2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <asm/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/module.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
53 /* Data structures. */
55 static struct lock_class_key rcu_node_class
[NUM_RCU_LVLS
];
57 #define RCU_STATE_INITIALIZER(structname) { \
58 .level = { &structname.node[0] }, \
60 NUM_RCU_LVL_0, /* root of hierarchy. */ \
64 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
66 .signaled = RCU_GP_IDLE, \
69 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname.onofflock), \
70 .orphan_cbs_list = NULL, \
71 .orphan_cbs_tail = &structname.orphan_cbs_list, \
73 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname.fqslock), \
75 .n_force_qs_ngp = 0, \
76 .name = #structname, \
79 struct rcu_state rcu_sched_state
= RCU_STATE_INITIALIZER(rcu_sched_state
);
80 DEFINE_PER_CPU(struct rcu_data
, rcu_sched_data
);
82 struct rcu_state rcu_bh_state
= RCU_STATE_INITIALIZER(rcu_bh_state
);
83 DEFINE_PER_CPU(struct rcu_data
, rcu_bh_data
);
85 int rcu_scheduler_active __read_mostly
;
86 EXPORT_SYMBOL_GPL(rcu_scheduler_active
);
89 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
90 * permit this function to be invoked without holding the root rcu_node
91 * structure's ->lock, but of course results can be subject to change.
93 static int rcu_gp_in_progress(struct rcu_state
*rsp
)
95 return ACCESS_ONCE(rsp
->completed
) != ACCESS_ONCE(rsp
->gpnum
);
99 * Note a quiescent state. Because we do not need to know
100 * how many quiescent states passed, just if there was at least
101 * one since the start of the grace period, this just sets a flag.
103 void rcu_sched_qs(int cpu
)
105 struct rcu_data
*rdp
= &per_cpu(rcu_sched_data
, cpu
);
107 rdp
->passed_quiesc_completed
= rdp
->gpnum
- 1;
109 rdp
->passed_quiesc
= 1;
112 void rcu_bh_qs(int cpu
)
114 struct rcu_data
*rdp
= &per_cpu(rcu_bh_data
, cpu
);
116 rdp
->passed_quiesc_completed
= rdp
->gpnum
- 1;
118 rdp
->passed_quiesc
= 1;
122 * Note a context switch. This is a quiescent state for RCU-sched,
123 * and requires special handling for preemptible RCU.
125 void rcu_note_context_switch(int cpu
)
128 rcu_preempt_note_context_switch(cpu
);
132 DEFINE_PER_CPU(struct rcu_dynticks
, rcu_dynticks
) = {
133 .dynticks_nesting
= 1,
136 #endif /* #ifdef CONFIG_NO_HZ */
138 static int blimit
= 10; /* Maximum callbacks per softirq. */
139 static int qhimark
= 10000; /* If this many pending, ignore blimit. */
140 static int qlowmark
= 100; /* Once only this many pending, use blimit. */
142 module_param(blimit
, int, 0);
143 module_param(qhimark
, int, 0);
144 module_param(qlowmark
, int, 0);
146 static void force_quiescent_state(struct rcu_state
*rsp
, int relaxed
);
147 static int rcu_pending(int cpu
);
150 * Return the number of RCU-sched batches processed thus far for debug & stats.
152 long rcu_batches_completed_sched(void)
154 return rcu_sched_state
.completed
;
156 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched
);
159 * Return the number of RCU BH batches processed thus far for debug & stats.
161 long rcu_batches_completed_bh(void)
163 return rcu_bh_state
.completed
;
165 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh
);
168 * Force a quiescent state for RCU BH.
170 void rcu_bh_force_quiescent_state(void)
172 force_quiescent_state(&rcu_bh_state
, 0);
174 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state
);
177 * Force a quiescent state for RCU-sched.
179 void rcu_sched_force_quiescent_state(void)
181 force_quiescent_state(&rcu_sched_state
, 0);
183 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state
);
186 * Does the CPU have callbacks ready to be invoked?
189 cpu_has_callbacks_ready_to_invoke(struct rcu_data
*rdp
)
191 return &rdp
->nxtlist
!= rdp
->nxttail
[RCU_DONE_TAIL
];
195 * Does the current CPU require a yet-as-unscheduled grace period?
198 cpu_needs_another_gp(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
200 return *rdp
->nxttail
[RCU_DONE_TAIL
] && !rcu_gp_in_progress(rsp
);
204 * Return the root node of the specified rcu_state structure.
206 static struct rcu_node
*rcu_get_root(struct rcu_state
*rsp
)
208 return &rsp
->node
[0];
214 * If the specified CPU is offline, tell the caller that it is in
215 * a quiescent state. Otherwise, whack it with a reschedule IPI.
216 * Grace periods can end up waiting on an offline CPU when that
217 * CPU is in the process of coming online -- it will be added to the
218 * rcu_node bitmasks before it actually makes it online. The same thing
219 * can happen while a CPU is in the process of coming online. Because this
220 * race is quite rare, we check for it after detecting that the grace
221 * period has been delayed rather than checking each and every CPU
222 * each and every time we start a new grace period.
224 static int rcu_implicit_offline_qs(struct rcu_data
*rdp
)
227 * If the CPU is offline, it is in a quiescent state. We can
228 * trust its state not to change because interrupts are disabled.
230 if (cpu_is_offline(rdp
->cpu
)) {
235 /* If preemptable RCU, no point in sending reschedule IPI. */
236 if (rdp
->preemptable
)
239 /* The CPU is online, so send it a reschedule IPI. */
240 if (rdp
->cpu
!= smp_processor_id())
241 smp_send_reschedule(rdp
->cpu
);
248 #endif /* #ifdef CONFIG_SMP */
253 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
255 * Enter nohz mode, in other words, -leave- the mode in which RCU
256 * read-side critical sections can occur. (Though RCU read-side
257 * critical sections can occur in irq handlers in nohz mode, a possibility
258 * handled by rcu_irq_enter() and rcu_irq_exit()).
260 void rcu_enter_nohz(void)
263 struct rcu_dynticks
*rdtp
;
265 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
266 local_irq_save(flags
);
267 rdtp
= &__get_cpu_var(rcu_dynticks
);
269 rdtp
->dynticks_nesting
--;
270 WARN_ON_ONCE(rdtp
->dynticks
& 0x1);
271 local_irq_restore(flags
);
275 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
277 * Exit nohz mode, in other words, -enter- the mode in which RCU
278 * read-side critical sections normally occur.
280 void rcu_exit_nohz(void)
283 struct rcu_dynticks
*rdtp
;
285 local_irq_save(flags
);
286 rdtp
= &__get_cpu_var(rcu_dynticks
);
288 rdtp
->dynticks_nesting
++;
289 WARN_ON_ONCE(!(rdtp
->dynticks
& 0x1));
290 local_irq_restore(flags
);
291 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
295 * rcu_nmi_enter - inform RCU of entry to NMI context
297 * If the CPU was idle with dynamic ticks active, and there is no
298 * irq handler running, this updates rdtp->dynticks_nmi to let the
299 * RCU grace-period handling know that the CPU is active.
301 void rcu_nmi_enter(void)
303 struct rcu_dynticks
*rdtp
= &__get_cpu_var(rcu_dynticks
);
305 if (rdtp
->dynticks
& 0x1)
307 rdtp
->dynticks_nmi
++;
308 WARN_ON_ONCE(!(rdtp
->dynticks_nmi
& 0x1));
309 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
313 * rcu_nmi_exit - inform RCU of exit from NMI context
315 * If the CPU was idle with dynamic ticks active, and there is no
316 * irq handler running, this updates rdtp->dynticks_nmi to let the
317 * RCU grace-period handling know that the CPU is no longer active.
