819 * __wake_up - wake up threads blocked on a waitqueue.
3821 * @mode: which threads
3822 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3823 * @key: is directly passed to the wakeup function
3825 * It may be assumed that this function implies a write memory barrier before
3826 * changing the task state if and only if any tasks are woken up.
3828 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
3829 int nr_exclusive
, void *key
)
3831 unsigned long flags
;
3833 spin_lock_irqsave(&q
->lock
, flags
);
3834 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
3835 spin_unlock_irqrestore(&q
->lock
, flags
);
3837 EXPORT_SYMBOL(__wake_up
);
3840 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3842 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
3844 __wake_up_common(q
, mode
, 1, 0, NULL
);
3846 EXPORT_SYMBOL_GPL(__wake_up_locked
);
3848 void __wake_up_locked_key(wait_queue_head_t
*q
, unsigned int mode
, void *key
)
3850 __wake_up_common(q
, mode
, 1, 0, key
);
3854 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3856 * @mode: which threads
3857 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3858 * @key: opaque value to be passed to wakeup targets
3860 * The sync wakeup differs that the waker knows that it will schedule
3861 * away soon, so while the target thread will be woken up, it will not
3862 * be migrated to another CPU - ie. the two threads are 'synchronized'
3863 * with each other. This can prevent needless bouncing between CPUs.
3865 * On UP it can prevent extra preemption.
3867 * It may be assumed that this function implies a write memory barrier before
3868 * changing the task state if and only if any tasks are woken up.
3870 void __wake_up_sync_key(wait_queue_head_t
*q
, unsigned int mode
,
3871 int nr_exclusive
, void *key
)
3873 unsigned long flags
;
3874 int wake_flags
= WF_SYNC
;
3879 if (unlikely(!nr_exclusive
))
3882 spin_lock_irqsave(&q
->lock
, flags
);
3883 __wake_up_common(q
, mode
, nr_exclusive
, wake_flags
, key
);
3884 spin_unlock_irqrestore(&q
->lock
, flags
);
3886 EXPORT_SYMBOL_GPL(__wake_up_sync_key
);
3889 * __wake_up_sync - see __wake_up_sync_key()
3891 void __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
3893 __wake_up_sync_key(q
, mode
, nr_exclusive
, NULL
);
3895 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
3898 * complete: - signals a single thread waiting on this completion
3899 * @x: holds the state of this particular completion
3901 * This will wake up a single thread waiting on this completion. Threads will be
3902 * awakened in the same order in which they were queued.
3904 * See also complete_all(), wait_for_completion() and related routines.
3906 * It may be assumed that this function implies a write memory barrier before
3907 * changing the task state if and only if any tasks are woken up.
3909 void complete(struct completion
*x
)
3911 unsigned long flags
;
3913 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3915 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
3916 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3918 EXPORT_SYMBOL(complete
);
3921 * complete_all: - signals all threads waiting on this completion
3922 * @x: holds the state of this particular completion
3924 * This will wake up all threads waiting on this particular completion event.
3926 * It may be assumed that this function implies a write memory barrier before
3927 * changing the task state if and only if any tasks are woken up.
3929 void complete_all(struct completion
*x
)
3931 unsigned long flags
;
3933 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3934 x
->done
+= UINT_MAX
/2;
3935 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
3936 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3938 EXPORT_SYMBOL(complete_all
);
3940 static inline long __sched
3941 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
3944 DECLARE_WAITQUEUE(wait
, current
);
3946 __add_wait_queue_tail_exclusive(&x
->wait
, &wait
);
3948 if (signal_pending_state(state
, current
)) {
3949 timeout
= -ERESTARTSYS
;
3952 __set_current_state(state
);
3953 spin_unlock_irq(&x
->wait
.lock
);
3954 timeout
= schedule_timeout(timeout
);
3955 spin_lock_irq(&x
->wait
.lock
);
3956 } while (!x
->done
&& timeout
);
3957 __remove_wait_queue(&x
->wait
, &wait
);
3962 return timeout
?: 1;
3966 wait_for_common(struct completion
*x
, long timeout
, int state
)
3970 spin_lock_irq(&x
->wait
.lock
);
3971 timeout
= do_wait_for_common(x
, timeout
, state
);
3972 spin_unlock_irq(&x
->wait
.lock
);
3977 * wait_for_completion: - waits for completion of a task
3978 * @x: holds the state of this particular completion
3980 * This waits to be signaled for completion of a specific task. It is NOT
3981 * interruptible and there is no timeout.
3983 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3984 * and interrupt capability. Also see complete().
3986 void __sched
wait_for_completion(struct completion
*x
)
3988 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
3990 EXPORT_SYMBOL(wait_for_completion
);
3993 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3994 * @x: holds the state of this particular completion
3995 * @timeout: timeout value in jiffies
3997 * This waits for either a completion of a specific task to be signaled or for a
3998 * specified timeout to expire. The timeout is in jiffies. It is not
4001 unsigned long __sched
4002 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4004 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4006 EXPORT_SYMBOL(wait_for_completion_timeout
);
4009 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4010 * @x: holds the state of this particular completion
4012 * This waits for completion of a specific task to be signaled. It is
4015 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4017 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4018 if (t
== -ERESTARTSYS
)
4022 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4025 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4026 * @x: holds the state of this particular completion
4027 * @timeout: timeout value in jiffies
4029 * This waits for either a completion of a specific task to be signaled or for a
4030 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4032 unsigned long __sched
4033 wait_for_completion_interruptible_timeout(struct completion
*x
,
4034 unsigned long timeout
)
4036 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4038 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4041 * wait_for_completion_killable: - waits for completion of a task (killable)
4042 * @x: holds the state of this particular completion
4044 * This waits to be signaled for completion of a specific task. It can be
4045 * interrupted by a kill signal.
4047 int __sched
wait_for_completion_killable(struct completion
*x
)
4049 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4050 if (t
== -ERESTARTSYS
)
4054 EXPORT_SYMBOL(wait_for_completion_killable
);
4057 * try_wait_for_completion - try to decrement a completion without blocking
4058 * @x: completion structure
4060 * Returns: 0 if a decrement cannot be done without blocking
4061 * 1 if a decrement succeeded.
4063 * If a completion is being used as a counting completion,
4064 * attempt to decrement the counter without blocking. This
4065 * enables us to avoid waiting if the resource the completion
4066 * is protecting is not available.
4068 bool try_wait_for_completion(struct completion
*x
)
4070 unsigned long flags
;
4073 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4078 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4081 EXPORT_SYMBOL(try_wait_for_completion
);
4084 * completion_done - Test to see if a completion has any waiters
4085 * @x: completion structure
4087 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4088 * 1 if there are no waiters.
4091 bool completion_done(struct completion
*x
)
4093 unsigned long flags
;
4096 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4099 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4102 EXPORT_SYMBOL(completion_done
);
4105 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4107 unsigned long flags
;
4110 init_waitqueue_entry(&wait
, current
);
4112 __set_current_state(state
);
4114 spin_lock_irqsave(&q
->lock
, flags
);
4115 __add_wait_queue(q
, &wait
);
4116 spin_unlock(&q
->lock
);
4117 timeout
= schedule_timeout(timeout
);
4118 spin_lock_irq(&q
->lock
);
4119 __remove_wait_queue(q
, &wait
);
4120 spin_unlock_irqrestore(&q
->lock
, flags
);
4125 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4127 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4129 EXPORT_SYMBOL(interruptible_sleep_on
);
4132 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4134 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
4136 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
4138 void __sched
sleep_on(wait_queue_head_t
*q
)
4140 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4142 EXPORT_SYMBOL(sleep_on
);
4144 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4146 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
4148 EXPORT_SYMBOL(sleep_on_timeout
);
4150 #ifdef CONFIG_RT_MUTEXES
4153 * rt_mutex_setprio - set the current priority of a task
4155 * @prio: prio value (kernel-internal form)
4157 * This function changes the 'effective' priority of a task. It does
4158 * not touch ->normal_prio like __setscheduler().
4160 * Used by the rt_mutex code to implement priority inheritance logic.
4162 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4164 unsigned long flags
;
4165 int oldprio
, on_rq
, running
;
4167 const struct sched_class
*prev_class
;
4169 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4171 rq
= task_rq_lock(p
, &flags
);
4174 prev_class
= p
->sched_class
;
4175 on_rq
= p
->se
.on_rq
;
4176 running
= task_current(rq
, p
);
4178 dequeue_task(rq
, p
, 0);
4180 p
->sched_class
->put_prev_task(rq
, p
);
4183 p
->sched_class
= &rt_sched_class
;
4185 p
->sched_class
= &fair_sched_class
;
4190 p
->sched_class
->set_curr_task(rq
);
4192 enqueue_task(rq
, p
, oldprio
< prio
? ENQUEUE_HEAD
: 0);
4194 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4196 task_rq_unlock(rq
, &flags
);
4201 void set_user_nice(struct task_struct
*p
, long nice
)
4203 int old_prio
, delta
, on_rq
;
4204 unsigned long flags
;
4207 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4210 * We have to be careful, if called from sys_setpriority(),
4211 * the task might be in the middle of scheduling on another CPU.
4213 rq
= task_rq_lock(p
, &flags
);
4215 * The RT priorities are set via sched_setscheduler(), but we still
4216 * allow the 'normal' nice value to be set - but as expected
4217 * it wont have any effect on scheduling until the task is
4218 * SCHED_FIFO/SCHED_RR:
4220 if (task_has_rt_policy(p
)) {
4221 p
->static_prio
= NICE_TO_PRIO(nice
);
4224 on_rq
= p
->se
.on_rq
;
4226 dequeue_task(rq
, p
, 0);
4228 p
->static_prio
= NICE_TO_PRIO(nice
);
4231 p
->prio
= effective_prio(p
);
4232 delta
= p
->prio
- old_prio
;
4235 enqueue_task(rq
, p
, 0);
4237 * If the task increased its priority or is running and
4238 * lowered its priority, then reschedule its CPU:
4240 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4241 resched_task(rq
->curr
);
4244 task_rq_unlock(rq
, &flags
);
4246 EXPORT_SYMBOL(set_user_nice
);
4249 * can_nice - check if a task can reduce its nice value
4253 int can_nice(const struct task_struct
*p
, const int nice
)
4255 /* convert nice value [19,-20] to rlimit style value [1,40] */
4256 int nice_rlim
= 20 - nice
;
4258 return (nice_rlim
<= task_rlimit(p
, RLIMIT_NICE
) ||
4259 capable(CAP_SYS_NICE
));
4262 #ifdef __ARCH_WANT_SYS_NICE
4265 * sys_nice - change the priority of the current process.
4266 * @increment: priority increment
4268 * sys_setpriority is a more generic, but much slower function that
4269 * does similar things.
4271 SYSCALL_DEFINE1(nice
, int, increment
)
4276 * Setpriority might change our priority at the same moment.
4277 * We don't have to worry. Conceptually one call occurs first
4278 * and we have a single winner.
4280 if (increment
< -40)
4285 nice
= TASK_NICE(current
) + increment
;
4291 if (increment
< 0 && !can_nice(current
, nice
))
4294 retval
= security_task_setnice(current
, nice
);
4298 set_user_nice(current
, nice
);
4305 * task_prio - return the priority value of a given task.
4306 * @p: the task in question.
4308 * This is the priority value as seen by users in /proc.
4309 * RT tasks are offset by -200. Normal tasks are centered
4310 * around 0, value goes from -16 to +15.
4312 int task_prio(const struct task_struct
*p
)
4314 return p
->prio
- MAX_RT_PRIO
;
4318 * task_nice - return the nice value of a given task.
4319 * @p: the task in question.
4321 int task_nice(const struct task_struct
*p
)
4323 return TASK_NICE(p
);
4325 EXPORT_SYMBOL(task_nice
);
4328 * idle_cpu - is a given cpu idle currently?
4329 * @cpu: the processor in question.
4331 int idle_cpu(int cpu
)
4333 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4337 * idle_task - return the idle task for a given cpu.
4338 * @cpu: the processor in question.
4340 struct task_struct
*idle_task(int cpu
)
4342 return cpu_rq(cpu
)->idle
;
4346 * find_process_by_pid - find a process with a matching PID value.
4347 * @pid: the pid in question.
4349 static struct task_struct
*find_process_by_pid(pid_t pid
)
4351 return pid
? find_task_by_vpid(pid
) : current
;
4354 /* Actually do priority change: must hold rq lock. */
4356 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4358 BUG_ON(p
->se
.on_rq
);
4361 p
->rt_priority
= prio
;
4362 p
->normal_prio
= normal_prio(p
);
4363 /* we are holding p->pi_lock already */
4364 p
->prio
= rt_mutex_getprio(p
);
4365 if (rt_prio(p
->prio
))
4366 p
->sched_class
= &rt_sched_class
;
4368 p
->sched_class
= &fair_sched_class
;
4373 * check the target process has a UID that matches the current process's
4375 static bool check_same_owner(struct task_struct
*p
)
4377 const struct cred
*cred
= current_cred(), *pcred
;
4381 pcred
= __task_cred(p
);
4382 match
= (cred
->euid
== pcred
->euid
||
4383 cred
->euid
== pcred
->uid
);
4388 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
4389 struct sched_param
*param
, bool user
)
4391 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
4392 unsigned long flags
;
4393 const struct sched_class
*prev_class
;
4397 /* may grab non-irq protected spin_locks */
4398 BUG_ON(in_interrupt());
4400 /* double check policy once rq lock held */
4402 reset_on_fork
= p
->sched_reset_on_fork
;
4403 policy
= oldpolicy
= p
->policy
;
4405 reset_on_fork
= !!(policy
& SCHED_RESET_ON_FORK
);
4406 policy
&= ~SCHED_RESET_ON_FORK
;
4408 if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4409 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4410 policy
!= SCHED_IDLE
)
4415 * Valid priorities for SCHED_FIFO and SCHED_RR are
4416 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4417 * SCHED_BATCH and SCHED_IDLE is 0.
4419 if (param
->sched_priority
< 0 ||
4420 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4421 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4423 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4427 * Allow unprivileged RT tasks to decrease priority:
4429 if (user
&& !capable(CAP_SYS_NICE
)) {
4430 if (rt_policy(policy
)) {
4431 unsigned long rlim_rtprio
;
4433 if (!lock_task_sighand(p
, &flags
))
4435 rlim_rtprio
= task_rlimit(p
, RLIMIT_RTPRIO
);
4436 unlock_task_sighand(p
, &flags
);
4438 /* can't set/change the rt policy */
4439 if (policy
!= p
->policy
&& !rlim_rtprio
)
4442 /* can't increase priority */
4443 if (param
->sched_priority
> p
->rt_priority
&&
4444 param
->sched_priority
> rlim_rtprio
)
4448 * Like positive nice levels, dont allow tasks to
4449 * move out of SCHED_IDLE either:
4451 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
4454 /* can't change other user's priorities */
4455 if (!check_same_owner(p
))
4458 /* Normal users shall not reset the sched_reset_on_fork flag */
4459 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
4464 #ifdef CONFIG_RT_GROUP_SCHED
4466 * Do not allow realtime tasks into groups that have no runtime
4469 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
4470 task_group(p
)->rt_bandwidth
.rt_runtime
== 0)
4474 retval
= security_task_setscheduler(p
, policy
, param
);
4480 * make sure no PI-waiters arrive (or leave) while we are
4481 * changing the priority of the task:
4483 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
4485 * To be able to change p->policy safely, the apropriate
4486 * runqueue lock must be held.