319 void rcu_nmi_exit(void)
321 struct rcu_dynticks
*rdtp
= &__get_cpu_var(rcu_dynticks
);
323 if (rdtp
->dynticks
& 0x1)
325 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
326 rdtp
->dynticks_nmi
++;
327 WARN_ON_ONCE(rdtp
->dynticks_nmi
& 0x1);
331 * rcu_irq_enter - inform RCU of entry to hard irq context
333 * If the CPU was idle with dynamic ticks active, this updates the
334 * rdtp->dynticks to let the RCU handling know that the CPU is active.
336 void rcu_irq_enter(void)
338 struct rcu_dynticks
*rdtp
= &__get_cpu_var(rcu_dynticks
);
340 if (rdtp
->dynticks_nesting
++)
343 WARN_ON_ONCE(!(rdtp
->dynticks
& 0x1));
344 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
348 * rcu_irq_exit - inform RCU of exit from hard irq context
350 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
351 * to put let the RCU handling be aware that the CPU is going back to idle
354 void rcu_irq_exit(void)
356 struct rcu_dynticks
*rdtp
= &__get_cpu_var(rcu_dynticks
);
358 if (--rdtp
->dynticks_nesting
)
360 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
362 WARN_ON_ONCE(rdtp
->dynticks
& 0x1);
364 /* If the interrupt queued a callback, get out of dyntick mode. */
365 if (__get_cpu_var(rcu_sched_data
).nxtlist
||
366 __get_cpu_var(rcu_bh_data
).nxtlist
)
373 * Snapshot the specified CPU's dynticks counter so that we can later
374 * credit them with an implicit quiescent state. Return 1 if this CPU
375 * is in dynticks idle mode, which is an extended quiescent state.
377 static int dyntick_save_progress_counter(struct rcu_data
*rdp
)
383 snap
= rdp
->dynticks
->dynticks
;
384 snap_nmi
= rdp
->dynticks
->dynticks_nmi
;
385 smp_mb(); /* Order sampling of snap with end of grace period. */
386 rdp
->dynticks_snap
= snap
;
387 rdp
->dynticks_nmi_snap
= snap_nmi
;
388 ret
= ((snap
& 0x1) == 0) && ((snap_nmi
& 0x1) == 0);
395 * Return true if the specified CPU has passed through a quiescent
396 * state by virtue of being in or having passed through an dynticks
397 * idle state since the last call to dyntick_save_progress_counter()
400 static int rcu_implicit_dynticks_qs(struct rcu_data
*rdp
)
407 curr
= rdp
->dynticks
->dynticks
;
408 snap
= rdp
->dynticks_snap
;
409 curr_nmi
= rdp
->dynticks
->dynticks_nmi
;
410 snap_nmi
= rdp
->dynticks_nmi_snap
;
411 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
414 * If the CPU passed through or entered a dynticks idle phase with
415 * no active irq/NMI handlers, then we can safely pretend that the CPU
416 * already acknowledged the request to pass through a quiescent
417 * state. Either way, that CPU cannot possibly be in an RCU
418 * read-side critical section that started before the beginning
419 * of the current RCU grace period.
421 if ((curr
!= snap
|| (curr
& 0x1) == 0) &&
422 (curr_nmi
!= snap_nmi
|| (curr_nmi
& 0x1) == 0)) {
427 /* Go check for the CPU being offline. */
428 return rcu_implicit_offline_qs(rdp
);
431 #endif /* #ifdef CONFIG_SMP */
433 #else /* #ifdef CONFIG_NO_HZ */
437 static int dyntick_save_progress_counter(struct rcu_data
*rdp
)
442 static int rcu_implicit_dynticks_qs(struct rcu_data
*rdp
)
444 return rcu_implicit_offline_qs(rdp
);
447 #endif /* #ifdef CONFIG_SMP */
449 #endif /* #else #ifdef CONFIG_NO_HZ */
451 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
453 int rcu_cpu_stall_panicking __read_mostly
;
455 static void record_gp_stall_check_time(struct rcu_state
*rsp
)
457 rsp
->gp_start
= jiffies
;
458 rsp
->jiffies_stall
= jiffies
+ RCU_SECONDS_TILL_STALL_CHECK
;
461 static void print_other_cpu_stall(struct rcu_state
*rsp
)
466 struct rcu_node
*rnp
= rcu_get_root(rsp
);
468 /* Only let one CPU complain about others per time interval. */
470 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
471 delta
= jiffies
- rsp
->jiffies_stall
;
472 if (delta
< RCU_STALL_RAT_DELAY
|| !rcu_gp_in_progress(rsp
)) {
473 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
476 rsp
->jiffies_stall
= jiffies
+ RCU_SECONDS_TILL_STALL_RECHECK
;
479 * Now rat on any tasks that got kicked up to the root rcu_node
480 * due to CPU offlining.
482 rcu_print_task_stall(rnp
);
483 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
485 /* OK, time to rat on our buddy... */
487 printk(KERN_ERR
"INFO: %s detected stalls on CPUs/tasks: {",
489 rcu_for_each_leaf_node(rsp
, rnp
) {
490 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
491 rcu_print_task_stall(rnp
);
492 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
493 if (rnp
->qsmask
== 0)
495 for (cpu
= 0; cpu
<= rnp
->grphi
- rnp
->grplo
; cpu
++)
496 if (rnp
->qsmask
& (1UL << cpu
))
497 printk(" %d", rnp
->grplo
+ cpu
);
499 printk("} (detected by %d, t=%ld jiffies)\n",
500 smp_processor_id(), (long)(jiffies
- rsp
->gp_start
));
501 trigger_all_cpu_backtrace();
503 /* If so configured, complain about tasks blocking the grace period. */
505 rcu_print_detail_task_stall(rsp
);
507 force_quiescent_state(rsp
, 0); /* Kick them all. */
510 static void print_cpu_stall(struct rcu_state
*rsp
)
513 struct rcu_node
*rnp
= rcu_get_root(rsp
);
515 printk(KERN_ERR
"INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
516 rsp
->name
, smp_processor_id(), jiffies
- rsp
->gp_start
);
517 trigger_all_cpu_backtrace();
519 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
520 if (ULONG_CMP_GE(jiffies
, rsp
->jiffies_stall
))
522 jiffies
+ RCU_SECONDS_TILL_STALL_RECHECK
;
523 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
525 set_need_resched(); /* kick ourselves to get things going. */
528 static void check_cpu_stall(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
531 struct rcu_node
*rnp
;
533 if (rcu_cpu_stall_panicking
)
535 delta
= jiffies
- rsp
->jiffies_stall
;
537 if ((rnp
->qsmask
& rdp
->grpmask
) && delta
>= 0) {
539 /* We haven't checked in, so go dump stack. */
540 print_cpu_stall(rsp
);
542 } else if (rcu_gp_in_progress(rsp
) && delta
>= RCU_STALL_RAT_DELAY
) {
544 /* They had two time units to dump stack, so complain. */
545 print_other_cpu_stall(rsp
);
549 static int rcu_panic(struct notifier_block
*this, unsigned long ev
, void *ptr
)
551 rcu_cpu_stall_panicking
= 1;
555 static struct notifier_block rcu_panic_block
= {
556 .notifier_call
= rcu_panic
,
559 static void __init
check_cpu_stall_init(void)
561 atomic_notifier_chain_register(&panic_notifier_list
, &rcu_panic_block
);
564 #else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
566 static void record_gp_stall_check_time(struct rcu_state
*rsp
)
570 static void check_cpu_stall(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
574 static void __init
check_cpu_stall_init(void)
578 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
581 * Update CPU-local rcu_data state to record the newly noticed grace period.
582 * This is used both when we started the grace period and when we notice
583 * that someone else started the grace period. The caller must hold the
584 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
585 * and must have irqs disabled.
587 static void __note_new_gpnum(struct rcu_state
*rsp
, struct rcu_node
*rnp
, struct rcu_data
*rdp
)
589 if (rdp
->gpnum
!= rnp
->gpnum
) {
591 rdp
->passed_quiesc
= 0;
592 rdp
->gpnum
= rnp
->gpnum
;
596 static void note_new_gpnum(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
599 struct rcu_node
*rnp
;
601 local_irq_save(flags
);
603 if (rdp
->gpnum
== ACCESS_ONCE(rnp
->gpnum
) || /* outside lock. */
604 !raw_spin_trylock(&rnp
->lock
)) { /* irqs already off, so later. */
605 local_irq_restore(flags
);
608 __note_new_gpnum(rsp
, rnp
, rdp
);
609 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
613 * Did someone else start a new RCU grace period start since we last
614 * checked? Update local state appropriately if so. Must be called
615 * on the CPU corresponding to rdp.
618 check_for_new_grace_period(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
623 local_irq_save(flags
);
624 if (rdp
->gpnum
!= rsp
->gpnum
) {
625 note_new_gpnum(rsp
, rdp
);
628 local_irq_restore(flags
);
633 * Advance this CPU's callbacks, but only if the current grace period
634 * has ended. This may be called only from the CPU to whom the rdp
635 * belongs. In addition, the corresponding leaf rcu_node structure's
636 * ->lock must be held by the caller, with irqs disabled.
639 __rcu_process_gp_end(struct rcu_state
*rsp
, struct rcu_node
*rnp
, struct rcu_data
*rdp
)
641 /* Did another grace period end? */
642 if (rdp
->completed
!= rnp
->completed
) {
644 /* Advance callbacks. No harm if list empty. */
645 rdp
->nxttail
[RCU_DONE_TAIL
] = rdp
->nxttail
[RCU_WAIT_TAIL
];
646 rdp
->nxttail
[RCU_WAIT_TAIL
] = rdp
->nxttail
[RCU_NEXT_READY_TAIL
];
647 rdp
->nxttail
[RCU_NEXT_READY_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
649 /* Remember that we saw this grace-period completion. */
650 rdp
->completed
= rnp
->completed
;
655 * Advance this CPU's callbacks, but only if the current grace period
656 * has ended. This may be called only from the CPU to whom the rdp
660 rcu_process_gp_end(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
663 struct rcu_node
*rnp
;
665 local_irq_save(flags
);
667 if (rdp
->completed
== ACCESS_ONCE(rnp
->completed
) || /* outside lock. */
668 !raw_spin_trylock(&rnp
->lock
)) { /* irqs already off, so later. */
669 local_irq_restore(flags
);
672 __rcu_process_gp_end(rsp
, rnp
, rdp
);
673 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
677 * Do per-CPU grace-period initialization for running CPU. The caller
678 * must hold the lock of the leaf rcu_node structure corresponding to
682 rcu_start_gp_per_cpu(struct rcu_state
*rsp
, struct rcu_node
*rnp
, struct rcu_data
*rdp
)
684 /* Prior grace period ended, so advance callbacks for current CPU. */
685 __rcu_process_gp_end(rsp
, rnp
, rdp
);
688 * Because this CPU just now started the new grace period, we know
689 * that all of its callbacks will be covered by this upcoming grace
690 * period, even the ones that were registered arbitrarily recently.
691 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
693 * Other CPUs cannot be sure exactly when the grace period started.
694 * Therefore, their recently registered callbacks must pass through
695 * an additional RCU_NEXT_READY stage, so that they will be handled
696 * by the next RCU grace period.
698 rdp
->nxttail
[RCU_NEXT_READY_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
699 rdp
->nxttail
[RCU_WAIT_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
701 /* Set state so that this CPU will detect the next quiescent state. */
702 __note_new_gpnum(rsp
, rnp
, rdp
);
706 * Start a new RCU grace period if warranted, re-initializing the hierarchy
707 * in preparation for detecting the next grace period. The caller must hold
708 * the root node's ->lock, which is released before return. Hard irqs must
712 rcu_start_gp(struct rcu_state
*rsp
, unsigned long flags
)
713 __releases(rcu_get_root(rsp
)->lock
)
715 struct rcu_data
*rdp
= rsp
->rda
[smp_processor_id()];
716 struct rcu_node
*rnp
= rcu_get_root(rsp
);
718 if (!cpu_needs_another_gp(rsp
, rdp
) || rsp
->fqs_active
) {
719 if (cpu_needs_another_gp(rsp
, rdp
))
720 rsp
->fqs_need_gp
= 1;
721 if (rnp
->completed
== rsp
->completed
) {
722 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
725 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
728 * Propagate new ->completed value to rcu_node structures
729 * so that other CPUs don't have to wait until the start
730 * of the next grace period to process their callbacks.
732 rcu_for_each_node_breadth_first(rsp
, rnp
) {
733 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
734 rnp
->completed
= rsp
->completed
;
735 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
737 local_irq_restore(flags
);
741 /* Advance to a new grace period and initialize state. */
743 WARN_ON_ONCE(rsp
->signaled
== RCU_GP_INIT
);
744 rsp
->signaled
= RCU_GP_INIT
; /* Hold off force_quiescent_state. */
745 rsp
->jiffies_force_qs
= jiffies
+ RCU_JIFFIES_TILL_FORCE_QS
;
746 record_gp_stall_check_time(rsp
);
748 /* Special-case the common single-level case. */
749 if (NUM_RCU_NODES
== 1) {
750 rcu_preempt_check_blocked_tasks(rnp
);
751 rnp
->qsmask
= rnp
->qsmaskinit
;
752 rnp
->gpnum
= rsp
->gpnum
;
753 rnp
->completed
= rsp
->completed
;
754 rsp
->signaled
= RCU_SIGNAL_INIT
; /* force_quiescent_state OK. */
755 rcu_start_gp_per_cpu(rsp
, rnp
, rdp
);
756 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
760 raw_spin_unlock(&rnp
->lock
); /* leave irqs disabled. */
763 /* Exclude any concurrent CPU-hotplug operations. */
764 raw_spin_lock(&rsp
->onofflock
); /* irqs already disabled. */
767 * Set the quiescent-state-needed bits in all the rcu_node
768 * structures for all currently online CPUs in breadth-first
769 * order, starting from the root rcu_node structure. This
770 * operation relies on the layout of the hierarchy within the
771 * rsp->node[] array. Note that other CPUs will access only
772 * the leaves of the hierarchy, which still indicate that no
773 * grace period is in progress, at least until the corresponding
774 * leaf node has been initialized. In addition, we have excluded
775 * CPU-hotplug operations.
777 * Note that the grace period cannot complete until we finish
778 * the initialization process, as there will be at least one
779 * qsmask bit set in the root node until that time, namely the
780 * one corresponding to this CPU, due to the fact that we have
783 rcu_for_each_node_breadth_first(rsp
, rnp
) {
784 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
785 rcu_preempt_check_blocked_tasks(rnp
);
786 rnp
->qsmask
= rnp
->qsmaskinit
;
787 rnp
->gpnum
= rsp
->gpnum
;
788 rnp
->completed
= rsp
->completed
;
789 if (rnp
== rdp
->mynode
)
790 rcu_start_gp_per_cpu(rsp
, rnp
, rdp
);
791 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
794 rnp
= rcu_get_root(rsp
);
795 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
796 rsp
->signaled
= RCU_SIGNAL_INIT
; /* force_quiescent_state now OK. */
797 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
798 raw_spin_unlock_irqrestore(&rsp
->onofflock
, flags
);
802 * Report a full set of quiescent states to the specified rcu_state
803 * data structure. This involves cleaning up after the prior grace
804 * period and letting rcu_start_gp() start up the next grace period
805 * if one is needed. Note that the caller must hold rnp->lock, as
806 * required by rcu_start_gp(), which will release it.
808 static void rcu_report_qs_rsp(struct rcu_state
*rsp
, unsigned long flags
)
809 __releases(rcu_get_root(rsp
)->lock
)
811 WARN_ON_ONCE(!rcu_gp_in_progress(rsp
));
812 rsp
->completed
= rsp
->gpnum
;
813 rsp
->signaled
= RCU_GP_IDLE
;
814 rcu_start_gp(rsp
, flags
); /* releases root node's rnp->lock. */
818 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
819 * Allows quiescent states for a group of CPUs to be reported at one go
820 * to the specified rcu_node structure, though all the CPUs in the group
821 * must be represented by the same rcu_node structure (which need not be
822 * a leaf rcu_node structure, though it often will be). That structure's
823 * lock must be held upon entry, and it is released before return.