4488 rq
= __task_rq_lock(p
);
4489 /* recheck policy now with rq lock held */
4490 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4491 policy
= oldpolicy
= -1;
4492 __task_rq_unlock(rq
);
4493 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4496 on_rq
= p
->se
.on_rq
;
4497 running
= task_current(rq
, p
);
4499 deactivate_task(rq
, p
, 0);
4501 p
->sched_class
->put_prev_task(rq
, p
);
4503 p
->sched_reset_on_fork
= reset_on_fork
;
4506 prev_class
= p
->sched_class
;
4507 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
4510 p
->sched_class
->set_curr_task(rq
);
4512 activate_task(rq
, p
, 0);
4514 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4516 __task_rq_unlock(rq
);
4517 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4519 rt_mutex_adjust_pi(p
);
4525 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4526 * @p: the task in question.
4527 * @policy: new policy.
4528 * @param: structure containing the new RT priority.
4530 * NOTE that the task may be already dead.
4532 int sched_setscheduler(struct task_struct
*p
, int policy
,
4533 struct sched_param
*param
)
4535 return __sched_setscheduler(p
, policy
, param
, true);
4537 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4540 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4541 * @p: the task in question.
4542 * @policy: new policy.
4543 * @param: structure containing the new RT priority.
4545 * Just like sched_setscheduler, only don't bother checking if the
4546 * current context has permission. For example, this is needed in
4547 * stop_machine(): we create temporary high priority worker threads,
4548 * but our caller might not have that capability.
4550 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
4551 struct sched_param
*param
)
4553 return __sched_setscheduler(p
, policy
, param
, false);
4557 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4559 struct sched_param lparam
;
4560 struct task_struct
*p
;
4563 if (!param
|| pid
< 0)
4565 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4570 p
= find_process_by_pid(pid
);
4572 retval
= sched_setscheduler(p
, policy
, &lparam
);
4579 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4580 * @pid: the pid in question.
4581 * @policy: new policy.
4582 * @param: structure containing the new RT priority.
4584 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
4585 struct sched_param __user
*, param
)
4587 /* negative values for policy are not valid */
4591 return do_sched_setscheduler(pid
, policy
, param
);
4595 * sys_sched_setparam - set/change the RT priority of a thread
4596 * @pid: the pid in question.
4597 * @param: structure containing the new RT priority.
4599 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
4601 return do_sched_setscheduler(pid
, -1, param
);
4605 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4606 * @pid: the pid in question.
4608 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
4610 struct task_struct
*p
;
4618 p
= find_process_by_pid(pid
);
4620 retval
= security_task_getscheduler(p
);
4623 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
4630 * sys_sched_getparam - get the RT priority of a thread
4631 * @pid: the pid in question.
4632 * @param: structure containing the RT priority.
4634 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
4636 struct sched_param lp
;
4637 struct task_struct
*p
;
4640 if (!param
|| pid
< 0)
4644 p
= find_process_by_pid(pid
);
4649 retval
= security_task_getscheduler(p
);
4653 lp
.sched_priority
= p
->rt_priority
;
4657 * This one might sleep, we cannot do it with a spinlock held ...
4659 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4668 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
4670 cpumask_var_t cpus_allowed
, new_mask
;
4671 struct task_struct
*p
;
4677 p
= find_process_by_pid(pid
);
4684 /* Prevent p going away */
4688 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
4692 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
4694 goto out_free_cpus_allowed
;
4697 if (!check_same_owner(p
) && !capable(CAP_SYS_NICE
))
4700 retval
= security_task_setscheduler(p
, 0, NULL
);
4704 cpuset_cpus_allowed(p
, cpus_allowed
);
4705 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
4707 retval
= set_cpus_allowed_ptr(p
, new_mask
);
4710 cpuset_cpus_allowed(p
, cpus_allowed
);
4711 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
4713 * We must have raced with a concurrent cpuset
4714 * update. Just reset the cpus_allowed to the
4715 * cpuset's cpus_allowed
4717 cpumask_copy(new_mask
, cpus_allowed
);
4722 free_cpumask_var(new_mask
);
4723 out_free_cpus_allowed
:
4724 free_cpumask_var(cpus_allowed
);
4731 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4732 struct cpumask
*new_mask
)
4734 if (len
< cpumask_size())
4735 cpumask_clear(new_mask
);
4736 else if (len
> cpumask_size())
4737 len
= cpumask_size();
4739 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4743 * sys_sched_setaffinity - set the cpu affinity of a process
4744 * @pid: pid of the process
4745 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4746 * @user_mask_ptr: user-space pointer to the new cpu mask
4748 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
4749 unsigned long __user
*, user_mask_ptr
)
4751 cpumask_var_t new_mask
;
4754 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
4757 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
4759 retval
= sched_setaffinity(pid
, new_mask
);
4760 free_cpumask_var(new_mask
);
4764 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
4766 struct task_struct
*p
;
4767 unsigned long flags
;
4775 p
= find_process_by_pid(pid
);
4779 retval
= security_task_getscheduler(p
);
4783 rq
= task_rq_lock(p
, &flags
);
4784 cpumask_and(mask
, &p
->cpus_allowed
, cpu_online_mask
);
4785 task_rq_unlock(rq
, &flags
);
4795 * sys_sched_getaffinity - get the cpu affinity of a process
4796 * @pid: pid of the process
4797 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4798 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4800 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
4801 unsigned long __user
*, user_mask_ptr
)
4806 if ((len
* BITS_PER_BYTE
) < nr_cpu_ids
)
4808 if (len
& (sizeof(unsigned long)-1))
4811 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
4814 ret
= sched_getaffinity(pid
, mask
);
4816 size_t retlen
= min_t(size_t, len
, cpumask_size());
4818 if (copy_to_user(user_mask_ptr
, mask
, retlen
))
4823 free_cpumask_var(mask
);
4829 * sys_sched_yield - yield the current processor to other threads.
4831 * This function yields the current CPU to other tasks. If there are no
4832 * other threads running on this CPU then this function will return.
4834 SYSCALL_DEFINE0(sched_yield
)
4836 struct rq
*rq
= this_rq_lock();
4838 schedstat_inc(rq
, yld_count
);
4839 current
->sched_class
->yield_task(rq
);
4842 * Since we are going to call schedule() anyway, there's
4843 * no need to preempt or enable interrupts:
4845 __release(rq
->lock
);
4846 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
4847 do_raw_spin_unlock(&rq
->lock
);
4848 preempt_enable_no_resched();
4855 static inline int should_resched(void)
4857 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE
);
4860 static void __cond_resched(void)
4862 add_preempt_count(PREEMPT_ACTIVE
);
4864 sub_preempt_count(PREEMPT_ACTIVE
);
4867 int __sched
_cond_resched(void)
4869 if (should_resched()) {
4875 EXPORT_SYMBOL(_cond_resched
);
4878 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4879 * call schedule, and on return reacquire the lock.
4881 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4882 * operations here to prevent schedule() from being called twice (once via
4883 * spin_unlock(), once by hand).
4885 int __cond_resched_lock(spinlock_t
*lock
)
4887 int resched
= should_resched();
4890 lockdep_assert_held(lock
);
4892 if (spin_needbreak(lock
) || resched
) {
4903 EXPORT_SYMBOL(__cond_resched_lock
);
4905 int __sched
__cond_resched_softirq(void)
4907 BUG_ON(!in_softirq());
4909 if (should_resched()) {
4917 EXPORT_SYMBOL(__cond_resched_softirq
);
4920 * yield - yield the current processor to other threads.
4922 * This is a shortcut for kernel-space yielding - it marks the
4923 * thread runnable and calls sys_sched_yield().
4925 void __sched
yield(void)
4927 set_current_state(TASK_RUNNING
);
4930 EXPORT_SYMBOL(yield
);
4933 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4934 * that process accounting knows that this is a task in IO wait state.
4936 void __sched
io_schedule(void)
4938 struct rq
*rq
= raw_rq();
4940 delayacct_blkio_start();
4941 atomic_inc(&rq
->nr_iowait
);
4942 current
->in_iowait
= 1;
4944 current
->in_iowait
= 0;
4945 atomic_dec(&rq
->nr_iowait
);
4946 delayacct_blkio_end();
4948 EXPORT_SYMBOL(io_schedule
);
4950 long __sched
io_schedule_timeout(long timeout
)
4952 struct rq
*rq
= raw_rq();
4955 delayacct_blkio_start();
4956 atomic_inc(&rq
->nr_iowait
);
4957 current
->in_iowait
= 1;
4958 ret
= schedule_timeout(timeout
);
4959 current
->in_iowait
= 0;
4960 atomic_dec(&rq
->nr_iowait
);
4961 delayacct_blkio_end();
4966 * sys_sched_get_priority_max - return maximum RT priority.
4967 * @policy: scheduling class.
4969 * this syscall returns the maximum rt_priority that can be used
4970 * by a given scheduling class.
4972 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
4979 ret
= MAX_USER_RT_PRIO
-1;
4991 * sys_sched_get_priority_min - return minimum RT priority.
4992 * @policy: scheduling class.
4994 * this syscall returns the minimum rt_priority that can be used
4995 * by a given scheduling class.
4997 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
5015 * sys_sched_rr_get_interval - return the default timeslice of a process.
5016 * @pid: pid of the process.
5017 * @interval: userspace pointer to the timeslice value.
5019 * this syscall writes the default timeslice value of a given process
5020 * into the user-space timespec buffer. A value of '0' means infinity.
5022 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
5023 struct timespec __user
*, interval
)
5025 struct task_struct
*p
;
5026 unsigned int time_slice
;
5027 unsigned long flags
;
5037 p
= find_process_by_pid(pid
);
5041 retval
= security_task_getscheduler(p
);
5045 rq
= task_rq_lock(p
, &flags
);
5046 time_slice
= p
->sched_class
->get_rr_interval(rq
, p
);
5047 task_rq_unlock(rq
, &flags
);
5050 jiffies_to_timespec(time_slice
, &t
);
5051 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5059 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
5061 void sched_show_task(struct task_struct
*p
)
5063 unsigned long free
= 0;
5066 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5067 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
5068 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5069 #if BITS_PER_LONG == 32
5070 if (state
== TASK_RUNNING
)
5071 printk(KERN_CONT
" running ");
5073 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5075 if (state
== TASK_RUNNING
)
5076 printk(KERN_CONT
" running task ");
5078 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
5080 #ifdef CONFIG_DEBUG_STACK_USAGE
5081 free
= stack_not_used(p
);
5083 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
5084 task_pid_nr(p
), task_pid_nr(p
->real_parent
),
5085 (unsigned long)task_thread_info(p
)->flags
);
5087 show_stack(p
, NULL
);
5090 void show_state_filter(unsigned long state_filter
)
5092 struct task_struct
*g
, *p
;
5094 #if BITS_PER_LONG == 32
5096 " task PC stack pid father\n");
5099 " task PC stack pid father\n");
5101 read_lock(&tasklist_lock
);
5102 do_each_thread(g
, p
) {
5104 * reset the NMI-timeout, listing all files on a slow
5105 * console might take alot of time:
5107 touch_nmi_watchdog();
5108 if (!state_filter
|| (p
->state
& state_filter
))
5110 } while_each_thread(g
, p
);
5112 touch_all_softlockup_watchdogs();
5114 #ifdef CONFIG_SCHED_DEBUG
5115 sysrq_sched_debug_show();
5117 read_unlock(&tasklist_lock
);
5119 * Only show locks if all tasks are dumped:
5122 debug_show_all_locks();
5125 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
5127 idle
->sched_class
= &idle_sched_class
;
5131 * init_idle - set up an idle thread for a given CPU
5132 * @idle: task in question
5133 * @cpu: cpu the idle task belongs to
5135 * NOTE: this function does not set the idle thread's NEED_RESCHED
5136 * flag, to make booting more robust.
5138 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
5140 struct rq
*rq
= cpu_rq(cpu
);
5141 unsigned long flags
;
5143 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5146 idle
->state
= TASK_RUNNING
;
5147 idle
->se
.exec_start
= sched_clock();
5149 cpumask_copy(&idle
->cpus_allowed
, cpumask_of(cpu
));
5150 __set_task_cpu(idle
, cpu
);
5152 rq
->curr
= rq
->idle
= idle
;
5153 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5156 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5158 /* Set the preempt count _outside_ the spinlocks! */
5159 #if defined(CONFIG_PREEMPT)
5160 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
5162 task_thread_info(idle
)->preempt_count
= 0;
5165 * The idle tasks have their own, simple scheduling class:
5167 idle
->sched_class
= &idle_sched_class
;
5168 ftrace_graph_init_task(idle
);
5172 * In a system that switches off the HZ timer nohz_cpu_mask
5173 * indicates which cpus entered this state. This is used
5174 * in the rcu update to wait only for active cpus. For system
5175 * which do not switch off the HZ timer nohz_cpu_mask should
5176 * always be CPU_BITS_NONE.
5178 cpumask_var_t nohz_cpu_mask
;
5181 * Increase the granularity value when there are more CPUs,
5182 * because with more CPUs the 'effective latency' as visible
5183 * to users decreases. But the relationship is not linear,
5184 * so pick a second-best guess by going with the log2 of the
5187 * This idea comes from the SD scheduler of Con Kolivas:
5189 static int get_update_sysctl_factor(void)
5191 unsigned int cpus
= min_t(int, num_online_cpus(), 8);
5192 unsigned int factor
;
5194 switch (sysctl_sched_tunable_scaling
) {
5195 case SCHED_TUNABLESCALING_NONE
:
5198 case SCHED_TUNABLESCALING_LINEAR
:
5201 case SCHED_TUNABLESCALING_LOG
:
5203 factor
= 1 + ilog2(cpus
);
5210 static void update_sysctl(void)
5212 unsigned int factor
= get_update_sysctl_factor();
5214 #define SET_SYSCTL(name) \
5215 (sysctl_##name = (factor) * normalized_sysctl_##name)
5216 SET_SYSCTL(sched_min_granularity
);
5217 SET_SYSCTL(sched_latency
);
5218 SET_SYSCTL(sched_wakeup_granularity
);
5219 SET_SYSCTL(sched_shares_ratelimit
);
5223 static inline void sched_init_granularity(void)
5230 * This is how migration works:
5232 * 1) we invoke migration_cpu_stop() on the target CPU using
5234 * 2) stopper starts to run (implicitly forcing the migrated thread
5236 * 3) it checks whether the migrated task is still in the wrong runqueue.
5237 * 4) if it's in the wrong runqueue then the migration thread removes
5238 * it and puts it into the right queue.
5239 * 5) stopper completes and stop_one_cpu() returns and the migration
5244 * Change a given task's CPU affinity. Migrate the thread to a
5245 * proper CPU and schedule it away if the CPU it's executing on
5246 * is removed from the allowed bitmask.