826 rcu_report_qs_rnp(unsigned long mask
, struct rcu_state
*rsp
,
827 struct rcu_node
*rnp
, unsigned long flags
)
828 __releases(rnp
->lock
)
830 struct rcu_node
*rnp_c
;
832 /* Walk up the rcu_node hierarchy. */
834 if (!(rnp
->qsmask
& mask
)) {
836 /* Our bit has already been cleared, so done. */
837 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
840 rnp
->qsmask
&= ~mask
;
841 if (rnp
->qsmask
!= 0 || rcu_preempted_readers(rnp
)) {
843 /* Other bits still set at this level, so done. */
844 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
848 if (rnp
->parent
== NULL
) {
850 /* No more levels. Exit loop holding root lock. */
854 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
857 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
858 WARN_ON_ONCE(rnp_c
->qsmask
);
862 * Get here if we are the last CPU to pass through a quiescent
863 * state for this grace period. Invoke rcu_report_qs_rsp()
864 * to clean up and start the next grace period if one is needed.
866 rcu_report_qs_rsp(rsp
, flags
); /* releases rnp->lock. */
870 * Record a quiescent state for the specified CPU to that CPU's rcu_data
871 * structure. This must be either called from the specified CPU, or
872 * called when the specified CPU is known to be offline (and when it is
873 * also known that no other CPU is concurrently trying to help the offline
874 * CPU). The lastcomp argument is used to make sure we are still in the
875 * grace period of interest. We don't want to end the current grace period
876 * based on quiescent states detected in an earlier grace period!
879 rcu_report_qs_rdp(int cpu
, struct rcu_state
*rsp
, struct rcu_data
*rdp
, long lastcomp
)
883 struct rcu_node
*rnp
;
886 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
887 if (lastcomp
!= rnp
->completed
) {
890 * Someone beat us to it for this grace period, so leave.
891 * The race with GP start is resolved by the fact that we
892 * hold the leaf rcu_node lock, so that the per-CPU bits
893 * cannot yet be initialized -- so we would simply find our
894 * CPU's bit already cleared in rcu_report_qs_rnp() if this
897 rdp
->passed_quiesc
= 0; /* try again later! */
898 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
902 if ((rnp
->qsmask
& mask
) == 0) {
903 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
908 * This GP can't end until cpu checks in, so all of our
909 * callbacks can be processed during the next GP.
911 rdp
->nxttail
[RCU_NEXT_READY_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
913 rcu_report_qs_rnp(mask
, rsp
, rnp
, flags
); /* rlses rnp->lock */
918 * Check to see if there is a new grace period of which this CPU
919 * is not yet aware, and if so, set up local rcu_data state for it.
920 * Otherwise, see if this CPU has just passed through its first
921 * quiescent state for this grace period, and record that fact if so.
924 rcu_check_quiescent_state(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
926 /* If there is now a new grace period, record and return. */
927 if (check_for_new_grace_period(rsp
, rdp
))
931 * Does this CPU still need to do its part for current grace period?
932 * If no, return and let the other CPUs do their part as well.
934 if (!rdp
->qs_pending
)
938 * Was there a quiescent state since the beginning of the grace
939 * period? If no, then exit and wait for the next call.
941 if (!rdp
->passed_quiesc
)
945 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
948 rcu_report_qs_rdp(rdp
->cpu
, rsp
, rdp
, rdp
->passed_quiesc_completed
);
951 #ifdef CONFIG_HOTPLUG_CPU
954 * Move a dying CPU's RCU callbacks to the ->orphan_cbs_list for the
955 * specified flavor of RCU. The callbacks will be adopted by the next
956 * _rcu_barrier() invocation or by the CPU_DEAD notifier, whichever
957 * comes first. Because this is invoked from the CPU_DYING notifier,
958 * irqs are already disabled.
960 static void rcu_send_cbs_to_orphanage(struct rcu_state
*rsp
)
963 struct rcu_data
*rdp
= rsp
->rda
[smp_processor_id()];
965 if (rdp
->nxtlist
== NULL
)
966 return; /* irqs disabled, so comparison is stable. */
967 raw_spin_lock(&rsp
->onofflock
); /* irqs already disabled. */
968 *rsp
->orphan_cbs_tail
= rdp
->nxtlist
;
969 rsp
->orphan_cbs_tail
= rdp
->nxttail
[RCU_NEXT_TAIL
];
971 for (i
= 0; i
< RCU_NEXT_SIZE
; i
++)
972 rdp
->nxttail
[i
] = &rdp
->nxtlist
;
973 rsp
->orphan_qlen
+= rdp
->qlen
;
975 raw_spin_unlock(&rsp
->onofflock
); /* irqs remain disabled. */
979 * Adopt previously orphaned RCU callbacks.
981 static void rcu_adopt_orphan_cbs(struct rcu_state
*rsp
)
984 struct rcu_data
*rdp
;
986 raw_spin_lock_irqsave(&rsp
->onofflock
, flags
);
987 rdp
= rsp
->rda
[smp_processor_id()];
988 if (rsp
->orphan_cbs_list
== NULL
) {
989 raw_spin_unlock_irqrestore(&rsp
->onofflock
, flags
);
992 *rdp
->nxttail
[RCU_NEXT_TAIL
] = rsp
->orphan_cbs_list
;
993 rdp
->nxttail
[RCU_NEXT_TAIL
] = rsp
->orphan_cbs_tail
;
994 rdp
->qlen
+= rsp
->orphan_qlen
;
995 rsp
->orphan_cbs_list
= NULL
;
996 rsp
->orphan_cbs_tail
= &rsp
->orphan_cbs_list
;
997 rsp
->orphan_qlen
= 0;
998 raw_spin_unlock_irqrestore(&rsp
->onofflock
, flags
);
1002 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
1003 * and move all callbacks from the outgoing CPU to the current one.
1005 static void __rcu_offline_cpu(int cpu
, struct rcu_state
*rsp
)
1007 unsigned long flags
;
1009 int need_report
= 0;
1010 struct rcu_data
*rdp
= rsp
->rda
[cpu
];
1011 struct rcu_node
*rnp
;
1013 /* Exclude any attempts to start a new grace period. */
1014 raw_spin_lock_irqsave(&rsp
->onofflock
, flags
);
1016 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1017 rnp
= rdp
->mynode
; /* this is the outgoing CPU's rnp. */
1018 mask
= rdp
->grpmask
; /* rnp->grplo is constant. */
1020 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
1021 rnp
->qsmaskinit
&= ~mask
;
1022 if (rnp
->qsmaskinit
!= 0) {
1023 if (rnp
!= rdp
->mynode
)
1024 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
1027 if (rnp
== rdp
->mynode
)
1028 need_report
= rcu_preempt_offline_tasks(rsp
, rnp
, rdp
);
1030 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
1031 mask
= rnp
->grpmask
;
1033 } while (rnp
!= NULL
);
1036 * We still hold the leaf rcu_node structure lock here, and
1037 * irqs are still disabled. The reason for this subterfuge is
1038 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1039 * held leads to deadlock.
1041 raw_spin_unlock(&rsp
->onofflock
); /* irqs remain disabled. */
1043 if (need_report
& RCU_OFL_TASKS_NORM_GP
)
1044 rcu_report_unblock_qs_rnp(rnp
, flags
);
1046 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1047 if (need_report
& RCU_OFL_TASKS_EXP_GP
)
1048 rcu_report_exp_rnp(rsp
, rnp
);
1050 rcu_adopt_orphan_cbs(rsp
);
1054 * Remove the specified CPU from the RCU hierarchy and move any pending
1055 * callbacks that it might have to the current CPU. This code assumes
1056 * that at least one CPU in the system will remain running at all times.
1057 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1059 static void rcu_offline_cpu(int cpu
)
1061 __rcu_offline_cpu(cpu
, &rcu_sched_state
);
1062 __rcu_offline_cpu(cpu
, &rcu_bh_state
);
1063 rcu_preempt_offline_cpu(cpu
);
1066 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1068 static void rcu_send_cbs_to_orphanage(struct rcu_state
*rsp
)
1072 static void rcu_adopt_orphan_cbs(struct rcu_state
*rsp
)
1076 static void rcu_offline_cpu(int cpu
)
1080 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1083 * Invoke any RCU callbacks that have made it to the end of their grace
1084 * period. Thottle as specified by rdp->blimit.
1086 static void rcu_do_batch(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1088 unsigned long flags
;
1089 struct rcu_head
*next
, *list
, **tail
;
1092 /* If no callbacks are ready, just return.*/
1093 if (!cpu_has_callbacks_ready_to_invoke(rdp
))
1097 * Extract the list of ready callbacks, disabling to prevent
1098 * races with call_rcu() from interrupt handlers.
1100 local_irq_save(flags
);
1101 list
= rdp
->nxtlist
;
1102 rdp
->nxtlist
= *rdp
->nxttail
[RCU_DONE_TAIL
];
1103 *rdp
->nxttail
[RCU_DONE_TAIL
] = NULL
;
1104 tail
= rdp
->nxttail
[RCU_DONE_TAIL
];
1105 for (count
= RCU_NEXT_SIZE
- 1; count
>= 0; count
--)
1106 if (rdp
->nxttail
[count
] == rdp
->nxttail
[RCU_DONE_TAIL
])
1107 rdp
->nxttail
[count
] = &rdp
->nxtlist
;
1108 local_irq_restore(flags
);
1110 /* Invoke callbacks. */
1117 if (++count
>= rdp
->blimit
)
1121 local_irq_save(flags
);
1123 /* Update count, and requeue any remaining callbacks. */
1126 *tail
= rdp
->nxtlist
;
1127 rdp
->nxtlist
= list
;
1128 for (count
= 0; count
< RCU_NEXT_SIZE
; count
++)
1129 if (&rdp
->nxtlist
== rdp
->nxttail
[count
])
1130 rdp
->nxttail
[count
] = tail
;
1135 /* Reinstate batch limit if we have worked down the excess. */
1136 if (rdp
->blimit
== LONG_MAX
&& rdp
->qlen
<= qlowmark
)
1137 rdp
->blimit
= blimit
;
1139 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1140 if (rdp
->qlen
== 0 && rdp
->qlen_last_fqs_check
!= 0) {
1141 rdp
->qlen_last_fqs_check
= 0;
1142 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
1143 } else if (rdp
->qlen
< rdp
->qlen_last_fqs_check
- qhimark
)
1144 rdp
->qlen_last_fqs_check
= rdp
->qlen
;
1146 local_irq_restore(flags
);
1148 /* Re-raise the RCU softirq if there are callbacks remaining. */
1149 if (cpu_has_callbacks_ready_to_invoke(rdp
))
1150 raise_softirq(RCU_SOFTIRQ
);
1154 * Check to see if this CPU is in a non-context-switch quiescent state
1155 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1156 * Also schedule the RCU softirq handler.
1158 * This function must be called with hardirqs disabled. It is normally
1159 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1160 * false, there is no point in invoking rcu_check_callbacks().
1162 void rcu_check_callbacks(int cpu
, int user
)
1165 (idle_cpu(cpu
) && rcu_scheduler_active
&&
1166 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT
))) {
1169 * Get here if this CPU took its interrupt from user
1170 * mode or from the idle loop, and if this is not a
1171 * nested interrupt. In this case, the CPU is in
1172 * a quiescent state, so note it.
1174 * No memory barrier is required here because both
1175 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1176 * variables that other CPUs neither access nor modify,
1177 * at least not while the corresponding CPU is online.
1183 } else if (!in_softirq()) {
1186 * Get here if this CPU did not take its interrupt from
1187 * softirq, in other words, if it is not interrupting
1188 * a rcu_bh read-side critical section. This is an _bh
1189 * critical section, so note it.
1194 rcu_preempt_check_callbacks(cpu
);
1195 if (rcu_pending(cpu
))
1196 raise_softirq(RCU_SOFTIRQ
);
1202 * Scan the leaf rcu_node structures, processing dyntick state for any that
1203 * have not yet encountered a quiescent state, using the function specified.
1204 * The caller must have suppressed start of new grace periods.
1206 static void force_qs_rnp(struct rcu_state
*rsp
, int (*f
)(struct rcu_data
*))
1210 unsigned long flags
;
1212 struct rcu_node
*rnp
;
1214 rcu_for_each_leaf_node(rsp
, rnp
) {
1216 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1217 if (!rcu_gp_in_progress(rsp
)) {
1218 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1221 if (rnp
->qsmask
== 0) {
1222 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1227 for (; cpu
<= rnp
->grphi
; cpu
++, bit
<<= 1) {
1228 if ((rnp
->qsmask
& bit
) != 0 && f(rsp
->rda
[cpu
]))
1233 /* rcu_report_qs_rnp() releases rnp->lock. */
1234 rcu_report_qs_rnp(mask
, rsp
, rnp
, flags
);
1237 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1242 * Force quiescent states on reluctant CPUs, and also detect which
1243 * CPUs are in dyntick-idle mode.
1245 static void force_quiescent_state(struct rcu_state
*rsp
, int relaxed
)
1247 unsigned long flags
;
1248 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1250 if (!rcu_gp_in_progress(rsp
))
1251 return; /* No grace period in progress, nothing to force. */
1252 if (!raw_spin_trylock_irqsave(&rsp
->fqslock
, flags
)) {
1253 rsp
->n_force_qs_lh
++; /* Inexact, can lose counts. Tough! */
1254 return; /* Someone else is already on the job. */
1256 if (relaxed
&& ULONG_CMP_GE(rsp
->jiffies_force_qs
, jiffies
))
1257 goto unlock_fqs_ret
; /* no emergency and done recently. */
1259 raw_spin_lock(&rnp
->lock
); /* irqs already disabled */
1260 rsp
->jiffies_force_qs
= jiffies
+ RCU_JIFFIES_TILL_FORCE_QS
;
1261 if(!rcu_gp_in_progress(rsp
)) {
1262 rsp
->n_force_qs_ngp
++;
1263 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
1264 goto unlock_fqs_ret
; /* no GP in progress, time updated. */
1266 rsp
->fqs_active
= 1;
1267 switch (rsp
->signaled
) {
1271 break; /* grace period idle or initializing, ignore. */
1273 case RCU_SAVE_DYNTICK
:
1274 if (RCU_SIGNAL_INIT
!= RCU_SAVE_DYNTICK
)
1275 break; /* So gcc recognizes the dead code. */
1277 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
1279 /* Record dyntick-idle state. */
1280 force_qs_rnp(rsp
, dyntick_save_progress_counter
);
1281 raw_spin_lock(&rnp
->lock
); /* irqs already disabled */
1282 if (rcu_gp_in_progress(rsp
))
1283 rsp
->signaled
= RCU_FORCE_QS
;
1288 /* Check dyntick-idle state, send IPI to laggarts. */
1289 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
1290 force_qs_rnp(rsp
, rcu_implicit_dynticks_qs
);
1292 /* Leave state in case more forcing is required. */
1294 raw_spin_lock(&rnp
->lock
); /* irqs already disabled */
1297 rsp
->fqs_active
= 0;
1298 if (rsp
->fqs_need_gp
) {
1299 raw_spin_unlock(&rsp
->fqslock
); /* irqs remain disabled */
1300 rsp
->fqs_need_gp
= 0;
1301 rcu_start_gp(rsp
, flags
); /* releases rnp->lock */
1304 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
1306 raw_spin_unlock_irqrestore(&rsp
->fqslock
, flags
);
1309 #else /* #ifdef CONFIG_SMP */
1311 static void force_quiescent_state(struct rcu_state
*rsp
, int relaxed
)
1316 #endif /* #else #ifdef CONFIG_SMP */
1319 * This does the RCU processing work from softirq context for the
1320 * specified rcu_state and rcu_data structures. This may be called
1321 * only from the CPU to whom the rdp belongs.