5248 * NOTE: the caller must have a valid reference to the task, the
5249 * task must not exit() & deallocate itself prematurely. The
5250 * call is not atomic; no spinlocks may be held.
5252 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
5254 unsigned long flags
;
5256 unsigned int dest_cpu
;
5260 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5261 * drop the rq->lock and still rely on ->cpus_allowed.
5264 while (task_is_waking(p
))
5266 rq
= task_rq_lock(p
, &flags
);
5267 if (task_is_waking(p
)) {
5268 task_rq_unlock(rq
, &flags
);
5272 if (!cpumask_intersects(new_mask
, cpu_active_mask
)) {
5277 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
&&
5278 !cpumask_equal(&p
->cpus_allowed
, new_mask
))) {
5283 if (p
->sched_class
->set_cpus_allowed
)
5284 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
5286 cpumask_copy(&p
->cpus_allowed
, new_mask
);
5287 p
->rt
.nr_cpus_allowed
= cpumask_weight(new_mask
);
5290 /* Can the task run on the task's current CPU? If so, we're done */
5291 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
5294 dest_cpu
= cpumask_any_and(cpu_active_mask
, new_mask
);
5295 if (migrate_task(p
, dest_cpu
)) {
5296 struct migration_arg arg
= { p
, dest_cpu
};
5297 /* Need help from migration thread: drop lock and wait. */
5298 task_rq_unlock(rq
, &flags
);
5299 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
5300 tlb_migrate_finish(p
->mm
);
5304 task_rq_unlock(rq
, &flags
);
5308 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
5311 * Move (not current) task off this cpu, onto dest cpu. We're doing
5312 * this because either it can't run here any more (set_cpus_allowed()
5313 * away from this CPU, or CPU going down), or because we're
5314 * attempting to rebalance this task on exec (sched_exec).
5316 * So we race with normal scheduler movements, but that's OK, as long
5317 * as the task is no longer on this CPU.
5319 * Returns non-zero if task was successfully migrated.
5321 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5323 struct rq
*rq_dest
, *rq_src
;
5326 if (unlikely(!cpu_active(dest_cpu
)))
5329 rq_src
= cpu_rq(src_cpu
);
5330 rq_dest
= cpu_rq(dest_cpu
);
5332 double_rq_lock(rq_src
, rq_dest
);
5333 /* Already moved. */
5334 if (task_cpu(p
) != src_cpu
)
5336 /* Affinity changed (again). */
5337 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
5341 * If we're not on a rq, the next wake-up will ensure we're
5345 deactivate_task(rq_src
, p
, 0);
5346 set_task_cpu(p
, dest_cpu
);
5347 activate_task(rq_dest
, p
, 0);
5348 check_preempt_curr(rq_dest
, p
, 0);
5353 double_rq_unlock(rq_src
, rq_dest
);
5358 * migration_cpu_stop - this will be executed by a highprio stopper thread
5359 * and performs thread migration by bumping thread off CPU then
5360 * 'pushing' onto another runqueue.
5362 static int migration_cpu_stop(void *data
)
5364 struct migration_arg
*arg
= data
;
5367 * The original target cpu might have gone down and we might
5368 * be on another cpu but it doesn't matter.
5370 local_irq_disable();
5371 __migrate_task(arg
->task
, raw_smp_processor_id(), arg
->dest_cpu
);
5376 #ifdef CONFIG_HOTPLUG_CPU
5378 * Figure out where task on dead CPU should go, use force if necessary.
5380 void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
5382 struct rq
*rq
= cpu_rq(dead_cpu
);
5383 int needs_cpu
, uninitialized_var(dest_cpu
);
5384 unsigned long flags
;
5386 local_irq_save(flags
);
5388 raw_spin_lock(&rq
->lock
);
5389 needs_cpu
= (task_cpu(p
) == dead_cpu
) && (p
->state
!= TASK_WAKING
);
5391 dest_cpu
= select_fallback_rq(dead_cpu
, p
);
5392 raw_spin_unlock(&rq
->lock
);
5394 * It can only fail if we race with set_cpus_allowed(),
5395 * in the racer should migrate the task anyway.
5398 __migrate_task(p
, dead_cpu
, dest_cpu
);
5399 local_irq_restore(flags
);
5403 * While a dead CPU has no uninterruptible tasks queued at this point,
5404 * it might still have a nonzero ->nr_uninterruptible counter, because
5405 * for performance reasons the counter is not stricly tracking tasks to
5406 * their home CPUs. So we just add the counter to another CPU's counter,
5407 * to keep the global sum constant after CPU-down:
5409 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5411 struct rq
*rq_dest
= cpu_rq(cpumask_any(cpu_active_mask
));
5412 unsigned long flags
;
5414 local_irq_save(flags
);
5415 double_rq_lock(rq_src
, rq_dest
);
5416 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
5417 rq_src
->nr_uninterruptible
= 0;
5418 double_rq_unlock(rq_src
, rq_dest
);
5419 local_irq_restore(flags
);
5422 /* Run through task list and migrate tasks from the dead cpu. */
5423 static void migrate_live_tasks(int src_cpu
)
5425 struct task_struct
*p
, *t
;
5427 read_lock(&tasklist_lock
);
5429 do_each_thread(t
, p
) {
5433 if (task_cpu(p
) == src_cpu
)
5434 move_task_off_dead_cpu(src_cpu
, p
);
5435 } while_each_thread(t
, p
);
5437 read_unlock(&tasklist_lock
);
5441 * Schedules idle task to be the next runnable task on current CPU.
5442 * It does so by boosting its priority to highest possible.
5443 * Used by CPU offline code.
5445 void sched_idle_next(void)
5447 int this_cpu
= smp_processor_id();
5448 struct rq
*rq
= cpu_rq(this_cpu
);
5449 struct task_struct
*p
= rq
->idle
;
5450 unsigned long flags
;
5452 /* cpu has to be offline */
5453 BUG_ON(cpu_online(this_cpu
));
5456 * Strictly not necessary since rest of the CPUs are stopped by now
5457 * and interrupts disabled on the current cpu.
5459 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5461 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5463 activate_task(rq
, p
, 0);
5465 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5469 * Ensures that the idle task is using init_mm right before its cpu goes
5472 void idle_task_exit(void)
5474 struct mm_struct
*mm
= current
->active_mm
;
5476 BUG_ON(cpu_online(smp_processor_id()));
5479 switch_mm(mm
, &init_mm
, current
);
5483 /* called under rq->lock with disabled interrupts */
5484 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
5486 struct rq
*rq
= cpu_rq(dead_cpu
);
5488 /* Must be exiting, otherwise would be on tasklist. */
5489 BUG_ON(!p
->exit_state
);
5491 /* Cannot have done final schedule yet: would have vanished. */
5492 BUG_ON(p
->state
== TASK_DEAD
);
5497 * Drop lock around migration; if someone else moves it,
5498 * that's OK. No task can be added to this CPU, so iteration is
5501 raw_spin_unlock_irq(&rq
->lock
);
5502 move_task_off_dead_cpu(dead_cpu
, p
);
5503 raw_spin_lock_irq(&rq
->lock
);
5508 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5509 static void migrate_dead_tasks(unsigned int dead_cpu
)
5511 struct rq
*rq
= cpu_rq(dead_cpu
);
5512 struct task_struct
*next
;
5515 if (!rq
->nr_running
)
5517 next
= pick_next_task(rq
);
5520 next
->sched_class
->put_prev_task(rq
, next
);
5521 migrate_dead(dead_cpu
, next
);
5527 * remove the tasks which were accounted by rq from calc_load_tasks.
5529 static void calc_global_load_remove(struct rq
*rq
)
5531 atomic_long_sub(rq
->calc_load_active
, &calc_load_tasks
);
5532 rq
->calc_load_active
= 0;
5534 #endif /* CONFIG_HOTPLUG_CPU */
5536 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5538 static struct ctl_table sd_ctl_dir
[] = {
5540 .procname
= "sched_domain",
5546 static struct ctl_table sd_ctl_root
[] = {
5548 .procname
= "kernel",
5550 .child
= sd_ctl_dir
,
5555 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
5557 struct ctl_table
*entry
=
5558 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
5563 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
5565 struct ctl_table
*entry
;
5568 * In the intermediate directories, both the child directory and
5569 * procname are dynamically allocated and could fail but the mode
5570 * will always be set. In the lowest directory the names are
5571 * static strings and all have proc handlers.
5573 for (entry
= *tablep
; entry
->mode
; entry
++) {
5575 sd_free_ctl_entry(&entry
->child
);
5576 if (entry
->proc_handler
== NULL
)
5577 kfree(entry
->procname
);
5585 set_table_entry(struct ctl_table
*entry
,
5586 const char *procname
, void *data
, int maxlen
,
5587 mode_t mode
, proc_handler
*proc_handler
)
5589 entry
->procname
= procname
;
5591 entry
->maxlen
= maxlen
;
5593 entry
->proc_handler
= proc_handler
;
5596 static struct ctl_table
*
5597 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
5599 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
5604 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
5605 sizeof(long), 0644, proc_doulongvec_minmax
);
5606 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
5607 sizeof(long), 0644, proc_doulongvec_minmax
);
5608 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
5609 sizeof(int), 0644, proc_dointvec_minmax
);
5610 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
5611 sizeof(int), 0644, proc_dointvec_minmax
);
5612 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
5613 sizeof(int), 0644, proc_dointvec_minmax
);
5614 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
5615 sizeof(int), 0644, proc_dointvec_minmax
);
5616 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
5617 sizeof(int), 0644, proc_dointvec_minmax
);
5618 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
5619 sizeof(int), 0644, proc_dointvec_minmax
);
5620 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
5621 sizeof(int), 0644, proc_dointvec_minmax
);
5622 set_table_entry(&table
[9], "cache_nice_tries",
5623 &sd
->cache_nice_tries
,
5624 sizeof(int), 0644, proc_dointvec_minmax
);
5625 set_table_entry(&table
[10], "flags", &sd
->flags
,
5626 sizeof(int), 0644, proc_dointvec_minmax
);
5627 set_table_entry(&table
[11], "name", sd
->name
,
5628 CORENAME_MAX_SIZE
, 0444, proc_dostring
);
5629 /* &table[12] is terminator */
5634 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
5636 struct ctl_table
*entry
, *table
;
5637 struct sched_domain
*sd
;
5638 int domain_num
= 0, i
;
5641 for_each_domain(cpu
, sd
)
5643 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
5648 for_each_domain(cpu
, sd
) {
5649 snprintf(buf
, 32, "domain%d", i
);
5650 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5652 entry
->child
= sd_alloc_ctl_domain_table(sd
);
5659 static struct ctl_table_header
*sd_sysctl_header
;
5660 static void register_sched_domain_sysctl(void)
5662 int i
, cpu_num
= num_possible_cpus();
5663 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
5666 WARN_ON(sd_ctl_dir
[0].child
);
5667 sd_ctl_dir
[0].child
= entry
;
5672 for_each_possible_cpu(i
) {
5673 snprintf(buf
, 32, "cpu%d", i
);
5674 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5676 entry
->child
= sd_alloc_ctl_cpu_table(i
);
5680 WARN_ON(sd_sysctl_header
);
5681 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
5684 /* may be called multiple times per register */
5685 static void unregister_sched_domain_sysctl(void)
5687 if (sd_sysctl_header
)
5688 unregister_sysctl_table(sd_sysctl_header
);
5689 sd_sysctl_header
= NULL
;
5690 if (sd_ctl_dir
[0].child
)
5691 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
5694 static void register_sched_domain_sysctl(void)
5697 static void unregister_sched_domain_sysctl(void)
5702 static void set_rq_online(struct rq
*rq
)
5705 const struct sched_class
*class;
5707 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
5710 for_each_class(class) {
5711 if (class->rq_online
)
5712 class->rq_online(rq
);
5717 static void set_rq_offline(struct rq
*rq
)
5720 const struct sched_class
*class;
5722 for_each_class(class) {
5723 if (class->rq_offline
)
5724 class->rq_offline(rq
);
5727 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
5733 * migration_call - callback that gets triggered when a CPU is added.
5734 * Here we can start up the necessary migration thread for the new CPU.
5736 static int __cpuinit
5737 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
5739 int cpu
= (long)hcpu
;
5740 unsigned long flags
;
5741 struct rq
*rq
= cpu_rq(cpu
);
5745 case CPU_UP_PREPARE
:
5746 case CPU_UP_PREPARE_FROZEN
:
5747 rq
->calc_load_update
= calc_load_update
;
5751 case CPU_ONLINE_FROZEN
:
5752 /* Update our root-domain */
5753 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5755 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5759 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5762 #ifdef CONFIG_HOTPLUG_CPU
5764 case CPU_DEAD_FROZEN
:
5765 migrate_live_tasks(cpu
);
5766 /* Idle task back to normal (off runqueue, low prio) */
5767 raw_spin_lock_irq(&rq
->lock
);
5768 deactivate_task(rq
, rq
->idle
, 0);
5769 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
5770 rq
->idle
->sched_class
= &idle_sched_class
;
5771 migrate_dead_tasks(cpu
);
5772 raw_spin_unlock_irq(&rq
->lock
);
5773 migrate_nr_uninterruptible(rq
);
5774 BUG_ON(rq
->nr_running
!= 0);
5775 calc_global_load_remove(rq
);
5779 case CPU_DYING_FROZEN
:
5780 /* Update our root-domain */
5781 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5783 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5786 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5794 * Register at high priority so that task migration (migrate_all_tasks)
5795 * happens before everything else. This has to be lower priority than
5796 * the notifier in the perf_event subsystem, though.