1324 __rcu_process_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1326 unsigned long flags
;
1328 WARN_ON_ONCE(rdp
->beenonline
== 0);
1331 * If an RCU GP has gone long enough, go check for dyntick
1332 * idle CPUs and, if needed, send resched IPIs.
1334 if (ULONG_CMP_LT(ACCESS_ONCE(rsp
->jiffies_force_qs
), jiffies
))
1335 force_quiescent_state(rsp
, 1);
1338 * Advance callbacks in response to end of earlier grace
1339 * period that some other CPU ended.
1341 rcu_process_gp_end(rsp
, rdp
);
1343 /* Update RCU state based on any recent quiescent states. */
1344 rcu_check_quiescent_state(rsp
, rdp
);
1346 /* Does this CPU require a not-yet-started grace period? */
1347 if (cpu_needs_another_gp(rsp
, rdp
)) {
1348 raw_spin_lock_irqsave(&rcu_get_root(rsp
)->lock
, flags
);
1349 rcu_start_gp(rsp
, flags
); /* releases above lock */
1352 /* If there are callbacks ready, invoke them. */
1353 rcu_do_batch(rsp
, rdp
);
1357 * Do softirq processing for the current CPU.
1359 static void rcu_process_callbacks(struct softirq_action
*unused
)
1362 * Memory references from any prior RCU read-side critical sections
1363 * executed by the interrupted code must be seen before any RCU
1364 * grace-period manipulations below.
1366 smp_mb(); /* See above block comment. */
1368 __rcu_process_callbacks(&rcu_sched_state
,
1369 &__get_cpu_var(rcu_sched_data
));
1370 __rcu_process_callbacks(&rcu_bh_state
, &__get_cpu_var(rcu_bh_data
));
1371 rcu_preempt_process_callbacks();
1374 * Memory references from any later RCU read-side critical sections
1375 * executed by the interrupted code must be seen after any RCU
1376 * grace-period manipulations above.
1378 smp_mb(); /* See above block comment. */
1380 /* If we are last CPU on way to dyntick-idle mode, accelerate it. */
1381 rcu_needs_cpu_flush();
1385 __call_rcu(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
),
1386 struct rcu_state
*rsp
)
1388 unsigned long flags
;
1389 struct rcu_data
*rdp
;
1394 smp_mb(); /* Ensure RCU update seen before callback registry. */
1397 * Opportunistically note grace-period endings and beginnings.
1398 * Note that we might see a beginning right after we see an
1399 * end, but never vice versa, since this CPU has to pass through
1400 * a quiescent state betweentimes.
1402 local_irq_save(flags
);
1403 rdp
= rsp
->rda
[smp_processor_id()];
1404 rcu_process_gp_end(rsp
, rdp
);
1405 check_for_new_grace_period(rsp
, rdp
);
1407 /* Add the callback to our list. */
1408 *rdp
->nxttail
[RCU_NEXT_TAIL
] = head
;
1409 rdp
->nxttail
[RCU_NEXT_TAIL
] = &head
->next
;
1411 /* Start a new grace period if one not already started. */
1412 if (!rcu_gp_in_progress(rsp
)) {
1413 unsigned long nestflag
;
1414 struct rcu_node
*rnp_root
= rcu_get_root(rsp
);
1416 raw_spin_lock_irqsave(&rnp_root
->lock
, nestflag
);
1417 rcu_start_gp(rsp
, nestflag
); /* releases rnp_root->lock. */
1421 * Force the grace period if too many callbacks or too long waiting.
1422 * Enforce hysteresis, and don't invoke force_quiescent_state()
1423 * if some other CPU has recently done so. Also, don't bother
1424 * invoking force_quiescent_state() if the newly enqueued callback
1425 * is the only one waiting for a grace period to complete.
1427 if (unlikely(++rdp
->qlen
> rdp
->qlen_last_fqs_check
+ qhimark
)) {
1428 rdp
->blimit
= LONG_MAX
;
1429 if (rsp
->n_force_qs
== rdp
->n_force_qs_snap
&&
1430 *rdp
->nxttail
[RCU_DONE_TAIL
] != head
)
1431 force_quiescent_state(rsp
, 0);
1432 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
1433 rdp
->qlen_last_fqs_check
= rdp
->qlen
;
1434 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp
->jiffies_force_qs
), jiffies
))
1435 force_quiescent_state(rsp
, 1);
1436 local_irq_restore(flags
);
1440 * Queue an RCU-sched callback for invocation after a grace period.
1442 void call_rcu_sched(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
))
1444 __call_rcu(head
, func
, &rcu_sched_state
);
1446 EXPORT_SYMBOL_GPL(call_rcu_sched
);
1449 * Queue an RCU for invocation after a quicker grace period.
1451 void call_rcu_bh(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
))
1453 __call_rcu(head
, func
, &rcu_bh_state
);
1455 EXPORT_SYMBOL_GPL(call_rcu_bh
);
1458 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1460 * Control will return to the caller some time after a full rcu-sched
1461 * grace period has elapsed, in other words after all currently executing
1462 * rcu-sched read-side critical sections have completed. These read-side
1463 * critical sections are delimited by rcu_read_lock_sched() and
1464 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1465 * local_irq_disable(), and so on may be used in place of
1466 * rcu_read_lock_sched().
1468 * This means that all preempt_disable code sequences, including NMI and
1469 * hardware-interrupt handlers, in progress on entry will have completed
1470 * before this primitive returns. However, this does not guarantee that
1471 * softirq handlers will have completed, since in some kernels, these
1472 * handlers can run in process context, and can block.
1474 * This primitive provides the guarantees made by the (now removed)
1475 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1476 * guarantees that rcu_read_lock() sections will have completed.
1477 * In "classic RCU", these two guarantees happen to be one and
1478 * the same, but can differ in realtime RCU implementations.
1480 void synchronize_sched(void)
1482 struct rcu_synchronize rcu
;
1484 if (rcu_blocking_is_gp())
1487 init_rcu_head_on_stack(&rcu
.head
);
1488 init_completion(&rcu
.completion
);
1489 /* Will wake me after RCU finished. */
1490 call_rcu_sched(&rcu
.head
, wakeme_after_rcu
);
1492 wait_for_completion(&rcu
.completion
);
1493 destroy_rcu_head_on_stack(&rcu
.head
);
1495 EXPORT_SYMBOL_GPL(synchronize_sched
);
1498 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1500 * Control will return to the caller some time after a full rcu_bh grace
1501 * period has elapsed, in other words after all currently executing rcu_bh
1502 * read-side critical sections have completed. RCU read-side critical
1503 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1504 * and may be nested.
1506 void synchronize_rcu_bh(void)
1508 struct rcu_synchronize rcu
;
1510 if (rcu_blocking_is_gp())
1513 init_rcu_head_on_stack(&rcu
.head
);
1514 init_completion(&rcu
.completion
);
1515 /* Will wake me after RCU finished. */
1516 call_rcu_bh(&rcu
.head
, wakeme_after_rcu
);
1518 wait_for_completion(&rcu
.completion
);
1519 destroy_rcu_head_on_stack(&rcu
.head
);
1521 EXPORT_SYMBOL_GPL(synchronize_rcu_bh
);
1524 * Check to see if there is any immediate RCU-related work to be done
1525 * by the current CPU, for the specified type of RCU, returning 1 if so.
1526 * The checks are in order of increasing expense: checks that can be
1527 * carried out against CPU-local state are performed first. However,
1528 * we must check for CPU stalls first, else we might not get a chance.