5798 static struct notifier_block __cpuinitdata migration_notifier
= {
5799 .notifier_call
= migration_call
,
5803 static int __init
migration_init(void)
5805 void *cpu
= (void *)(long)smp_processor_id();
5808 /* Start one for the boot CPU: */
5809 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
5810 BUG_ON(err
== NOTIFY_BAD
);
5811 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
5812 register_cpu_notifier(&migration_notifier
);
5816 early_initcall(migration_init
);
5821 #ifdef CONFIG_SCHED_DEBUG
5823 static __read_mostly
int sched_domain_debug_enabled
;
5825 static int __init
sched_domain_debug_setup(char *str
)
5827 sched_domain_debug_enabled
= 1;
5831 early_param("sched_debug", sched_domain_debug_setup
);
5833 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
5834 struct cpumask
*groupmask
)
5836 struct sched_group
*group
= sd
->groups
;
5839 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
5840 cpumask_clear(groupmask
);
5842 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
5844 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
5845 printk("does not load-balance\n");
5847 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
5852 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
5854 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
5855 printk(KERN_ERR
"ERROR: domain->span does not contain "
5858 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
5859 printk(KERN_ERR
"ERROR: domain->groups does not contain"
5863 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
5867 printk(KERN_ERR
"ERROR: group is NULL\n");
5871 if (!group
->cpu_power
) {
5872 printk(KERN_CONT
"\n");
5873 printk(KERN_ERR
"ERROR: domain->cpu_power not "
5878 if (!cpumask_weight(sched_group_cpus(group
))) {
5879 printk(KERN_CONT
"\n");
5880 printk(KERN_ERR
"ERROR: empty group\n");
5884 if (cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
5885 printk(KERN_CONT
"\n");
5886 printk(KERN_ERR
"ERROR: repeated CPUs\n");
5890 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
5892 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
5894 printk(KERN_CONT
" %s", str
);
5895 if (group
->cpu_power
!= SCHED_LOAD_SCALE
) {
5896 printk(KERN_CONT
" (cpu_power = %d)",
5900 group
= group
->next
;
5901 } while (group
!= sd
->groups
);
5902 printk(KERN_CONT
"\n");
5904 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
5905 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
5908 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
5909 printk(KERN_ERR
"ERROR: parent span is not a superset "
5910 "of domain->span\n");
5914 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
5916 cpumask_var_t groupmask
;
5919 if (!sched_domain_debug_enabled
)
5923 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
5927 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
5929 if (!alloc_cpumask_var(&groupmask
, GFP_KERNEL
)) {
5930 printk(KERN_DEBUG
"Cannot load-balance (out of memory)\n");
5935 if (sched_domain_debug_one(sd
, cpu
, level
, groupmask
))
5942 free_cpumask_var(groupmask
);
5944 #else /* !CONFIG_SCHED_DEBUG */
5945 # define sched_domain_debug(sd, cpu) do { } while (0)
5946 #endif /* CONFIG_SCHED_DEBUG */
5948 static int sd_degenerate(struct sched_domain
*sd
)
5950 if (cpumask_weight(sched_domain_span(sd
)) == 1)
5953 /* Following flags need at least 2 groups */
5954 if (sd
->flags
& (SD_LOAD_BALANCE
|
5955 SD_BALANCE_NEWIDLE
|
5959 SD_SHARE_PKG_RESOURCES
)) {
5960 if (sd
->groups
!= sd
->groups
->next
)
5964 /* Following flags don't use groups */
5965 if (sd
->flags
& (SD_WAKE_AFFINE
))
5972 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
5974 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
5976 if (sd_degenerate(parent
))
5979 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
5982 /* Flags needing groups don't count if only 1 group in parent */
5983 if (parent
->groups
== parent
->groups
->next
) {
5984 pflags
&= ~(SD_LOAD_BALANCE
|
5985 SD_BALANCE_NEWIDLE
|
5989 SD_SHARE_PKG_RESOURCES
);
5990 if (nr_node_ids
== 1)
5991 pflags
&= ~SD_SERIALIZE
;
5993 if (~cflags
& pflags
)
5999 static void free_rootdomain(struct root_domain
*rd
)
6001 synchronize_sched();
6003 cpupri_cleanup(&rd
->cpupri
);
6005 free_cpumask_var(rd
->rto_mask
);
6006 free_cpumask_var(rd
->online
);
6007 free_cpumask_var(rd
->span
);
6011 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
6013 struct root_domain
*old_rd
= NULL
;
6014 unsigned long flags
;
6016 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6021 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
6024 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
6027 * If we dont want to free the old_rt yet then
6028 * set old_rd to NULL to skip the freeing later
6031 if (!atomic_dec_and_test(&old_rd
->refcount
))
6035 atomic_inc(&rd
->refcount
);
6038 cpumask_set_cpu(rq
->cpu
, rd
->span
);
6039 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
6042 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6045 free_rootdomain(old_rd
);
6048 static int init_rootdomain(struct root_domain
*rd
, bool bootmem
)
6050 gfp_t gfp
= GFP_KERNEL
;
6052 memset(rd
, 0, sizeof(*rd
));
6057 if (!alloc_cpumask_var(&rd
->span
, gfp
))
6059 if (!alloc_cpumask_var(&rd
->online
, gfp
))
6061 if (!alloc_cpumask_var(&rd
->rto_mask
, gfp
))
6064 if (cpupri_init(&rd
->cpupri
, bootmem
) != 0)
6069 free_cpumask_var(rd
->rto_mask
);
6071 free_cpumask_var(rd
->online
);
6073 free_cpumask_var(rd
->span
);
6078 static void init_defrootdomain(void)
6080 init_rootdomain(&def_root_domain
, true);
6082 atomic_set(&def_root_domain
.refcount
, 1);
6085 static struct root_domain
*alloc_rootdomain(void)
6087 struct root_domain
*rd
;
6089 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
6093 if (init_rootdomain(rd
, false) != 0) {
6102 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6103 * hold the hotplug lock.
6106 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
6108 struct rq
*rq
= cpu_rq(cpu
);
6109 struct sched_domain
*tmp
;
6111 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
)
6112 tmp
->span_weight
= cpumask_weight(sched_domain_span(tmp
));
6114 /* Remove the sched domains which do not contribute to scheduling. */
6115 for (tmp
= sd
; tmp
; ) {
6116 struct sched_domain
*parent
= tmp
->parent
;
6120 if (sd_parent_degenerate(tmp
, parent
)) {
6121 tmp
->parent
= parent
->parent
;
6123 parent
->parent
->child
= tmp
;
6128 if (sd
&& sd_degenerate(sd
)) {
6134 sched_domain_debug(sd
, cpu
);
6136 rq_attach_root(rq
, rd
);
6137 rcu_assign_pointer(rq
->sd
, sd
);
6140 /* cpus with isolated domains */
6141 static cpumask_var_t cpu_isolated_map
;
6143 /* Setup the mask of cpus configured for isolated domains */
6144 static int __init
isolated_cpu_setup(char *str
)
6146 alloc_bootmem_cpumask_var(&cpu_isolated_map
);
6147 cpulist_parse(str
, cpu_isolated_map
);
6151 __setup("isolcpus=", isolated_cpu_setup
);
6154 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6155 * to a function which identifies what group(along with sched group) a CPU
6156 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6157 * (due to the fact that we keep track of groups covered with a struct cpumask).
6159 * init_sched_build_groups will build a circular linked list of the groups
6160 * covered by the given span, and will set each group's ->cpumask correctly,
6161 * and ->cpu_power to 0.
6164 init_sched_build_groups(const struct cpumask
*span
,
6165 const struct cpumask
*cpu_map
,
6166 int (*group_fn
)(int cpu
, const struct cpumask
*cpu_map
,
6167 struct sched_group
**sg
,
6168 struct cpumask
*tmpmask
),
6169 struct cpumask
*covered
, struct cpumask
*tmpmask
)
6171 struct sched_group
*first
= NULL
, *last
= NULL
;
6174 cpumask_clear(covered
);
6176 for_each_cpu(i
, span
) {
6177 struct sched_group
*sg
;
6178 int group
= group_fn(i
, cpu_map
, &sg
, tmpmask
);
6181 if (cpumask_test_cpu(i
, covered
))
6184 cpumask_clear(sched_group_cpus(sg
));
6187 for_each_cpu(j
, span
) {
6188 if (group_fn(j
, cpu_map
, NULL
, tmpmask
) != group
)
6191 cpumask_set_cpu(j
, covered
);
6192 cpumask_set_cpu(j
, sched_group_cpus(sg
));
6203 #define SD_NODES_PER_DOMAIN 16
6208 * find_next_best_node - find the next node to include in a sched_domain
6209 * @node: node whose sched_domain we're building
6210 * @used_nodes: nodes already in the sched_domain
6212 * Find the next node to include in a given scheduling domain. Simply
6213 * finds the closest node not already in the @used_nodes map.
6215 * Should use nodemask_t.
6217 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
6219 int i
, n
, val
, min_val
, best_node
= 0;
6223 for (i
= 0; i
< nr_node_ids
; i
++) {
6224 /* Start at @node */
6225 n
= (node
+ i
) % nr_node_ids
;
6227 if (!nr_cpus_node(n
))
6230 /* Skip already used nodes */
6231 if (node_isset(n
, *used_nodes
))
6234 /* Simple min distance search */
6235 val
= node_distance(node
, n
);
6237 if (val
< min_val
) {
6243 node_set(best_node
, *used_nodes
);
6248 * sched_domain_node_span - get a cpumask for a node's sched_domain
6249 * @node: node whose cpumask we're constructing
6250 * @span: resulting cpumask
6252 * Given a node, construct a good cpumask for its sched_domain to span. It
6253 * should be one that prevents unnecessary balancing, but also spreads tasks
6256 static void sched_domain_node_span(int node
, struct cpumask
*span
)
6258 nodemask_t used_nodes
;
6261 cpumask_clear(span
);
6262 nodes_clear(used_nodes
);
6264 cpumask_or(span
, span
, cpumask_of_node(node
));
6265 node_set(node
, used_nodes
);
6267 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
6268 int next_node
= find_next_best_node(node
, &used_nodes
);
6270 cpumask_or(span
, span
, cpumask_of_node(next_node
));
6273 #endif /* CONFIG_NUMA */
6275 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
6278 * The cpus mask in sched_group and sched_domain hangs off the end.
6280 * ( See the the comments in include/linux/sched.h:struct sched_group
6281 * and struct sched_domain. )
6283 struct static_sched_group
{
6284 struct sched_group sg
;
6285 DECLARE_BITMAP(cpus
, CONFIG_NR_CPUS
);
6288 struct static_sched_domain
{
6289 struct sched_domain sd
;
6290 DECLARE_BITMAP(span
, CONFIG_NR_CPUS
);
6296 cpumask_var_t domainspan
;
6297 cpumask_var_t covered
;
6298 cpumask_var_t notcovered
;
6300 cpumask_var_t nodemask
;
6301 cpumask_var_t this_sibling_map
;
6302 cpumask_var_t this_core_map
;
6303 cpumask_var_t send_covered
;
6304 cpumask_var_t tmpmask
;
6305 struct sched_group
**sched_group_nodes
;
6306 struct root_domain
*rd
;
6310 sa_sched_groups
= 0,
6315 sa_this_sibling_map
,
6317 sa_sched_group_nodes
,
6327 * SMT sched-domains:
6329 #ifdef CONFIG_SCHED_SMT
6330 static DEFINE_PER_CPU(struct static_sched_domain
, cpu_domains
);
6331 static DEFINE_PER_CPU(struct static_sched_group
, sched_groups
);
6334 cpu_to_cpu_group(int cpu
, const struct cpumask
*cpu_map
,
6335 struct sched_group
**sg
, struct cpumask
*unused
)
6338 *sg
= &per_cpu(sched_groups
, cpu
).sg
;
6341 #endif /* CONFIG_SCHED_SMT */
6344 * multi-core sched-domains:
6346 #ifdef CONFIG_SCHED_MC
6347 static DEFINE_PER_CPU(struct static_sched_domain
, core_domains
);
6348 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_core
);
6349 #endif /* CONFIG_SCHED_MC */
6351 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6353 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
6354 struct sched_group
**sg
, struct cpumask
*mask
)
6358 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
6359 group
= cpumask_first(mask
);
6361 *sg
= &per_cpu(sched_group_core
, group
).sg
;
6364 #elif defined(CONFIG_SCHED_MC)
6366 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
6367 struct sched_group
**sg
, struct cpumask
*unused
)
6370 *sg
= &per_cpu(sched_group_core
, cpu
).sg
;
6375 static DEFINE_PER_CPU(struct static_sched_domain
, phys_domains
);
6376 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_phys
);
6379 cpu_to_phys_group(int cpu
, const struct cpumask
*cpu_map
,
6380 struct sched_group
**sg
, struct cpumask
*mask
)
6383 #ifdef CONFIG_SCHED_MC
6384 cpumask_and(mask
, cpu_coregroup_mask(cpu
), cpu_map
);
6385 group
= cpumask_first(mask
);
6386 #elif defined(CONFIG_SCHED_SMT)
6387 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
6388 group
= cpumask_first(mask
);
6393 *sg
= &per_cpu(sched_group_phys
, group
).sg
;
6399 * The init_sched_build_groups can't handle what we want to do with node
6400 * groups, so roll our own. Now each node has its own list of groups which
6401 * gets dynamically allocated.
6403 static DEFINE_PER_CPU(struct static_sched_domain
, node_domains
);
6404 static struct sched_group
***sched_group_nodes_bycpu
;
6406 static DEFINE_PER_CPU(struct static_sched_domain
, allnodes_domains
);
6407 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_allnodes
);
6409 static int cpu_to_allnodes_group(int cpu
, const struct cpumask
*cpu_map
,
6410 struct sched_group
**sg
,
6411 struct cpumask
*nodemask
)
6415 cpumask_and(nodemask
, cpumask_of_node(cpu_to_node(cpu
)), cpu_map
);
6416 group
= cpumask_first(nodemask
);
6419 *sg
= &per_cpu(sched_group_allnodes
, group
).sg
;
6423 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
6425 struct sched_group
*sg
= group_head
;
6431 for_each_cpu(j
, sched_group_cpus(sg
)) {
6432 struct sched_domain
*sd
;
6434 sd
= &per_cpu(phys_domains
, j
).sd
;
6435 if (j
!= group_first_cpu(sd
->groups
)) {
6437 * Only add "power" once for each
6443 sg
->cpu_power
+= sd
->groups
->cpu_power
;
6446 } while (sg
!= group_head
);
6449 static int build_numa_sched_groups(struct s_data
*d
,
6450 const struct cpumask
*cpu_map
, int num
)
6452 struct sched_domain
*sd
;
6453 struct sched_group
*sg
, *prev
;
6456 cpumask_clear(d
->covered
);
6457 cpumask_and(d
->nodemask
, cpumask_of_node(num
), cpu_map
);
6458 if (cpumask_empty(d
->nodemask
)) {
6459 d
->sched_group_nodes
[num
] = NULL
;
6463 sched_domain_node_span(num
, d
->domainspan
);
6464 cpumask_and(d
->domainspan
, d
->domainspan
, cpu_map
);
6466 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
6469 printk(KERN_WARNING
"Can not alloc domain group for node %d\n",
6473 d
->sched_group_nodes
[num
] = sg
;
6475 for_each_cpu(j
, d
->nodemask
) {
6476 sd
= &per_cpu(node_domains
, j
).sd
;
6481 cpumask_copy(sched_group_cpus(sg
), d
->nodemask
);
6483 cpumask_or(d
->covered
, d
->covered
, d
->nodemask
);
6486 for (j
= 0; j
< nr_node_ids
; j
++) {
6487 n
= (num
+ j
) % nr_node_ids
;
6488 cpumask_complement(d
->notcovered
, d
->covered
);
6489 cpumask_and(d
->tmpmask
, d
->notcovered
, cpu_map
);
6490 cpumask_and(d
->tmpmask
, d
->tmpmask
, d
->domainspan
);
6491 if (cpumask_empty(d
->tmpmask
))
6493 cpumask_and(d
->tmpmask
, d
->tmpmask
, cpumask_of_node(n
));
6494 if (cpumask_empty(d
->tmpmask
))
6496 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
6500 "Can not alloc domain group for node %d\n", j
);
6504 cpumask_copy(sched_group_cpus(sg
), d
->tmpmask
);
6505 sg
->next
= prev
->next
;
6506 cpumask_or(d
->covered
, d
->covered
, d
->tmpmask
);
6513 #endif /* CONFIG_NUMA */
6516 /* Free memory allocated for various sched_group structures */
6517 static void free_sched_groups(const struct cpumask
*cpu_map
,
6518 struct cpumask
*nodemask
)
6522 for_each_cpu(cpu
, cpu_map
) {
6523 struct sched_group
**sched_group_nodes
6524 = sched_group_nodes_bycpu
[cpu
];
6526 if (!sched_group_nodes
)
6529 for (i
= 0; i
< nr_node_ids
; i
++) {
6530 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
6532 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
6533 if (cpumask_empty(nodemask
))
6543 if (oldsg
!= sched_group_nodes
[i
])
6546 kfree(sched_group_nodes
);
6547 sched_group_nodes_bycpu
[cpu
] = NULL
;
6550 #else /* !CONFIG_NUMA */
6551 static void free_sched_groups(const struct cpumask
*cpu_map
,
6552 struct cpumask
*nodemask
)
6555 #endif /* CONFIG_NUMA */
6558 * Initialize sched groups cpu_power.
6560 * cpu_power indicates the capacity of sched group, which is used while
6561 * distributing the load between different sched groups in a sched domain.
6562 * Typically cpu_power for all the groups in a sched domain will be same unless
6563 * there are asymmetries in the topology. If there are asymmetries, group
6564 * having more cpu_power will pickup more load compared to the group having
6567 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
6569 struct sched_domain
*child
;
6570 struct sched_group
*group
;
6574 WARN_ON(!sd
|| !sd
->groups
);
6576 if (cpu
!= group_first_cpu(sd
->groups
))
6581 sd
->groups
->cpu_power
= 0;
6584 power
= SCHED_LOAD_SCALE
;
6585 weight
= cpumask_weight(sched_domain_span(sd
));
6587 * SMT siblings share the power of a single core.
6588 * Usually multiple threads get a better yield out of
6589 * that one core than a single thread would have,
6590 * reflect that in sd->smt_gain.
6592 if ((sd
->flags
& SD_SHARE_CPUPOWER
) && weight
> 1) {
6593 power
*= sd
->smt_gain
;
6595 power
>>= SCHED_LOAD_SHIFT
;
6597 sd
->groups
->cpu_power
+= power
;
6602 * Add cpu_power of each child group to this groups cpu_power.
6604 group
= child
->groups
;
6606 sd
->groups
->cpu_power
+= group
->cpu_power
;
6607 group
= group
->next
;
6608 } while (group
!= child
->groups
);
6612 * Initializers for schedule domains
6613 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6616 #ifdef CONFIG_SCHED_DEBUG
6617 # define SD_INIT_NAME(sd, type) sd->name = #type
6619 # define SD_INIT_NAME(sd, type) do { } while (0)
6622 #define SD_INIT(sd, type) sd_init_##type(sd)
6624 #define SD_INIT_FUNC(type) \
6625 static noinline void sd_init_##type(struct sched_domain *sd) \
6627 memset(sd, 0, sizeof(*sd)); \
6628 *sd = SD_##type##_INIT; \
6629 sd->level = SD_LV_##type; \
6630 SD_INIT_NAME(sd, type); \
6635 SD_INIT_FUNC(ALLNODES
)
6638 #ifdef CONFIG_SCHED_SMT
6639 SD_INIT_FUNC(SIBLING
)
6641 #ifdef CONFIG_SCHED_MC
6645 static int default_relax_domain_level
= -1;
6647 static int __init
setup_relax_domain_level(char *str
)
6651 val
= simple_strtoul(str
, NULL
, 0);
6652 if (val
< SD_LV_MAX
)
6653 default_relax_domain_level
= val
;
6657 __setup("relax_domain_level=", setup_relax_domain_level
);
6659 static void set_domain_attribute(struct sched_domain
*sd
,
6660 struct sched_domain_attr
*attr
)
6664 if (!attr
|| attr
->relax_domain_level
< 0) {
6665 if (default_relax_domain_level
< 0)
6668 request
= default_relax_domain_level
;
6670 request
= attr
->relax_domain_level
;
6671 if (request
< sd
->level
) {
6672 /* turn off idle balance on this domain */
6673 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
6675 /* turn on idle balance on this domain */
6676 sd
->flags
|= (SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
6680 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
6681 const struct cpumask
*cpu_map
)
6684 case sa_sched_groups
:
6685 free_sched_groups(cpu_map
, d
->tmpmask
); /* fall through */
6686 d
->sched_group_nodes
= NULL
;
6688 free_rootdomain(d
->rd
); /* fall through */
6690 free_cpumask_var(d
->tmpmask
); /* fall through */
6691 case sa_send_covered
:
6692 free_cpumask_var(d
->send_covered
); /* fall through */
6693 case sa_this_core_map
:
6694 free_cpumask_var(d
->this_core_map
); /* fall through */
6695 case sa_this_sibling_map
:
6696 free_cpumask_var(d
->this_sibling_map
); /* fall through */
6698 free_cpumask_var(d
->nodemask
); /* fall through */
6699 case sa_sched_group_nodes
:
6701 kfree(d
->sched_group_nodes
); /* fall through */
6703 free_cpumask_var(d
->notcovered
); /* fall through */
6705 free_cpumask_var(d
->covered
); /* fall through */
6707 free_cpumask_var(d
->domainspan
); /* fall through */
6714 static enum s_alloc
__visit_domain_allocation_hell(struct s_data
*d
,
6715 const struct cpumask
*cpu_map
)
6718 if (!alloc_cpumask_var(&d
->domainspan
, GFP_KERNEL
))
6720 if (!alloc_cpumask_var(&d
->covered
, GFP_KERNEL
))
6721 return sa_domainspan
;
6722 if (!alloc_cpumask_var(&d
->notcovered
, GFP_KERNEL
))
6724 /* Allocate the per-node list of sched groups */
6725 d
->sched_group_nodes
= kcalloc(nr_node_ids
,
6726 sizeof(struct sched_group
*), GFP_KERNEL
);
6727 if (!d
->sched_group_nodes
) {
6728 printk(KERN_WARNING
"Can not alloc sched group node list\n");
6729 return sa_notcovered
;
6731 sched_group_nodes_bycpu
[cpumask_first(cpu_map
)] = d
->sched_group_nodes
;
6733 if (!alloc_cpumask_var(&d
->nodemask
, GFP_KERNEL
))
6734 return sa_sched_group_nodes
;
6735 if (!alloc_cpumask_var(&d
->this_sibling_map
, GFP_KERNEL
))
6737 if (!alloc_cpumask_var(&d
->this_core_map
, GFP_KERNEL
))
6738 return sa_this_sibling_map
;
6739 if (!alloc_cpumask_var(&d
->send_covered
, GFP_KERNEL
))
6740 return sa_this_core_map
;
6741 if (!alloc_cpumask_var(&d
->tmpmask
, GFP_KERNEL
))
6742 return sa_send_covered
;
6743 d
->rd
= alloc_rootdomain();
6745 printk(KERN_WARNING
"Cannot alloc root domain\n");
6748 return sa_rootdomain
;
6751 static struct sched_domain
*__build_numa_sched_domains(struct s_data
*d
,
6752 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
, int i
)
6754 struct sched_domain
*sd
= NULL
;
6756 struct sched_domain
*parent
;
6759 if (cpumask_weight(cpu_map
) >
6760 SD_NODES_PER_DOMAIN
* cpumask_weight(d
->nodemask
)) {
6761 sd
= &per_cpu(allnodes_domains
, i
).sd
;
6762 SD_INIT(sd
, ALLNODES
);
6763 set_domain_attribute(sd
, attr
);
6764 cpumask_copy(sched_domain_span(sd
), cpu_map
);
6765 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
6770 sd
= &per_cpu(node_domains
, i
).sd
;
6772 set_domain_attribute(sd
, attr
);
6773 sched_domain_node_span(cpu_to_node(i
), sched_domain_span(sd
));
6774 sd
->parent
= parent
;
6777 cpumask_and(sched_domain_span(sd
), sched_domain_span(sd
), cpu_map
);
6782 static struct sched_domain
*__build_cpu_sched_domain(struct s_data
*d
,
6783 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
6784 struct sched_domain
*parent
, int i
)
6786 struct sched_domain
*sd
;
6787 sd
= &per_cpu(phys_domains
, i
).sd
;
6789 set_domain_attribute(sd
, attr
);
6790 cpumask_copy(sched_domain_span(sd
), d
->nodemask
);
6791 sd
->parent
= parent
;
6794 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
6798 static struct sched_domain
*__build_mc_sched_domain(struct s_data
*d
,
6799 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
6800 struct sched_domain
*parent
, int i
)
6802 struct sched_domain
*sd
= parent
;
6803 #ifdef CONFIG_SCHED_MC
6804 sd
= &per_cpu(core_domains
, i
).sd
;
6806 set_domain_attribute(sd
, attr
);
6807 cpumask_and(sched_domain_span(sd
), cpu_map
, cpu_coregroup_mask(i
));
6808 sd
->parent
= parent
;
6810 cpu_to_core_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
6815 static struct sched_domain
*__build_smt_sched_domain(struct s_data
*d
,
6816 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
6817 struct sched_domain
*parent
, int i
)
6819 struct sched_domain
*sd
= parent
;
6820 #ifdef CONFIG_SCHED_SMT
6821 sd
= &per_cpu(cpu_domains
, i
).sd
;
6822 SD_INIT(sd
, SIBLING
);
6823 set_domain_attribute(sd
, attr
);
6824 cpumask_and(sched_domain_span(sd
), cpu_map
, topology_thread_cpumask(i
));
6825 sd
->parent
= parent
;
6827 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
6832 static void build_sched_groups(struct s_data
*d
, enum sched_domain_level l
,
6833 const struct cpumask
*cpu_map
, int cpu
)
6836 #ifdef CONFIG_SCHED_SMT
6837 case SD_LV_SIBLING
: /* set up CPU (sibling) groups */
6838 cpumask_and(d
->this_sibling_map
, cpu_map
,
6839 topology_thread_cpumask(cpu
));
6840 if (cpu
== cpumask_first(d
->this_sibling_map
))
6841 init_sched_build_groups(d
->this_sibling_map
, cpu_map
,
6843 d
->send_covered
, d
->tmpmask
);
6846 #ifdef CONFIG_SCHED_MC
6847 case SD_LV_MC
: /* set up multi-core groups */
6848 cpumask_and(d
->this_core_map
, cpu_map
, cpu_coregroup_mask(cpu
));
6849 if (cpu
== cpumask_first(d
->this_core_map
))
6850 init_sched_build_groups(d
->this_core_map
, cpu_map
,
6852 d
->send_covered
, d
->tmpmask
);
6855 case SD_LV_CPU
: /* set up physical groups */
6856 cpumask_and(d
->nodemask
, cpumask_of_node(cpu
), cpu_map
);
6857 if (!cpumask_empty(d
->nodemask
))
6858 init_sched_build_groups(d
->nodemask
, cpu_map
,
6860 d
->send_covered
, d
->tmpmask
);
6863 case SD_LV_ALLNODES
:
6864 init_sched_build_groups(cpu_map
, cpu_map
, &cpu_to_allnodes_group
,
6865 d
->send_covered
, d
->tmpmask
);
6874 * Build sched domains for a given set of cpus and attach the sched domains
6875 * to the individual cpus
6877 static int __build_sched_domains(const struct cpumask
*cpu_map
,
6878 struct sched_domain_attr
*attr
)
6880 enum s_alloc alloc_state
= sa_none
;
6882 struct sched_domain
*sd
;
6888 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
6889 if (alloc_state
!= sa_rootdomain
)
6891 alloc_state
= sa_sched_groups
;
6894 * Set up domains for cpus specified by the cpu_map.
6896 for_each_cpu(i
, cpu_map
) {
6897 cpumask_and(d
.nodemask
, cpumask_of_node(cpu_to_node(i
)),
6900 sd
= __build_numa_sched_domains(&d
, cpu_map
, attr
, i
);
6901 sd
= __build_cpu_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
6902 sd
= __build_mc_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
6903 sd
= __build_smt_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
6906 for_each_cpu(i
, cpu_map
) {
6907 build_sched_groups(&d
, SD_LV_SIBLING
, cpu_map
, i
);
6908 build_sched_groups(&d
, SD_LV_MC
, cpu_map
, i
);
6911 /* Set up physical groups */
6912 for (i
= 0; i
< nr_node_ids
; i
++)
6913 build_sched_groups(&d
, SD_LV_CPU
, cpu_map
, i
);
6916 /* Set up node groups */
6918 build_sched_groups(&d
, SD_LV_ALLNODES
, cpu_map
, 0);
6920 for (i
= 0; i
< nr_node_ids
; i
++)
6921 if (build_numa_sched_groups(&d
, cpu_map
, i
))
6925 /* Calculate CPU power for physical packages and nodes */
6926 #ifdef CONFIG_SCHED_SMT
6927 for_each_cpu(i
, cpu_map
) {
6928 sd
= &per_cpu(cpu_domains
, i
).sd
;
6929 init_sched_groups_power(i
, sd
);
6932 #ifdef CONFIG_SCHED_MC
6933 for_each_cpu(i
, cpu_map
) {
6934 sd
= &per_cpu(core_domains
, i
).sd
;
6935 init_sched_groups_power(i
, sd
);
6939 for_each_cpu(i
, cpu_map
) {
6940 sd
= &per_cpu(phys_domains
, i
).sd
;
6941 init_sched_groups_power(i
, sd
);
6945 for (i
= 0; i
< nr_node_ids
; i
++)
6946 init_numa_sched_groups_power(d
.sched_group_nodes
[i
]);
6948 if (d
.sd_allnodes
) {
6949 struct sched_group
*sg
;
6951 cpu_to_allnodes_group(cpumask_first(cpu_map
), cpu_map
, &sg
,
6953 init_numa_sched_groups_power(sg
);
6957 /* Attach the domains */
6958 for_each_cpu(i
, cpu_map
) {
6959 #ifdef CONFIG_SCHED_SMT
6960 sd
= &per_cpu(cpu_domains
, i
).sd
;
6961 #elif defined(CONFIG_SCHED_MC)
6962 sd
= &per_cpu(core_domains
, i
).sd
;
6964 sd
= &per_cpu(phys_domains
, i
).sd
;
6966 cpu_attach_domain(sd
, d
.rd
, i
);
6969 d
.sched_group_nodes
= NULL
; /* don't free this we still need it */
6970 __free_domain_allocs(&d
, sa_tmpmask
, cpu_map
);
6974 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
6978 static int build_sched_domains(const struct cpumask
*cpu_map
)
6980 return __build_sched_domains(cpu_map
, NULL
);
6983 static cpumask_var_t
*doms_cur
; /* current sched domains */
6984 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
6985 static struct sched_domain_attr
*dattr_cur
;
6986 /* attribues of custom domains in 'doms_cur' */
6989 * Special case: If a kmalloc of a doms_cur partition (array of
6990 * cpumask) fails, then fallback to a single sched domain,
6991 * as determined by the single cpumask fallback_doms.
6993 static cpumask_var_t fallback_doms
;
6996 * arch_update_cpu_topology lets virtualized architectures update the
6997 * cpu core maps. It is supposed to return 1 if the topology changed
6998 * or 0 if it stayed the same.