1530 static int __rcu_pending(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1532 struct rcu_node
*rnp
= rdp
->mynode
;
1534 rdp
->n_rcu_pending
++;
1536 /* Check for CPU stalls, if enabled. */
1537 check_cpu_stall(rsp
, rdp
);
1539 /* Is the RCU core waiting for a quiescent state from this CPU? */
1540 if (rdp
->qs_pending
&& !rdp
->passed_quiesc
) {
1543 * If force_quiescent_state() coming soon and this CPU
1544 * needs a quiescent state, and this is either RCU-sched
1545 * or RCU-bh, force a local reschedule.
1547 rdp
->n_rp_qs_pending
++;
1548 if (!rdp
->preemptable
&&
1549 ULONG_CMP_LT(ACCESS_ONCE(rsp
->jiffies_force_qs
) - 1,
1552 } else if (rdp
->qs_pending
&& rdp
->passed_quiesc
) {
1553 rdp
->n_rp_report_qs
++;
1557 /* Does this CPU have callbacks ready to invoke? */
1558 if (cpu_has_callbacks_ready_to_invoke(rdp
)) {
1559 rdp
->n_rp_cb_ready
++;
1563 /* Has RCU gone idle with this CPU needing another grace period? */
1564 if (cpu_needs_another_gp(rsp
, rdp
)) {
1565 rdp
->n_rp_cpu_needs_gp
++;
1569 /* Has another RCU grace period completed? */
1570 if (ACCESS_ONCE(rnp
->completed
) != rdp
->completed
) { /* outside lock */
1571 rdp
->n_rp_gp_completed
++;
1575 /* Has a new RCU grace period started? */
1576 if (ACCESS_ONCE(rnp
->gpnum
) != rdp
->gpnum
) { /* outside lock */
1577 rdp
->n_rp_gp_started
++;
1581 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1582 if (rcu_gp_in_progress(rsp
) &&
1583 ULONG_CMP_LT(ACCESS_ONCE(rsp
->jiffies_force_qs
), jiffies
)) {
1584 rdp
->n_rp_need_fqs
++;
1589 rdp
->n_rp_need_nothing
++;
1594 * Check to see if there is any immediate RCU-related work to be done
1595 * by the current CPU, returning 1 if so. This function is part of the
1596 * RCU implementation; it is -not- an exported member of the RCU API.
1598 static int rcu_pending(int cpu
)
1600 return __rcu_pending(&rcu_sched_state
, &per_cpu(rcu_sched_data
, cpu
)) ||
1601 __rcu_pending(&rcu_bh_state
, &per_cpu(rcu_bh_data
, cpu
)) ||
1602 rcu_preempt_pending(cpu
);
1606 * Check to see if any future RCU-related work will need to be done
1607 * by the current CPU, even if none need be done immediately, returning
1610 static int rcu_needs_cpu_quick_check(int cpu
)
1612 /* RCU callbacks either ready or pending? */
1613 return per_cpu(rcu_sched_data
, cpu
).nxtlist
||
1614 per_cpu(rcu_bh_data
, cpu
).nxtlist
||
1615 rcu_preempt_needs_cpu(cpu
);
1618 static DEFINE_PER_CPU(struct rcu_head
, rcu_barrier_head
) = {NULL
};
1619 static atomic_t rcu_barrier_cpu_count
;
1620 static DEFINE_MUTEX(rcu_barrier_mutex
);
1621 static struct completion rcu_barrier_completion
;
1623 static void rcu_barrier_callback(struct rcu_head
*notused
)
1625 if (atomic_dec_and_test(&rcu_barrier_cpu_count
))
1626 complete(&rcu_barrier_completion
);
1630 * Called with preemption disabled, and from cross-cpu IRQ context.
1632 static void rcu_barrier_func(void *type
)
1634 int cpu
= smp_processor_id();
1635 struct rcu_head
*head
= &per_cpu(rcu_barrier_head
, cpu
);
1636 void (*call_rcu_func
)(struct rcu_head
*head
,
1637 void (*func
)(struct rcu_head
*head
));
1639 atomic_inc(&rcu_barrier_cpu_count
);
1640 call_rcu_func
= type
;
1641 call_rcu_func(head
, rcu_barrier_callback
);
1645 * Orchestrate the specified type of RCU barrier, waiting for all
1646 * RCU callbacks of the specified type to complete.
1648 static void _rcu_barrier(struct rcu_state
*rsp
,
1649 void (*call_rcu_func
)(struct rcu_head
*head
,
1650 void (*func
)(struct rcu_head
*head
)))
1652 BUG_ON(in_interrupt());
1653 /* Take mutex to serialize concurrent rcu_barrier() requests. */
1654 mutex_lock(&rcu_barrier_mutex
);
1655 init_completion(&rcu_barrier_completion
);
1657 * Initialize rcu_barrier_cpu_count to 1, then invoke
1658 * rcu_barrier_func() on each CPU, so that each CPU also has
1659 * incremented rcu_barrier_cpu_count. Only then is it safe to
1660 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1661 * might complete its grace period before all of the other CPUs
1662 * did their increment, causing this function to return too
1665 atomic_set(&rcu_barrier_cpu_count
, 1);
1666 preempt_disable(); /* stop CPU_DYING from filling orphan_cbs_list */
1667 rcu_adopt_orphan_cbs(rsp
);
1668 on_each_cpu(rcu_barrier_func
, (void *)call_rcu_func
, 1);
1669 preempt_enable(); /* CPU_DYING can again fill orphan_cbs_list */
1670 if (atomic_dec_and_test(&rcu_barrier_cpu_count
))
1671 complete(&rcu_barrier_completion
);
1672 wait_for_completion(&rcu_barrier_completion
);
1673 mutex_unlock(&rcu_barrier_mutex
);
1677 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1679 void rcu_barrier_bh(void)
1681 _rcu_barrier(&rcu_bh_state
, call_rcu_bh
);
1683 EXPORT_SYMBOL_GPL(rcu_barrier_bh
);
1686 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
1688 void rcu_barrier_sched(void)
1690 _rcu_barrier(&rcu_sched_state
, call_rcu_sched
);
1692 EXPORT_SYMBOL_GPL(rcu_barrier_sched
);
1695 * Do boot-time initialization of a CPU's per-CPU RCU data.
1698 rcu_boot_init_percpu_data(int cpu
, struct rcu_state
*rsp
)
1700 unsigned long flags
;
1702 struct rcu_data
*rdp
= rsp
->rda
[cpu
];
1703 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1705 /* Set up local state, ensuring consistent view of global state. */
1706 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1707 rdp
->grpmask
= 1UL << (cpu
- rdp
->mynode
->grplo
);
1708 rdp
->nxtlist
= NULL
;
1709 for (i
= 0; i
< RCU_NEXT_SIZE
; i
++)
1710 rdp
->nxttail
[i
] = &rdp
->nxtlist
;
1713 rdp
->dynticks
= &per_cpu(rcu_dynticks
, cpu
);
1714 #endif /* #ifdef CONFIG_NO_HZ */
1716 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1720 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1721 * offline event can be happening at a given time. Note also that we
1722 * can accept some slop in the rsp->completed access due to the fact
1723 * that this CPU cannot possibly have any RCU callbacks in flight yet.
1725 static void __cpuinit
1726 rcu_init_percpu_data(int cpu
, struct rcu_state
*rsp
, int preemptable
)
1728 unsigned long flags
;
1730 struct rcu_data
*rdp
= rsp
->rda
[cpu
];
1731 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1733 /* Set up local state, ensuring consistent view of global state. */
1734 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1735 rdp
->passed_quiesc
= 0; /* We could be racing with new GP, */
1736 rdp
->qs_pending
= 1; /* so set up to respond to current GP. */
1737 rdp
->beenonline
= 1; /* We have now been online. */
1738 rdp
->preemptable
= preemptable
;
1739 rdp
->qlen_last_fqs_check
= 0;
1740 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
1741 rdp
->blimit
= blimit
;
1742 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
1745 * A new grace period might start here. If so, we won't be part
1746 * of it, but that is OK, as we are currently in a quiescent state.
1749 /* Exclude any attempts to start a new GP on large systems. */
1750 raw_spin_lock(&rsp
->onofflock
); /* irqs already disabled. */
1752 /* Add CPU to rcu_node bitmasks. */
1754 mask
= rdp
->grpmask
;
1756 /* Exclude any attempts to start a new GP on small systems. */
1757 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
1758 rnp
->qsmaskinit
|= mask
;
1759 mask
= rnp
->grpmask
;
1760 if (rnp
== rdp
->mynode
) {
1761 rdp
->gpnum
= rnp
->completed
; /* if GP in progress... */
1762 rdp
->completed
= rnp
->completed
;
1763 rdp
->passed_quiesc_completed
= rnp
->completed
- 1;
1765 raw_spin_unlock(&rnp
->lock
); /* irqs already disabled. */
1767 } while (rnp
!= NULL
&& !(rnp
->qsmaskinit
& mask
));
1769 raw_spin_unlock_irqrestore(&rsp
->onofflock
, flags
);
1772 static void __cpuinit
rcu_online_cpu(int cpu
)
1774 rcu_init_percpu_data(cpu
, &rcu_sched_state
, 0);
1775 rcu_init_percpu_data(cpu
, &rcu_bh_state
, 0);
1776 rcu_preempt_init_percpu_data(cpu
);
1780 * Handle CPU online/offline notification events.
1782 static int __cpuinit
rcu_cpu_notify(struct notifier_block
*self
,
1783 unsigned long action
, void *hcpu
)
1785 long cpu
= (long)hcpu
;
1788 case CPU_UP_PREPARE
:
1789 case CPU_UP_PREPARE_FROZEN
:
1790 rcu_online_cpu(cpu
);
1793 case CPU_DYING_FROZEN
:
1795 * preempt_disable() in _rcu_barrier() prevents stop_machine(),
1796 * so when "on_each_cpu(rcu_barrier_func, (void *)type, 1);"
1797 * returns, all online cpus have queued rcu_barrier_func().
1798 * The dying CPU clears its cpu_online_mask bit and
1799 * moves all of its RCU callbacks to ->orphan_cbs_list
1800 * in the context of stop_machine(), so subsequent calls
1801 * to _rcu_barrier() will adopt these callbacks and only
1802 * then queue rcu_barrier_func() on all remaining CPUs.
1804 rcu_send_cbs_to_orphanage(&rcu_bh_state
);
1805 rcu_send_cbs_to_orphanage(&rcu_sched_state
);
1806 rcu_preempt_send_cbs_to_orphanage();
1809 case CPU_DEAD_FROZEN
:
1810 case CPU_UP_CANCELED
:
1811 case CPU_UP_CANCELED_FROZEN
:
1812 rcu_offline_cpu(cpu
);
1821 * This function is invoked towards the end of the scheduler's initialization
1822 * process. Before this is called, the idle task might contain
1823 * RCU read-side critical sections (during which time, this idle
1824 * task is booting the system). After this function is called, the
1825 * idle tasks are prohibited from containing RCU read-side critical
1826 * sections. This function also enables RCU lockdep checking.
1828 void rcu_scheduler_starting(void)
1830 WARN_ON(num_online_cpus() != 1);
1831 WARN_ON(nr_context_switches() > 0);
1832 rcu_scheduler_active
= 1;
1836 * Compute the per-level fanout, either using the exact fanout specified
1837 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1839 #ifdef CONFIG_RCU_FANOUT_EXACT
1840 static void __init
rcu_init_levelspread(struct rcu_state
*rsp
)
1844 for (i
= NUM_RCU_LVLS
- 1; i
>= 0; i
--)
1845 rsp
->levelspread
[i
] = CONFIG_RCU_FANOUT
;
1847 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1848 static void __init
rcu_init_levelspread(struct rcu_state
*rsp
)
1855 for (i
= NUM_RCU_LVLS
- 1; i
>= 0; i
--) {
1856 ccur
= rsp
->levelcnt
[i
];
1857 rsp
->levelspread
[i
] = (cprv
+ ccur
- 1) / ccur
;
1861 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1864 * Helper function for rcu_init() that initializes one rcu_state structure.
1866 static void __init
rcu_init_one(struct rcu_state
*rsp
)
1868 static char *buf
[] = { "rcu_node_level_0",
1871 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
1875 struct rcu_node
*rnp
;
1877 BUILD_BUG_ON(MAX_RCU_LVLS
> ARRAY_SIZE(buf
)); /* Fix buf[] init! */
1879 /* Initialize the level-tracking arrays. */
1881 for (i
= 1; i
< NUM_RCU_LVLS
; i
++)
1882 rsp
->level
[i
] = rsp
->level
[i
- 1] + rsp
->levelcnt
[i
- 1];
1883 rcu_init_levelspread(rsp
);
1885 /* Initialize the elements themselves, starting from the leaves. */
1887 for (i
= NUM_RCU_LVLS
- 1; i
>= 0; i
--) {
1888 cpustride
*= rsp
->levelspread
[i
];
1889 rnp
= rsp
->level
[i
];
1890 for (j
= 0; j
< rsp
->levelcnt
[i
]; j
++, rnp
++) {
1891 raw_spin_lock_init(&rnp
->lock
);
1892 lockdep_set_class_and_name(&rnp
->lock
,
1893 &rcu_node_class
[i
], buf
[i
]);
1896 rnp
->qsmaskinit
= 0;
1897 rnp
->grplo
= j
* cpustride
;
1898 rnp
->grphi
= (j
+ 1) * cpustride
- 1;
1899 if (rnp
->grphi
>= NR_CPUS
)
1900 rnp
->grphi
= NR_CPUS
- 1;
1906 rnp
->grpnum
= j
% rsp
->levelspread
[i
- 1];
1907 rnp
->grpmask
= 1UL << rnp
->grpnum
;
1908 rnp
->parent
= rsp
->level
[i
- 1] +
1909 j
/ rsp
->levelspread
[i
- 1];
1912 INIT_LIST_HEAD(&rnp
->blocked_tasks
[0]);
1913 INIT_LIST_HEAD(&rnp
->blocked_tasks
[1]);
1914 INIT_LIST_HEAD(&rnp
->blocked_tasks
[2]);
1915 INIT_LIST_HEAD(&rnp
->blocked_tasks
[3]);
1919 rnp
= rsp
->level
[NUM_RCU_LVLS
- 1];
1920 for_each_possible_cpu(i
) {
1921 while (i
> rnp
->grphi
)
1923 rsp
->rda
[i
]->mynode
= rnp
;
1924 rcu_boot_init_percpu_data(i
, rsp
);
1929 * Helper macro for __rcu_init() and __rcu_init_preempt(). To be used
1930 * nowhere else! Assigns leaf node pointers into each CPU's rcu_data
1933 #define RCU_INIT_FLAVOR(rsp, rcu_data) \
1937 for_each_possible_cpu(i) { \
1938 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
1940 rcu_init_one(rsp); \
1943 void __init
rcu_init(void)
1947 rcu_bootup_announce();
1948 RCU_INIT_FLAVOR(&rcu_sched_state
, rcu_sched_data
);
1949 RCU_INIT_FLAVOR(&rcu_bh_state
, rcu_bh_data
);
1950 __rcu_init_preempt();
1951 open_softirq(RCU_SOFTIRQ
, rcu_process_callbacks
);
1954 * We don't need protection against CPU-hotplug here because
1955 * this is called early in boot, before either interrupts
1956 * or the scheduler are operational.
1958 cpu_notifier(rcu_cpu_notify
, 0);
1959 for_each_online_cpu(cpu
)
1960 rcu_cpu_notify(NULL
, CPU_UP_PREPARE
, (void *)(long)cpu
);
1961 check_cpu_stall_init();
1964 #include "rcutree_plugin.h"