7000 int __attribute__((weak
)) arch_update_cpu_topology(void)
7005 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
)
7008 cpumask_var_t
*doms
;
7010 doms
= kmalloc(sizeof(*doms
) * ndoms
, GFP_KERNEL
);
7013 for (i
= 0; i
< ndoms
; i
++) {
7014 if (!alloc_cpumask_var(&doms
[i
], GFP_KERNEL
)) {
7015 free_sched_domains(doms
, i
);
7022 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
)
7025 for (i
= 0; i
< ndoms
; i
++)
7026 free_cpumask_var(doms
[i
]);
7031 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7032 * For now this just excludes isolated cpus, but could be used to
7033 * exclude other special cases in the future.
7035 static int arch_init_sched_domains(const struct cpumask
*cpu_map
)
7039 arch_update_cpu_topology();
7041 doms_cur
= alloc_sched_domains(ndoms_cur
);
7043 doms_cur
= &fallback_doms
;
7044 cpumask_andnot(doms_cur
[0], cpu_map
, cpu_isolated_map
);
7046 err
= build_sched_domains(doms_cur
[0]);
7047 register_sched_domain_sysctl();
7052 static void arch_destroy_sched_domains(const struct cpumask
*cpu_map
,
7053 struct cpumask
*tmpmask
)
7055 free_sched_groups(cpu_map
, tmpmask
);
7059 * Detach sched domains from a group of cpus specified in cpu_map
7060 * These cpus will now be attached to the NULL domain
7062 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
7064 /* Save because hotplug lock held. */
7065 static DECLARE_BITMAP(tmpmask
, CONFIG_NR_CPUS
);
7068 for_each_cpu(i
, cpu_map
)
7069 cpu_attach_domain(NULL
, &def_root_domain
, i
);
7070 synchronize_sched();
7071 arch_destroy_sched_domains(cpu_map
, to_cpumask(tmpmask
));
7074 /* handle null as "default" */
7075 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
7076 struct sched_domain_attr
*new, int idx_new
)
7078 struct sched_domain_attr tmp
;
7085 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
7086 new ? (new + idx_new
) : &tmp
,
7087 sizeof(struct sched_domain_attr
));
7091 * Partition sched domains as specified by the 'ndoms_new'
7092 * cpumasks in the array doms_new[] of cpumasks. This compares
7093 * doms_new[] to the current sched domain partitioning, doms_cur[].
7094 * It destroys each deleted domain and builds each new domain.
7096 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7097 * The masks don't intersect (don't overlap.) We should setup one
7098 * sched domain for each mask. CPUs not in any of the cpumasks will
7099 * not be load balanced. If the same cpumask appears both in the
7100 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7103 * The passed in 'doms_new' should be allocated using
7104 * alloc_sched_domains. This routine takes ownership of it and will
7105 * free_sched_domains it when done with it. If the caller failed the
7106 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7107 * and partition_sched_domains() will fallback to the single partition
7108 * 'fallback_doms', it also forces the domains to be rebuilt.
7110 * If doms_new == NULL it will be replaced with cpu_online_mask.
7111 * ndoms_new == 0 is a special case for destroying existing domains,
7112 * and it will not create the default domain.
7114 * Call with hotplug lock held
7116 void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
7117 struct sched_domain_attr
*dattr_new
)
7122 mutex_lock(&sched_domains_mutex
);
7124 /* always unregister in case we don't destroy any domains */
7125 unregister_sched_domain_sysctl();
7127 /* Let architecture update cpu core mappings. */
7128 new_topology
= arch_update_cpu_topology();
7130 n
= doms_new
? ndoms_new
: 0;
7132 /* Destroy deleted domains */
7133 for (i
= 0; i
< ndoms_cur
; i
++) {
7134 for (j
= 0; j
< n
&& !new_topology
; j
++) {
7135 if (cpumask_equal(doms_cur
[i
], doms_new
[j
])
7136 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
7139 /* no match - a current sched domain not in new doms_new[] */
7140 detach_destroy_domains(doms_cur
[i
]);
7145 if (doms_new
== NULL
) {
7147 doms_new
= &fallback_doms
;
7148 cpumask_andnot(doms_new
[0], cpu_active_mask
, cpu_isolated_map
);
7149 WARN_ON_ONCE(dattr_new
);
7152 /* Build new domains */
7153 for (i
= 0; i
< ndoms_new
; i
++) {
7154 for (j
= 0; j
< ndoms_cur
&& !new_topology
; j
++) {
7155 if (cpumask_equal(doms_new
[i
], doms_cur
[j
])
7156 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
7159 /* no match - add a new doms_new */
7160 __build_sched_domains(doms_new
[i
],
7161 dattr_new
? dattr_new
+ i
: NULL
);
7166 /* Remember the new sched domains */
7167 if (doms_cur
!= &fallback_doms
)
7168 free_sched_domains(doms_cur
, ndoms_cur
);
7169 kfree(dattr_cur
); /* kfree(NULL) is safe */
7170 doms_cur
= doms_new
;
7171 dattr_cur
= dattr_new
;
7172 ndoms_cur
= ndoms_new
;
7174 register_sched_domain_sysctl();
7176 mutex_unlock(&sched_domains_mutex
);
7179 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7180 static void arch_reinit_sched_domains(void)
7184 /* Destroy domains first to force the rebuild */
7185 partition_sched_domains(0, NULL
, NULL
);
7187 rebuild_sched_domains();
7191 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
7193 unsigned int level
= 0;
7195 if (sscanf(buf
, "%u", &level
) != 1)
7199 * level is always be positive so don't check for
7200 * level < POWERSAVINGS_BALANCE_NONE which is 0
7201 * What happens on 0 or 1 byte write,
7202 * need to check for count as well?
7205 if (level
>= MAX_POWERSAVINGS_BALANCE_LEVELS
)
7209 sched_smt_power_savings
= level
;
7211 sched_mc_power_savings
= level
;
7213 arch_reinit_sched_domains();
7218 #ifdef CONFIG_SCHED_MC
7219 static ssize_t
sched_mc_power_savings_show(struct sysdev_class
*class,
7220 struct sysdev_class_attribute
*attr
,
7223 return sprintf(page
, "%u\n", sched_mc_power_savings
);
7225 static ssize_t
sched_mc_power_savings_store(struct sysdev_class
*class,
7226 struct sysdev_class_attribute
*attr
,
7227 const char *buf
, size_t count
)
7229 return sched_power_savings_store(buf
, count
, 0);
7231 static SYSDEV_CLASS_ATTR(sched_mc_power_savings
, 0644,
7232 sched_mc_power_savings_show
,
7233 sched_mc_power_savings_store
);
7236 #ifdef CONFIG_SCHED_SMT
7237 static ssize_t
sched_smt_power_savings_show(struct sysdev_class
*dev
,
7238 struct sysdev_class_attribute
*attr
,
7241 return sprintf(page
, "%u\n", sched_smt_power_savings
);
7243 static ssize_t
sched_smt_power_savings_store(struct sysdev_class
*dev
,
7244 struct sysdev_class_attribute
*attr
,
7245 const char *buf
, size_t count
)
7247 return sched_power_savings_store(buf
, count
, 1);
7249 static SYSDEV_CLASS_ATTR(sched_smt_power_savings
, 0644,
7250 sched_smt_power_savings_show
,
7251 sched_smt_power_savings_store
);
7254 int __init
sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
7258 #ifdef CONFIG_SCHED_SMT
7260 err
= sysfs_create_file(&cls
->kset
.kobj
,
7261 &attr_sched_smt_power_savings
.attr
);
7263 #ifdef CONFIG_SCHED_MC
7264 if (!err
&& mc_capable())
7265 err
= sysfs_create_file(&cls
->kset
.kobj
,
7266 &attr_sched_mc_power_savings
.attr
);
7270 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7272 #ifndef CONFIG_CPUSETS
7274 * Add online and remove offline CPUs from the scheduler domains.
7275 * When cpusets are enabled they take over this function.
7277 static int update_sched_domains(struct notifier_block
*nfb
,
7278 unsigned long action
, void *hcpu
)
7282 case CPU_ONLINE_FROZEN
:
7283 case CPU_DOWN_PREPARE
:
7284 case CPU_DOWN_PREPARE_FROZEN
:
7285 case CPU_DOWN_FAILED
:
7286 case CPU_DOWN_FAILED_FROZEN
:
7287 partition_sched_domains(1, NULL
, NULL
);
7296 static int update_runtime(struct notifier_block
*nfb
,
7297 unsigned long action
, void *hcpu
)
7299 int cpu
= (int)(long)hcpu
;
7302 case CPU_DOWN_PREPARE
:
7303 case CPU_DOWN_PREPARE_FROZEN
:
7304 disable_runtime(cpu_rq(cpu
));
7307 case CPU_DOWN_FAILED
:
7308 case CPU_DOWN_FAILED_FROZEN
:
7310 case CPU_ONLINE_FROZEN
:
7311 enable_runtime(cpu_rq(cpu
));
7319 void __init
sched_init_smp(void)
7321 cpumask_var_t non_isolated_cpus
;
7323 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
7324 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
7326 #if defined(CONFIG_NUMA)
7327 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
7329 BUG_ON(sched_group_nodes_bycpu
== NULL
);
7332 mutex_lock(&sched_domains_mutex
);
7333 arch_init_sched_domains(cpu_active_mask
);
7334 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
7335 if (cpumask_empty(non_isolated_cpus
))
7336 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
7337 mutex_unlock(&sched_domains_mutex
);
7340 #ifndef CONFIG_CPUSETS
7341 /* XXX: Theoretical race here - CPU may be hotplugged now */
7342 hotcpu_notifier(update_sched_domains
, 0);
7345 /* RT runtime code needs to handle some hotplug events */
7346 hotcpu_notifier(update_runtime
, 0);
7350 /* Move init over to a non-isolated CPU */
7351 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
7353 sched_init_granularity();
7354 free_cpumask_var(non_isolated_cpus
);
7356 init_sched_rt_class();
7359 void __init
sched_init_smp(void)
7361 sched_init_granularity();
7363 #endif /* CONFIG_SMP */
7365 const_debug
unsigned int sysctl_timer_migration
= 1;
7367 int in_sched_functions(unsigned long addr
)
7369 return in_lock_functions(addr
) ||
7370 (addr
>= (unsigned long)__sched_text_start
7371 && addr
< (unsigned long)__sched_text_end
);
7374 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
7376 cfs_rq
->tasks_timeline
= RB_ROOT
;
7377 INIT_LIST_HEAD(&cfs_rq
->tasks
);
7378 #ifdef CONFIG_FAIR_GROUP_SCHED
7381 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
7384 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
7386 struct rt_prio_array
*array
;
7389 array
= &rt_rq
->active
;
7390 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
7391 INIT_LIST_HEAD(array
->queue
+ i
);
7392 __clear_bit(i
, array
->bitmap
);
7394 /* delimiter for bitsearch: */
7395 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
7397 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7398 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
7400 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
7404 rt_rq
->rt_nr_migratory
= 0;
7405 rt_rq
->overloaded
= 0;
7406 plist_head_init_raw(&rt_rq
->pushable_tasks
, &rq
->lock
);
7410 rt_rq
->rt_throttled
= 0;
7411 rt_rq
->rt_runtime
= 0;
7412 raw_spin_lock_init(&rt_rq
->rt_runtime_lock
);
7414 #ifdef CONFIG_RT_GROUP_SCHED
7415 rt_rq
->rt_nr_boosted
= 0;
7420 #ifdef CONFIG_FAIR_GROUP_SCHED
7421 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
7422 struct sched_entity
*se
, int cpu
, int add
,
7423 struct sched_entity
*parent
)
7425 struct rq
*rq
= cpu_rq(cpu
);
7426 tg
->cfs_rq
[cpu
] = cfs_rq
;
7427 init_cfs_rq(cfs_rq
, rq
);
7430 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
7433 /* se could be NULL for init_task_group */
7438 se
->cfs_rq
= &rq
->cfs
;
7440 se
->cfs_rq
= parent
->my_q
;
7443 se
->load
.weight
= tg
->shares
;
7444 se
->load
.inv_weight
= 0;
7445 se
->parent
= parent
;
7449 #ifdef CONFIG_RT_GROUP_SCHED
7450 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
7451 struct sched_rt_entity
*rt_se
, int cpu
, int add
,
7452 struct sched_rt_entity
*parent
)
7454 struct rq
*rq
= cpu_rq(cpu
);
7456 tg
->rt_rq
[cpu
] = rt_rq
;
7457 init_rt_rq(rt_rq
, rq
);
7459 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
7461 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
7463 tg
->rt_se
[cpu
] = rt_se
;
7468 rt_se
->rt_rq
= &rq
->rt
;
7470 rt_se
->rt_rq
= parent
->my_q
;
7472 rt_se
->my_q
= rt_rq
;
7473 rt_se
->parent
= parent
;
7474 INIT_LIST_HEAD(&rt_se
->run_list
);
7478 void __init
sched_init(void)
7481 unsigned long alloc_size
= 0, ptr
;
7483 #ifdef CONFIG_FAIR_GROUP_SCHED
7484 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7486 #ifdef CONFIG_RT_GROUP_SCHED
7487 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7489 #ifdef CONFIG_CPUMASK_OFFSTACK
7490 alloc_size
+= num_possible_cpus() * cpumask_size();
7493 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
7495 #ifdef CONFIG_FAIR_GROUP_SCHED
7496 init_task_group
.se
= (struct sched_entity
**)ptr
;
7497 ptr
+= nr_cpu_ids
* sizeof(void **);
7499 init_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
7500 ptr
+= nr_cpu_ids
* sizeof(void **);
7502 #endif /* CONFIG_FAIR_GROUP_SCHED */
7503 #ifdef CONFIG_RT_GROUP_SCHED
7504 init_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
7505 ptr
+= nr_cpu_ids
* sizeof(void **);
7507 init_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
7508 ptr
+= nr_cpu_ids
* sizeof(void **);
7510 #endif /* CONFIG_RT_GROUP_SCHED */
7511 #ifdef CONFIG_CPUMASK_OFFSTACK
7512 for_each_possible_cpu(i
) {
7513 per_cpu(load_balance_tmpmask
, i
) = (void *)ptr
;
7514 ptr
+= cpumask_size();
7516 #endif /* CONFIG_CPUMASK_OFFSTACK */
7520 init_defrootdomain();
7523 init_rt_bandwidth(&def_rt_bandwidth
,
7524 global_rt_period(), global_rt_runtime());
7526 #ifdef CONFIG_RT_GROUP_SCHED
7527 init_rt_bandwidth(&init_task_group
.rt_bandwidth
,
7528 global_rt_period(), global_rt_runtime());
7529 #endif /* CONFIG_RT_GROUP_SCHED */
7531 #ifdef CONFIG_CGROUP_SCHED
7532 list_add(&init_task_group
.list
, &task_groups
);
7533 INIT_LIST_HEAD(&init_task_group
.children
);
7535 #endif /* CONFIG_CGROUP_SCHED */
7537 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7538 update_shares_data
= __alloc_percpu(nr_cpu_ids
* sizeof(unsigned long),
7539 __alignof__(unsigned long));
7541 for_each_possible_cpu(i
) {
7545 raw_spin_lock_init(&rq
->lock
);
7547 rq
->calc_load_active
= 0;
7548 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
7549 init_cfs_rq(&rq
->cfs
, rq
);
7550 init_rt_rq(&rq
->rt
, rq
);
7551 #ifdef CONFIG_FAIR_GROUP_SCHED
7552 init_task_group
.shares
= init_task_group_load
;
7553 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
7554 #ifdef CONFIG_CGROUP_SCHED
7556 * How much cpu bandwidth does init_task_group get?
7558 * In case of task-groups formed thr' the cgroup filesystem, it
7559 * gets 100% of the cpu resources in the system. This overall
7560 * system cpu resource is divided among the tasks of
7561 * init_task_group and its child task-groups in a fair manner,
7562 * based on each entity's (task or task-group's) weight
7563 * (se->load.weight).
7565 * In other words, if init_task_group has 10 tasks of weight
7566 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7567 * then A0's share of the cpu resource is:
7569 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7571 * We achieve this by letting init_task_group's tasks sit
7572 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7574 init_tg_cfs_entry(&init_task_group
, &rq
->cfs
, NULL
, i
, 1, NULL
);
7576 #endif /* CONFIG_FAIR_GROUP_SCHED */
7578 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
7579 #ifdef CONFIG_RT_GROUP_SCHED
7580 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
7581 #ifdef CONFIG_CGROUP_SCHED
7582 init_tg_rt_entry(&init_task_group
, &rq
->rt
, NULL
, i
, 1, NULL
);
7586 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
7587 rq
->cpu_load
[j
] = 0;
7591 rq
->post_schedule
= 0;
7592 rq
->active_balance
= 0;
7593 rq
->next_balance
= jiffies
;
7598 rq
->avg_idle
= 2*sysctl_sched_migration_cost
;
7599 rq_attach_root(rq
, &def_root_domain
);
7602 atomic_set(&rq
->nr_iowait
, 0);
7605 set_load_weight(&init_task
);
7607 #ifdef CONFIG_PREEMPT_NOTIFIERS
7608 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
7612 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
7615 #ifdef CONFIG_RT_MUTEXES
7616 plist_head_init_raw(&init_task
.pi_waiters
, &init_task
.pi_lock
);
7620 * The boot idle thread does lazy MMU switching as well:
7622 atomic_inc(&init_mm
.mm_count
);
7623 enter_lazy_tlb(&init_mm
, current
);
7626 * Make us the idle thread. Technically, schedule() should not be
7627 * called from this thread, however somewhere below it might be,
7628 * but because we are the idle thread, we just pick up running again
7629 * when this runqueue becomes "idle".
7631 init_idle(current
, smp_processor_id());
7633 calc_load_update
= jiffies
+ LOAD_FREQ
;
7636 * During early bootup we pretend to be a normal task:
7638 current
->sched_class
= &fair_sched_class
;
7640 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7641 zalloc_cpumask_var(&nohz_cpu_mask
, GFP_NOWAIT
);
7644 zalloc_cpumask_var(&nohz
.cpu_mask
, GFP_NOWAIT
);
7645 alloc_cpumask_var(&nohz
.ilb_grp_nohz_mask
, GFP_NOWAIT
);
7647 /* May be allocated at isolcpus cmdline parse time */
7648 if (cpu_isolated_map
== NULL
)
7649 zalloc_cpumask_var(&cpu_isolated_map
, GFP_NOWAIT
);
7654 scheduler_running
= 1;
7657 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7658 static inline int preempt_count_equals(int preempt_offset
)
7660 int nested
= (preempt_count() & ~PREEMPT_ACTIVE
) + rcu_preempt_depth();
7662 return (nested
== PREEMPT_INATOMIC_BASE
+ preempt_offset
);
7665 void __might_sleep(const char *file
, int line
, int preempt_offset
)
7668 static unsigned long prev_jiffy
; /* ratelimiting */
7670 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled()) ||
7671 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
7673 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
7675 prev_jiffy
= jiffies
;
7678 "BUG: sleeping function called from invalid context at %s:%d\n",
7681 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7682 in_atomic(), irqs_disabled(),
7683 current
->pid
, current
->comm
);
7685 debug_show_held_locks(current
);
7686 if (irqs_disabled())
7687 print_irqtrace_events(current
);
7691 EXPORT_SYMBOL(__might_sleep
);
7694 #ifdef CONFIG_MAGIC_SYSRQ
7695 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
7699 on_rq
= p
->se
.on_rq
;
7701 deactivate_task(rq
, p
, 0);
7702 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
7704 activate_task(rq
, p
, 0);
7705 resched_task(rq
->curr
);
7709 void normalize_rt_tasks(void)
7711 struct task_struct
*g
, *p
;
7712 unsigned long flags
;
7715 read_lock_irqsave(&tasklist_lock
, flags
);
7716 do_each_thread(g
, p
) {
7718 * Only normalize user tasks:
7723 p
->se
.exec_start
= 0;
7724 #ifdef CONFIG_SCHEDSTATS
7725 p
->se
.statistics
.wait_start
= 0;
7726 p
->se
.statistics
.sleep_start
= 0;
7727 p
->se
.statistics
.block_start
= 0;
7732 * Renice negative nice level userspace
7735 if (TASK_NICE(p
) < 0 && p
->mm
)
7736 set_user_nice(p
, 0);
7740 raw_spin_lock(&p
->pi_lock
);
7741 rq
= __task_rq_lock(p
);
7743 normalize_task(rq
, p
);
7745 __task_rq_unlock(rq
);
7746 raw_spin_unlock(&p
->pi_lock
);
7747 } while_each_thread(g
, p
);
7749 read_unlock_irqrestore(&tasklist_lock
, flags
);
7752 #endif /* CONFIG_MAGIC_SYSRQ */
7754 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7756 * These functions are only useful for the IA64 MCA handling, or kdb.
7758 * They can only be called when the whole system has been
7759 * stopped - every CPU needs to be quiescent, and no scheduling
7760 * activity can take place. Using them for anything else would
7761 * be a serious bug, and as a result, they aren't even visible
7762 * under any other configuration.
7766 * curr_task - return the current task for a given cpu.
7767 * @cpu: the processor in question.
7769 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7771 struct task_struct
*curr_task(int cpu
)
7773 return cpu_curr(cpu
);
7776 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7780 * set_curr_task - set the current task for a given cpu.
7781 * @cpu: the processor in question.
7782 * @p: the task pointer to set.
7784 * Description: This function must only be used when non-maskable interrupts
7785 * are serviced on a separate stack. It allows the architecture to switch the
7786 * notion of the current task on a cpu in a non-blocking manner. This function
7787 * must be called with all CPU's synchronized, and interrupts disabled, the
7788 * and caller must save the original value of the current task (see
7789 * curr_task() above) and restore that value before reenabling interrupts and
7790 * re-starting the system.
7792 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7794 void set_curr_task(int cpu
, struct task_struct
*p
)
7801 #ifdef CONFIG_FAIR_GROUP_SCHED
7802 static void free_fair_sched_group(struct task_group
*tg
)
7806 for_each_possible_cpu(i
) {
7808 kfree(tg
->cfs_rq
[i
]);
7818 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
7820 struct cfs_rq
*cfs_rq
;
7821 struct sched_entity
*se
;
7825 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
7828 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
7832 tg
->shares
= NICE_0_LOAD
;
7834 for_each_possible_cpu(i
) {
7837 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
7838 GFP_KERNEL
, cpu_to_node(i
));
7842 se
= kzalloc_node(sizeof(struct sched_entity
),
7843 GFP_KERNEL
, cpu_to_node(i
));
7847 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, 0, parent
->se
[i
]);
7858 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
7860 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
7861 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
7864 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
7866 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
7868 #else /* !CONFG_FAIR_GROUP_SCHED */
7869 static inline void free_fair_sched_group(struct task_group
*tg
)
7874 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
7879 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
7883 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
7886 #endif /* CONFIG_FAIR_GROUP_SCHED */
7888 #ifdef CONFIG_RT_GROUP_SCHED
7889 static void free_rt_sched_group(struct task_group
*tg
)
7893 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
7895 for_each_possible_cpu(i
) {
7897 kfree(tg
->rt_rq
[i
]);
7899 kfree(tg
->rt_se
[i
]);
7907 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
7909 struct rt_rq
*rt_rq
;
7910 struct sched_rt_entity
*rt_se
;
7914 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
7917 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
7921 init_rt_bandwidth(&tg
->rt_bandwidth
,
7922 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
7924 for_each_possible_cpu(i
) {
7927 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
7928 GFP_KERNEL
, cpu_to_node(i
));
7932 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
7933 GFP_KERNEL
, cpu_to_node(i
));
7937 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, 0, parent
->rt_se
[i
]);
7948 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
7950 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
7951 &cpu_rq(cpu
)->leaf_rt_rq_list
);
7954 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
7956 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
7958 #else /* !CONFIG_RT_GROUP_SCHED */
7959 static inline void free_rt_sched_group(struct task_group
*tg
)
7964 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
7969 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
7973 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
7976 #endif /* CONFIG_RT_GROUP_SCHED */
7978 #ifdef CONFIG_CGROUP_SCHED
7979 static void free_sched_group(struct task_group
*tg
)
7981 free_fair_sched_group(tg
);
7982 free_rt_sched_group(tg
);
7986 /* allocate runqueue etc for a new task group */
7987 struct task_group
*sched_create_group(struct task_group
*parent
)
7989 struct task_group
*tg
;
7990 unsigned long flags
;
7993 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
7995 return ERR_PTR(-ENOMEM
);
7997 if (!alloc_fair_sched_group(tg
, parent
))
8000 if (!alloc_rt_sched_group(tg
, parent
))
8003 spin_lock_irqsave(&task_group_lock
, flags
);
8004 for_each_possible_cpu(i
) {
8005 register_fair_sched_group(tg
, i
);
8006 register_rt_sched_group(tg
, i
);
8008 list_add_rcu(&tg
->list
, &task_groups
);
8010 WARN_ON(!parent
); /* root should already exist */
8012 tg
->parent
= parent
;
8013 INIT_LIST_HEAD(&tg
->children
);
8014 list_add_rcu(&tg
->siblings
, &parent
->children
);
8015 spin_unlock_irqrestore(&task_group_lock
, flags
);
8020 free_sched_group(tg
);
8021 return ERR_PTR(-ENOMEM
);
8024 /* rcu callback to free various structures associated with a task group */
8025 static void free_sched_group_rcu(struct rcu_head
*rhp
)
8027 /* now it should be safe to free those cfs_rqs */
8028 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
8031 /* Destroy runqueue etc associated with a task group */
8032 void sched_destroy_group(struct task_group
*tg
)
8034 unsigned long flags
;
8037 spin_lock_irqsave(&task_group_lock
, flags
);
8038 for_each_possible_cpu(i
) {
8039 unregister_fair_sched_group(tg
, i
);
8040 unregister_rt_sched_group(tg
, i
);
8042 list_del_rcu(&tg
->list
);
8043 list_del_rcu(&tg
->siblings
);
8044 spin_unlock_irqrestore(&task_group_lock
, flags
);
8046 /* wait for possible concurrent references to cfs_rqs complete */
8047 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
8050 /* change task's runqueue when it moves between groups.
8051 * The caller of this function should have put the task in its new group
8052 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8053 * reflect its new group.
8055 void sched_move_task(struct task_struct
*tsk
)
8058 unsigned long flags
;
8061 rq
= task_rq_lock(tsk
, &flags
);
8063 running
= task_current(rq
, tsk
);
8064 on_rq
= tsk
->se
.on_rq
;
8067 dequeue_task(rq
, tsk
, 0);
8068 if (unlikely(running
))
8069 tsk
->sched_class
->put_prev_task(rq
, tsk
);
8071 set_task_rq(tsk
, task_cpu(tsk
));
8073 #ifdef CONFIG_FAIR_GROUP_SCHED
8074 if (tsk
->sched_class
->moved_group
)
8075 tsk
->sched_class
->moved_group(tsk
, on_rq
);
8078 if (unlikely(running
))
8079 tsk
->sched_class
->set_curr_task(rq
);
8081 enqueue_task(rq
, tsk
, 0);
8083 task_rq_unlock(rq
, &flags
);
8085 #endif /* CONFIG_CGROUP_SCHED */
8087 #ifdef CONFIG_FAIR_GROUP_SCHED
8088 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8090 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8095 dequeue_entity(cfs_rq
, se
, 0);
8097 se
->load
.weight
= shares
;
8098 se
->load
.inv_weight
= 0;
8101 enqueue_entity(cfs_rq
, se
, 0);
8104 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8106 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8107 struct rq
*rq
= cfs_rq
->rq
;
8108 unsigned long flags
;
8110 raw_spin_lock_irqsave(&rq
->lock
, flags
);
8111 __set_se_shares(se
, shares
);
8112 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
8115 static DEFINE_MUTEX(shares_mutex
);
8117 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
8120 unsigned long flags
;
8123 * We can't change the weight of the root cgroup.
8128 if (shares
< MIN_SHARES
)
8129 shares
= MIN_SHARES
;
8130 else if (shares
> MAX_SHARES
)
8131 shares
= MAX_SHARES
;
8133 mutex_lock(&shares_mutex
);
8134 if (tg
->shares
== shares
)
8137 spin_lock_irqsave(&task_group_lock
, flags
);
8138 for_each_possible_cpu(i
)
8139 unregister_fair_sched_group(tg
, i
);
8140 list_del_rcu(&tg
->siblings
);
8141 spin_unlock_irqrestore(&task_group_lock
, flags
);
8143 /* wait for any ongoing reference to this group to finish */
8144 synchronize_sched();
8147 * Now we are free to modify the group's share on each cpu
8148 * w/o tripping rebalance_share or load_balance_fair.
8150 tg
->shares
= shares
;
8151 for_each_possible_cpu(i
) {
8155 cfs_rq_set_shares(tg
->cfs_rq
[i
], 0);
8156 set_se_shares(tg
->se
[i
], shares
);
8160 * Enable load balance activity on this group, by inserting it back on
8161 * each cpu's rq->leaf_cfs_rq_list.
8163 spin_lock_irqsave(&task_group_lock
, flags
);
8164 for_each_possible_cpu(i
)
8165 register_fair_sched_group(tg
, i
);
8166 list_add_rcu(&tg
->siblings
, &tg
->parent
->children
);
8167 spin_unlock_irqrestore(&task_group_lock
, flags
);
8169 mutex_unlock(&shares_mutex
);
8173 unsigned long sched_group_shares(struct task_group
*tg
)
8179 #ifdef CONFIG_RT_GROUP_SCHED
8181 * Ensure that the real time constraints are schedulable.
8183 static DEFINE_MUTEX(rt_constraints_mutex
);
8185 static unsigned long to_ratio(u64 period
, u64 runtime
)
8187 if (runtime
== RUNTIME_INF
)
8190 return div64_u64(runtime
<< 20, period
);
8193 /* Must be called with tasklist_lock held */
8194 static inline int tg_has_rt_tasks(struct task_group
*tg
)
8196 struct task_struct
*g
, *p
;
8198 do_each_thread(g
, p
) {
8199 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
8201 } while_each_thread(g
, p
);
8206 struct rt_schedulable_data
{
8207 struct task_group
*tg
;
8212 static int tg_schedulable(struct task_group
*tg
, void *data
)
8214 struct rt_schedulable_data
*d
= data
;
8215 struct task_group
*child
;
8216 unsigned long total
, sum
= 0;
8217 u64 period
, runtime
;
8219 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8220 runtime
= tg
->rt_bandwidth
.rt_runtime
;
8223 period
= d
->rt_period
;
8224 runtime
= d
->rt_runtime
;
8228 * Cannot have more runtime than the period.
8230 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
8234 * Ensure we don't starve existing RT tasks.
8236 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
8239 total
= to_ratio(period
, runtime
);
8242 * Nobody can have more than the global setting allows.
8244 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
8248 * The sum of our children's runtime should not exceed our own.
8250 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
8251 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
8252 runtime
= child
->rt_bandwidth
.rt_runtime
;
8254 if (child
== d
->tg
) {
8255 period
= d
->rt_period
;
8256 runtime
= d
->rt_runtime
;
8259 sum
+= to_ratio(period
, runtime
);
8268 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
8270 struct rt_schedulable_data data
= {
8272 .rt_period
= period
,
8273 .rt_runtime
= runtime
,
8276 return walk_tg_tree(tg_schedulable
, tg_nop
, &data
);
8279 static int tg_set_bandwidth(struct task_group
*tg
,
8280 u64 rt_period
, u64 rt_runtime
)
8284 mutex_lock(&rt_constraints_mutex
);
8285 read_lock(&tasklist_lock
);
8286 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
8290 raw_spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8291 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
8292 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
8294 for_each_possible_cpu(i
) {
8295 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
8297 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
8298 rt_rq
->rt_runtime
= rt_runtime
;
8299 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
8301 raw_spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8303 read_unlock(&tasklist_lock
);
8304 mutex_unlock(&rt_constraints_mutex
);
8309 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
8311 u64 rt_runtime
, rt_period
;
8313 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8314 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
8315 if (rt_runtime_us
< 0)
8316 rt_runtime
= RUNTIME_INF
;
8318 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8321 long sched_group_rt_runtime(struct task_group
*tg
)
8325 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
8328 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
8329 do_div(rt_runtime_us
, NSEC_PER_USEC
);
8330 return rt_runtime_us
;
8333 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
8335 u64 rt_runtime
, rt_period
;
8337 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
8338 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8343 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8346 long sched_group_rt_period(struct task_group
*tg
)
8350 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8351 do_div(rt_period_us
, NSEC_PER_USEC
);
8352 return rt_period_us
;
8355 static int sched_rt_global_constraints(void)
8357 u64 runtime
, period
;
8360 if (sysctl_sched_rt_period
<= 0)
8363 runtime
= global_rt_runtime();
8364 period
= global_rt_period();
8367 * Sanity check on the sysctl variables.
8369 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
8372 mutex_lock(&rt_constraints_mutex
);
8373 read_lock(&tasklist_lock
);
8374 ret
= __rt_schedulable(NULL
, 0, 0);
8375 read_unlock(&tasklist_lock
);
8376 mutex_unlock(&rt_constraints_mutex
);
8381 int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
8383 /* Don't accept realtime tasks when there is no way for them to run */
8384 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
8390 #else /* !CONFIG_RT_GROUP_SCHED */
8391 static int sched_rt_global_constraints(void)
8393 unsigned long flags
;
8396 if (sysctl_sched_rt_period
<= 0)
8400 * There's always some RT tasks in the root group
8401 * -- migration, kstopmachine etc..
8403 if (sysctl_sched_rt_runtime
== 0)
8406 raw_spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8407 for_each_possible_cpu(i
) {
8408 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
8410 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
8411 rt_rq
->rt_runtime
= global_rt_runtime();
8412 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
8414 raw_spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8418 #endif /* CONFIG_RT_GROUP_SCHED */
8420 int sched_rt_handler(struct ctl_table
*table
, int write
,
8421 void __user
*buffer
, size_t *lenp
,
8425 int old_period
, old_runtime
;
8426 static DEFINE_MUTEX(mutex
);
8429 old_period
= sysctl_sched_rt_period
;
8430 old_runtime
= sysctl_sched_rt_runtime
;
8432 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
8434 if (!ret
&& write
) {
8435 ret
= sched_rt_global_constraints();
8437 sysctl_sched_rt_period
= old_period
;
8438 sysctl_sched_rt_runtime
= old_runtime
;
8440 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
8441 def_rt_bandwidth
.rt_period
=
8442 ns_to_ktime(global_rt_period());
8445 mutex_unlock(&mutex
);
8450 #ifdef CONFIG_CGROUP_SCHED
8452 /* return corresponding task_group object of a cgroup */
8453 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
8455 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
8456 struct task_group
, css
);
8459 static struct cgroup_subsys_state
*
8460 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8462 struct task_group
*tg
, *parent
;
8464 if (!cgrp
->parent
) {
8465 /* This is early initialization for the top cgroup */
8466 return &init_task_group
.css
;
8469 parent
= cgroup_tg(cgrp
->parent
);
8470 tg
= sched_create_group(parent
);
8472 return ERR_PTR(-ENOMEM
);
8478 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8480 struct task_group
*tg
= cgroup_tg(cgrp
);
8482 sched_destroy_group(tg
);
8486 cpu_cgroup_can_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
8488 #ifdef CONFIG_RT_GROUP_SCHED
8489 if (!sched_rt_can_attach(cgroup_tg(cgrp
), tsk
))
8492 /* We don't support RT-tasks being in separate groups */
8493 if (tsk
->sched_class
!= &fair_sched_class
)
8500 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8501 struct task_struct
*tsk
, bool threadgroup
)
8503 int retval
= cpu_cgroup_can_attach_task(cgrp
, tsk
);
8507 struct task_struct
*c
;
8509 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
8510 retval
= cpu_cgroup_can_attach_task(cgrp
, c
);
8522 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8523 struct cgroup
*old_cont
, struct task_struct
*tsk
,
8526 sched_move_task(tsk
);
8528 struct task_struct
*c
;
8530 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
8537 #ifdef CONFIG_FAIR_GROUP_SCHED
8538 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
8541 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
8544 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
8546 struct task_group
*tg
= cgroup_tg(cgrp
);
8548 return (u64
) tg
->shares
;
8550 #endif /* CONFIG_FAIR_GROUP_SCHED */
8552 #ifdef CONFIG_RT_GROUP_SCHED
8553 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
8556 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
8559 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
8561 return sched_group_rt_runtime(cgroup_tg(cgrp
));
8564 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
8567 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
8570 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
8572 return sched_group_rt_period(cgroup_tg(cgrp
));
8574 #endif /* CONFIG_RT_GROUP_SCHED */
8576 static struct cftype cpu_files
[] = {
8577 #ifdef CONFIG_FAIR_GROUP_SCHED
8580 .read_u64
= cpu_shares_read_u64
,
8581 .write_u64
= cpu_shares_write_u64
,
8584 #ifdef CONFIG_RT_GROUP_SCHED
8586 .name
= "rt_runtime_us",
8587 .read_s64
= cpu_rt_runtime_read
,
8588 .write_s64
= cpu_rt_runtime_write
,
8591 .name
= "rt_period_us",
8592 .read_u64
= cpu_rt_period_read_uint
,
8593 .write_u64
= cpu_rt_period_write_uint
,
8598 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
8600 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
8603 struct cgroup_subsys cpu_cgroup_subsys
= {
8605 .create
= cpu_cgroup_create
,
8606 .destroy
= cpu_cgroup_destroy
,
8607 .can_attach
= cpu_cgroup_can_attach
,
8608 .attach
= cpu_cgroup_attach
,
8609 .populate
= cpu_cgroup_populate
,
8610 .subsys_id
= cpu_cgroup_subsys_id
,
8614 #endif /* CONFIG_CGROUP_SCHED */
8616 #ifdef CONFIG_CGROUP_CPUACCT
8619 * CPU accounting code for task groups.
8621 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8622 * (balbir@in.ibm.com).
8625 /* track cpu usage of a group of tasks and its child groups */
8627 struct cgroup_subsys_state css
;
8628 /* cpuusage holds pointer to a u64-type object on every cpu */
8629 u64 __percpu
*cpuusage
;
8630 struct percpu_counter cpustat
[CPUACCT_STAT_NSTATS
];
8631 struct cpuacct
*parent
;
8634 struct cgroup_subsys cpuacct_subsys
;
8636 /* return cpu accounting group corresponding to this container */
8637 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
8639 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
8640 struct cpuacct
, css
);
8643 /* return cpu accounting group to which this task belongs */
8644 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
8646 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
8647 struct cpuacct
, css
);
8650 /* create a new cpu accounting group */
8651 static struct cgroup_subsys_state
*cpuacct_create(
8652 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8654 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
8660 ca
->cpuusage
= alloc_percpu(u64
);
8664 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
8665 if (percpu_counter_init(&ca
->cpustat
[i
], 0))
8666 goto out_free_counters
;
8669 ca
->parent
= cgroup_ca(cgrp
->parent
);
8675 percpu_counter_destroy(&ca
->cpustat
[i
]);
8676 free_percpu(ca
->cpuusage
);
8680 return ERR_PTR(-ENOMEM
);
8683 /* destroy an existing cpu accounting group */
8685 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8687 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8690 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
8691 percpu_counter_destroy(&ca
->cpustat
[i
]);
8692 free_percpu(ca
->cpuusage
);
8696 static u64
cpuacct_cpuusage_read(struct cpuacct
*ca
, int cpu
)
8698 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
8701 #ifndef CONFIG_64BIT
8703 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8705 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
8707 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
8715 static void cpuacct_cpuusage_write(struct cpuacct
*ca
, int cpu
, u64 val
)
8717 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
8719 #ifndef CONFIG_64BIT
8721 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8723 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
8725 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
8731 /* return total cpu usage (in nanoseconds) of a group */
8732 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
8734 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8735 u64 totalcpuusage
= 0;
8738 for_each_present_cpu(i
)
8739 totalcpuusage
+= cpuacct_cpuusage_read(ca
, i
);
8741 return totalcpuusage
;
8744 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
8747 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8756 for_each_present_cpu(i
)
8757 cpuacct_cpuusage_write(ca
, i
, 0);
8763 static int cpuacct_percpu_seq_read(struct cgroup
*cgroup
, struct cftype
*cft
,
8766 struct cpuacct
*ca
= cgroup_ca(cgroup
);
8770 for_each_present_cpu(i
) {
8771 percpu
= cpuacct_cpuusage_read(ca
, i
);
8772 seq_printf(m
, "%llu ", (unsigned long long) percpu
);
8774 seq_printf(m
, "\n");
8778 static const char *cpuacct_stat_desc
[] = {
8779 [CPUACCT_STAT_USER
] = "user",
8780 [CPUACCT_STAT_SYSTEM
] = "system",
8783 static int cpuacct_stats_show(struct cgroup
*cgrp
, struct cftype
*cft
,
8784 struct cgroup_map_cb
*cb
)
8786 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8789 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++) {
8790 s64 val
= percpu_counter_read(&ca
->cpustat
[i
]);
8791 val
= cputime64_to_clock_t(val
);
8792 cb
->fill(cb
, cpuacct_stat_desc
[i
], val
);
8797 static struct cftype files
[] = {
8800 .read_u64
= cpuusage_read
,
8801 .write_u64
= cpuusage_write
,
8804 .name
= "usage_percpu",
8805 .read_seq_string
= cpuacct_percpu_seq_read
,
8809 .read_map
= cpuacct_stats_show
,
8813 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8815 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
8819 * charge this task's execution time to its accounting group.
8821 * called with rq->lock held.
8823 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
8828 if (unlikely(!cpuacct_subsys
.active
))
8831 cpu
= task_cpu(tsk
);
8837 for (; ca
; ca
= ca
->parent
) {
8838 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
8839 *cpuusage
+= cputime
;
8846 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
8847 * in cputime_t units. As a result, cpuacct_update_stats calls
8848 * percpu_counter_add with values large enough to always overflow the
8849 * per cpu batch limit causing bad SMP scalability.
8851 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
8852 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
8853 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
8856 #define CPUACCT_BATCH \
8857 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
8859 #define CPUACCT_BATCH 0
8863 * Charge the system/user time to the task's accounting group.
8865 static void cpuacct_update_stats(struct task_struct
*tsk
,
8866 enum cpuacct_stat_index idx
, cputime_t val
)
8869 int batch
= CPUACCT_BATCH
;
8871 if (unlikely(!cpuacct_subsys
.active
))
8878 __percpu_counter_add(&ca
->cpustat
[idx
], val
, batch
);
8884 struct cgroup_subsys cpuacct_subsys
= {
8886 .create
= cpuacct_create
,
8887 .destroy
= cpuacct_destroy
,
8888 .populate
= cpuacct_populate
,
8889 .subsys_id
= cpuacct_subsys_id
,
8891 #endif /* CONFIG_CGROUP_CPUACCT */
8895 void synchronize_sched_expedited(void)
8899 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
8901 #else /* #ifndef CONFIG_SMP */
8903 static atomic_t synchronize_sched_expedited_count
= ATOMIC_INIT(0);
8905 static int synchronize_sched_expedited_cpu_stop(void *data
)
8908 * There must be a full memory barrier on each affected CPU
8909 * between the time that try_stop_cpus() is called and the
8910 * time that it returns.
8912 * In the current initial implementation of cpu_stop, the
8913 * above condition is already met when the control reaches
8914 * this point and the following smp_mb() is not strictly
8915 * necessary. Do smp_mb() anyway for documentation and
8916 * robustness against future implementation changes.
8918 smp_mb(); /* See above comment block. */
8923 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
8924 * approach to force grace period to end quickly. This consumes
8925 * significant time on all CPUs, and is thus not recommended for
8926 * any sort of common-case code.
8928 * Note that it is illegal to call this function while holding any
8929 * lock that is acquired by a CPU-hotplug notifier. Failing to
8930 * observe this restriction will result in deadlock.
8932 void synchronize_sched_expedited(void)
8934 int snap
, trycount
= 0;
8936 smp_mb(); /* ensure prior mod happens before capturing snap. */
8937 snap
= atomic_read(&synchronize_sched_expedited_count
) + 1;
8939 while (try_stop_cpus(cpu_online_mask
,
8940 synchronize_sched_expedited_cpu_stop
,
8943 if (trycount
++ < 10)
8944 udelay(trycount
* num_online_cpus());
8946 synchronize_sched();
8949 if (atomic_read(&synchronize_sched_expedited_count
) - snap
> 0) {
8950 smp_mb(); /* ensure test happens before caller kfree */
8955 atomic_inc(&synchronize_sched_expedited_count
);
8956 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
8959 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
8961 #endif /* #else #ifndef CONFIG_SMP */